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occur in the form of endogenous quits and layoffs that are unilaterally initiated whenever a 

worker’s wage-to-productivity ratio moves outside an inaction region. We derive sufficient 

statistics for the aggregate labor market response to a monetary shock based on the 

distribution of workers’ wage-to-productivity ratios. These statistics crucially depend on 

the incidence of inefficient job separations, which we show how to identify using readily 

available microdata on wage changes and worker flows between jobs.

JEL Classification: E12, E31, D31

Keywords: inflation, monetary policy, wage rigidity, wage inequality, 
unemployment, inefficient job separations, quits, layoffs, 
directed search, commitment, stopping times, continuous-time 
methods, variational inequalities

Corresponding author:
Christian Moser
Columbia University
New York, NY 10027
USA

E-mail: c.moser@columbia.edu

* We thank Bob Hall for sharing thoughtful comments and suggestions. We are grateful to Masao Fukui and 
Chris Huckfeldt for their insightful discussions. We benefited from constructive feedback from Fernando Alvarez, 
Adrien Auclert, Adrien Bilal, Jonathan Heathcote, Ricardo Lagos, Francesco Lippi, Paolo Martellini, Guido Menzio, 
and Claudio Michelacci. We also thank seminar participants at the University of Michigan, the University of Texas at 
Austin, Columbia University, EIEF, the Federal Reserve Bank of Minneapolis, New York University, the Federal Reserve 
Bank of Atlanta, Texas A&M University, the University of Rochester, Tom Sargent’s Reading Group, the Federal Reserve 
Bank of St. Louis, Rutgers University, and the Federal Reserve Bank of Richmond, as well as conference participants 
at the 2022 Junior International Macro Conference at UT Austin, the 2022 Dartmouth Macro Mini-Conference, 
the 2022 Annual Meeting of the SED, the Micro and Macro of Labor Markets Workshop of the 2022 Stanford SITE 
Conference, the 2022 Columbia Junior Labor Conference, the 2022 ITAM-PIER Conference on Macro-Finance, the 
2022 CIREQ Montréal Conference on Macroeconomics and Inequality, the Fall 2022 NBER Monetary Economics 
Meeting, and the 2022 German Economists Abroad Conference at DIW Berlin for helpful comments. Any errors are 
our own.



1 Introduction

The classical idea that inflation “greases the wheels of the labor market” (Keynes, 1936; Tobin, 1972;

Card and Hyslop, 1997) forms the bedrock of many Keynesian theories: After the onset of a recession,

nominal wage rigidities cause real wages to be inefficiently high, which creates a role for inflation in

reducing real wages and restoring the efficient level of employment. However, models in the Keynesian

tradition are usually silent on the micromechanics of the labor market, including which jobs are saved,

destroyed, or created through inflation. Conversely, models in the search-theoretic tradition (Diamond,

1982; Pissarides, 1985; Mortensen and Pissarides, 1994) yield rich predictions for the distribution of wages

and employment in the labor market, but usually do not distinguish between nominal versus real wages

due to the simplifying assumption that contracts can be continuously and costlessly renegotiated.

Our objective is to bridge the Keynesian and search-theoretic traditions by explicitly modeling the

equilibrium distribution of wages and employment in a frictional labor market subject to wage rigidity. To

this end, we study a monetary economy with four realistic features. First, job search is frictional. Second,

workers are subject to idiosyncratic productivity shocks. Third, wages are rigid within a match. Fourth,

neither workers nor firms can credibly promise to remain in a match. Together, these four features—i.e.,

search frictions, productivity shocks, wage rigidity, and two-sided lack of commitment—imply that labor

contracts are non-Coasean, in the sense that not all gains from trade are exploited. As a result, inefficient

job separations occur in the form of endogenous quits and layoffs that are unilaterally initiated whenever a

worker’s wage-to-productivity ratio moves outside an inaction region. In this setting, wages are allocative

in the sense that they matter over and above match surplus for job creation and destruction. We derive

sufficient statistics for the aggregate labor market response to a monetary shock based on the distribution

of workers’ wage-to-productivity ratios. These statistics crucially depend on the prevalence of inefficient

job separations, which we show how to identify using readily available microdata on wage changes and

worker flows between jobs.

We first consider a nonmonetary economy set in continuous time. The labor market is populated by a

unit mass of heterogeneous workers with risk-neutral preferences and an endogenous mass of identical

firms. A worker’s income depends on their employment state and idiosyncratic productivity, which

follows a Brownian motion with drift. New matches are created as a result of unemployed workers and

firms with vacancies who direct their search across labor submarkets segmented by the wage rate and

worker productivity (Moen, 1997). Importantly, matches are subject to two contractual frictions. First,

wages are determined at the time of match formation and rigid thereafter.1 Second, neither workers nor

1Wage rigidity may capture prohibitive renegotiation costs, fairness concerns, or labor market institutions (Bewley, 1999).
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firms can commit to a match, which may be endogenously dissolved in the form of unilateral quits and

layoffs in addition to being exogenously dissolved at a fixed Poisson rate.

In this environment, a worker-firm match can be characterized as a nonzero-sum stochastic differential

game with stopping times (Bensoussan and Friedman, 1977). Forward-looking workers and firms play a

game due to the strategic choice of their own stopping times, or when to unilaterally separate from the

match. The game is stochastic and differential because worker productivity follows a Brownian motion.

The game is nonzero-sum since the match surplus is positive along the equilibrium path. To characterize

the equilibrium of this problem, we leverage powerful tools from the literature on variational inequalities

(Lions and Stampacchia, 1967).

While workers and firms engage in complex forward-looking behavior, we show that their decisions

depend only on a single state variable: the wage-to-productivity ratio. A match is dissolved when the

wage-to-productivity ratio moves outside an inaction region bounded by two thresholds. On one side,

workers resign when their wage-to-productivity ratio falls below a quit threshold. On the other side,

firms dismiss workers whose wage-to-productivity ratio exceeds a layoff threshold. Endogenous job

separations due to quits and layoffs are unilateral in the sense that they occur voluntarily in the eyes of

one party but involuntarily in the eyes of the other party. Thus, a novel implication of our framework is

that it distinguishes between quits and layoffs through the lens of an equilibrium search model.

Our analysis yields three main results. First, we prove the existence and uniqueness of a block

recursive equilibrium (BRE). This result is noteworthy, in that it extends the seminal insights of Menzio

and Shi (2010a) to a game-theoretic setting with inefficient job separations under two-sided limited

commitment. Second, we provide a novel characterization of competitively determined entry wages

in our non-Coasean setting. Specifically, we link match surplus to the expected discounted duration of

a match, which itself is linked to the degree of rent sharing between a worker and a firm implied by

the entry wage. Third, we characterize the endogenous job-separation thresholds and demonstrate that

two-sided limited commitment has profound consequences for the impact of uncertainty on the labor

market. Unlike in classical models of inaction (e.g., Barro, 1972; Bernanke, 1983), workers’ and firms’

ability to unilaterally separate renders the option value of remaining matched bounded, even as the

volatility of productivity shocks grows unboundedly.

Having characterized the equilibrium of the nonmonetary economy, we introduce monetary shocks

to the model. To this end, we assume that incumbents’ wages are nominally rigid while the aggregate

price level fluctuates. As a result, an expansionary monetary shock lowers incumbents’ real wages and

therefore affects the rate of job separations (i.e., quits and layoffs). In case of flexible entry wages, the

search behavior of the unemployed reflects the price increase. Given that the wages of new hires are
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critical for the job-finding rate (Pissarides, 2009), we also allow for the possibility of rigid entry wages, in

which case the unemployed keep searching at the same nominal wage schedule as before the expansionary

monetary shock, thereby increasing vacancies and the job-finding rate. Thus, inflation “greases the wheels

of the labor market” by affecting both job-separation and job-finding rates in our model.

To study the effects of a monetary shock on aggregate employment and real wages, we analyze the

cumulative impulse response (CIR) as the area under the respective impulse response function. To this end,

we build on the seminal work of Alvarez et al. (2016) using sufficient statistics in the product pricing

literature. Under flexible entry wages, the CIR of employment is fully described by three observable

moments: the steady-state job-finding rate, the variance of workers’ wage changes across jobs, and a

measure of skewness of wage changes across jobs. The relevance of skewness is a novel result. Intuitively,

wage changes reflect deviations between a worker’s wage and their productivity in their old job. Therefore,

the skewness of the distribution of wage changes reflects the relative mass of workers near the quit

threshold versus the layoff threshold of the inaction region in the wage-to-productivity-ratio space.

For example, a positively skewed distribution of wage changes—i.e., a more truncated left tail of the

distribution—reflects a higher incidence of layoffs than quits, meaning that an inflationary shock increases

employment.

The anticipation of inefficient job separations in the future also has consequences at the time of match

formation. Under rigid entry wages, the CIR of employment depends on the elasticity of the job-finding

rate with respect to the monetary shock, which itself is a function of the prevalence of inefficient job

separations. Intuitively, an increase in the price level incentivizes firms to post more vacancies by reducing

real entry wages. The magnitude of this effect decreases in the share of inefficient job separations as a

consequence of two-sided lack of commitment: Firms choose when to lay off workers but do not control

workers’ quit decisions, and vice versa. Therefore, the share of inefficient job separations indirectly

measures a firm’s expected returns from posting an additional vacancy.

While our theoretical analysis highlights the relevant mechanisms at play in a non-Coasean labor

market, the true value of our sufficient statistics lies in their potential to be measured. Such an enterprise

might seem daunting, given that the share of endogenous or inefficient job separations is unobserved.

Indeed, we show that aggregate statistics cannot be used as a model discrimination device between

Coasean and non-Coasean features of our economy, including the prevalence of inefficient job separations.2

We overcome this challenge by proving identification of our model based on readily available microdata

on wage changes and worker flows between jobs. In a nutshell, the model predicts that endogenous

2For example, a zero CIR of employment is consistent with either all separations being exogenous or, alternatively, all
separations being endogenous as long as the inaction region is symmetric.
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job separations lead to selection into unemployment based on wage-to-productivity ratios, which can

be recovered from data on wage changes across consecutive jobs. Intuitively, an economy with “excess

mass” in the tails of the wage change distribution indicates a larger prevalence of inefficient quits and

layoffs. More formally, we provide an identification proof that allows us to recover the labor market’s

latent state—namely, the unobserved distribution of cumulative productivity shocks in employment.

Related Literature. We highlight two contributions. Our first contribution is to develop a framework

with the non-Coasean feature that nominal fluctuations affect the split of match surplus and thus both job-

finding and job-separation rates. This approach sets us apart from two traditions. On one hand, models

in the Keynesian tradition have highlighted a staggered wage setting (Erceg et al., 2000), downward

nominal wage rigidity (Schmitt-Grohé and Uribe, 2016), or real wage rigidity (Blanchard and Galí, 2010)

as important propagation mechanisms in the transmission of aggregate shocks. We contribute to this

literature a model of how the equilibrium distribution of wages and employment is determined in a

frictional labor market subject to nominal wage rigidity, which we show how to discipline using microdata.

On the other hand, models in the search-theoretic tradition have studied the role of wage rigidity in

amplifying unemployment fluctuations in models of search and matching, following Shimer (2005a).

These models restrict attention to the effects of wage rigidity on hiring due to the assumption of Coasean

labor contracts, which preclude bilaterally inefficient job separations. For instance, Hall (2003) and Elsby

et al. (2022) assume that infrequent wage renegotiations prevent the dissolution of matches with positive

surplus. Similarly, the wage setting protocols assumed by Hall (2005), Hall and Milgrom (2008), Christiano

et al. (2016), Ravn and Sterk (2020), Gornemann et al. (2021), Moscarini and Postel-Vinay (2022), and

Birinci et al. (2022) are all bilaterally efficient. Related work by Gertler and Trigari (2009) and Gertler

et al. (2020) study environments with aggregate productivity shocks subject to wage rigidities, which

they ex post verify lead to no inefficient job separations. All aforementioned models steer clear of the

seminal Barro (1977) critique of inefficient outcomes under long-term contracting. While models in

this tradition have produced important insights, our theory of non-Coasean labor markets represents a

significant departure from this tradition as a result of the inclusion of the four realistic features: search

frictions, productivity shocks, wage rigidity, and two-sided lack of commitment. We show that such

a theory yields rich predictions for labor market dynamics in steady state and over the business cycle.

An appealing aspect of our theory lies in its ability to speak to the mounting empirical evidence of

inefficient job separations, which we analyze in relation to macroeconomic aggregates and fluctuations.3

3A growing body of evidence based on surveys of managers and workers investigates why firms lay off workers instead
of cutting their wages (see Kaufman, 1984; Blinder and Choi, 1990; Bewley, 1999, and the literature that follows). Recently,
Davis and Krolikowski (2022) document that most new recipients of unemployment insurance in the U.S. would have accepted
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We also make a methodological contribution with respect to two prominent literatures. Relative to the

search-and-matching literature, we introduce the powerful tools of nonzero-sum stochastic differential

games with stopping times (Bensoussan and Friedman, 1977). Such continuous-time methods are well

suited to handle strategic interactions involving stopping times and offer two distinct advantages. First,

they allow us to prove the existence and uniqueness of a BRE in an environment with non-Coasean labor

contracts. Second, they admit convenient mathematical properties of value functions (e.g., continuity)

and allow for the analysis of equilibrium conditions using variational inequalities. Third, they allow for

sharp comparative statics (e.g., the anticipatory and option value effects due to the drift and volatility of

productivity). In their foundational work, Menzio and Shi (2010a) study the BRE in a discrete-time model

of directed search under bilaterally efficient labor contracts. We complement their work by characterizing

the BRE of a continuous-time model of directed search that features privately inefficient labor contracts

due to the interaction between productivity shocks, wage rigidity and two-sided limited commitment.4

Relative to the product pricing literature, we extend the sufficient statistic approach from heterogeneous-

agent models of inaction to an environment with endogenous transitions between discrete states. We

build on the important insight of Alvarez et al. (2016) that the CIR of output is linked to the ratio of the

kurtosis and frequency of price changes in a large class of product pricing models.5 In contrast to the

product pricing context, a central feature of our labor market environment is that workers endogenously

switch between employment and unemployment. Taking this into account, we derive sufficient statistics

to summarize the response of aggregate labor market outcomes to a monetary shock.

Outline. The rest of the paper is organized as follows. Section 2 develops a model of non-Coasean labor

markets and characterizes its equilibrium. Section 3 derives sufficient statistics for the aggregate labor

market response to a monetary shock. Section 4 proves identification of the model based on labor market

microdata, and Section 5 concludes.

significant wage cuts instead of being laid off, while Bertheau et al. (2022) find that employers do not consider pay cuts to be a
viable substitute for layoffs during crises. Jäger et al. (2022) provide quasi-experimental evidence of inefficient job separations
by exploiting the introduction and subsequent repeal of an unemployment insurance reform in Austria. Schmieder and von
Wachter (2010) provide evidence that downward wage rigidities amplify job displacement. Relatedly, Calvo et al. (2012), Blanco
et al. (2022b), and Adamopoulou et al. (2022) provide evidence consistent with the notion that inflation “greases the wheel of the
labor market” in a variety of countries.

4Previous search models have restricted attention to privately efficient contracts under full commitment (e.g., Moen, 1997;
Acemoglu and Shimer, 1999a,b), one-sided lack of commitment (e.g., Shi, 2009; Menzio and Shi, 2010a,b, 2011; Schaal, 2017;
Herkenhoff, 2019; Fukui, 2020; Balke and Lamadon, 2022), and two-sided lack of commitment (e.g., Sigouin, 2004; Rudanko,
2009, 2021; Bilal et al., 2021, 2022).

