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ABSTRACT 

Since the outbreak of the coronavirus disease (COVID-19) pandemic, governments around the 
globe have undertaken multiple policies to control its spread. Yet, only a few studies estimated the 
cost of COVID-19-related stringency measures on economic output, which can be attributable to 
the time lag and low frequency of conventional economic data. To bridge this gap in the literature, 
this paper uses novel high-frequency and spatially granular surface urban heat island (SUHI) data 
from satellites to quantify the impact of COVID-19-related containment policies in the People’s 
Republic of China, exploiting variations in such policies. Three empirical results emerge. First, we find 
stringency measures decrease urban heat island in locked cities only marginally, which is equivalent 
to 0.04–0.05 standard deviation or CNY22.2 billion ($3.6 billion) of economic output drop which is 
a 0.09% annual gross domestic product decline in 2020. Second, our results suggest that 
governments have been learning continuously to manage containment measures better. Third, the 
government’s containment policies have generated both positive and negative spillover effects on 
unlocked cities in which the former effect has dominated the latter. 

 
 
 
Keywords: COVID-19 pandemic, economic costs of containment measures, surface heat island (SUHI) 
data from satellites, PRC 

JEL codes: A10, O20 

  



 

 
 

I. INTRODUCTION 

The sudden emergence of the coronavirus disease (COVID-19) turned out to be one of the most 
devastating disasters in modern human history. One year after the first case was recorded, COVID-19 
had afflicted more than 80 million people globally, taken 1.8 million lives, and set back global output by 
more than 2 years (ADB 2021). While it affected 3.2% of the working-age population globally in 2020, 
it is worth reaffirming that the pandemic is a health disaster, not an economic crisis, by nature. While 
substantial loss of life has had effects on employment and output directly, we can safely say that its 
economic impacts arise more from the containment policies rather than the disease itself. Since there 
have been intensive discussions around the world on the seemingly unavoidable trade-offs between 
the health and the economy (Peroff and Podolak-Warren 1979, Lin and Meissner 2020), it would be 
imperative to capture the economic impacts of pandemic containment policies accurately so that 
governments can identify and adopt appropriate policy instruments to control the pandemic. Yet, the 
lack of high-frequency, granular data prevent researchers from undertaking such assessments closely. 
To the best of our knowledge, only a few studies empirically estimated the causal impact of  
COVID-19-related stringency measures on economic output.1 Indeed, the most authoritative review 
on the economics literature on the COVID-19 pandemic in developing countries mentions that “[a]n 
important open question is the role that government lockdown policies played in driving these adverse 
outcomes” (Miguel and Mobarak 2021). In this paper, we bridge this critical lacunae in the existing 
literature by using novel and innovative data, i.e., surface urban heat island (SUHI) data from satellites, 
focusing on the People’s Republic of China (PRC). 

The PRC provides an almost ideal setting for our analysis in two respects: First, it is an earliest 
example of lockdown measures with intermittent implementation of localized and city-wide 
lockdowns, allowing for a longer period of observations since January 2020 compared to other 
countries; and second, it covers a number of provinces with differentiated levels and timings of 
lockdowns. We take advantage of these policy variations which enable us to empirically identify the 
causal impact of public health response on economic output. In addition, the compliance rate with 
stringency measures and other applicable government policies has been higher in the PRC than in 
other countries,2 which helps us to estimate the impact precisely. The high compliance rate implies our 

                                                                 
1 Conventional data on economic outputs is not available given the lag in data compiling and publication. Several papers 

use individual case study or model simulation to answer this question (e.g., Gunay, Can, and Ocak 2020; Havrlant, 
Darandary, and Muhsen 2021; and Shimul et al. 2021) without design-based empirical evidence. The closest work to this 
paper is by Beyer et al. (2020), which quantifies the impact of differential containment policies implemented by the 
Government of India during the COVID-19 pandemic on aggregate economic activity, using monthly nighttime lights as a 
proxy. Unlike their paper exploiting monthly variation from March 2020 to July 2020, we are able to capture daily changes 
in our economic outcome variable for a period from January 2016 and December 2020. Our data allows us to investigate 
time-changing nature of containment policy effectiveness explicitly. Also, by comparing nighttime lights data with our 
data explicitly, we can address potential bias arising from data on nighttime economic activities.   

2 The PRC tends to have high compliance rates on COVID-19 stringency for two reasons. First, culture norms affect 
compliance rates. Gelfand, Harrington, and Jackson (2017) and Bavel et al. (2020) have found some cultures, including 
the PRC, have strict social norms and punishments for noncompliance, and people in these cultures tend to follow 
government regulations in general. In the context of COVID-19, experimental evidence shows people in the PRC are willing 
to serve the collective goal of containing the COVID-19 (Dong et al. 2021). Second, from observed evidence, the PRC 
government adopts enforcement mechanisms like strict quarantines, quick response or QR codes, health risk ranking, and 
detailed contact tracing to control confirmed or potential cases. We confirm our compliance rate arguments in our mobility 
results: human movement largely decreases in both locked and unlocked cities when any PRC city is under lockdown. 
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estimated complier-average causal effect is similar to the average treatment effect without concerns 
of complier characteristics.3 

To preview, there are three findings that emerged from our empirical analysis. First, we find 
COVID-19 stringency decreases economic output, measured by SUHI. Specifically, the locked cities 
experience 0.1°C lower SUHI because of lockdown relative to the unlocked cities, equivalent to  
0.04–0.05 standard deviation of economic output drop. It is important to note that in the PRC, urban 
areas tend to have lower surface temperatures than rural areas, given that some industrial zones (that 
contribute to surface heat) are located away from cities, in more rural areas. For instance, 24.5% of 
coal power plants in the PRC are located in rural areas. These activities generate heat and result in hot 
rural areas. However, we note that regardless of the starting temperatures in urban areas, a decrease in 
surface heat during the lockdown period. Second, examining heterogeneous economic impacts 
because of the three differentiated levels of lockdown, i.e., complete lockdown, partial lockdown, and 
placement of checkpoints and quarantine zones, we find the most pronounced effects in completely 
locked cities, while lower effects in partially locked cities and cities with checkpoints. Third, we find 
both negative and positive spillover effects of the containment policies—mobility levels decreased in 
both locked and unlocked cities, despite SUHI increased in unlocked cities, suggesting that the positive 
spillover effects dominated the negative ones. Finally, we find that the negative economic impact of 
lockdown declined over time. This implies that governments have been learning continuously to 
manage containment measures better. We may also conclude there would have been negligible 
contribution of human movement to the PRC's SUHI, and a potentially substantial contribution of 
energy and industrial use. 