5For additional references, see Carvalho and Schwartzman (2015), Alvarez et al. (2021), and Baley and Blanco (2021, 2022).
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2 A Model of Non-Coasean Labor Markets

In this section, we develop a model of non-Coasean labor markets with search frictions, productivity

shocks, wage rigidity, and two-sided lack of commitment. We first introduce the nonmonetary economy.

2.1 Environment

A unit mass of workers and an endogenously determined mass of firms meet in a frictional labor market.

Time is continuous and indexed by t.

Preferences. Both workers and firms discount the future at a common rate r > 0. Firms maximize

profits. Workers have risk-neutral preferences over an expected discounted consumption stream {Ct}
•
t=0:

E

ˆ •

0
e�rtCt dt

�
.

Technology. A worker’s flow income depends on the worker’s employment state Et, which can be either

employed (h) or unemployed (u), and the worker’s productivity Zt. While employed, a worker produces

Yt = Zt and consumes wage flow Wt. While unemployed, a worker produces and consumes flow value

B(Zt) from home production. Henceforth, lower-case letters denote the natural logarithm of variables in

upper-case letters. For example, zt denotes the worker’s log productivity and wt denotes the log wage.

Stochastic Process. A worker’s idiosyncratic productivity follows a Brownian motion in logs:

dzt = g dt + s dW z
t ,

where g is the drift, s is the volatility, and W z
t is a Wiener process. For now, we focus on a stationary

environment with only idiosyncratic worker productivity shocks, but Section 3 adds aggregate shocks.

Search Frictions. Unemployed workers search for jobs and vacant firms search for workers in a frictional

labor market. Search is directed, as in Moen (1997) and Menzio and Shi (2010a), and segmented across

submarkets indexed by the wage w and worker productivity z. In each submarket (w, z), firms post

vacancies V at flow cost K(Zt). Given U unemployed workers and V vacancies, a Cobb-Douglas matching

function with constant returns produces m(U ,V) = U aV1�a matches, where a is the elasticity of matches

to the unemployment rate. Thus, a worker’s job-finding rate is f (w, z) = m(w, z)/U (w, z) = q(w, z)1�a

and a firm’s job-filling rate is q(w, z) = m(w, z)/V(w, z) = q(w, z)�a, where q(w, z) := V(w, z)/U (w, z)
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denotes market tightness in submarket (w, z). Existing matches are exogenously dissolved at Poisson rate

d, or they can be endogenously and unilaterally dissolved by either the worker or the firm.6

Wage Determination. We assume that entry wages are competitively set at match formation and remain

constant throughout a match. We assume prohibitive renegotiation costs that prevent wage bargaining

within the match. This assumption can be thought of as a technological friction, akin to adjustment costs

in models of pricing (e.g., Barro, 1972) and investment (e.g., Cooper and Haltiwanger, 2006).

Agents’ Choices. An unemployed worker’s choice of submarket (w, z) is associated with job-finding

rate f (w, z), which induces a stochastic job offer arrival time tu. Given the (fixed) wage w and current

productivity z, a matched worker chooses when to quit, which induces a stopping time th. Based on the

same (w, z) pair, a matched firm chooses when to lay off the worker, which induces a stopping time t j.

Given the choices by workers and firms in addition to the exogenous stopping time td, the actual match

duration is the minimum stopping time in the vector ~tm = (th, t j, td), denoted tm = min{th, t j, td}.

Value Functions. Agents’ value functions depend on the worker’s productivity z and, if matched, the

fixed wage rate w. In theory, they may also depend on the aggregate state, which consists of the joint

distribution of worker productivities, wages, and employment states. However, we show that there

exists a unique BRE, as in Menzio and Shi (2010a), in which equilibrium objects do not depend on the

distribution of workers’ idiosyncratic states. Thus, we omit the aggregate state from all notation.

The value of an unemployed worker with productivity z is

U(z) = max
{wt}

tu
t=0

E0

"ˆ tu

0
e�rtB(ezt)dt + e�rtu

H(wtu , ztu ,~tm(wtu , ztu))

#
. (1)

That is, an unemployed worker searches for a job in submarket (wt, zt) at time t  tu until becoming

employed at wage wtu and receiving the value of employment H(wtu , ztu ,~tm(wtu , ztu)) at time tu. Given

a vector of stopping times ~tm, the value of a worker employed at wage w with productivity z is

H(w, z,~tm) = E0

"ˆ tm

0
e�rtew dt + e�rtm

U(ztm)

#
. (2)

That is, an employed worker consumes a constant wage w until time tm when she either endogenously or

exogenously transitions to unemployment. Similarly, given a vector of stopping times ~tm, the value of a
6The exogenous separation shock can be interpreted as a permanent shock to the productivity of the match that renders the

match unproductive forever.

7



firm matched with a worker with wage w and productivity z is

J(w, z,~tm) = E0

"ˆ tm

0
e�rt [ezt � ew]dt

#
. (3)

That is, the match produces ezt , of which ew is paid to the worker until it gets dissolved at time tm.

Free Entry. In choosing the number of vacancies to post in each submarket, firms trade off the expected

benefit—i.e., the product of the filling rate q(w, z) and the value of a filled job J(w, z,~tm(w, z))—with the

flow cost K(ezt) of posting a vacancy. In each submarket, firms post vacancies up to the point at which the

marginal vacancy posting cost exceeds its expected benefits. Thus, free entry requires that

K(ezt)� q(w, z)J(w, z,~tm(w, z)) � 0 (4)

and q(w, z) � 0, with complementary slackness, for all (w, z).

Equilibrium Definition. We are now ready to define an equilibrium. Let T be the set of all stopping

times for a given match. Given the state (w, z), staying in the match is a weakly dominant strategy for the

worker if there exists a stopping time th?(w, z) 2 T such that Pr(th?(w, z) > 0) = 1 and

H(w, z, th?(w, z), t j, td) � H(w, z, th, t j, td), 8th, t j
2 T ,

with strict inequality for some t j. Similarly, given (w, z), staying in the match is a weakly dominant

strategy for the firm if there exists a stopping time t j?(w, z) 2 T such that Pr(t j?(w, z) > 0) = 1 and

J(w, z, th, t j?(w, z), td) � J(w, z, th, t j, td), 8th, t j
2 T ,

with strict inequality for some th.

Definition 1. An equilibrium consists of a set of value functions {H(w, z,~tm), J(w, z,~tm), U(z)}, a market

tightness function q(w, z), and policy functions
�

th⇤(w, z), t j⇤(w, z), w⇤(zt)
 

, such that:

1. Given H(w, z,~tm⇤(w, z)), U(z), and q(w, z), the search strategy {w⇤(zt)}
tu⇤

t=0 solves equation (1).

2. Given J(w, z,~tm⇤(w, z)), market tightness q(w, z) solves the free-entry condition (4).
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3. Given U(z), (th⇤(w, z), t j⇤(w, z)) is a nontrivial Nash equilibrium with stopping times (th, t j) that satisfy

H(w, z, th⇤(w, z), t j⇤(w, z), td) � H(w, z, th, t j⇤(w, z), td), 8(w, z) (5)

J(w, z, th⇤(w, z), t j⇤(w, z), td) � J(w, z, th⇤(w, z), t j, td), 8(w, z) (6)

and Pr(th⇤(w, z) > 0) = 1 (resp. Pr(t j⇤(w, z) > 0) = 1) whenever staying in the match is a weakly

dominant strategy for the worker (resp. the firm) given the state (w, z).

Part 1 of Definition 1 requires the optimality of unemployed workers’ search strategies and Part 2

requires free entry. Part 3 requires that agents’ strategies form a Nash equilibrium in weakly dominant

strategies. That is, the worker’s optimal quit strategy th⇤ is the best response to the firm’s layoff strategy

t j⇤, and vice versa—see equations (5) and (6). Our equilibrium definition rules out the trivial Nash

equilibrium, in which both the worker and the firm choose to dissolve the match immediately. To see the

need for an equilibrium refinement, assume that time is discrete, a period’s length is dt, and the match will

end in the following period with certainty. Table 1 lists the game’s payoffs in this environment. Assume

that current productivity z is such that flow payoffs in the match exceed flow payoffs from the outside

options for both the worker and the firm—i.e., (ez � ew)dt > 0 and ew dt + Ez0 [e�r dtU(z0)|z] > U(z).

Under these assumptions, there are two Nash equilibria: one in which both agents choose to dissolve the

match and one in which both players decide to stay in the match. However, the first equilibrium does not

survive the iterated elimination of weakly dominated strategies since, independent of what the other agent

does, it is weakly better to continue in the match.

TABLE 1. PAYOFFS IN PERIOD GAME

Worker stops Worker continues

Firm stops (0, U(z)) (0, U(z))
Firm continues (0, U(z)) ((ez � ew)dt, (ew dt + Ez0 [e�r dtU(z0)|z])

Notes: This table shows the payoffs in a discrete-time approximation of the game played between a worker and a firm under the
assumption that in the next period the probability of an exogenous separation is 1.

As we take the limit dt ! 0, we obtain the continuous-time conditions that render remaining in the

match a weakly dominant strategy. That is, if (ez � ew)dt > 0 and ew dt + Ez0 [e�r dtU(z0)|z] > U(z), then,

as dt ! 0, ez � ew > 0 and ru(z) < ew + g∂u(z)/∂z + (s2/2)∂2u(z)/∂z2, respectively.

Allocative Wages and Inefficient Job Separations. Here, we define two key concepts that play an

important role in our analysis. We refer to wages as ex post allocative whenever they affect the expected
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duration of the match—that is, whenever 9 w, w0 2 R : E[~tm(w, z)] 6= E[~tm(w0, z)]. We also refer to a job

separation as inefficient whenever a match is dissolved in spite of a strictly positive joint match surplus

S(w, z,~tm) := H(w, z,~tm)�U(z) + J(w, z,~tm) > 0. That wages are allocative and job separations may be

inefficient reflects the non-Coasean nature of labor contracts, which arise due to the interaction between

search frictions, worker productivity shocks, wage rigidity, and the two-sided lack of commitment.7 It

is important to highlight that inefficiencies that arise ex post (i.e., once the match is formed) due to lack

of commitment also have ex ante effects on unemployed workers’ policies through H(w, z,~tm⇤(w, z)) as

well as firms’ policies and market tightness through J(w, z,~tm⇤(w, z)). Therefore, in equilibrium, lack of

commitment affects both job-finding and job-separation rates.

Homotheticity. Shocks to worker productivity affect agents’ choices because they change the relative

values of three margins: wages while employed, w; home production while unemployed, B(Zt); and

vacancy posting costs, K(Zt), all relative to a worker’s productivity level Zt. In order to focus on the

margin that pertains to the relative value of wages, which is the main focus of this paper, we assume that

the search cost and unemployment income are homothetic in workers’ productivity (thereby abstracting

from the other two margins). That is, B(Zt) = B̃Zt for B̃ 2 (0, 1) and K(Zt) = K̃Zt for K̃ > 0.

Discussion of Assumptions. For expositional clarity, we imposed several assumptions that are not

essential for the main insights that emerge from our theory of non-Coasean labor markets: (i) full rigidity of

wages within a match, (ii) no on-the-job search, (iii) homotheticity of the technology for home production

and search, and (iv) the absence of alternative sources of heterogeneity.

Regarding (i), this assumption means that we only need to track productivity fluctuations, but not

wages, during a match. Online Appendix C presents an extension of our model with staggered wage

renegotiations. There, we assume that renegotiations arrive according to a Poisson process with constant

hazard rate à la Calvo (1983) and that renegotiations follow a Nash bargain with worker weight a.

Integrating more complex wage-adjustment frictions could speak to empirical patterns of wage rigidity,

such as those documented in Grigsby et al. (2021) and Blanco et al. (2022a), and is left for future research.

Regarding (ii), this assumption allows us to abstract from employed workers directing their search

across markets according to their current wage and productivity. Even with on-the-job search, inefficient

separations into unemployment would occur for the same reasons spelled out above. Adding on-the-job

search, while numerically tractable, would force us to take a stance on how wages are renegotiated when

7The lack of commitment is reflected in the equilibrium definition: Stopping times depend on the history of shocks, and
(t j, th) are optimal for every history and each player. Naturally, we require an agent’s stopping times to be measurable with
respect to the agent’s information set (including the entire history of shocks).
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a worker receives an outside offer (Postel-Vinay and Robin, 2002).

Regarding (iii), this assumption implies that workers of different productivity levels face the same

job-finding rate, separation rate, and wage per efficiency unit. Homotheticity is not crucial for any parts

of our theory, but allows for a much simpler exposition by focusing on the economic mechanisms within,

rather than across, worker types.

Finally, regarding (iv), this assumption simplifies the analysis by ignoring firm and match heterogene-

ity in productivity and wages. It is motivated by the empirical observation that worker heterogeneity

explains the lion’s share of empirical wage variation (Bonhomme et al., 2019). Future work could study

alternative sources of heterogeneity in a non-Coasean labor market.

2.2 Equilibrium Characterization

Let u(z), h(z; w), j(z; w), and q(z; w) denote the values of an unemployed worker, an employed worker, a

filled vacancy, and the market tightness function evaluated at equilibrium policies, where w indexes the

(constant) wage. We now derive necessary and sufficient conditions for a BRE. We break our equilibrium

characterization into two steps. In the first step, firms post vacancies and workers search for jobs. This

problem is characterized by the Hamilton-Jacobi-Bellman (HJB) equation for unemployed workers,

ru(z) = B̃ez + g
∂u(z)

∂z
+

s2

2
∂2u(z)

∂z2 + max
w

f (w, z)[h(z; w)� u(z)], (7)

and the free-entry condition for firms, which requires that the equilibrium market tightness satisfies

K̃ez
� q(w, z)j(z; w) � 0 (8)

and q(w, z) � 0, with complementary slackness, for all (w, z).

In the second step, which is the novel focus of this paper, matched workers and firms play a game due

to the strategic choice of their own stopping times, or when to unilaterally separate from the match. The

strategic worker-firm interaction has three features. First, agents play a nonzero-sum game, since the match

value, ez, exceeds the outside option value B̃ez for B̃ < 1. Second, agents’ payoffs are stochastic and move

with productivity, which follows a Wiener process. Third, agents’ strategies consist of stopping times.

Thus, the strategic interaction between workers and firms can be formulated as a nonzero-sum stochastic

differential game with stopping times (Bensoussan and Friedman, 1977). To characterize the equilibrium,

we make use of quasi-variational inequalities—a methodological approach that we import from the

literature on variational inequalities (Lions and Stampacchia, 1967). We highlight that the application of
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these state-of-the-art tools in an economic context is an important contribution of this paper.

Before deriving the quasi-variational inequalities that characterize this problem, we describe the

equilibrium conditions for a worker-firm match with the aid of Figure 1, which illustrates the equilibrium

values, outside options, and optimal policies for both agents.

FIGURE 1. EQUILIBRIUM VALUES AND OPTIMAL POLICIES

Productivity, z

h(z; w) j(z; w) u(z) 0

z�(w) z�,wd(w)

C j(w)

z+,wd(w) z+(w)

Ch(w)

0 < ez � ew

0 < ew � ru(z) + g ∂u(z)
∂z + s2

2
∂2u(z)

∂z2

h(z; w) > u(z) and j(z; w) > 0

Notes: The figure plots the value functions of workers and firms for a given log wage w as a function of log productivity z.
The blue and red solid lines show the value functions for the worker and the firm, respectively. The blue and red dashed
lines show the opportunity costs for the worker and the firm, respectively. The firm’s optimal job-separation trigger based on
weakly dominant strategies is z�,wd(w) := w. The worker’s optimal job-separation trigger under weakly dominant strategies is
z+,wd(w⇤) and satisfies ew⇤

= B̃ez+,wd(w⇤) + f (z+,wd(w⇤); w⇤)[h(z+,wd; w⇤)� u(z+,wd)]. The optimal job-separation triggers for
the worker and the firm are z+(w) := supz{z : h(z; w) > u(z)} and z�(w) := infz{z : j(z; w) > 0}, respectively.

The possibility that both the worker and the firm can unilaterally dissolve a match imposes lower

bounds on the values h(z; w) and j(z; w). Individual rationality of the worker and the firm requires that

h(z; w) � u(z) 8z, (9)

j(z; w) � 0 8z. (10)

Let Ch(w) denote the interior of the set of productivities for which the worker prefers to stay in the match

with wage w under our equilibrium definition. Importantly, this set is made up of two productivity

ranges: one in which both the firm and the worker opt to continue the match and one in which only the

worker prefers to continue the match. Let C j(w) denote the analogous object for the firm.
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Optimality Conditions. Workers’ and firms’ optimal policies for productivity levels inside and outside

the other agent’s continuation set are characterized by variational inequalities. The HJB equation of a

worker employed at wage w with productivity z 2 C j(w), at which the firm opts to continue, is given by

rh(z; w) = max
⇢

ew + g
∂h(z; w)

∂z
+

s2

2
∂2h(z; w)

∂z2 + d [u(z)� h(z; w)] , ru(z)
�

. (11)

This value satisfies h(·; w) 2 C1(C j(w)) \ C(R). That is, it is continuously once-differentiable on the

continuation set and continuous everywhere. These continuity and differentiability conditions correspond

to the value matching condition and the smooth pasting condition, respectively, in the worker’s best response.

Importantly, a smooth pasting condition holds whenever the worker has to choose between staying or

leaving the match (i.e., in the firm’s continuation set). Similarly, the HJB equation of a firm employing a

worker at wage w with productivity z 2 Ch(w), at which the worker prefers to continue, is given by

rj(z; w) = max
⇢

ez
� ew + g

∂j(z; w)
∂z

+
s2

2
∂2 j(z; w)

∂z2 � dj(z; w) , 0
�

, (12)

which must be continuously differentiable on the worker’s continuation set: j(·; w) 2 C1(Ch(w)) \ C(R).

On the other hand, if any one agent chooses to dissolve the match, then the other agent receives the

value of the corresponding outside option. Therefore, the worker’s and the firm’s values of a match with

productivity z and wage w satisfy the following conditions:

h(z; w) = u(z) 8z 2 (C j(w))c, (13)

j(z; w) = 0 8z 2 (Ch(w))c, (14)

where Xc := R\X. Equations (13)–(14) define the game’s value matching conditions, which imply the

continuity of one agent’s value function at the boundary of the other agent’s continuation set.

Continuation Sets. Two conditions characterize the agents’ continuation sets. First, the match continues

whenever both agents strictly prefer to remain in the match:

h(z; w) > u(z) 8z, (15)

j(z; w) > 0 8z. (16)

Second, each agent prefers to continue whenever staying in the match is a weakly dominant strategy. To

understand this last condition, note that for any worker’s policy, the firm strictly prefers to continue the
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match if flow profits are strictly positive (i.e., ez � ew > 0). This preference results from the fact that the

firm’s continuation value is nonnegative because the firm always has the option to fire the worker in the

future and receive an outside option value of zero. Therefore, the firm’s continuation set is

C
j(w) := int {z 2 R : j(z; w) > 0 or ez

� ew > 0} . (17)

Similarly, the worker’s weakly dominant continuation set includes all productivity levels for which the

sum of the current wage and the discounted capital gains from unemployment is positive:

C
h(w) := int

⇢
z 2 R : h(z; w) > u(z) or 0 < ew

� ru(z) + g
∂u(z)

∂z
+

s2

2
∂2u(z)

∂z2

�
. (18)

Intuitively, from the HJB equation of the unemployed worker in (7), we have that

0 < ew
� ru(z) + g

∂u(z)
∂z

+
s2

2
∂2u(z)

∂z2 () 0 < ew
�

⇣
B̃ez + max

w
f (z; w)[h(z; w)� u(z)]

⌘

| {z }
flow opportunity cost

.

That is, if the wage exceeds the flow opportunity cost, then staying matched strictly dominates quitting.

Figure 1 depicts the two agents’ continuation sets. The firm’s continuation set is C j(w) = {z 2

(z�(w), •)} and includes the range of productivities for which the firm makes positive flow profits—i.e.,

z > z�,wd := w—so it is weakly dominant to retain the worker. Moreover, the set C j(w) also includes

the range of productivities for which both the firm and the worker find it optimal to remain matched

despite either party’s flow profits being negative—i.e., z 2 (z�(w), z�,wd). For z in this range, the firm’s

continuation value is positive and large enough to compensate for current flow losses. An analogous

intuition applies to the worker’s continuation set Ch(w). The existence and uniqueness of a threshold that

characterizes the separation policy is not an assumption but a result we formally derive below.

Equilibrium Policies. The worker quits and the firm fires the worker at stopping times th and t j, which

denote the stochastic time at which productivity falls outside the continuation set of the worker and the

firm, respectively. Thus, agents’ optimal stopping times are given by

t j⇤(w, z) = inf
n

t � 0 : zt 2 C
j(w)c, z0 = z

o
,

th⇤(w, z) = inf
n

t � 0 : zt 2 C
h(w)c, z0 = z

o
.
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The optimality of workers’ search decisions implies that the competitive entry wage satisfies

w⇤(z) = arg max
w

q(z; w)1�a [h(z; w)� u(z)] . (19)

The following lemma shows that these conditions are necessary and sufficient to characterize a BRE.

We relegate all proofs to the Online Appendix.

Lemma 1. The policy functions
�

th⇤, t j⇤, w⇤(z)
 

and the value functions {U(z), H(w, z,~tm), J(w, z,~tm)} given

by (1), (2) and (3) and the market tightness function q(w, z) form a BRE if and only if {u(z), h(z; w), j(z; w)}

satisfy equations (7)–(19) and

u(z) = U(z),

h(z; w) = H(w, z, th⇤(w, z), t j⇤(w, z), td),

j(z; w) = J(w, z, th⇤(w, z), t j⇤(w, z), td).

Finding the State. To understand the dependence of equilibrium objects on state variables, we recast

the model in terms of a reduced state space. Since the flow income of unemployed workers and firms’

vacancy costs are both proportional to productivity, Z, it turns out that the relevant state variable for

both workers and firms is the log-wage-to-productivity ratio, ŵ := w � z. This result allows us to express

agents’ values and policies as functions of the scalar ŵ instead of the duplet (w, z). To simplify notation,

we define the transformed drift ĝ := g + s2 and the transformed discount factor r̂ := r � g � s2/2. The

following Lemma characterizes the equilibrium.

Lemma 2. Suppose that the functions (u(z), h(z; w), j(z; w), q(w, z)) satisfy the equilibrium conditions in (7)–

(14), given the continuation sets Ch(w) and C j(w) defined in (17)–(18). Then, the transformed value and market

tightness functions given by

�
Û, Ĵ(w � z), Ŵ(w � z), q̂(w � z)

�
=

✓
u(z)

ez ,
j(z; w)

ez ,
h(z; w)� u(z)

ez , q(w, z)
◆

equivalently characterize the equilibrium if the following conditions are satisfied:

1. The transformed value function of an unemployed worker, Û, satisfies

r̂Û = B̃ + max
ŵ

q̂(ŵ)1�aŴ(ŵ), (20)

where the optimal choice of submarket for an unemployed worker to search in is ŵ⇤ = w⇤(z)� z.
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2. The lower bounds of the game’s values for workers and firms are: Ŵ(ŵ) � 0 and Ĵ(ŵ) � 0.

3. The variational inequalities for workers and firms are satisfied: Given

Ĉ
h := int

�
ŵ 2 R : Ŵ(ŵ) > 0 or 0 < eŵ

� r̂Û
 

and Ĉ
j := int

�
ŵ 2 R : Ĵ(ŵ) > 0 or 0 < 1 � eŵ ,

the transformed value function of an employed worker, Ŵ(ŵ), and that of a filled vacancy, Ĵ(ŵ), satisfy

(r̂ + d)Ŵ(ŵ) = max
⇢

eŵ
� r̂Û � ĝŴ 0(ŵ) +

s2

2
Ŵ 00(ŵ) , 0

�
, 8ŵ 2 Ĉ

j, (21)

(r̂ + d) Ĵ(ŵ) = max
⇢

1 � eŵ
� ĝ Ĵ0(ŵ) +

s2

2
Ĵ00(ŵ) , 0

�
, 8ŵ 2 Ĉ

h, (22)

with Ŵ 2 C1(Ĉ j(w)) \ C(R) and Ĵ 2 C1(Ĉh(w)) \ C(R). The optimal stopping times are given by

th⇤ = inf{t � 0 : ŵt /2 Ĉh, w0 = ŵ⇤} and t j⇤ = inf{t � 0 : ŵt /2 Ĉ j, w0 = ŵ⇤}.

4. The value matching conditions are satisfied: Ŵ(ŵ) = 0 8ŵ 2 (Ĉ j)c, and Ĵ(ŵ) = 0 8ŵ 2 (Ĉh)c.

5. Free entry for q̂(ŵ) is satisfied: K̃ � q̂(ŵ)�a Ĵ(ŵ) � 0 and q̂(ŵ) � 0, with complementary slackness.

The equilibrium conditions in Lemma 2 are transformed versions of those stated above and follow

similar intuitions. Equation (20) of Part 1 gives the value of unemployment under the optimal log-wage-

to-productivity search strategy. For the unemployed, the optimal wage w⇤ trades off the job-finding rate

q̂(ŵ⇤)1�a with the value of employment Ŵ(ŵ⇤). Part 2 describes the lower bounds on agents’ transformed

values. From equations (21)–(22) of Part 3, we can infer the thresholds that render the worker’s and the

firm’s transformed flow payoffs negative. If eŵ < r̂Û, then the worker’s wage is below the flow value of

unemployment. Similarly, if eŵ > 1, then the firm’s flow profits are negative. Part 4 states the transformed

value matching conditions. Finally, Part 5 states the transformed free-entry condition.

Equilibrium Existence and Uniqueness. Equipped with the equilibrium conditions summarized in

Lemma 2, we now state an important result.

Proposition 1. There exists a unique BRE.

While the result in Proposition 1 is essential for any model with non-Coasean labor contracts, it does

not follow from previous work. Theorems for the existence of a BRE with exogenous job separations

in discrete time rely on Schauder’s fixed-point theorem (e.g., Menzio and Shi, 2010a,b; Schaal, 2017).

Two conditions are critical for applying this fixed-point theorem: continuity in the value functions and

continuity in the mapping between the value functions that characterize the BRE. In the discrete-time
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version of our model, idiosyncratic worker productivity shocks, wage rigidity, and two-sided lack of

commitment jointly generate endogenous job separations, which violate the regularity conditions on

which traditional arguments rely. In contrast, our continuous-time setup allows us to get around this

technical challenge. One of our contributions is to leverage techniques from the literature on variational

inequalities in continuous-time models to prove the existence and uniqueness of a BRE in our environment.

2.3 Understanding the Mechanisms

We now characterize the mechanisms that drive workers’ and firms’ equilibrium behavior.

Equilibrium Policies. Based on the transformed state variable ŵ and the equilibrium conditions in

Lemma 2, we can characterize agents’ equilibrium policies. Recalling the definition of the transformed

state variable ŵ := w � z, we postulate that there exist optimal policies ŵ� < ŵ⇤ < ŵ+, where ŵ� is the

worker’s optimal job-separation threshold, ŵ⇤ is the optimal search strategy at match formation, and

ŵ+ is the firm’s optimal job separation threshold. We define the transformed surplus of the match as

Ŝ(ŵ) := Ĵ(ŵ) + Ŵ(ŵ) and the worker’s share of the transformed surplus as h(ŵ) := Ŵ(ŵ)/Ŝ(ŵ). The

following proposition characterizes the properties of the BRE in its transformed notation.

Proposition 2. The BRE has the following properties:

1. The joint match surplus satisfies

Ŝ(ŵ) = (1 � r̂Û)T (ŵ, r̂), (23)

where

T (ŵ, r̂) := E

"ˆ tm⇤

0
e�r̂t dt|ŵ0 = ŵ

#
(24)

is the expected discounted match duration and 1 > r̂Û > B̃.

2. The competitive entry wage ŵ⇤ coincides with the Nash bargaining solution with worker’s weight a:

ŵ⇤ = arg max
ŵ

n
Ŵ(ŵ)a Ĵ(ŵ)1�a

o
= arg max

ŵ

n
h(ŵ)a(1 � h(ŵ))1�a

T (ŵ, r̂)
o

, (25)
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with optimality condition

h0(ŵ⇤)

✓
a

h(ŵ⇤)
�

1 � a

1 � h(ŵ⇤)

◆

| {z }
Share channel

= �
T 0

ŵ(ŵ
⇤, r̂)

T (ŵ⇤, r̂)
| {z }

Surplus channel

. (26)

3. Given h(ŵ⇤) and T (ŵ⇤, r̂), the equilibrium job-finding rate f (ŵ⇤) and the flow opportunity cost of employ-

ment r̂Û are given by

f (ŵ⇤) =
⇥
(1 � h(ŵ⇤))(1 � r̂Û)T (ŵ⇤, r̂)/K̃

⇤ 1�a
a , (27)

r̂Û = B̃ +
⇣

K̃a�1 (1 � h(ŵ))1�a h(ŵ)a
�
1 � r̂Û

�
T (ŵ⇤, r̂)

⌘ 1
a
. (28)

4. Assume g 6= 0 or s 6= 0. Given Û, the worker’s and the firm’s continuation sets are connected, and the

game’s continuation set is bounded; i.e.,

Ĉ
h = {ŵ : ŵ > ŵ�

} and Ĉ
j = {ŵ : ŵ < ŵ+

}, (29)

with �• < ŵ�  log(r̂Û) < 0  ŵ+ < •. The worker’s and firm’s value functions satisfy smooth

pasting conditions at ŵ� and ŵ+, respectively: Ŵ 0(ŵ�) = Ĵ0(ŵ+) = 0.

Starting with Part 1 of Proposition 2, equation (23) states that the match surplus equals the product of

the transformed flow surplus 1 � r̂Û and the expected discounted match duration T (ŵ, r̂) defined in

equation (24), which depends on the entry wage ŵ⇤ and the width of the match’s continuation set (ŵ�, ŵ+).

Also, the flow opportunity cost of employment r̂Û is bounded between one (i.e., the transformed value of

flow output in the match) and B̃ (i.e., the transformed value of home production). Since 1 > r̂Û, the joint

match surplus is always strictly positive—thus all endogenous job separations are inefficient.

Equations (25)–(26) of Part 2 show that the competitive entry wage ŵ⇤ balances a share channel and a

surplus channel. Unemployed workers search for wages that are competitively set in a way that coincides

with the Nash bargaining solution with worker’s weight a, thereby satisfying the well-known condition

of Hosios (1990). This result obtains due to the free-entry condition, which implies that a worker’s

job-finding rate is proportional to the value of a firm. A larger initial wage increases the worker’s share

by h0(ŵ⇤)a/h(ŵ⇤) but at the same time reduces the job-finding probability by h0(ŵ⇤)(1 � a)/(1 � h(ŵ⇤)).

This trade-off is reflected in the share channel and is standard in models with directed search.

With allocative wages, a novel surplus channel arises. Intuitively, the surplus channel captures the fact

that the wage set at match formation affects the expected match duration, and thus the expected surplus.
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The higher the entry wage, the sooner the firm will dissolve the match in expectation. Conversely, the

lower the entry wage, the sooner the worker will dissolve the match in expectation. Only if Tŵ(ŵ⇤, r̂) = 0

will the worker’s share of the surplus equal h(ŵ⇤) = a, as in efficient models with nonallocative wages.