We believe that our study contributes to existing studies in two aspects. First, we provide more 
accurate and frequent impact assessments of COVID-19 in the PRC by constructing a comprehensive 
and granular stringency measure of control policies for Chinese cities. While we are not the first to 
study COVID-19 stringency in the PRC, most existing papers use an indirect or less-precise measure as 
their treatment, including the number of cases in each city or the nationwide policy (Agarwal et al. 
2020; Chen, Qian, and Wen 2021; Chen, Cheng, et al. 2020; Fang, Wang, and Yang 2020;  Min, Xiang, 
and Zhang 2020; Ruan, Cai, and Jin 2021). In addition, a small number of studies use local stringency 
policies as treatment, but most of them stop before April 2020, focusing only on the first wave of 
COVID-19 outbreak (Chen, Li, et al. 2020; Fang, Wang, and Yang 2020; Kim and Zhao 2020; Zhang, 
Luo, and Zhu 2021). In contrast, we use the direct measure at the local level to construct our local 
stringency “treatment” variables. We also estimate impacts of the policies for the whole year 2020, 
covering not only the first wave in early 2020 but also during later outbreaks. The year-long study 
period provides a full picture of COVID-19 stringency impacts, allowing us to examine overtime 
changes of containment policy effectiveness. Besides, given the time period observed, our study is not 
affected by vaccinations which were rolled out extensively from February 2021 in the PRC. As 
vaccination may moderate the effect of COVID stringency and generate a downward bias, our study 
focusing on 2020 serves as a clean estimate of containment measures without the confounding effect 
of vaccinations. 

  

                                                                 
3 According to Angrist and Pischke (2009), we could only capture the causal effect of treatment on compliers, i.e., local 

average treatment effects, given partial compliance. Estimated effects are not generalizable to the entire population if the 
instrument induces a specific type of subpopulation. In contrast, we are able to capture the average treatment effect if the 
entire population follow policy instruments, like the case of the PRC. 
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Second, we measure changes in economic activities from satellite-based outcomes with high 
spatial resolution and temporal frequency. While SUHI has been studied in physical science fields on 
urban expansion, industrial relocation, and general human activities (Zhou et al. 2014, Li et al. 2017, 
Zhang et al. 2017, Wang et al. 2018, Alqasemi et al. 2021), to the best of our knowledge, this is one of 
the first studies in economics to employ SUHI to understand socioeconomic changes or to evaluate 
policies, especially in the context of the pandemic. 

The remainder of this paper is organized as follows. Section II provides background on surface 
urban heat island. Section III describes the data for empirical analysis. Section IV discusses our 
empirical setting. Sections V and VI report the empirical results, mechanism discussion, and robustness 
tests. Section VII concludes. 

II. SURFACE URBAN HEAT ISLAND 

A. Definition and Cause 

SUHI refers to the phenomenon that the surface of urban areas is significantly warmer than that in its 
surrounding rural areas. This phenomenon is commonly observed in large cities worldwide (Zhou, 
Rybski, and Kropp 2017) and is of great importance in sustainable city design. In the short run, the 
elevated temperature has adverse effects on human health and well-being, especially during heat 
waves. In the long run, local warming caused by higher heat discharge exacerbates global warming and 
could double the economic losses in the future. 

Generally speaking, surface urban heat island is caused by several factors. The first is the 
albedo and infrastructure effect. Human-made materials used in urban areas such as asphalt 
pavements or metal roofing tend to reflect less solar energy and absorb more heat. Second, urban 
geometry also increases temperature. The space between buildings in the city is generally small, and 
this narrow space can restrict natural wind flows, slowing the heat release. Third, urban areas have 
fewer trees, vegetation, and water bodies. While these natural landscapes tend to cool the air, urban 
areas do not have them sufficiently by nature. Fourth, human activities can discharge heat. Vehicles, air 
conditioning, and industrial production facilities all emit heat to the urban environment. Therefore, 
surface temperature is generally higher in urban areas than that in rural areas, where the temperature is 
positively correlated with the level of anthropogenic activities. In the short run, daily variations in SUHI 
are most likely to be driven by contemporaneous human activity rather than the former three 
nonhuman factors which change overtime only slowly. Hence, changes in SUHI can be potentially 
considered as a real-time indicator of economic activity. All these factors result in SUHI, and we are 
not able to differentiate one factor from others.  

B. Measures and Existing Studies 

Measures of SUHI come from satellite thermal data. Imageries from Landsat were first applied to 
study SUHI in 1990 (Carnahan and Larson 1990). It has a high spatial resolution (60 m–120 m) but a 
lower time frequency (every 16 days) (Zhou et al. 2019). Besides, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Land Surface Temperature product is another important data source 
for SUHI research. It has a medium spatial resolution (1 km), and, more importantly, a high time 
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frequency (daily). Some other satellite sensors also provide thermal bands but are less frequently 
used in SUHI studies.4 

The most widely used measure of SUHI is the difference in surface temperature between 
urban and surrounding areas. For example, Zhou et al. (2014) analyze the spatial variation in SUHI 
intensity and nightlight for 32 major cities in the PRC, finding a positive correlation between nightlight 
luminosity level and SUHI intensity. SUHI intensity is higher in southeastern and northern PRC where 
economic activities are higher. They also show SUHI intensity is more striking in summer than in winter 
during the day and the opposite during the night for most cities.5 Using data for the United States, Li et 
al. (2017) report a nonlinear relationship between urban area size and SUHI. Doubling urban size could 
increase SUHI by 0.7°C. Similar to our study, Alqasemi et al. (2021) examine SUHI intensity change 
during COVID-19 lockdown in the United Arab Emirates. They use the blanket lockdown information 
combined with SUHI intensity data to perform a before-and-after comparison between 2020 and 
2019. They find lockdown is associated with a lower SUHI intensity by 19.2%. 

III. DATA 

In this study, we employ SUHI intensity data in each city together with detailed information on 
COVID-19 response stringency data. 

A. COVID-19 Response Stringency 

We construct our “treatment” variable—COVID-19 response stringency at the city-day level—by 
collecting information about local policies from government announcements and news media. After 
gathering all the stringency actions, we generate five indicators, i.e., three levels of lockdown indicators 
as well as two indicators for school closure and workplace closure.6 We extend Fang, Wang, and Yang 
(2020) and classify lockdown into three complete and mutually exclusive levels: complete lockdown, 
partial lockdown, and placement of checkpoints and quarantine zones. The classification is based on 
two objective information, i.e., move-out ban and public transportation cancellation.7 

  
                                                                 
4 The review by Zhou et al. (2019) shows the proportion of the existing studies using different sensors. Landsat takes 53% 

and MODIS takes 25% of the total SUHI studies they reviewed. 
5 We use SUHI rather than nightlight as a proxy for economic output in this study as SUHI has daily frequency while 

nightlight is monthly. As the PRC's lockdown usually takes place promptly and lasts for 2 weeks, we are interested in daily 
variation of economic activities. 

6 Note that we refrain from using data on testing intensity, face mask wearing, or social distancing as elements for our 
stringency indicator. On the one hand, these policies are not formally regulated by the government, and thus do not 
necessarily provide useful exogenous policy variations in identifying policy effects. On the other, these indicators may 
have been driven by lockdown and are more likely to be outcome variables, rather than policy variables. 

 We do not use school or workplace closing and only focus on lockdown indicators in the empirical estimation. Lockdown 
serves as a general, comprehensive stringency control including school closing and workplace closing measures. The latter 
two are correlated with lockdowns. Also, we have less precise information on school and workplace closing from 
government documents and media, while clear and well-enforced dates of lockdown start and end. 