These considerations are unique to our environment.

Part 3 characterizes the unemployed worker’s job-finding rate (27) and the flow opportunity cost of

employment (28) as functions of the worker’s surplus share and the expected discounted match duration.

Part 4 shows that the continuation set of the worker and that of the firm (29) follow threshold

rules in the log-wage-to-productivity ratio ŵ. Workers do not quit as long as ŵ > ŵ�, while firms

refrain from firing the worker as long as ŵ < ŵ+. Thus, the continuation set for the match is given by

Ĉh \ Ĉ j = (ŵ�, ŵ+). These thresholds satisfy ŵ�  log(r̂Û) and ŵ+ � 0, which reflects the fact that both

parties are willing to accept flow payoffs below that from their respective outside option. Finally, the

smooth pasting conditions apply at the worker’s quit trigger ŵ� and at the firm’s firing trigger ŵ+, which

reflects the optimality of agents’ continuation thresholds.

Static Considerations. Before further characterizing the original dynamic problem, it is instructive to

consider equilibrium policies when productivity is fixed—i.e., g = s = 0.8 The following proposition

characterizes the static considerations in this case.

Proposition 3. Assume g = s = 0. Then, optimal policies are given by

(ŵ�, ŵ⇤, ŵ+) = log(r̂Û, a + (1 � a)r̂Û, 1),

with h(ŵ⇤) = a and T (ŵ⇤, r̂) = 1/(r̂ + d).

Note that ŵ� < ŵ⇤ < ŵ+ and ŵ = ŵ⇤ for the duration of the match, absent productivity fluctuations,

so there are no endogenous job separations. From this result, we see that lack of commitment and wage

rigidity by themselves do not generate any inefficient job separations. Absent productivity fluctuations,

agents’ behavior is privately efficient, in that it maximizes the joint match surplus.

In addition to the forces outlined in this static example, two important dynamic incentives guide

workers’ and firms’ choices: the option value effect and the anticipatory effect.

Dynamic Considerations I: The Option Value Effect. To understand the role of productivity fluctuations

in creating the option value effect, we assume away, for now, the drift of worker productivity—i.e., ĝ = 0.

The following proposition characterizes the option value effect in this case.

8Observe that if g = s = 0, then the smooth pasting conditions do not apply.
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Proposition 4. Assume ĝ = 0 and a = 1/2. Then, to a first-order approximation, the optimal entry wage is given

by ŵ⇤ = log
�
(1 + r̂Û)/2

�
and job-separation thresholds satisfy ŵ± = ŵ⇤ ± h(j, F) for some function h(j, F)

with j :=
p

2(r̂ + d)/s and F := (1 � r̂Û)/(1 + r̂Û). The following properties apply:

1. h(j, F) is decreasing in j and increasing in F.

2. limj!0 h(j, F) = 3F and limj!• h(j, F) = F.

3. jh(j, F) is increasing in j.

Furthermore, the equilibrium surplus share is h(ŵ) = a = 1/2 and the expected discounted match duration,

T (ŵ⇤, r̂) =
1 � 2

⇣
ejh(j,F) + e�jh(j,F)

⌘�1

r̂ + d
, (30)

is increasing in j and F and satisfies T 0
ŵ(ŵ

⇤, r̂) = 0.

Proposition 4 demonstrates that idiosyncratic volatility, by itself, does not affect the split of the match

surplus between the worker and the firm. Such an economy is symmetric in the sense that T 0
ŵ(ŵ

⇤, r) = 0

and h(ŵ) = a. Thus, a larger ŵ⇤ reduces the match duration by increasing the likelihood of a layoff

but increases the match duration by reducing the likelihood of a quit. Weighing both forces, T (·, r) is

maximized at ŵ⇤ = (1 + r̂Û)/2 and h(ŵ⇤) = 1/2.

This result provides a tight characterization of the worker’s and the firm’s optimal policy functions,

which result in the continuation region of the match (ŵ�, ŵ+) being symmetrically centered around

the optimal entry wage ŵ⇤. Second, the width of the continuation region is increasing in volatility s

and decreasing in r̂Û (Part 1). The width of the inaction region increases with s due to the option value

effect: Although the worker’s productivity might be low today, the firm is willing to wait before firing the

worker in case productivity improves in the future. The width of the inaction region decreases with r̂Û

because a higher opportunity cost of employment makes it less attractive to delay job separations.

The option value effect naturally arises in models of inaction. However, our model features a departure

from canonical models of inaction (e.g., Barro, 1972; Bernanke, 1983). In those models, the width of the

continuation region typically grows unboundedly with the level of volatility s. Instead, in our model,

the width of the continuation region has an upper bound (Part 2). To see the intuition behind this result,

consider the problem of a firm that finds itself in a match with negative flow profits. The marginal benefit

from remaining in a currently unprofitable match is that, with some probability in the future, productivity

increases enough to make the match profitable by rendering the wage-to-productivity ratio less than

unity. At the same time, inaction on the part of the firm is risky: Productivity may increase by a large
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enough amount for the worker to choose to quit. Given the two job-separation thresholds, as the volatility

goes to infinity, the probability of remaining in the profitable part of the inaction region approaches zero.

Thus, the two-sided lack of commitment imposes an upper bound on the option value associated with

remaining in a match with negative flow profits.

The inefficiency generated by the lack of commitment also manifests itself in the expected duration

of the match given by equation (30). It is easy to see that a bounded option value effect (i.e., bounded

separation thresholds), as indexed by h(j, F), implies a lower expected duration as the volatility of

productivity shocks increases (Part 3).

Dynamic Considerations II: The Anticipatory Effect. To understand the role of a nonzero productivity

drift in generating the anticipatory effect, we assume away, for now, the volatility of worker productivity—

i.e., s = 0—and focus on the case with weakly positive drift—i.e., ĝ � 0. The following proposition

characterizes the anticipatory effect in this case.

Proposition 5. Assume s = 0 and ĝ � 0. Then, ŵ� = log
�
r̂Û
�

and

w⇤ = ŵ� + T̃
✓

a + (1 � a)r̂Û
r̂Û

,
r̂ + d

g
,
(1 � a)(1 � r̂Û)

r̂Û

◆
,

where T̃(·) is increasing in the first argument and decreasing in the second argument; see equation (B.36) in the

Online Appendix for its definition. Moreover,

1. If ĝ = 0, then
�
T̃(·), T (ŵ⇤, r̂), h(ŵ⇤)

�
!

⇣
log
⇣

a+(1�a)r̂Û
r̂Û

⌘
, 1

r̂+d , a
⌘

.

2. If ĝ ! •, then T̃(·) ! T̃limit, T (ŵ⇤, r̂) ! 0, and h(ŵ⇤) ! hlimit, where T̃limit and hlimit are implicitly

defined as

a + (1 � a)r̂Û
r̂Û

=
eT̃limit

� 1 � (1�a)(1�r̂Û)
r̂Û

⇣
1 � T̃limit

eT̃limit
�1

⌘

T̃limit ,

hlimit = a +
1 � a

T̃limit
(1 � r̂Û)hlimit

hlimit + r̂Û(1 � hlimit)
. (31)

When productivity grows at a constant rate, the job-separation threshold ŵ� equals the static opportu-

nity cost of employment, since there is no value for the worker to further delay the separation. A novel

mechanism is embedded in the entry wage ŵ⇤ and, therefore, in the function T̃(·). From Proposition 5,

we can see that ŵ⇤ is increasing in the Nash bargaining target and also in the drift. We refer to the latter as

the anticipatory effect: Workers anticipate higher future productivity and modify their search strategy
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accordingly. Two limiting cases illustrate this point.

As g ! 0 (Part 1), the equilibrium entry wage ŵ⇤ is the same as in the case without drift; thus,

h(ŵ⇤) = a. As the drift increases, workers optimally search for a job with a higher entry wage. Therefore,

the average wage in the economy increases above the Nash bargaining target; recall that ŵ� remains

fixed. This results from the worker internalizing the trade-off whereby a higher wage implies (i) a reduced

job-finding rate and (ii) a lower frequency of inefficient job separations and, thus, a longer expected match

duration. As the drift increases unboundedly (Part 2), the entry wage w⇤ becomes unresponsive to the

drift because the job-finding rate becomes so small that it starts to dominate the trade-off. Finally, as seen

in (31), the anticipatory effect causes the worker’s share of the surplus to increase with the drift.

The worker’s lack of commitment implies the invariance of ŵ� to the drift, which decreases the value

of searching for a job. To see this, assume that the worker commits to some ŵ� and d ! 0. Under these

assumptions, the job-separation rate is s = ĝ/(w⇤ � ŵ�). Thus, the worker reduces the frequency of

inefficient job separations by increasing w⇤ � ŵ�, as captured by the surplus channel. At the same time,

workers choose an entry wage that takes into account the trade-off captured by the share channel. For a

given ŵ�, the worker chooses only one scalar, namely ŵ⇤, to balance two opposing objectives: increase

ŵ⇤ to avoid inefficient job separations (i.e., the surplus channel) or keep ŵ⇤ close to the Nash bargaining

target (i.e., the share channel). Thus, the lack of commitment distorts both the expected duration of the

match and job-finding rates in equilibrium.

3 The Consequences of Monetary Shocks in Non-Coasean Labor Markets

How does the presence of inefficient job separations—due to the interaction between search frictions,

productivity shocks, wage rigidity, and two-sided lack of commitment—matter for the transmission of

monetary shocks? To answer this question, we introduce money as a numéraire in order to study the

effects of monetary shocks on aggregate labor market outcomes and provide sufficient statistics for these

effects based on readily available microdata.

3.1 A Monetary Economy

We modify the baseline model in four dimensions. First, we introduce preferences over real money:

E0

ˆ •

t=0
e�rt

✓
Cit + µ log

✓
M̂it
Pt

◆◆
dt
�

, (32)
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where M̂it denotes the money holdings of worker i, Pt is the relative price of the consumption good in

terms of money, and µ is a preference weight on real money holdings.

Second, workers face a budget constraint that reflects ownership of firms and access to complete

financial markets. Given a history of labor market decisions regarding job search, job acceptance, and job

dissolution, lmt
i := {lmit0}

t
t0=0, a worker’s private income is Yt(lmt

i), which equals the nominal value of

the wage while employed and the nominal value of home production while unemployed. In addition,

each worker receives transfers of Tit from the government and fully diversified claims on firms’ profits.

On the spending side, a worker pays for consumption expenditures PtCit and the opportunity cost of

holding money it M̂it at a given interest rate it � 0. Letting Qt denote the time-0 Arrow-Debreu price

under complete markets, the worker’s budget constraint is

E0

ˆ •

t=0
Qt
�

PtCit + it M̂it � Yt(lmt
i)� Tit

�
dt
�
 Mi0. (33)

The worker’s problem is to choose a consumption stream {Cit}
•
t=0, labor market decisions {lmit}

•
t=0, and

money holdings {M̂it}
•
t=0 to maximize utility (32) subject to the budget constraint (33) at time 0.

Third, the economy is subject to shocks to the aggregate money supply Mt. We assume that the log of

the aggregate money supply mt follows a Brownian motion with drift p and volatility z:

dmt = p dt + z dWm
t ,

where Wm
t is a Wiener process.

Fourth and finally, we assume that the vacancy posting cost K(Zt) and the value of home production

B(Zt) are both denominated in real terms.

Given these modifications, the market-clearing conditions for goods and money, respectively, are

ˆ 1

0
(Cit + qit [Eit = u]K(Zit))di =

ˆ 1

0
(Zit [Eit = h] + B(Zit) [Eit = u])di, (34)

ˆ 1

0
M̂it di = Mt, (35)

where [·] is an indicator function that takes a logical expression as its argument. Equation (34) states that

the sum of real consumption and recruiting expenses must equal the total market and home production

of the good. Equation (35) states that the total demand of nominal money holdings across workers equals

the aggregate money supply.

The following proposition characterizes the worker’s problem in this monetary economy.
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Proposition 6. Let Q0 = 1 be the numéraire and assume µ = r + p � z2/2. Then, Pt = Mt and the value of a

worker at time 0 is

V0 = max
{lmit}

•
t=0

E0

ˆ •

0
e�rt Y(lmt

i)

Pt
dt
�
+ k,

where k is a constant independent of the worker’s choices, which captures the present discounted value of financial

wealth.

Proposition 6 shows that the price level is equal to the aggregate money supply and that maximizing

(32) subject to (33) is equivalent to maximizing expected discounted real income. The result relies on three

assumptions: (i) markets are complete, (ii) workers have preferences that are quasi-linear in consumption,

and (iii) the log of aggregate money supply follows a random walk with drift. The first two assumptions

imply a constant marginal value of nominal wealth, which, combined with the last assumption, leads to a

constant real interest rate and a one-for-one pass-through of money shocks to inflation.

Notation. The introduction of a monetary economy requires minor adjustments to our previous solution

approach. Given fluctuations in the log price level p, the relevant state variable becomes the real wage-to-

productivity ratio ŵ := w � z � p. All policies (ŵ+, ŵ⇤, ŵ�) are still expressed in real terms. In addition,

it will be useful to keep track of the negative of a worker’s cumulative shocks to revenue productivity

z + p since the beginning of the current employment or unemployment spell, which we denote by Dz. By

definition, ŵ = ŵ⇤ + Dz and the law of motion for Dz is

dDz = � (g + p)dt + s dW z
t + z dWm

t .

Let Gh(Dz) and gh(Dz) denote the steady-state CDF and PDF of cumulative revenue productivity shocks

z within job spells, respectively.9 Note that the support of this distribution is given by [�D�, D+], where

D� := ŵ⇤ � ŵ� and D+ := ŵ+ � ŵ⇤. For any integer k 2 N, we define the moments of this distribution

as Eh(Dzk) :=
´

Dz Dzk dGh(Dz).

Our model implies a set of observable steady-state statistics. First, agents transition from employment

to unemployment at rate s, from unemployment to employment at rate f (ŵ⇤), and total employment is E .

Second, the model implies a distribution of log nominal wage changes between consecutive job spells

Dw and distributions of employment durations tm and unemployment durations tu. We use subscript D

to denote moments of these distributions observed in the microdata—e.g., ED [·] and VarD [·] denote the

mean and the variance of this distribution, respectively. These moments will be useful to define sufficient

9In Online Appendix F, we show the Kolmogorov forward equations that characterize the steady-state distribution of
cumulative productivity shocks z within employment and unemployment spells.
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statistics for the effects of monetary shocks on aggregate labor market outcomes.

Discussion of the Monetary Environment. Previous literature has extensively studied the multifaceted

effects nominal shocks have on the labor market. For example, monetary policy, through its effect on

real interest rates, can affect match surplus and the overall labor market (Kehoe et al., 2019, 2022). In this

paper, we abstract from these important but well-understood considerations and focus on the effect of

monetary policy “greasing the wheels of the labor market”: By lowering real wages in the economy, an

unexpected increase in the aggregate price level redistributes the surplus from workers to firms. Our goal

is to understand how this redistribution affects the dynamics of wages, job creation, separations, and

aggregate employment.

3.2 Monetary Multipliers for Aggregate Employment and Real Wages

Starting from the steady state without aggregate shocks, so that z = 0, we consider a small and unantic-

ipated shock z > 0 to aggregate money supply at time t = 0—i.e., log(M0) = limt"0 log(Mt) + z. This

shock leads to a one-for-one increase in the price level. We are interested in the economy’s impulse response

function (IRF) and cumulative impulse response (CIR) of aggregate employment and real wages to such a

monetary shock.10

An Illustration. Figure 2 shows the evolution of key variables after the sudden increase in the price

level. The distribution of real wage-to-productivity ratios shifts to the left (Panel A), resulting in a

lower average log real wage per capita w̄t :=
´ 1

0 [Eit = h]wit di (Panel B). In line with lower real wages

among incumbents, the monetary shock affects the endogenous job-separation rate (Panel C), the relative

importance of quits vs. layoffs (Panel D), and aggregate employment (Panel F). In addition, given that the

wage level of new matches is a key determinant of the job-finding rate (Pissarides, 2009), we allow for

two polar cases: flexible entry wages and sticky entry wages. With flexible entry wages, we assume that

unemployed workers fully adjust their search behavior to incorporate the higher price level, so that ŵ⇤

remains at its steady-state level. Therefore, aggregate log real wage is affected by the shock only because

the nominal wages of incumbent workers are rigid. Since entry wages adjust one-for-one with the price

level, the firm’s real value of a filled vacancy is unaffected, so both vacancy-filling and job-finding rates

remain at their steady-state levels (dashed line in Panel E). Thus, because the monetary shock changes

10By the certainty equivalence principle, the impulse response function following a money shock that departs from the steady
state with steady-state policies is equivalent to the solution based on a first-order perturbation of the model with business cycle
fluctuations.
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FIGURE 2. IMPULSE RESPONSE FUNCTIONS OF LABOR MARKET VARIABLES

A. Distribution of ŵ

steady state after ⇣-shock

ŵ� ŵ+

0

Time

B. Real wages per capita , w̄t � w̄ss

Sticky Entry Wage

Flexible Entry Wage

0

Time

C. Separation rate, st � sss

0

Time

D. Share of quits and layo↵s

Quits

Layo↵s

0

Time

E. Job-finding rate, ft � fss

0

Time

F. Aggregate employment, Et � Ess

0

1

Notes: Panel A shows the distribution of real wage-to-productivity ratios ŵ := log(Wit/(ZitPt)) in the steady state and after
a monetary shock of size z. Panels B to F show the impulse response functions of the average log real per capita wage w̄t,
the aggregate separation rates, the share of quits and layoffs in total separations, the job-finding rate ft � fss, and aggregate
employment Et � Ess, respectively.

the position of ŵ in the inaction region, the employment response is determined by the effects of the

aggregate shock on endogenous job separations.

In the sticky entry wage case, we allow the hiring margin to also be affected by assuming that

unemployed workers do not adjust their search behavior to the higher price level. Instead, we assume

that workers learn about the higher price level while employed, leading to a lower real entry wage until

the worker’s first job, after which it reverts to its steady-state level. As a consequence, temporarily lower
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entry wages induce firms to post more vacancies and the job-finding rate to increase (solid line in Panel

E). Therefore, under sticky entry wages the employment dynamics are driven by both job-separation and

job-finding rates. The assumption of sticky entry wages is motivated by the empirical evidence of Grigsby

et al. (2021), who document that new-hire wages evolve similarly to incumbent workers within a firm

at business cycle frequencies, and Hazell and Taska (2022), who show that wages for new hires rarely

change between successive vacancies at the same job. Microfounding this assumption is outside the scope

of this paper.11 For notable models of rigid entry wages, see Fukui (2020) and Menzio (2022).

Defining IRFs and CIRs. Our goal is to characterize the effects of a monetary shock on aggregate

employment E and aggregate real wages w̄. To this end, we denote by IRFx(z, t) the IRF for variable

x 2 {E , w̄} at time t relative to its steady-state value, following a monetary shock z at time 0. The IRFs for

aggregate employment and aggregate real wages are

IRFE (z, t) = Et � Ess, IRFw̄(z, t) = w̄t � w̄ss,

where Ess and w̄ss are the steady-state employment rate and average real per capita wage, respectively.

Following Alvarez et al. (2016), we define the CIR of a variable x 2 {E , w̄} to a monetary shock z as

CIRx(z) =
ˆ •

0
IRFx(z, t)dt,

which measures the area under the IRFx(z, t) curve for t > 0. The CIR summarizes the on-impact response

and the persistence of the response of the labor market to the monetary shock in a single scalar. Therefore,

the CIR can be interpreted as a monetary multiplier. To illustrate the logic behind the CIR, suppose that

there are no nominal rigidities so that the nominal wages of both newly hired and incumbent workers

respond one-for-one to the price level. In this case, IRFx(z, t) = 0 for all t and thus CIRx(z) = 0 for

x 2 {E , w̄}, which reflects the fact that there are no real consequences of inflation. With nominal rigidities,

an inflationary shock affects both employment and wages, the magnitude of which is given by the CIR.

Next, we characterize, up to a first-order approximation, the CIR of aggregate employment as a set of

measurable objects in labor market microdata. The key insight is that the CIR of aggregate employment

can be characterized only in terms of steady-state cross-sectional moments. Intuitively, changes in a

11Since the steady-state entry wage is optimal, any perturbation around that level has a second-order welfare effect on the
worker. Thus, this assumption could be replaced by any first-order cost of entry wage adjustment. The literature offers a plethora
of alternative microfoundations for these first-order adjustment costs based on imperfect knowledge about aggregate shocks.
Examples include sticky information (Mankiw and Reis, 2002), rational inattention (Woodford, 2009; Maćkowiak and Wiederholt,
2009), dispersed knowledge (Hellwig et al., 2014), and level-k reasoning (Farhi and Werning, 2019).
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worker’s productivity and changes in the aggregate price level affect the real wage-to-productivity ratio

Wit/(ZitPt) of a match in symmetric ways. Therefore, the response of a match to productivity changes in

the steady state is informative of the aggregate effects of changes in the price level.

To convey the intuition more transparently, we assume p = �g for the remainder of this section.

However, all propositions and proofs contained in the Online Appendix refer to the general case with

p R �g. At the end of this section, we discuss the main differences with the general case.

CIR of Employment with Flexible Entry Wages. To facilitate exposition of the analysis, we first present

the case with flexible entry wages. Proposition 7 characterizes the CIR up to a first order.12

Proposition 7. Assume flexible entry wages. Up to first order, the CIR of employment is given by

CIRE (z)
z

= �(1 � Ess)
Eh[Dz]

s2 + o(z) (36)

=
1

f (ŵ⇤)
| {z }

avg. u dur.

1
VarD [Dw]| {z }

dispersion

2

6664
1
3

ED


Dw

Dw2

ED [Dw2]

�

| {z }
asymmetries

3

7775
+ o(z). (37)

To build the intuition behind this result, we first consider the implications of equation (36) in two

cases in which the job-separation rate and aggregate employment do not respond to aggregate shocks. In

the first case, all job separations are exogenous; therefore, the IRF of the job-separation rate is zero. In the

second case, all job separations are endogenous, but the mass of additional workers who quit due to lower

real wages is exactly compensated for by the mass of workers firms would have fired along the entire IRF

(i.e., not just on impact) in the absence of the monetary shock. In both cases, the relevant sufficient statistic

referenced by equation (36) is Eh[Dz] = 0. Instead, Eh[Dz] < 0 indicates a relatively larger incidence of

layoffs than quits; therefore, a monetary policy-induced reduction in real wages reduces the separation

rate, which increases aggregate employment along the IRF. Finally, notice that the CIR is scaled by the

steady-state unemployment rate, 1 � Ess, which is informative of workers’ steady-state job-finding rate

f (ŵ⇤) and their ability to quickly match with a firm again.

Next, we express CIRE in terms of observable sufficient statistics of the distributions of wage changes

and unemployment duration. Equation (37) shows that CIRE is composed of three statistics: (i) the

average duration of unemployment spells, (ii) the inverse of the dispersion of wage changes, and (iii)

a measure of the asymmetry of the wage change distribution. Therefore, the relative mass of workers

near the two job-separation triggers, which capture the immediate response of quits and layoffs, is not a

12That is, CIRx(z) = CIRx(0) + (CIRx)0(0)z + o(z2), where CIRx(0) = 0.

28



sufficient statistic for characterizing the CIR of aggregate employment. Instead, the sufficient statistic

is given by the product between the inverse of the job-finding rate, as explained above; the inverse of

the dispersion of wage changes; and a measure of normalized skewness of the wage-change distribution.

Intuitively, a larger dispersion of wage changes is indicative of a wider inaction region and the presence

of more resilient matches to shocks. Thus, the larger this dispersion, the smaller the share of endogenous

separations and the smaller the propagation of shocks. Finally, skewness measures how asymmetric the

separation policies ŵ� and ŵ+ are around the entry wage ŵ⇤, which determines Eh[Dz]. To illustrate,

when the distribution of nominal wage changes is positively skewed, there is a large mass of workers who

experience small wage cuts, which signals a relatively high layoff risk. Then, the higher price level reduces

real wages and increases firms’ incentives to keep their workers; as a result, aggregate employment

increases. The opposite holds for a negatively skewed distribution of wage changes.

Proposition 7 also offers a new insight regarding the conventional wisdom whereby fluctuations in the

job separation rate are not the primary driver of aggregate employment dynamics (e.g., Shimer, 2005b). In

the context of a monetary shock, equation (36) points to conditions under which aggregate employment

fluctuations due to endogenous job separations can be small. More importantly, it also highlights the

conditions for these effects to be large,13 and allows us to verify those conditions in the data. In light of

this conventional wisdom, one might be tempted to conclude that sticky wages cannot lead to significant

inefficiencies at the micro level. However, equation (36) allows for a small CIRE despite the presence of

inefficient separations at the micro level. Thus, aggregate time-series data cannot be used to discriminate

between Coasean and non-Coasean theories of the labor market.

CIR of Employment with Sticky Entry Wages. Having characterized employment dynamics when

entry wages are flexible, we now characterize the case with sticky entry wages.

Proposition 8. Assume sticky entry wages. Up to first order, the CIR of employment is given by

CIRE (z)
z

= (1 � Ess)

"
�

Eh[Dz]
s2 +

1
f (ŵ⇤) + s

"
1 � a

a


h0(ŵ⇤)

(1 � h(ŵ⇤))
�

T 0
ŵ(ŵ

⇤, r̂)
T (ŵ⇤, r̂)

�

| {z }
job-finding effect

�
T 0

ŵ(ŵ
⇤, 0)

T (ŵ⇤, 0)| {z }
new-hires’
separation

effect

##
+ o(z)

(38)

13This sufficient statistic points to scenarios in which inefficient job separations matter for aggregate employment dynamics.
For example, if trend inflation p is large in magnitude, then—all else equal—the rate of inefficient job separations will be more
responsive to an inflationary shock. Alternatively, following a sequence of negative productivity shocks, an inflationary shock
reduces the incidence of inefficient job separations due to firings (see Blanco et al., 2022b, for empirical evidence consistent with
this theoretical result).
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= (1 � Ess)


�

Eh[Dz]
s2 +

1
f (ŵ⇤) + s


h0(ŵ⇤)
h(ŵ⇤)

+
T 0

ŵ(ŵ
⇤, r̂)

T (ŵ⇤, r̂)
�

T 0
ŵ(ŵ

⇤, 0)
T (ŵ⇤, 0)

��
+ o(z). (39)

Proposition 8 characterizes the new mechanisms that affect employment dynamics when entry wages

are sticky. The elasticity of the firm’s share of the surplus with respect to the entry wage (i.e., h0(ŵ⇤)/(1 �

h(ŵ⇤))), together with the elasticity of the expected discounted duration of the match (i.e., T 0
ŵ(ŵ

⇤, r̂)/

T (ŵ⇤, r̂)), capture the effect of the increase in the job-finding probability following the decrease in the

real entry wage. A drop in real entry wages increases the firm’s share of the surplus and its incentive to

post vacancies. In addition, a drop in the real entry wage could also change the expected duration and,

therefore, the total surplus of the match, which also shapes the incentives to post vacancies for a given

share. The last term captures the effect of a lower real entry wage on aggregate employment that arises

from fluctuations in the job-separation rate of initially unemployed workers.

To further our understanding of the macroeconomic consequence of sticky entry wages, we combine

(38) with the optimality condition for ŵ⇤ in (26) to obtain (39). The goal of this step is to take advantage

of the fact that workers internalize the effect of different entry wages on net job creation, which is

the ultimate determinant of CIRE . To further characterize this expression, we show that the term

T 0
ŵ(ŵ

⇤, r̂)/T (ŵ⇤, r̂) � T 0
ŵ(ŵ

⇤, 0)/T (ŵ⇤, 0) ⇡ 0. While this property trivially holds when r̂ # 0, the

following lemma shows that the elasticity of the expected duration to the entry wage is almost independent

of the discount factor. We leave the full characterization of T 0
ŵ(ŵ

⇤, r̂)/T (ŵ⇤, r̂) to the Online Appendix.

Lemma 3. Up to a second-order approximation of T (ŵ, r̂) around ŵ = ŵ⇤, and for all r̂,

T 0
ŵ(ŵ

⇤, r̂)
T (ŵ⇤, r̂)

=
D+ � D�

D+D�
.

Thus, the key sufficient statistic for the effect of lower entry wages on job creation is h0(ŵ⇤)/h(ŵ⇤).

From this result, one may be inclined to conclude that the prevalence of inefficient separations cannot be

an important determinant of aggregate job creation. However, we find the opposite result. The following

proposition shows this by characterizing the elasticity of the worker’s share to changes in the entry wage.

Proposition 9. The following properties hold for dlog(h(ŵ))
dŵ

���
ŵ=ŵ⇤

:

1. If D+, D� ! •, then
dlog(h(ŵ))

dŵ

����
ŵ=ŵ⇤

=
a + (1 � a)r̂Û

a(1 � r̂Û)
. (40)

2. Assume D+ = D�, and D+ is small enough, then

dlog(h(ŵ))
dŵ

����
ŵ=ŵ⇤

=

p

send

2as
. (41)
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We explain Proposition 9 with the help of Figure 3, which is constructed in two steps. First, we set

d = 0 and calibrate the model to match the US economy’s average job-finding and separation rates,

together with a replacement ratio B̃ for newly employed workers of 0.46. We purposely choose a so that

D+ = D�; thus, T 0
ŵ(ŵ

⇤, r̂) = 0. Second, for different levels of the exogenous separation d, we find the

volatility of shocks s that keeps the aggregate separation rate constant. The objective of this exercise is to

change the fraction of endogenous separations send/s from 0 to 100 percent while keeping, by construction,

the opportunity cost r̂Û and the aggregate separation rate fixed. Figure 3, Panels A and B show this

“iso-separation rate curve” s(d) and the elasticity dlog(h(ŵ))/ dŵ|ŵ=ŵ⇤ , respectively.

As a starting point, consider the limiting case with d = sdata and send/s = 0. In this case, all separations

are exogenous, and a marginal increase in the entry wage increases the worker’s share of the surplus

according to Equation (40). This reflects the well-known result whereby, in this limiting case, the elasticity

of the share is proportional to the inverse of flow surplus 1 � r̂Û (Shimer, 2005a). Figure 3, Panel B shows

that when the share of inefficient separations increases, the elasticity of the worker’s share to the entry

wage decreases. In this case, a new mechanism that reduces the elasticity arises: With a higher entry

wage, the probability that the worker gets fired increases and the probability that the worker chooses to

quit decreases. By construction, the expected duration of the match does not change; thus, the match’s

joint surplus also does not change. In addition, because workers choose when to quit, the marginally

lower probability of quitting does not affect their value (i.e., due to the envelope condition Ŵ 0(ŵ�) = 0).

Nevertheless, the marginal increase in the probability of being laid off reduces the worker’s value, since

the separation threshold is chosen by the firm. This renders the elasticity of the worker’s share to the

entry wage a decreasing function of the share of all separations that are endogenous. Equation (41) relates

this elasticity to the prevalence of endogenous separations, which can be measured with labor market

microdata as shown in the next section.