7 There is no official classification of lockdown levels by the Government of the PRC. Though central governments flag 
high-risk and medium-risk areas in some cities, this scheme started in April 2020 and could not cover the first outbreak in 
early 2020. 
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Among these three types of lockdowns, complete lockdown is the most stringent control. 
Residents are not allowed to leave the city. For within-city movement, both public transport and 
private transport are forbidden. All residential housing estates are under lockdown and residents are 
allowed to leave their apartments only with limited quota for essential activities. Partial lockdown is the 
second most stringent one. Residents are allowed to leave the city. Public transport has been 
temporarily shut down, but private transport is allowed. The least stringent lockdown is checkpoints 
and quarantine zones. This indicator takes a value of one if there is at least one quarantine zone (which 
could be as small as a housing estate) in the city on that day. 

Figure 1 visualizes our stringency measure, displaying the number of cities with some lockdown 
on each day. In Panel A, the blue line is the number of cities with any level of lockdown. While the 
number of locked cities reached more than 100 in February 2020, it decreased to zero in April 2020. 
We have another lockdown peak in July and August, including Beijing and Xinjiang Uygur Autonomous 
Region (XUAR) lockdowns. Shaded areas in Panel A indicate lockdown-free time—totaling 63 days in 
2020 without any city under lockdown in the PRC. In Panel B, the number of cities with complete and 
partial lockdowns are shown, respectively, in red and green lines (left Y-axis). Blue dash lines indicate 
the least stringent lockdown (right Y-axis). Complete lockdown peaked twice in 2020—in February 
and March and in summer. 

B. Surface Heat 

We employ MODIS daytime land surface heat product to construct SUHI variable. MODIS is the key 
instrument aboard satellite Terra launched in 1999. Terra views the entire Earth's surface every day at 
10:30 am local solar time in 36 spectral bands ranging in wavelengths 0.44 μm–14.4 μm. The land 
surface temperature product is developed based on three thermal infrared bands. Its spatial resolution 
is 1 km and its time frequency is 1 day. We use daytime land surface temperature in our main result and 
nighttime land surface temperature in the robustness check. 

To process heat data from pixel–day level to city–day level, we need to calculate each city's 
surface temperature at the urban–day and rural–day level. Two base maps are used for data 
processing. First, we use a prefecture-level city base map for the PRC from the Center for Geographic 
Analysis at Harvard University.8 There are 339 cities in total, and each city refers to one polygon. We 
project cities on the satellite product, and each city covers some 1 km pixels. We calculate the average 
values of the covered pixels as surface temperature for that city on that day. 

We use urban boundary map from the global artificial impervious area (GAIA) (Li et al. 
2020),9 and conduct a similar projection for each urban area. Then we calculate the weighted average 
of urban temperature and rural temperature for each city (weighted by the number of covered pixels). 
We use the simple difference between urban heat and rural heat as our measure for SUHI intensity. 

  

                                                                 
8 Center for Geographic Analysis. China GIS Data. https://gis2.harvard.edu/resources/data/china-gis-data (accessed 31 

January 2021). 
9 Department of Earth System Science, Tsinghua University. Global Land Cover. http://data.ess.tsinghua.edu.cn/ (accessed 

31 March 2021). 
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C. Mobility 

We use mobility indexes from Baidu, which is the dominant search engine in the PRC as Google does not 
operate in the PRC since 2010.10 Baidu Migration uses Baidu Map location-based service to estimate 
mobility index. Mobility indexes are based on Baidu Map users' location change, no matter what type of 
transport. In this study, we use three mobility indexes: within-city mobility index, move-in index, and 
move-out index. They are comparable across cities and time. To construct our outcome variables, we 
aggregate these indexes into the city–day level index. Because of limitation of data availability, we only 
use the index that covers 1 January 2020–3 May 2020. 

D. Economic Outputs 

We also extract and use commonly used economic output variables from CEIC Global Database to 
validate our SUHI measures. We use gross domestic product (GDP) at the city–quarter level, 
household expenditure per capita at the city–quarter level, and government revenue at the city–month 
level for validation tests. 

IV. EMPIRICAL STRATEGY 

To evaluate the impact of COVID-19-related stringency measures on economic outputs captured by 
SUHI, we exploit variations in stringency measures across cities and time for 2016–2020. Specifically, 
we use the standard difference-in-differences design: 

 𝑌 =  𝛽 +  𝛽 𝐿𝑜𝑐𝑘𝐴𝑛𝑦𝐶𝑖𝑡𝑦 + 𝛽 𝐿𝑜𝑐𝑘𝑒𝑑 + 𝜃 + 𝛾 + 𝜀 , (1) 

where Yit is outcome variable, SUHI intensity, of city i on date t. The use of SUHI intensity has been 
common in the existing studies such as Zhou et al. (2014) because it can eliminate the geographical 
differences in climate conditions in different cities and short-term weather fluctuations. We also 
analyze mobility indexes as an outcome Y in the mechanism section. On the right-hand side of 
equation (1), LockAnyCityt is an indicator variable which takes one if any city in the PRC is being locked 
on day t; and zero otherwise. Note that this variable takes the same value for all Chinese cities and for 
any lockdown of the three levels. The term Lockedit captures city i being locked on day t by taking one 
for a locked city on its locked day, and zero otherwise. It also captures any lockdown of the three levels. 

In terms of other controls, γi includes city fixed effects. θt captures time fixed effects including 
day-of-week, month, and year. β2 is the coefficient of chief interest. It shows the impact of lockdown 
on locked cities relative to unlocked cities. If lockdown reduces economic activities, we expect β2 to be 
negative. Coefficient β1 measures the national level impact of any city's lockdown on all Chinese cities 
through different channels such as the ones through supply–chain networks as well as changes in 
sentiments of consumers and producers. 

  

                                                                 
10 Baidu. Baidu Migration. https://qianxi.baidu.com/ (accessed January 25, 2021). 
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We further separate three levels of lockdown to test the heterogeneity across stringency levels. 
The specification is: 

 𝑌 =  𝛽 +  𝜆 𝐿𝑜𝑐𝑘𝐴𝑛𝑦𝐶𝑖𝑡𝑦1 + 𝜆 𝐿𝑜𝑐𝑘𝐴𝑛𝑦𝐶𝑖𝑡𝑦2 + 𝜆 𝐿𝑜𝑐𝑘𝐴𝑛𝑦𝐶𝑖𝑡𝑦3  (2) 

 +𝜃 𝐿𝑜𝑐𝑘𝑒𝑑1 + 𝜃 𝐿𝑜𝑐𝑘𝑒𝑑2 + 𝜃 𝐿𝑜𝑐𝑘𝑒𝑑3 + 𝜃 + 𝛾 + 𝜀   (2)  

where LockAnyCity1t, LockAnyCity2t, and LockAnyCity3t, respectively, indicate any Chinese city that is 
under complete lockdown, partial lockdown, and have checkpoints or quarantine zones on day t. 
Similarly, Locked1it, Locked2it, and Locked3it denote that city i is under each level of lockdown. 

Since we use a complete and exclusive lockdown classification, by definition, we have: Locked1it 
+ Locked2it + Locked3it = Lockedit, and LockAnyCity1t + LockAnyCity2t + LockAnyCity3t = LockAnyCityt. 
When there are two cities under different levels of lockdown, we use the most stringent control among 
all the cities on day t. 