Discussion. We relegate several important results to Online Appendix E. There, we depart from the

definition of the CIR and present an overview of the steps behind the proofs of Propositions 7 and 8. In

addition, we extend the characterization of sufficient statistics to the general case with nonzero drift and

trend inflation and present results for the CIR of the average real wage when entry wages are flexible.

4 Identifying the Model Based on Labor Market Microdata

This last section proves identification of the model in two steps. First, we show that the prevalence of

inefficient job separations in our model critically depends on moments of the distribution of wage-to-
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FIGURE 3. ELASTICITY OF WORKERS’ SHARE FOR CONSTANT JOB-SEPARATION RATES AND
DIFFERENT (d, s)
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Notes: Panel A shows the level set of total job-separation rates for different values of (d, s). Panel B shows the elasticity
of the worker’s share with the entry wage and two theoretical limits when d = s and d = 0, respectively. The parameter
values for d = 0 are (g, p, s, r, a, K̃, d, B̃) = (0, 0, 0.02, 0.0033, 0.45, 2.2, 0, 0.45). The steady-state targets for this calibration are
( f (ŵ⇤), s) = (0.45, 0.032) with a replacement ratio of 0.46 and D+ = D� = 0.

productivity ratios ŵ. Second, we demonstrate how to recover the unobserved distribution of wage-to-

productivity ratios using microdata on wage changes and worker transitions between jobs. For clarity,

here we focus on the case with g + p = 0 and Online Appendix F presents the general results. We first

provide the intuition of the identification strategy and then show the two necessary steps to recover

gh(Dz) and inefficient separations.

Why are Wage Changes Informative about the Prevalence of Inefficient Separations? A critical insight

is that the observed distribution of wage changes between jobs contains sufficient information to recover

gh(Dz) and, therefore, the prevalence of endogenous job separations. We provide the intuition with the aid

of Figure 4, which illustrates two possible marginal distributions of wage changes between jobs lw(Dw)

in the left panel and the corresponding marginal distributions of cumulative productivity changes during

employment gh(Dz) in the right panel. Each panel plots the distributions for two extreme calibrations: one

that renders most job separations endogenous (solid blue line) and one that renders most job separations

exogenous (dashed red line).

If, on the one hand, most job separations are due to endogenous quits and layoffs, then most separated

workers must have experienced cumulative productivity shocks during employment of either �D� or

D+. As a result, the probability mass associated with positive wage changes between jobs is concentrated

around �D�, and the probability mass associated with negative wage changes is concentrated around D+.

This results in a bimodal distribution of wage changes between jobs, with additional dispersion around

32



the two modes caused by cumulative productivity shocks during unemployment. If, on the other hand,

most job separations are exogenous, then most separated workers experienced cumulative productivity

shocks in employment close to zero. Because the job-finding probability is constant during unemployment,

the distribution of wage changes between jobs mimics the distribution of cumulative productivity shocks

in employment, which is symmetric and single peaked at zero. Therefore, after recovering the unobserved

distribution gh(Dz), the mass of workers at the separation thresholds corresponds to the number of

inefficient separations.

FIGURE 4. DISTRIBUTIONS OF WAGE CHANGES BETWEEN JOBS
AND CUMULATIVE PRODUCTIVITY SHOCKS IN EMPLOYMENT

Dw

A. Distribution of wage changes between jobs, Dw

send/s ⇡ 1
send/s ⇡ 0

0
Dz

B. Distribution of cumulative productivity shocks in employment, Dz

0

Notes: The figure plots the distribution of wage changes between jobs lw(Dw) and the distribution of cumulative worker shocks
in employment gh(Dz) for two calibrations. In the first calibration, we set (D�, D+, g, s, d, f (ŵ⇤)) = (0.05, 0.05, 0, 0.02, 0, 0.5)
so that send/s ⇡ 1 (blue solid line). In the second calibration, we set (D�, D+, g, s, d, f (ŵ⇤)) = (0.2, 0.2, 0, 0.1, 0.04, 0.05) so that
send/s ⇡ 0 (red dashed line).

We formalize this identification argument in the next proposition.

Proposition 10. The distribution of cumulative productivity shocks during employment gh(Dz) can be recovered

in two steps:

1. The volatility of workers’ productivity shocks is recovered from

s2 =
ED [(Dw)2]

ED [tm + tu]
. (42)
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2. The distribution of workers’ cumulative productivity shocks is recovered from

gh(Dz) = sE

"ˆ Dz

�D�

2(Dz � y)
s2 ḡh(y)dy + Ḡh(�D�)

2(Dz + D�)
s2

#
, (43)

where Ḡh(Dz) is the distribution of Dz conditional on a job separation. This distribution is given by

Ḡh(Dz) =
s2

2 f (ŵ⇤)
dlw(�Dz)

dz
� [1 � Lw(�Dz)] , (44)

where Lw(Dw) denotes the cumulative distribution function (CDF) corresponding to the observed distribution

of wage changes between consecutive jobs lw(Dw).

Equation (42) shows that the volatility of productivity s equals the dispersion of wage changes between

jobs ED [(Dw)2] divided by the average time elapsed between the starting dates of two consecutive jobs

ED [tm + tu]. To understand how to identify the distribution of Dz conditional on a job separation, we

turn to the dynamics of h-to-u and u-to-h worker flows. Consider a worker who at time t0 starts a job

with wage wt0 , at time t0 + tm separates, and at time t0 + tm + tu finds a new job with wage wt0+tm+tu .

This worker’s wage change between jobs is given by

Dw = wt0+tm+tu � wt0 , (45)

= wt0+tm+tu � zt0+tm+tu
| {z }

= ŵ⇤

� (wt0 � zt0)| {z }
= ŵ⇤

+ zt0+tm+tu � zt0 ,
| {z }

= Dz after h-u-h transition

(46)

= ŵ⇤
� ŵ⇤

| {z }
= 0

+ zt0+tm � zt0| {z }
Dz|h-u transition starting from zt0

+ zt0+tm+tu � zt0+tm .
| {z }

Dz|u-h transition starting from zt0+tm

(47)

Equation (45) starts from the definition of Dw. Then, equation (46) adds and subtracts zt0+th+tu � zt0

before grouping terms into the wage-to-productivity ratio in the old job, the wage-to-productivity ratio

in the new job, and the cumulative productivity shocks between the starting dates of the old and new

jobs. Finally, equation (47) adds and subtracts zt0+tm before applying the definition of ŵ⇤ and that of

Dz. In summary, equations (45)–(47) show that the wage change across jobs is equal to the sum of three

random variables: (i) the difference of entry wage-to-productivity ratios across jobs, which equals zero;

(ii) Dz conditional on a job separation starting from productivity zt0 ; and (iii) Dz conditional on finding

a new job, which is independent of productivity zt for t 2 (t0 + tm, t0 + tm + tu). Thus, by exploiting

this independence, we can use data on Dw to infer the distribution of the second term, which is given by

(44). Finally, the distribution of interest in (43) can be derived from (44) by exploiting the ergodicity of the
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productivity process (i.e., the cross-sectional distribution of cumulative shocks can be deduced from the

distribution of shocks experienced during completed job spells).

We conclude this section with a brief discussion of the assumptions underlying the method described

in Proposition 10. The first assumption is the threshold nature of job-separation policies, according to

which the job-separation rate is equal to d for Dz 2 (�D�, D+) and infinite for Dz 2 {�D�, D+}. This

assumption is not crucial and can be replaced with a general job-separation hazard as in Alvarez et al.

(2020). The second assumption is the lack of other sources of wage adjustments, such as those arising from

job-to-job transitions or wage adjustments within a job spell. This assumption could be relaxed following

the methodology in Baley and Blanco (2022). Finally, while we assume a particular stochastic process for

dDzt, this assumption can be empirically tested and adjusted if deemed necessary, as in Baley and Blanco

(2021). For example, it would be straightforward to make the parameters of the productivity process

depend on the worker’s employment state. What is critical for the identification result in Proposition 10

to go through is that the data contain enough information to learn about the distribution of productivity

changes during unemployment. In our model, the lack of selection in job finding and the preidentified

stochastic process for Dz together yield this strong identification result.

5 Conclusion

There is mounting empirical evidence that wages are less than fully flexible. To understand the conse-

quences of wage rigidity at the micro and macro levels, we developed a theory of non-Coasean labor

markets. The realistic ingredients of this theory included fluctuations in individual output (i.e., produc-

tivity shocks), fixed pay within jobs (i.e., wage rigidity), and the possibility that workers can quit and

firms can dissolve jobs at any time (i.e., two-sided lack of commitment). Our theory embedded these

ingredients in an environment with search frictions, which are commonly viewed as central to the analysis

of labor markets. We provide a first step in characterizing steady-state equilibrium policies and inefficient

separations. Furthermore, we relate the labor market response to monetary shocks by providing sufficient

statistics based on micro-data on wages and job flows.

While the parsimony of this framework is useful in delineating several novel theoretical insights, future

work with quantitive objectives will need to incorporate extensions toward an empirically grounded

framework. In our model, all endogenous separations are inefficient. Adding other sources of idiosyncratic

risk (e.g., match-level shocks) or breaking the homotheticity assumptions (e.g., by including low-income

workers with a significant relative value of home production) will yield efficient endogenous separations.

In the current model, there is no opportunity for wage adjustments within the match. Adding asymmetric
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negotiation costs and on-the-job search would allow the model to match the asymmetric wage change

distribution reported in the literature (Grigsby et al., 2021; Blanco et al., 2022a). Incorporating these features

in our framework with empirical discipline will allow economists to assess the cost of non-Coasean labor

markets and their business cycle and policy implications. Further examination of these extensions,

specifically in an empirical context, is a crucial next step worthy of its own paper.
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A Auxiliary Theorems

A.1 Notation

We use the following mathematical notation throughout the appendices.

1. Hl(R): Sobolev space; i.e., Hl(R) ⇢ L2(R) and its weak derivatives up to order l have a finite Lp norm.

2. Characteristic operator A: Given a function f : R ! R and a diffusion process {xt}, the characteristic operator of X is

given by

A f = lim
U#x

E[ f (XtU |x0 = x]� f (x)]
E[tU |x0 = x]

3. Let u, v : R ! R, (u, v) =
´

R u(x)v(x)dx and ||u|| =
�´

u(x)2 dx
�1/2 .

4. a(u, v) is a bilinear continuous form. We say a(u, v) is coercive if a(u, u) � a||u||2.

5. We use a ^ b to denote the minimum between a and b.

A.2 Some Useful and Known Results

Proposition A.1. Let A be the characteristic operator of {Xt} with Xt 2 Rn. Let f : Rn ! R be a twice differentiable function with

compact (i.e., bounded and closed in R) support (support( f ) = {x : f (x) 6= 0}). If t is a stopping time with Ex[t] < •, then

Ex[ f (xt)] = f (x) + Ex

ˆ t

0
A f (Xt)dt

�
. (A.1)

Moreover, if t is the first exit time of a bounded set, then (A.1) holds for any twice differentiable function.

Proof. This is Dynkin’s formula, the proof of which can be found in Øksendal (2007).

Proposition A.2. Let xt be a strong Markov process, t be a stopping time measurable with the filtration generated by xt, and td an

exponential random variable independent of t. Then

E

"ˆ t^td

0
e�rt f (xt)dt + e�r(t^td)g(xt^td )

����� x0 = x

#
= E

ˆ t

0
e�(r+d)t[ f (xt) + dg(xt)]dt + e�(r+d)t g(xt)

���� x0 = x
�

.

Proposition A.3. Let V be a Hilbert space and P a closed convex cone of V satisfying P = {x 2 V : (x, y) � 0 8y 2 P}. Let T be an

increasing map from V to itself such that there exists a x, x 2 V

x  x, x  T(x), T(x)  x.

Then, the subset of fixed points x⇤ of T satisfying x  x⇤  x is non-empty and has a larger and smallest element.

Proof. See the proof of Proposition 2 of Chapter 15 on page 539 of Aubin (2007).

Proposition A.4. Let V be a Hilbert space and P a closed convex set. Assume that a(u, v) with u, v 2 V is a coercive bilinear continuous

form. Then, there exists a unique solution to

a(u, v � u) � ( f , v � u), 8v 2 P, u 2 P,

where f belongs to the dual of V.
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Proof. See Lions and Stampacchia (1967).
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B Proofs for Section 2: A Model of Non-Coasean Labor Contracts

B.1 Proof of Lemma 1

To simplify the exposition, we divide the proof into a sequence of lemmas. Define the equilibrium conditions

ru(z) = B̃ez + g
∂u(z)

∂z
+

s2

2
∂2u(z)

∂z2 + max
w

f (w, z)[h(z; w)� u(z)], 8z 2 R (B.1)

0 =
⇥
K̃ez

� q(w, z)j(z; w)
⇤+

q(w, z) 8(w, z) 2 R2 (B.2)

h(z; w) � u(z), 8z 2 R, (B.3)

j(z; w) � 0, 8z 2 R (B.4)

If z 2 (C j(w))c
) h(z; w) = u(z), (B.5)

If z 2 (Ch(w))c
) j(z; w) = 0, (B.6)

0 = max{u(z)� h(z; w),Ahh(z; w) + ew
}, 8z 2 C

j(w), h(·; w) 2 C1(C j(w)) \ C(R), (B.7)

0 = max{�j(z; w),Aj j(z; w) + ez
� ew

}, 8z 2 C
h(w), j(·; w) 2 C1(Ch(w)) \ C(R), (B.8)

C
h(w) := int

n
z 2 R : h(z; w) > u(z) or Ahu(z) + ew > 0

o
, (B.9)

C
j(w) := int {z 2 R : j(z; w) > 0 or ez

� ew > 0} , (B.10)

A
h( f (z)) := �r f + d(u(z)� f (z)) + g

∂ f (z)
∂z

+
s2

2
∂2 f (z)

∂z2

A
j( f (z)) := �r f + d(0 � f (z)) + g

∂ f (z)
∂z

+
s2

2
∂2 f (z)

∂z2

Proposition B.1. Let x := (w, z). If there exist two functions h(z; w) and j(z; w) satisfying (B.3), (B.4), (B.6), (B.5), (B.7) and (B.8) given

the continuation sets (B.9) and (B.10), then

th⇤(x) = inf
n

t � 0 : zt /2 C
h(w)

o

t j⇤(x) = inf
n

t � 0 : zt /2 C
j(w)

o

form a non-trivial Nash equilibrium and

h(z; w) = H(x, th⇤(x), t j⇤(x), td), j(z; w) = J(x, th⇤(x), t j⇤(x), td).

Moreover, if (th⇤(x), t j⇤(x)) is a non-trivial Nash equilibrium, then

h(z; w) = H(x, th⇤(x), t j⇤(x), td), j(z; w) = J(x, th⇤(x), t j⇤(x), td).

satisfy (B.3) to (B.8).

Proof. Quasi-variational inequalities as sufficient conditions. First, we prove that if h(z; w) and j(z; w) satisfy (B.3) to (B.8),

then

h(z; w) = H(x, th⇤(x), t j⇤(x), td) � H(x, th(x), t j⇤(x), td)
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for any th 2 T . The proof of the statement

j(z; w) = J(x, th⇤(x), t j⇤(x), td) � J(x, th⇤(x), t j(x), td),

for any t j 2 T , follows the same arguments.

Step 1: Here, we show that h(z; w) � H(x, th(x), t j⇤(x), td). Let th be any stopping time (not necessarily the optimal).

Without loss of generality, we restrict the attention to th  t(�•,a), where t(�•,a) = inf{t > 0 : zt /2 (�•, a)}. Intuitively,

it is never optimal for the worker to stay in the job at wage w when productivity is sufficiently large. Let Uk ⇢ R be an

increasing sequence of bounded sets s.t. [•
k=1Uk = R. Let tk = inf {t > 0 : zt /2 Uk}. Since each Uk is bounded, we do not

need to assume compact support of the function to apply Proposition A.1. Applying Dynkin’s Lemma to the stopping time

th
k = th ^ t j⇤ ^ td ^ tk,

E[e�rth
k h(xth

k
)|z0 = z] = h(z; w) + E

"ˆ th
k

0
A

hh(zt; w)dt|z0 = z

#
.

Using condition (B.3), since h(z; w) � u(z) for all z, we have that E[e�rth
k h(zth

k
; w)|z0 = z] � E[e�rth

k u(zth
k
)|z0 = z]. Thus,

E[e�rth
k u(zth

k
)|z0 = z]� E

"ˆ th
k

0
A

hh(zt; w)dt|z0 = z

#
 h(z; w).

From condition (B.7) , we have Ahh(z; w) + ew  0 for all z. Thus,

E

"ˆ th
k

0
e�rtew dt|z0 = z

#
 �E

"ˆ th
k

0
A

hh(z; w)dt|z0 = z

#
.

Using this result

E

"
e�rth

k u(zth
k
) +
ˆ th

k

0
e�rtew dt|z0 = z

#
 h(z; w)

Now, we take the limit k ! •. It is easy to see that
´ th^t j⇤^td^tk

0 e�rt+w dt  1
r ew a.e., so using the dominated convergence

theorem limk!• E
h´ th^t j⇤^td^tk

0 e�rt+w dt|z0 = z
i
= E

h´ th^t j⇤^td

0 e�rt+w dt|z0 = z
i
.

As we show below, u(z) µ ez and since ezt  ea for all t  th  t(�•,a), we have that 0  e�rtu(zt)  ea. Applying the

monotone convergence theorem again, we have that

lim
k!•

E
h
e�r(th^t j⇤^td^tk)u(zth^t j⇤^td^tk

)|z0 = z
i
= E

h
e�r(th^t j⇤^td)u(zth^t j⇤^td )|z0 = z

i
.

Therefore, taking the limit k ! •, we finally obtain

h(z; w) � H(x, th(x), t j⇤(x), td).

Step 2: Now, we show that h(z; w) = H(x, th⇤(x), t j⇤(x), td). Applying Proposition A.1 to the stopping time th⇤
k =

th⇤ ^ t j⇤ ^ tk ^ td we obtain

E[e�rth⇤
k h(zth⇤

k
; w)|z0 = z] = h(z; w) + E

"ˆ th⇤
k

0
A

hh(zt; w)dt|z0 = z

#
.
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For all t < th⇤
k , we have that u(z) < h(z; w). Therefore, by (B.7), Ahh(z; w) + ew = 0 for all z. Thus,

E

"
e�rth⇤

k h(zth⇤
k

; w) +
ˆ th⇤

k

0
e�rtew dt|z0 = z

#
= h(z; w).

Taking the limit k ! • and following similar arguments as above, we obtain

E

"
e�r(th⇤^t j⇤^td)h(zth⇤^t j⇤^td ; w) +

ˆ th⇤^t j⇤^td

0
e�rtew dt|z0 = z

#
= h(z; w).

which, given Proposition A.2, is equivalent to

E

"
e�(r+d)(th⇤^t j⇤)h(zth⇤^t j⇤ ; w) +

ˆ th⇤^t j⇤

0
e�(r+d)t(du(zt) + ew)dt|z0 = z

#
= h(z; w).

Since zth⇤^t j⇤ 2 ∂(Ch(w⇤(z)) \ C j(w⇤(z))) and h(·; w) is continuous, we have that

E

"
e�(r+d)(th⇤^t j⇤)u(zth⇤^t j⇤ ; w) +

ˆ th⇤^t j⇤

0
e�(r+d)t(du(zt) + ew)dt|z0 = z

#
= h(z; w).

and h(z; w) = H(x, th⇤(x), t j⇤(x), td).

Quasi-variational inequalities as necessary conditions. Now, we prove that if th⇤(x) and t j⇤(x) is a non-trivial Nash

equilibrium, then h(z; w), j(z; w) satisfy (B.3) to (B.10). It is easy to show that in a Nash equilibrium, the stopping time is

Markovian—if any agent chooses to stop, then the game finishes. By definition, we have that

h(z; w) = max
th

E

"ˆ th^t j⇤^td

0
e�rt+w dt + e�r(th^t j⇤^td)u(zth^t j⇤^td ; w)dt|z0 = z

#
. (B.11)

• Condition (B.3): We show it by contradiction. Assume that h(z; w) < u(z). Then th(x) = 0, implies

u(z) > h(z; w) � H(w, z, 0, t j⇤(x), td) = E0

"ˆ 0

0
e�rtew dt + e�rtm

u(z0)|z0 = z

#
= u(z),

so we have a contradiction.

• Condition (B.5): If z 2 (C j(w))c, then t j⇤(x) = 0 and Pr[min{th⇤(x), t j⇤(x), td(x)}  t j⇤(x)] = 1, and h(z; w) = u(z).

• Condition (B.7): Observe that this condition is the best response of the worker, given that the firm continues. See Øksendal

(2007) and Brekke and Øksendal (1990) for a discussion of the necessity of the smooth pasting condition.

• Condition (B.9): To show this, we need to characterize the continuation set in the Nash equilibrium that survives

the iterated elimination of weakly dominated strategies. First, from the problem (B.11), if Pr(t j⇤(x) > 0) = 1, then

Pr(th⇤(x) > 0) = 1 if and only if

z 2 int {z 2 R : h(z; w) > u(z)} .

Second, we show that staying in the match weakly dominates leaving it if

0 < ew +A
hu(z), (B.12)

for all z. Take any stopping time t such that Pr(t > 0|z0 = z) = 1. Then, applying Dynkin’s Lemma (and using similar
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arguments as in Step 1), we obtain

E
⇥
e�rtu(zt)|z0 = z

⇤
= u(z) + E

ˆ t

0
Au(zt)dt|z0 = z

�
.

Using the inequality in (B.12),

u(z) = E
⇥
e�rtu(zt)|z0 = z

⇤
� E

ˆ t

0
Au(zt)dt|z0 = z

�
< E

⇥
e�rtu(zt)|z0 = z

⇤
+ E

ˆ t

0
e�rt+w dt|z0 = z

�
.

Thus, staying in the match strictly dominates dissolving the match.

Proposition B.2. Define

w⇤(z) = arg max
w

q(x)1�a(h(z; w)� u(z)).

and tu⇤ = inf{t � 0 : DN f (w⇤(zt),zt)
t = 1} where N f (w⇤(zt),zt)

t is a Poisson counter with arrival rate f (w⇤(zt), zt). The function u(z)

satisfies u(z) 2 C2(R) and (B.1) if and only if

u(z) = max
{wt}

tu
t=0

E

"ˆ tu

0
e�rtB(zt)dt + e�rtu

h(ztu ; w)

#
.

Proof. The proof is the standard optimality conditions in the HJB (see Øksendal, 2007).

Lemma 1. Assume u(z), h(z; w), j(z; w), q(z; w) satisfy (B.1)—(B.8) given the continuation sets (B.9) and (B.10). Then
n

th⇤, t j⇤, {w⇤
t }

tu

t=0

o

constructed with

th⇤(x) = inf
n

t � 0 : zt /2 C
h(w)

o

t j⇤(x) = inf
n

t � 0 : zt /2 C
j(w)

o

w⇤(z) = arg max
w

q(x)1�a(h(z; w)� u(z)).

is a BRE with

h(z; w) = H(x, th⇤(x), t j⇤(x), td),

j(z; w) = J(x, th⇤(x), t j⇤(x), td),

u(z) = U(z).

If {H(w, z,~tm), J(w, z,~tm), U(z)}, market tightness q(w, z), and policy functions
n

th⇤(w, z), t j⇤(w, z), w⇤(zt)
o

is a BRE with

h(z; w) = H(x, th⇤(x), t j⇤(x), td),

j(z; w) = J(x, th⇤(x), t j⇤(x), td),

u(z) = U(z).

then u(z), h(z; w), j(z; w), q(z; w) satisfy (B.1)—(B.8) given the continuation sets (B.9) and (B.10).

Proof. The proof is a combination of Propositions B.1 and B.2.
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B.2 Proof of Lemma 2

For the next proof, it will be useful to define the normalized equilibrium conditions

r̂Û = B̃ + max
ŵ⇤

q̂(ŵ⇤)1�aŴ(ŵ⇤), (B.13)

0 =
⇥
K̃ � q̂(ŵ)�a Ĵ(ŵ)

⇤+
q̂(ŵ), (B.14)

Ŵ(ŵ) � 0, (B.15)

Ĵ(ŵ) � 0, (B.16)

i f ŵ 2 (Ĉ j)c
) Ŵ(ŵ) = 0, (B.17)

i f ŵ 2 (Ĉh)c
) Ĵ(ŵ) = 0, (B.18)

0 = max{�Ŵ(ŵ), ÂŴ(ŵ) + eŵ
� r̂Û}, 8ŵ 2 Ĉ

j, Ŵ 2 C1(Ĉ j) \ C(R) (B.19)

0 = max{� Ĵ(ŵ), Â Ĵ(ŵ) + 1 � eŵ
}, 8ŵ 2 Ĉ

h, Ĵ 2 C1(Ĉh) \ C(R) (B.20)

Ĉ
h := int

n
ŵ 2 R : Ŵ(ŵ) > 0 or (eŵ

� r̂Û) > 0
o

, (B.21)

Ĉ
j := int

n
ŵ 2 R : Ĵ(ŵ) > 0 or

⇣
1 � eŵ

⌘
> 0

o
, (B.22)

Â( f ) := �(r̂ + d) f � ĝ
∂ f (ŵ)

∂ŵ
+

s2

2
∂2 f (ŵ)

∂ŵ2 ,

where ŵ = w � z, r̂ = r � g � s2/2 and ĝ = g + s2.

Lemma 2. Assume that (h(z; w), j(z; w), u(z), q(x), w⇤(z)) satisfy conditions (B.1) to (B.10), then

�
Û, Ĵ(w � z), Ŵ(w � z), q̂(w � z), ŵ⇤

�
=

✓
u(z)

ez ,
j(z; w)

ez ,
h(z; w)� u(z)

ez , q(w, z), w⇤(z)� z
◆

.

satisfy (B.13) to (B.22). Moreover, if
�
Û, Ĵ(w � z), Ŵ(w � z), q̂(w � z)

�
satisfy (B.13) to (B.22), then

(u(z), j(z; w), h(z; w), q(w, z), w⇤(z)) =
�
Ûez, Ĵ(w � z)ez, (Ŵ(w � z) + Û)ez, q̂(w � z), ŵ⇤ + z

�

satisfy (B.1) to (B.10).

Proof. The general idea for the proof is to use a guess-and-verify strategy for each equilibrium condition.

Condition (B.1) holds if and only if (B.13) is satisfied: Using Û = u(z)
ez , we have that

Ûez = u0(z) and Ûez = u00(z).

Using this result and the fact that q(w, z) = q̂(w � z), and Ŵ(w � z) = h(z;w)�u(z)
ez ,

ru(z) = B̃ez + gu0(z) +
s2

2
u00(z) + max

w(z)
q(w, z)1�a[h(z; w)� u(z)] ()

rÛez = B̃ez + gÛez +
s2

2
Ûez + max

w(z)
q̂ (w � z)1�a [Ŵ(w � z)ez] ()

✓
r � g �

s2

2

◆
Ûez = B̃ez + ez max

ŵ
q̂ (ŵ)1�a Ŵ (ŵ) () r̂Û = B̃ + max

ŵ
q̂ (ŵ)1�a Ŵ (ŵ) .

Condition (B.2) holds if and only if (B.14) is satisfied: Using that Ĵ(w � z) = j(z;w)
ez , q(w, z) = q̂(w � z), and the assumption
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K(z) = K̃ez, we have that

⇥
K̃ez

� q(q(w, z))j(z; w)
⇤+

q(w, z) = 0 ()
⇥
K̃ez

� q(q(w, z)) Ĵ(w � z)ez⇤+ q(w, z) = 0

()
⇥
K̃ � q(q̂(ŵ)) Ĵ(ŵ)

⇤
q̂(ŵ) = 0.

Since q(q(w, z)) = q(q̂(ŵ)), we have the result.

Condition (B.7) holds if and only if (B.19) is satisfied: Assume h(z; w) satisfies (B.7). Then, for all z 2 C j(w)

0 = max{u(z)� h(z; w),�rh(z; w) + g
∂h(z; w)

∂z
+

s2

2
∂2h(z; w)

∂z2 + d(u(z)� h(z; w)) + ew
}.

Using that Û = u(z)
ez and Ŵ(w � z) = h(z;w)�u(z)

ez , we have that h(z; w) = Ŵ(w � z)ez + Ûez, ∂h(z;w)
∂z = Ŵ(w � z)ez � Ŵ 0(w �

z)ez + Ûez, and ∂2h(z;w)
∂z2 = Ŵ(w � z)ez � 2Ŵ 0(w � z)ez + Ŵ 00(w � z)ez + Ûez. Thus, since ez > 0

0 = max
⇢

u(z)� h(z; w),�rh(z; w) + g
∂h(z; w)

∂z
+

s2

2
∂2h(z; w)

∂z2 + d(u(z)� h(z; w)) + ew
�

= max{�Ŵ(w � z)ez,�r(Ŵ(w � z)ez + Ûez) + g(Ŵ(w � z)ez
� Ŵ 0(w � z)ez + Ûez) . . .

+
s2

2
(Ŵ(w � z)ez

� 2Ŵ 0(w � z)ez + Ŵ 00(w � z)ez + Ûez)� dŴ(w � z)ez + ew
}

= max{�Ŵ(w � z),�(r � g � s2/2 + d)Ŵ(w � z)� (g + s2)Ŵ 0(w � z) +
s2

2
Ŵ 00(w � z)�

⇣
r � g � s2/2

⌘
Û + ew�z

}

= max
⇢
�Ŵ(ŵ),�(r̂ + d)Ŵ(ŵ)� ĝŴ 0(ŵ) +

s2

2
Ŵ 00(ŵ)� r̂Û + eŵ

�
.

The equivalence between (B.8) and (B.20) can be established following similar steps.

Condition (B.9) holds if and only if (B.21) is satisfied: Assume z 2 Ch(w). Then,

h(z; w) > u(z) or � ru(z) + gu0(z) +
s2

2
u00(z) + ew > 0

Using that Û = u(z)
ez and Ŵ(w � z) = h(z;w)�u(z)

ez , with ez > 0

Ŵ(w � z) > 0 or � rÛez + gÛez +
s2

2
Ûez + ew > 0 ()

Ŵ(w � z) > 0 or ew�z
� (r � g � s2/2)Û > 0 ()

Ŵ(ŵ) > 0 or eŵ
� r̂Û > 0

Thus, z 2 Ch(w) if and only if w � z 2 Ĉh. The equivalence between (B.10) and (B.22) can be established following similar steps.

Remaining conditions: The equivalence between equations (B.3), (B.4), (B.5), (B.6) and equations (B.15), (B.16), (B.17), and

(B.18) is trivially established.