Finally, we simplify the empirical strategy of Miguel and Kremerb (2004) to test the spillover 
effect of COVID-19 stringency on adjacent cities and non-adjacent cities in the same province: 

 𝑌 =  𝛼 +  𝛼 𝐿𝑜𝑐𝑘𝐴𝑛𝑦𝐶𝑖𝑡𝑦 + 𝛼 𝐿𝑜𝑐𝑘𝑒𝑑 + 𝛼 𝐿𝑜𝑐𝑘𝐴𝑛𝑦𝐶𝑖𝑡𝑦  ×  𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡  (3) 

 + 𝛼 𝐿𝑜𝑐𝑘𝐴𝑛𝑦𝐶𝑖𝑡𝑦  ×  𝑁𝑜𝑛𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡  ×  𝑆𝑎𝑚𝑒𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒 + 𝜃 + 𝛾 + 𝜀 , 
where Adjacentit takes one if city i shares border with a city under lockdown on day t; NonAdjacentit 
takes one if city i does not share border with a city under lockdown on day t; and SameProvinceit takes 
one if a city under lockdown on day t is in the same province. If there is a negative spillover effect 
across city border, we expect that the estimated α3 is negative. 

Since cities and residents in the same province are connected with each other through supply 
chain networks and other channels, we test whether non-neighbor cities in the same province are also 
affected differently, compared with cities in lockdown-free provinces. To do so, we add the triple 
interaction term, LockAnyCityt×NonAdjacentit×SameProvinceit, which takes one if city i is in the same 
province as a lockdown epicenter on day t; and zero otherwise. Considering negative spillover effects 
within the same province, the estimated coefficient α4 is hypothesized to be negative. 

V. RESULTS 

A. Correlation Between Surface Urban Heat Island and Economic Output 

To validate our measure, we first test the correlation between surface urban heat island and 
conventional economic output variables. Specifically, we use GDP at the city–quarter level, household 
expenditure per capita at the city–quarter level, and government revenue at the city–month level. 
Since data covers the period from 2016 to 2020, we are able to test the correlation both before and 
during the pandemic. Table 1 displays empirical results from regressing SUHI intensity on each of the 
economic variables, showing overall positive and fairly significant coefficients. These results indicate 
our SUHI intensity measure is a reasonable proxy of the economic output measures. Particularly, the 
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correlation is still positive and statistically significant for GDP even if we include time-varying  
(city–month) fixed effects. SUHI seems to capture granular intra-month information about economic 
activities within each city which cannot be captured by GDP. 

We also check the relationship between SUHI intensity and mobility indexes, though we have a 
short time period for this analysis. As we can see from Table 2, SUHI intensity captures both the time 
variation and the spatial variation of the within-city mobility index quite well. As discussed in Section II, 
vehicle use and transportation contribute to the urban heat island. Despite the strong correlation, we still 
cannot conclude whether urban heat island in the PRC is driven by human mobility or other activities, 
such as energy and industrial use that are closely correlated with mobility patterns. In contrast, SUHI 
intensity correlates weakly or negatively with across-city mobility indexes, a finding that possibly reflects 
human responses to temperature—we expect lower heat generation in urban areas when residents  
move out of the city; and also, rural areas tend to be hotter with higher level of move-in population. 

Apart from these correlation tests, we show the time series data of SUHI intensity in Figure 2.11 
Taking the whole country together, SUHI intensity shows a strong seasonality, with higher values in 
winter and lower values in summer.12 SUHI intensity ranges from -1°C to 0°C, and there is no obvious 
outlier in the 5-year graph. When we zoom in to the areas of top interest, Hubei, Beijing, and Tianjin 
show different local seasonalities. Compared with Beijing and Hubei, SUHI intensity values in XUAR 
have more significant deviations over time, probably because of XUAR’s fluctuating socioeconomic 
activities over time. Focusing on the lockdown periods, SUHI intensity values slightly decreased during 
the lockdown in Hubei and XUAR, while the pattern is less evident for Beijing. 

B. Effects of COVID-19 Response Stringency on Surface Urban Heat Island 

We plot the same-day difference of SUHI intensity between the treated year 2020 and earlier 2 years' 
average in Figure 3. In Panel A, red dots are weighted average SUHI intensity for all treated cities under 
lockdown on each day, with weights equal to urbanization rates. Blue dots are weighted average SUHI 
intensity for all control cities and treated cities not under lockdown. In panels B–D, red lines are the 
lockdown or “treated” regions, including Hubei, Beijing, and XUAR, and blue lines are their local 
neighbor regions without lockdown.13 The first and second vertical gray lines in each chart are, 
respectively, local lockdown's start and end dates. In Panel B, Hubei shows a different trend with its 
neighbor before the lockdown started, and still behaved differently until the lockdown ended. After 
that, Hubei and its neighbor show parallel trends in the rest of the year. The pre-trend is probably 
because of the internal information of COVID-19 before the official lockdown started. Unlike later 
outbreaks with fast policy responses, the first case in Hubei occurred in late 2019, about 1 month 
before the lockdown started on 23 January 2020. Thus, people may already have behavioral responses 
before the stringency policy. After the lockdown ended in April, life got back to normal, and we see 
very similar curves for Hubei and Hunan.  

                                                                 
11 We use urbanization rate to weight cities and calculate the average SUHI for the whole PRC. In Table 2.1 and Figure 2.1, 

we show a positive cross-sectional correlation between urbanization rate and SUHI at the city level. 
12 We expect a positive SUHI if urban areas are generally hotter than rural areas. However, the average value of SUHI in the 

PRC is -0.2°C. One potential reason is the relocation of industrial facilities in rural areas when more people move to the 
urban. We check the spatial distribution of 2,029 Chinese coal-fired power plants using data from CoalSwarm 
(https://endcoal.org/global-coal-plant-tracker/), and 498 (24.5%) of them are located out of the urban boundary. 
Besides, our negative SUHI taking all Chinese cities together is consistent with existing papers (Zhou et al. 2014, Zhou et 
al. 2015, Li and Zhou 2019, Niu et al. 2020) that also document negative SUHI values. 

13 We use geographic neighbors of treated regions as control regions. While each treated region has multiple unlocked 
neighbors, they show similar SUHI patterns and the choice of control regions does not change the figure. 
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In Panel C, Beijing got lockdown in June and reopened in July. Beijing and its neighbor Shanxi 
behaved very similarly in the pre-period, and Beijing's heat island decreased during its lockdown. After 
that, Beijing had a strong rebound effect, probably because of an accelerated economic recovery after 
the COVID-19 is controlled. In Panel D, we see similar patterns for XUAR as that for Beijing and its 
neighbor during the lockdown. There is no rebound effect in and after September in XUAR. 

Why did Beijing experience a unique rebound pattern? One potential reason is Beijing's 
different economic structure. Beijing has a higher concentration of the services sector. Compared with 
manufacturing and other sectors, it will be straightforward for the services sector to be reopened after 
governments provide some consumption incentives. Beijing also has a larger population, and recovery 
can be easier when there are more consumers and more labor services. Further, Beijing's lockdown 
involved isolated checkpoints, compared with the other two regions with a broad, large-scale 
lockdown. The isolated checkpoints mean a less-stringent treatment and an easier recovery. 

Table 3 shows estimation results based on equation (1). Taking three levels of lockdown 
together, lockdown decreases locked cities’ heat island by 0.04–0.05 standard deviation, while slightly 
increases unlocked cities’ heat island by 0.01–0.02 standard deviation.14 The decrease is consistent 
with intuition. Lockdown reduces human mobility, economic production, and anthropogenic activities, 
resulting in overall lower heat generation. Based on the correlation test in Table 1, locked cities observe 
reductions in quarterly GDP, quarterly household expenditure per capita, and monthly government 
revenue, respectively, by CNY22.2 billion, CNY793 billion, and CNY5.33 billion. Unlike locked cities, 
those without stringency control have an increased SUHI intensity. Section IV discusses this finding 
and potential mechanisms. 

C. Heterogeneity Across Stringency Levels, Over Time, and Spillover Effects 

In further quantifying the impact of stringency measures, we separate three levels of lockdown by 
estimating equation (2). Table 4 shows that a complete lockdown has the largest negative effect on 
locked cities' heat island. Partial lockdown, checkpoints, and quarantine zones have slightly negative 
effects. As complete lockdown bans public and private transport, and partial lockdown bans public 
transport only, one possible reason behind this heterogeneity is the large role that private transport, 
such as cars, plays in generating urban heat. Another potential reason could be that public transport 
commuters do not switch in large numbers to private cars during partial lockdowns. 

In Table 5, we assess the impact of stringency on adjacent cities and other cities in the same 
province, relative to other cities outside the province. The observed higher SUHI intensity in 
unlocked cities is mainly driven by non-adjacent cities within the same province, possibly because of 
production relocation channels. We will explore potential mechanisms for the estimated patterns in 
the following section. 

Moreover, we test heterogeneous treatment effects over time in Table 6 and Table 7. When 
adding a linear time trend and an interaction term Lockedit×Days, positive estimates on the interaction 
term indicate that the negative effects of lockdown on treatment are getting smaller over time. 
Specifically, lockdown on 1 February 2020 decreased locked cities’ SUHI more than lockdown on  
11 May 2020 (100 days later) by 0.1°C. Separately estimating treatment effects in each month in 

                                                                 
14 We find imprecise estimates on Lockedit in column (2) when city–month FEs are added. City–month FEs may capture our 

treatment given a small number of years and the monthlong lockdown period in 2020. We focus on columns (1), (3), and 
(4) when interpreting our results. 
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2020 shows that the most severe economic loss because of lockdowns occurred in February, March, 
and September 2020. Estimates are getting larger over time, indicating gradually lower economic 
costs arising from the lockdown. This suggests a “learning-by-doing” effects of the governments in 
managing containment measures by better balancing public health benefits and economic costs in 
later COVID-19 waves. 

VI. DISCUSSION ON MECHANISM 

A. Effects of COVID-19 Response Stringency on Human Mobility 

Why does lockdown reduce surface urban heat island in locked cities? While we are unable to 
disentangle the contribution of each sector to the observed lower level of SUHI intensity, 
anthropogenic activities such as energy use, industrial productions, and vehicle and human movement 
are more likely to be affected by the COVID-19 stringency, compared with human-induced land use 
change and other structural transformation that are less likely to vary in the short run. Using Baidu 
mobility data, we assess the impact of the COVID-19 stringency on human movement so that we can 
identify mechanisms behind the stringency and SUHI intensity nexus at least partly. We hypothesize 
that lockdown reduces human movement as an intermediate route, which in turn results in lower 
SUHI intensity. 

With mobility indexes as outcome variables, Table 8 displays results from estimating the 
regression model of equation (1). Negative and precise estimates on Lockedit confirm our basic 
hypothesis—lockdown drives down locked cities’ within-city, move-in, and move-out mobility index by 
2.26, 0.86, and 1.06 points, respectively, equivalent to 55%, 105%, and 135% relative to the mean. 
Results are robust even if we control for national and local seasonality [columns (1) and (2)], and are 
robust in the same-month and same-day comparison [columns (3) and (4)]. The model achieves the 
highest explanatory power (i.e. the largest R2 value) in column (2), indicating that mobility pattern 
shows strong local seasonality.15 

Estimated coefficients on LockedAnyCityt are also negative and significant consistently, which 
suggest unlocked cities also witness lower mobility patterns despite no stringency policies imposed. 
Specifically, their within-city, move-in, and move-out pattern drop, respectively, by 1.87, 0.50, and 
0.52 points, namely 45.5%, 61.5%, and 62.8% relative to the mean. After removing the nationwide 
effect, locked cities experience a more considerable drop in across-city migration than intracity 
migration, as shown in the relatively larger estimates on Lockedit in panels B and C. 

If human movement drives the SUHI pattern, we would expect a positive estimate on 
LockedAnyCityt and a negative one on Lockedit. Empirically, effects on mobility are consistent with 
those on SUHI in cities that implemented lockdown measures, but not consistent with cities without 
lockdown measures. One explanation for this finding is that human movement is not a key driver for 
SUHI change in our main results. Although human movement contributes to SUHI, the increased 
SUHI in unlocked cities is likely to result from other anthropogenic activities like industrial facilities, air 

                                                                 
15 We do not test the heterogeneous mobility effects by lockdown levels because of the collinearity of complete and partial 

lockdown city–day during January 2020–April 2020. 
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conditioning, and energy use. Another interpretation is a possible shift in human behaviors. For cities 
not in lockdown, mobility nevertheless falls probably because of fear, so we capture a negative 
estimate on LockedAnyCityt in Table 8. SUHI, however, does not decline because of the other  
non-mobility sectors that also contribute to SUHI, so the estimate is positive in Table 3. 

B. Other Potential Mechanisms 

One potential reason behind the SUHI intensity decline because of lockdown is the production shift. 
With some cities under lockdown, production and supply chains tend to be moved to unlocked cities to 
ensure necessary supply and national development. If the supply chain network within the PRC is fairly 
resilient against disasters, it is not too costly to change production location from one branch to another. 
Accordingly, higher production activities in unlocked cities might have led to higher SUHI there. 

Another potential mechanism might be the relaxation of environmental regulation during the 
pandemic. For each production unit, heat discharge in unlocked cities may be higher than in earlier 
years without COVID-19. Heat discharge is one dimension of green production and sustainability. 
Indeed, in March 2020, governments waived environmental impact assessment rules and removed 
requirements for on-site inspections to curb the economic damages caused by COVID-19.16 Given a 
different policy priority on controlling COVID-19 and maintaining economic output, a lenient 
environmental regulation may increase heat discharge and result in a higher SUHI. 

C. Robustness Checks 

We also perform a series of robustness checks to validate our findings, including placebo tests, adding 
group-specific time trends, lunar calendar (to account for potential seasonal changes in overall 
mobility and SUHI), and nighttime heat island data.  

1. Placebo Test 

We conduct a falsification analysis to check for “placebo” effects on outcomes that are known to be 
unaffected by the treatment (e.g., outcomes measured before the treatment). In this case, we have 
used placebo treatment dates, which are from 1 year prior, and dropped the year 2020. Table 9 shows 
the estimation results in which we find no significant effects of placebo lockdown variables on locked 
cities’ SUHI, validating our identification strategies of COVID-19 impacts. 

2. Adding Group-Specific Time Trends 

Human-to-human transmission accounts for a significant portion of COVID-19 cases, and larger cities 
with more population and higher mobility rates have higher risks of COVID-19 outbreaks. However, 
cities that were locked early and treated cities might have had inherently different experiences from 
unlocked cities. In this context, if larger cities have different SUHI trajectories over time, e.g., a slower 
growth rate, we may still observe a negative coefficient on the lockdown variable, Lockedit, even when 
lockdown has no effect on SUHI intensity.  

                                                                 
16 Muyu Xu and Brenda Goh. 2020. “China to modify environmental supervision of firms to boost post-coronavirus 

recovery.” Reuters, March 10. https://www.reuters.com/article/us-health-coronavirus-china-environment-
idINKBN20X0AG. 
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To address this potential endogeneity bias, we included group-specific linear time trends 
additionally and re-estimated our models. Findings summarized in Table 10 suggest our results remain 
qualitatively the same as the main findings reported in Table 3, leading us to conclude that unobserved 
time trends do not solely drive observed SUHI patterns. 

3. Using Lunar Calendar 

Given significant behavioral changes in consumer and producer behaviors in the PRC around the 
Chinese New Year, and resultant potential seasonality, we employ the lunar calendar to define and 
include our month and year fixed effects. The estimation results reported in Table 11 confirm that our 
findings are stable with this alternative calendar definition. The SUHI intensity still decreases in locked 
cities and increases in unlocked cities even after lunar patterns are controlled. 

4. Nighttime Heat Island 

Daytime heat island data capture human movement and industrial use, while nighttime temperature 
differences are mainly driven by nighttime energy use in public roads and residential sectors. As another 
robustness check, we use nighttime heat island data as an alternative to daytime SUHI and re-estimate 
equation (1). Estimation results are reported in Table 12, and show essentially same findings, i.e., negative 
effects on locked cities and positive effects on unlocked cities. Further, estimated magnitude of  
0.02–0.04 standard deviation declines in surface temperature during nighttime, indicating that lockdown 
has larger impact on industrial sectors that operate in the daytime. 

VII. CONCLUSION 

Benefits of COVID-19 stringency measures on public health and pandemic containment have been 
discussed extensively. However, the cost of COVID-19 stringency measures on economic output is 
less known. The challenge in understanding this cost is mainly driven by the discrepancy between the 
speedy and variable nature of COVID-19 pandemic spread, governments’ responses to the pandemic, 
and the low frequency of verified conventional economic data. In this study, we overcome this 
challenge by using daily urban heat island as a proxy for economic output. 

First, we find urban heat island can capture economic activities and human mobility reasonably 
well. Second, while urban areas are cooler in PRC than the rural areas in general, we show COVID-19 
lockdowns further decrease urban heat island in locked cities by 0.04–0.05 standard deviation. This 
connotes decreases in quarterly GDP (CNY22.2 billion), quarterly household expenditure per capita 
(CNY793 billion), and monthly government revenue (CNY5.33 billion). The decrease in SUHI is more 
pronounced under complete lockdown conditions, compared to cities under partial lockdown and 
checkpoints, which show similar effects albeit of a smaller magnitude. This variation is possibly 
attributable to operation of private vehicles, which are banned under complete lockdown but 
permitted to operate under partial lockdown. 

Third, we show urban heat island increases in unlocked cities when other cities are under 
lockdown, even though mobility patterns decrease in both locked and unlocked cities. This 
inconsistency could be attributable to either the small contribution of human movement to the PRC’s 
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SUHI intensity, or it could be a behavioral response whereby fear of infection causes a decline in 
mobility even in unlocked cities. We further propose two potential reasons behind the higher urban 
heat island in unlocked cities—the production shift from locked to unlocked cities and lenient 
environmental regulations that allow for increased production with high heat emissions in unlocked 
cities. A closer look at the mechanisms and transmission channels with more granular data could be 
useful in exploring this line of thought further in the future. 

Finally, beyond the empirical analysis pertinent to specific cities in the PRC, our findings 
suggest three key areas for further attention of policymakers at large. First, mobility decreases in both 
locked cities and unlocked cities during the period when lockdown measures are implemented. This 
negative externality signals a need for post–COVID-19 pandemic economic recovery measures that 
target not only locked cities but also unlocked ones. Second, our approach can augment real-time 
tracking of compliance with mobility restrictions imposed during lockdown periods. Our methodology 
of using SUHI intensity data can be applied to other countries that lack high-frequency data on 
ground-based mobility. Response in SUHI can indicate the extent to which people follow public health 
policies and decrease their outdoor activities during lockdown periods. Third, our findings indicate that, 
to simultaneously address intensifying urban heat island phenomena and for green development going 
forward, government policies may need to put more focus on how different modes of transportation 
may impact SUHI levels in urban and peri-urban areas, and the effect of different types of industrial 
production (with varying environmental regulatory frameworks) on SUHI levels.  
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Figure 1: Visualization of COVID-19 Response Stringency in the People’s Republic of China

 
Note: Panel A: Number of cities with any level of lockdown. Panel B: Number of cities with each level of lockdown. 
Source: Authors’ calculations using self-constructed stringency panel described in Section III.A. 

 

Figure 2: Time Series of Surface Urban Heat Island Intensity, 2016–2020 

 
XUAR = Xinjiang Uygur Autonomous Region. 
Notes: Figure 2 shows the simple difference between urban heat and rural heat on each day, following the well-used surface urban heat 
island (SUHI) intensity measure (e.g., Zhou 2014). Panel A: All Chinese cities weighted by urbanization rates. Panel B: SUHI series in 
Hubei province. Panel C: SUHI series in Beijing–Tianjin–Hebei region. Panel D: SUHI series in XUAR. Gray vertical lines are local 
lockdown start and end dates. 
Source: Authors’ calculations using SUHI data from MODIS, described in Section III.B. 
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Figure 2.1: Quadratic Fit of Urbanization Rate and Surface Urban Heat Island

 
Note: The blue dots show raw urbanization rate and surface urban heat island (SUHI) values. The red line displays the quadratic fitted 
curve. The curve is close to linear, which suggests a positive correlation between urbanization rate and SUHI. 
Source: Authors’ calculations using SUHI data from MODIS and urbanization rate data from CEIC, described in  
Section III.B and III.D respectively. 
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Figure 3: Surface Urban Heat Island in Treated and Control Regions 

 

XUAR = Xinjiang Uygur Autonomous Region. 
Note: Figure 3 displays same-day surface urban heat island (SUHI) intensity difference in the treated year 2020 and the average level in 2018–
2019. Gray vertical lines are local lockdown start and end dates. 
Source: Authors’ calculations using SUHI data from MODIS, described in Section III.B. 
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Table 1: Correlation Between Surface Urban Heat Island Intensity and Economic Outputs 

 Urban Heat Islands (°C)

 Panel A: With Gross Domestic Product 

 (1) (2) (3) (4)

GDP 4.470*** 4.324*** 0.819* 1.942***

(CNY trillion) (0.910) (0.898) (0.450) (0.744)

Observations 4,130 4,130 4,130 4,130

R-square 0.212 0.214 0.868 0.670

 Panel B: With Household Expenditure 

Expenditure 0.121*** 0.121** –0.013 0.036

(CNY’000) (0.030) (0.030) (0.068) (0.090)

Observations 367 367 367 367

R-square 0.201 0.211 0.871 0.765

 Panel C: With Government Revenue 

Government revenue 0.018*** 0.018*** 0.008** 0.005

(CNY billion) (0.003) (0.003) (0.003) (0.003)

Observations 1,1721 1,1721 1,1721 1,1721

R-square 0.160 0.160 0.836 0.703

City FEs Y Y

Month FEs  Y

Year FEs  Y Y

City–month (city–quarter) FEs  Y

Year–month (year–quarter) FEs  Y

DOW = day of week, FE = fixed effect, GDP = gross domestic product. 
Note: Standard errors in parentheses are clustered at the city level. In Panel A, we have 4,635 GDP values at the city-quarter level, and 4,130 
of them have non-missing heat island data. In Panel B, there are only 367 observations at the city–quarter level for 2016–2020, mainly 
because of limited availability of CEIC expenditure data for cities with heat island data for this period. *** = p < 0.01, ** = p < 0.05, * = p < 0.1. 
Source: Authors’ calculations using surface urban heat island data from MODIS and economic data from CEIC, described in Sections III.B 
and III.D respectively. 
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Table 2: Correlation of Surface Urban Heat Island and Mobility Indexes 

 Urban Heat Islands (°C)

 Panel A: With Within-City Mobility Index 

 (1) (2) (3) (4)

Within-city index 2.160*** 0.986*** 0.969*** 1.494***

 (0.096) (0.101) (0.072) (0.437)

Observations 27,453 27,453 27,453 27,453

R-square 0.355 0.700 0.806 0.467

 Panel B: With Move-In Index

Move-in index –0.709*** –0.304** –0.132 1.549***

 (0.212) (0.143) (0.125) (0.309)

Observations 27,701 27,701 27,701 27,701

R-square 0.301 0.699 0.805 0.483

 Panel C: With Move-Out Index

Move-out index –0.215*** 0.103 0.050 1.062***

 (0.104) (0.080) (0.061) (0.223)

Observations 27,701 27,701 27,701 27,701

R-square 0.301 0.699 0.805 0.479

City FEs Y Y

DOW FEs Y Y Y

Month FEs  Y

Year FEs  Y Y

City–month FEs  Y

Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. *** = p < 0.01, ** = p < 0.05. 
Source: Authors’ calculations using surface urban heat island data from MODIS and mobility data from Baidu, described in Sections III.B and 
III.C respectively. 
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Table 2.1: Correlation of Urbanization Rate and Surface Urban Heat Island 

 Urban Heat Islands (°C)

 (1) (2)

Urbanization rate 0.625* 0.311

 (0.349) (1.705)

Urbanization rate2 0.292

 (1.553)

Observations 223 223

R-square 0.014 0.014

Note: Urbanization rate ranges from 0.14 to 0.99. 
Source: Authors’ calculations using surface urban heat island data from MODIS  
and urbanization rate data from CEIC, described in Sections III.B and III.D respectively. 

 

Table 3: Effects of COVID-19 Stringency on Surface Urban Heat Island 

 Urban Heat Islands (°C)

 (1) (2) (3) (4) (5)

Locked 0.148*** –0.096*** 0.046 –0.094*** –0.102***

 (0.036) (0.032) (0.032) (0.033) (0.034)

LockedAnyCity –0.033*** 0.030* 0.022 0.041* 0.000

 (0.009) (0.018) (0.017) (0.024) (.)

Observations 455,345 455,345 455,345 455,345 455,345

R-square 0.000 0.249 0.324 0.249 0.256

Y-mean –0.218 –0.218 –0.218 –0.218 –0.218

Y-sd 2.206 2.206 2.206 2.206 2.206

City FEs  Y Y Y

DOW FEs  Y Y Y 

Month FEs  Y  

Year FEs  Y Y  

City–month FEs  Y  

Year–month FEs  Y 

Day FEs   Y

COVID-19 = coronavirus disease, DOW = day of week, FE = fixed effect. 
Note: Estimates on LockedAnyCity, the single time term, are absorbed by day fixed effects in column (5). Standard errors in parentheses are 
clustered at the city level. *** = p < 0.01, * = p < 0.1. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 4: Heterogeneity Across Stringency Levels 

 Urban Heat Islands (°C)

 (1) (2) (3) (4)

Locked1 –0.147*** 0.127** –0.142** –0.146**

 (0.056) (0.058) (0.057) (0.057)

Locked2 –0.101 –0.051 –0.111 –0.130

 (0.126) (0.128) (0.127) (0.127)

Locked3 –0.067* 0.030 –0.069* –0.076*

 (0.040) (0.040) (0.041) (0.042)

LockedAnyCity1 0.026 0.011 0.053* 0.000

 (0.020) (0.019) (0.028) (.)

LockedAnyCity2 .0558*** .0503** .0623** 0.000

 (.0206) (.0196) (.0292) (.)

LockedAnyCity3 -.00615 -.0031 -.00031 0.000

 (.024) (.0229) (.0299) (.)

Observations 455,345 455,345 455,345 455,345

R-square 0.249 0.324 0.249 0.256

Y-mean –0.218 –0.218 –0.218 –0.218

Y-sd 2.206 2.206 2.206 2.206

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y 

Year FEs Y Y

City–month FEs  Y

Year–month FEs  Y

Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Estimates on LockedAnyCity1-LockedAnyCity3, the single time terms, are absorbed by day fixed effects in column (4). Standard errors 
in parentheses are clustered at the city level. *** = p < 0.01, ** = p < 0.05, * = p < 0.1. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 5: Spillover Effects 

 Urban Heat Islands (°C)

 (1) (2) (3) (4)

LockedAnyCity 0.030 0.018 0.040 0.000

 (0.018) (0.017) (0.024) (.)

Locked –0.095*** 0.052 –0.099*** –0.110***

 (0.032) (0.032) (0.034) (0.035)

LockedAnyCity×Adjacent –0.038 0.041 –0.044 –0.051*

 (0.025) (0.026) (0.027) (0.028)

LAC×NonAdj×SameProv 0.092*** 0.028 0.082** 0.076**

 (0.034) (0.034) (0.035) (0.035)

Observations 455,345 455,345 455,345 455,345

R-square 0.249 0.324 0.249 0.256

Y-mean –0.218 –0.218 –0.218 –0.218

Y-sd 2.206 2.206 2.206 2.206

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y 

Year FEs Y Y

City–month FEs  Y

Year–month FEs  Y

Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. Estimates on LockedAnyCity, the single time term, are absorbed by day 
fixed effects in column (4).  *** = p < 0.01, ** = p < 0.05, * = p < 0.1. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 6: Interacting with Time Trend 

 Urban Heat Islands (°C)

 (1) (2) (3) (4)

Locked –0.941*** –0.772** –1.041*** –1.156***

 (0.314) (0.317) (0.327) (0.329)

Locked×Days (×0.01) 0.102*** 0.099*** 0.114*** 0.126***

 (0.038) (0.038) (0.039) (0.039)

LockedAnyCity 0.028 0.020 0.036 0.000

 (0.018) (0.017) (0.025) (.)

Days (×0.01) 0.049 0.036 0.056* 0.000

 (0.032) (0.031) (0.032) (.)

Observations 455,345 455,345 455,345 455,345

R-square 0.249 0.324 0.249 0.256

Y-mean –0.218 –0.218 –0.218 –0.218

Y-sd 2.206 2.206 2.206 2.206

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y

Year FEs Y Y

City–month FEs Y

Year–month FEs Y

Day FEs Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. *** = p < 0.01, ** = p < 0.05, * = p < 0.1. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 7: Interacting with Months 

 Urban Heat Islands (°C)
 (1) (2) (3) (4)
Locked×Jan –0.080 0.153 –0.082 –0.206
 (0.229) (0.224) (0.231) (0.234)
Locked×Feb –0.118** 0.028 –0.147*** –0.166***
 (0.048) (0.048) (0.053) (0.054)
Locked×Mar –0.197*** –0.077 –0.178*** –0.184***
 (0.060) (0.061) (0.063) (0.065)
Locked×Apr 0.040 0.200 0.048 0.049
 (0.120) (0.127) (0.122) (0.122)
Locked×May -.376 -.225 -.377 -.405
 (.255) (.256) (.255) (.255)
Locked×Jun -.115 -.229 -.109 -.0896
 (.363) (.361) (.363) (.363)
Locked×Jul .0329 -.0573 .0726 .0903
 (.18) (.176) (.181) (.183)
Locked×Aug .106 .434*** .143 .145
 (.0888) (.0931) (.0909) (.0907)
Locked×Sep –2.45*** –2.58*** –2.48*** –2.4***
 (.439) (.421) (.44) (.447)
Locked×Oct .185 .256 .166 .128
 (.429) (.423) (.429) (.429)
Locked×Nov .195 .368 .189 .177
 (.267) (.266) (.267) (.267)
Locked×Dec .233 .176 .185 .189
 (.184) (.184) (.184) (.184)
LockedAnyCity .031* .0227 .0465* 0.000
 (0.0179) (.0171) (.0245) (.)
Observations 455,345 455,345 455,345 455,345
R-square 0.249 0.324 0.249 0.256
Y-mean –0.218 –0.218 –0.218 –0.218
Y-sd 2.206 2.206 2.206 2.206

City FEs Y Y Y
DOW FEs Y Y Y
Month FEs Y 
Year FEs Y Y
City–month FEs  Y
Year–month FEs  Y
Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. *** = p < 0.01, ** = p < 0.05, * = p < 0.1. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 8: Effects of COVID-19 Stringency on Human Mobility 

 Panel A: Within-City Mobility Index 

 (1) (2) (3) (4)

Locked –0.387*** –0.428*** –0.387*** –0.268***

 (0.058) (0.056) (0.058) (0.055)

LockedAnyCity –1.871*** –1.869*** –1.871***

 (0.051) (0.050) (0.051)

Observations 36900 36900 36900 36900

R-square 0.752 0.818 0.752 0.841

Y-mean 4.108 4.108 4.108 4.108

 Panel B: Move-In Index

Locked –0.354*** –0.216*** –0.354*** –0.334***

 (0.065) (0.039) (0.065) (0.067)

LockedAnyCity –0.504*** –0.509*** –0.504***

 (0.033) (0.034) (0.033)

Observations 37,200 37,200 37,200 37,200

R-square 0.799 0.880 0.799 0.827

Y-mean 0.820 0.820 0.820 0.820

 Panel C: Move-Out Index

Locked –0.548*** –0.167*** –0.548*** –0.540***

 (0.126) (0.041) (0.126) (0.133)

LockedAnyCity –0.515*** –0.530*** –0.515***

 (0.070) (0.073) (0.070)

Observations 37,200 37,200 37,200 37,200

R-square 0.575 0.793 0.575 0.595

Y-mean 0.822 0.822 0.822 0.822

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y 

Year FEs Y Y

City–month FEs  Y

Year–month FEs  Y

Day FEs  Y

COVID-19 = coronavirus disease, DOW = day of week, FE = fixed effect. 
Note: Estimates on LockedAnyCity, the single time term, are absorbed by day fixed effects in column (4). Standard errors in parentheses are 
clustered at the city level. *** = p < 0.01. 
Source: Authors’ calculations using mobility data from Baidu, described in Section III.C. 
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Table 9: Placebo Test 

 Urban Heat Islands (°C)

 (1) (2) (3) (4)

Locked 0.083 0.139*** 0.069 0.054

 (0.054) (0.034) (0.059) (0.060)

LockedAnyCity –0.034** –0.038*** 0.024 0.000

 (0.014) (0.014) (0.024) (.)

Observations 364,152 364,152 364,152 364,152

R-square 0.249 0.326 0.249 0.255

Y-mean –0.214 –0.214 –0.214 –0.214

Y-sd 2.203 2.203 2.203 2.203

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y 

Year FEs Y Y

City–month FEs  Y

Year–month FEs  Y

Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. *** = p < 0.01, ** = p < 0.05. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 10: Adding Group-Specific Time Trends 

 Urban Heat Islands (°C)

 (1) (2) (3) (4)

Locked –0.124*** 0.020 –0.124*** –0.134***

 (0.032) (0.033) (0.033) (0.034)

LockedAnyCity 0.029 0.022 0.037 0.000

 (0.018) (0.017) (0.025) (.)

Observations 455,345 455,345 455,345 455,345

R-square 0.249 0.324 0.249 0.256

Y-mean –0.218 –0.218 –0.218 –0.218

Y-sd 2.206 2.206 2.206 2.206

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y 

Year FEs Y Y

City–month FEs  Y

Year–month FEs  Y

Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. *** = p < 0.01. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 11: Using Lunar Calendar 

 Urban Heat Islands (°C)

 (1) (2) (3) (4)

Locked –0.086*** 0.028 –0.110*** –0.102***

 (0.032) (0.032) (0.033) (0.034)

LockedAnyCity –0.022 –0.034* –0.033 0.000

 (0.021) (0.020) (0.027) (.)

Observations 453,832 453,832 453,832 453,832

R-square 0.249 0.321 0.249 0.256

Y-mean –0.218 –0.218 –0.218 –0.218

Y-sd 2.206 2.206 2.206 2.206

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y 

Year FEs Y Y

City–month FEs  Y

Year–month FEs  Y

Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. *** = p < 0.01, * = p < 0.1. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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Table 12: Effects on Nighttime Heat Island 

 Urban Heat Islands (°C)

 (1) (2) (3) (4)

Locked –0.053*** –0.001 –0.068** –0.078***

 (0.026) (0.027) (0.028) (0.028)

LockedAnyCity 0.058*** 0.054*** 0.064*** 0.000

 (0.015) (0.015) (0.021) (.)

Observations 452,087 452,087 452,087 452,087

R-square 0.242 0.297 0.242 0.248

Y-mean –0.005 –0.005 –0.005 –0.005

Y-sd 1.896 1.896 1.896 1.896

City FEs Y Y Y

DOW FEs Y Y Y

Month FEs Y 

Year FEs Y Y

City–month FEs  Y

Year–month FEs  Y

Day FEs  Y

DOW = day of week, FE = fixed effect. 
Note: Standard errors in parentheses are clustered at the city level. *** = p < 0.01, ** = p < 0.05. 
Source: Authors’ calculations using surface urban heat island data from MODIS, described in Section III.B. 
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