B.3 Proof of Proposition 1

Proposition 1. Let Ŵ(ŵ), Ĵ(ŵ), q̂(ŵ) be bounded functions with compact support. Then, there exists a unique solution to

r̂Û = B̃ + max
ŵ⇤

q̂(ŵ⇤)1�aŴ(ŵ⇤),

0 =
⇥
K̃ � q̂(ŵ)�a Ĵ(ŵ)

⇤+
q̂(ŵ),
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Ŵ(ŵ) � 0, (B.23)

Ĵ(ŵ) � 0, (B.24)

i f ŵ 2 (Ĉh)c
) Ĵ(ŵ) = 0, (B.25)

i f ŵ 2 (Ĉ j)c
) Ŵ(ŵ) = 0, (B.26)

0 = max{�rŴ(ŵ), ÂŴ(ŵ) + eŵ
� r̂Û}, 8ŵ 2 Ĉ

j, Ŵ 2 C1(Ĉ j) \ C(R) (B.27)

0 = max{�r Ĵ(ŵ), Â Ĵ(ŵ) + 1 � eŵ
}, 8ŵ 2 Ĉ

h, Ĵ 2 C1(Ĉh) \ C(R) (B.28)

Ĉ
h := int

n
ŵ 2 R : Ŵ(ŵ) > 0 or (eŵ

� r̂Û) > 0
o

, (B.29)

Ĉ
j := int

n
ŵ 2 R : Ĵ(ŵ) > 0 or

⇣
1 � eŵ

⌘
> 0

o
, (B.30)

Â( f ) := �(r̂ + d) f � ĝ
∂ f (ŵ)

∂ŵ
+

s2

2
∂2 f (ŵ)

∂ŵ2 ,

The proof uses results from the mathematics literature that, generally, a well-trained economist has not used or seen before.

For this reason, before presenting the proof, we provide some intuition about the steps we show below. In a nutshell, there

are two steps in the proof. First, we need to show that, for a given value of unemployment Û, there is a unique non-trivial

Nash equilibrium of the game played by the matched worker-firm pair. To understand the intuition behind this step, define

ŵ+(ŵ�; rÛ) as the best response function of the firm in terms of its layoff threshold, and ŵ�(ŵ+; rÛ) as the best response

function of the worker in terms of her quit threshold. It is easy to show that optimal policies are given by wage-to-productivity

thresholds. ŵ+(ŵ�; rÛ) is the solution to the differential equation

(r̂ + d) Ĵ(ŵ) = 1 � eŵ
� ĝ Ĵ0(ŵ) +

s2

2
Ĵ00(ŵ),

with border conditions Ĵ(ŵ+) = Ĵ(ŵ�) = Ĵ0(ŵ+) = 0. In the same way, ŵ�(ŵ+; rÛ) is the solution to the differential equation

(r̂ + d)Ŵ(ŵ) = eŵ
� r̂Û � ĝŴ 0(ŵ) +

s2

2
Ŵ 00(ŵ),

with border conditions Ŵ(ŵ+) = Ŵ(ŵ�) = Ŵ 0(ŵ�) = 0. Let Ŵ(ŵ; rÛ) and Ĵ(ŵ; rÛ) be the values associated with the

non-trivial equilibrium policies.

Second, we need to find the equilibrium value of unemployment. This value satisfies

P(r̂Û) = B̃ + max
ŵ

1
K̃1/a

Ĵ(ŵ; r̂Û)
1�a

a Ŵ(ŵ; r̂Û).

Figure B1-Panel A shows the composition of Q(ŵ) := ŵ+(ŵ�(ŵ; r̂Û)) and Figure B1-Panel B shows P(r̂Û). As we can see in the

figure, the composition of the best response functions satisfies two properties: (i) monotonicity (i.e., Q0(ŵ) > 0) and (ii) concavity

(i.e., Q00(ŵ) < 0). Intuitively, the monotonicity property arises from the fact that if one agent prefers to stay in the match for

longer, the other agent also prefers to stay longer. Concavity arises from the fact that there is a decreasing value of delaying the

separation. As the figure clearly shows, a unique non-trivial Nash Equilibrium exists under these two properties. Equipped

with the values from the non-trivial Nash Equilibrium as a function of Û, we can then characterize the decision problem of the

unemployed worker. The mapping P(r̂Û) satisfies three properties: (i) P(B̃) > B̃ with P(1) = B̃, (ii) it is continuous and (iii) it

is decreasing. Intuitively, if the flow value of unemployment is equal to B̃, then the surplus of the match is positive, and the

unemployed worker obtains a positive continuation value from searching for a job. If, instead, the flow value of unemployment

equals the value of (normalized) output, then the surplus is zero, and the unemployed worker does not benefit from finding a
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job. Also, the larger the unemployment value, the lower the value of the match, and, therefore, the value of searching for a job.

As the figure clearly shows, a unique equilibrium exists under these three properties of P(r̂Û).

FIGURE B1. INTUITION

A- Best response function B- Unemployment flow value

Notes: The figure illustrates the properties of the policy and value functions. Panel A shows the composition of Q(ŵ) :=
ŵ+(ŵ�(ŵ; r̂Û)) and the 45 degree line. The non-trivial Nash Equilibrium is given by the intersection between these two lines.
Panel B shows the composition of the individual best response functions and the fixed point in the equilibrium P(r̂Û).

Proof. We divide the proof into four steps.

Step 1 shows the existence of a non-trivial Nash equilibrium for a given Û. In this step, we show the existence of a solution

to conditions (B.23) to (B.30). To simplify the exposure, we divide step 1 into three propositions. Proposition B.3 shows the

equivalence between the equilibrium conditions and the quasi-variational inequalities. Intuitively, Lemma 1 established the

equivalence between the sequential and the recursive formulations of the model represented by a set of differential equations.

Here, we establish a second equivalence between these differential equations and variational inequalities, which is required

to apply known fixed-point theorems. Proposition B.4 shows the existence and uniqueness of the agents’ best responses.

Proposition B.5 shows the existence of equilibrium by invoking Proposition A.3 (Tartar’s fixed point theorem). Observe that we

restrict the functions Ŵ(ŵ) and Ĵ(ŵ) to have bounded support. This restriction is without loss of generality since it is a result of

Proposition 2—i.e., the match’s continuation region is bounded.

Step 2 shows the uniqueness of the solution to conditions (B.23) to (B.30). We divide this proof into two propositions.

Proposition B.6 shows that the operator defined in step 1 is strong order concave. Using concavity and techniques in the spirit of

Marinacci and Montrucchio (2019) applied to our own problem, we show uniqueness in Proposition B.7.

Step 3 shows that value functions are continuous and decreasing. We divide this step into two propositions. First, we show
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in Proposition B.8 that the value associated with the worker’s “best response” is continuous and decreasing in Û. Proposition

B.9 shows these properties for the non-trivial Nash equilibrium. Finally, step 4 proves the uniqueness of the equilibrium by

showing the existence of the unique fixed point in the unemployed worker’s value Û.

Step 1. We start by defining a continuous bilinear form in a more general space of functions. Let V = H1
0(R)—where H1

0(R)

is a Sobolev space of order 1—be a Hilbert space and define the bilinear continuous form a : V ⇥ V ! R

a(v1, v2) :=
s2

2

ˆ
R

dv1
dŵ

dv2
dŵ

dŵ + ĝ

ˆ
R

dv1
dŵ

v2(ŵ)dŵ + (r̂ + d)
ˆ

R
v1(ŵ)v2(ŵ)dŵ

Proposition B.3. Define Kh( Ĵ) and Kj(Ŵ) as

Kh( Ĵ) :=
�

Ŵ 2 V : Ŵ(ŵ) � 0 & i f Ĵ(ŵ) = 0 and ŵ � 0 ) Ŵ(ŵ) = 0
 

,

Kj(Ŵ) :=
�

Ĵ 2 V : Ĵ(ŵ) � 0 & i f Ŵ(ŵ) = 0 and ŵ  log(r̂Û) ) Ĵ(ŵ) = 0
 

.

Assume Ŵ(ŵ) 2 C1(Ĉ j) \ C(R) and Ĵ(ŵ) 2 C1(Ĉh) \ C(R) bounded with compact support, where Ĉh and Ĉ j are constructed with Ŵ

and Ĵ following (B.29) and (B.30). Then, Ŵ(ŵ) and Ĵ(ŵ) solve

Ŵ 2 Kh( Ĵ), Ĵ 2 Kj(Ŵ)

a( Ĵ, v � Ĵ) �
ˆ

R

⇣
1 � eŵ

⌘ �
v � Ĵ

�
dŵ, 8 v 2 Kj(Ŵ)

a(Ŵ, v � Ŵ) �
ˆ

R
(eŵ

� r̂Û)
�
v � Ŵ

�
dŵ, 8 v 2 Kh( Ĵ).

if and only if Ŵ(ŵ) and Ĵ(ŵ) solve (B.23), (B.24), (B.25), (B.26), (B.27), and (B.28).

Proof of Step 1 - Proposition B.3. We verify conditions (B.23), (B.24), (B.25), (B.26), (B.27), and (B.28) focusing on the firm (the

worker’s conditions are verified following similar steps). It is easy to show the converse.

Conditions (B.23) and (B.24) are satisfied. Since Ĵ 2 Kj(Ŵ), we have that Ĵ(ŵ) � 0.

Conditions (B.25) and (B.26) are satisfied. Define Ĉh with Ŵ. Then, (Ĉh)c is equal to

(Ĉh)c = cl{ŵ 2 R : Ŵ(ŵ)  0 and (eŵ
� r̂Û)  0}.

Since Ŵ(ŵ) � 0, we have that

(Ĉh)c = cl{ŵ 2 R : Ŵ(ŵ) = 0 and ŵ  log(r̂Û)}.

Since Ĵ 2 Kj(Ŵ), if ŵ 2 (Ĉh)c, then Ĵ(ŵ) = 0.

Conditions (B.27) and (B.28) are satisfied. Take any v 2 Kj(Ŵ). Then, if ŵ 2 (Ĉh)c, we have that Ĵ(ŵ) = v(ŵ) = 0.

Therefore, we have that for every v 2 Kj(Ŵ)

a( Ĵ, v � Ĵ) �
ˆ

R
(1 � eŵ)

�
v � Ĵ

�
()

s2

2

ˆ
(Ĉh)c

d Ĵ(ŵ)
dŵ

d(v(ŵ)� Ĵ(ŵ))
dŵ

dŵ + ĝ

ˆ
(Ĉh)c

d Ĵ(ŵ)
dŵ

(v(ŵ)� Ĵ(ŵ))dŵ + (r̂ + d)
ˆ
(Ĉh)c

Ĵ(ŵ)(v(ŵ)� Ĵ(ŵ))dŵ+

s2

2

ˆ
Ĉh

d Ĵ(ŵ)
dŵ

d(v(ŵ)� Ĵ(ŵ))
dŵ

dŵ + ĝ

ˆ
Ĉh

d Ĵ(ŵ)
dŵ

(v(ŵ)� Ĵ(ŵ))dŵ + (r̂ + d)
ˆ
Ĉh

Ĵ(ŵ)(v(ŵ)� Ĵ(ŵ))dŵ �
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ˆ
Ĉh
(1 � eŵ)

�
v(ŵ)� Ĵ(ŵ)

�
dŵ +

ˆ
(Ĉh)c

(1 � eŵ)
�
v(ŵ)� Ĵ(ŵ)

�
dŵ ()

s2

2

ˆ
Ĉh

d Ĵ(ŵ)
dŵ

d(v(ŵ)� Ĵ(ŵ))
dŵ

dŵ + ĝ

ˆ
Ĉh

d Ĵ(ŵ)
dŵ

(v(ŵ)� Ĵ(ŵ))dŵ + (r̂ + d)
ˆ
Ĉh

Ĵ(ŵ)(v(ŵ)� Ĵ(ŵ))dŵ �

ˆ
Ĉh
(1 � eŵ)

�
v(ŵ)� Ĵ(ŵ)

�
dŵ.

Using integration by parts, we obtain

s2

2

ˆ
Ĉh

d Ĵ(ŵ)
dŵ

d(v(ŵ)� Ĵ(ŵ))
dŵ

dŵ

=(1) s2

2
d Ĵ(ŵ)

dŵ
(v(ŵ)� Ĵ(ŵ))

����
ŵ2∂2Ĉh| {z }

= 0

�
s2

2

ˆ
Ĉh

d2 Ĵ(ŵ)
dŵ

(v(ŵ)� Ĵ(ŵ))dŵ.

In (1), there could be two cases for the first term. The first case is a finite limit of integration (i.e., Ĉh is bounded). In this case, we

use continuity of the functions and the fact that if ŵ ! ∂Ĉh (Ĉh is open) , then ŵ ! (Ĉh)c and, therefore, Ĵ(ŵ) = v(ŵ) = 0. The

second case is an infinite limit of integration. In this case, the assumption of bounded support implies Ĵ(ŵ) = 0 for sufficiently

large or small ŵ, thus Ĵ0(ŵ) = 0. In conclusion,

ˆ
Ĉh

⇣
Â Ĵ(ŵ) + (1 � eŵ)

⌘
(v(ŵ)� Ĵ(ŵ))dŵ  0.

Before continuing, we remark that the previous equality holds for all v(ŵ) 2 Kj(Ŵ). Let O be an open ball in Ĉh that covers

an arbitrary point ŵ 2 Ĉh. Then, we can find a family of smooth functions indexed by n with oŵ(n) 2 [0, 1], s.t. oŵ(n) = 0

outside Ĉh, oŵ(n) ! 1 in O, and oŵ(n) ! 0 outside O. Since Ĵ(ŵ) + oŵ(n) � 0, Ĵ(ŵ) + oŵ(n) 2 Kj(Ŵ) and

ˆ
O

⇣
Â Ĵ(ŵ) + (1 � eŵ)

⌘
oŵ(n)dŵ +

ˆ
Ĉh/O

⇣
Â Ĵ(ŵ) + (1 � eŵ)

⌘
oŵ(n)dŵ  0.

Taking the limit n ! •, we have that ˆ
O

⇣
Â Ĵ(ŵ) + (1 � eŵ)

⌘
dŵ  0.

Since O is arbitrary, Â Ĵ(ŵ) + 1 � eŵ  0 a.e. in Ĉh. Since Ĵ(ŵ) 2 C1(Ĉh) , then Â Ĵ(ŵ) + 1 � eŵ  0 for all ŵ whenever the

second derivative is defined. To obtain the other inequality, consider Ĵ(ŵ)(1 � oŵ(n)) + 0oŵ(n) 2 Kj(Ŵ) and we have that

�

ˆ
O

⇣
Â Ĵ(ŵ) + (1 � eŵ)

⌘
Ĵ(ŵ)oŵ(n)dŵ �

ˆ
Ĉh/O

⇣
Â Ĵ(ŵ) + (1 � eŵ)

⌘
Ĵ(ŵ)oŵ(n)dŵ  0

Taking the limit n ! •, we have that
´
O

�
Â Ĵ(ŵ) + (1 � eŵ)

�
(� Ĵ(ŵ))dŵ  0 a.e.. Since Ĵ(ŵ) 2 C1(Ĉh), we have that for all

ŵ 2 Ĉh
⇣
Â Ĵ(ŵ) + (1 � eŵ)

⌘
(� Ĵ(ŵ))  0.

Since Ĵ(ŵ) � 0 and
�
Â Ĵ(ŵ) + (1 � eŵ)

�
 0, we have that

�
Â Ĵ(ŵ) + (1 � eŵ)

�
(� Ĵ(ŵ)) � 0. Thus,

�
Â Ĵ(ŵ) + 1 � eŵ� (� Ĵ(ŵ)) =

0 or written more compactly

0 = max{� Ĵ(ŵ), Â Ĵ(ŵ) + 1 � eŵ
}, 8ŵ 2 Ĉ

h,

with Ĵ(ŵ) 2 C1(Ĉh) \ C(R).

Proposition B.4. Define the value functions that are obtained from the best responses as BRh : H1(R) ! H1(R) and BRj : H1
0(R) !
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H1
0(R) such that

BRh( Ĵ) = {Ŵ 2 H1(R) : a(Ŵ, v � Ŵ) � (eŵ
� r̂Û, v � Ŵ), 8 v 2 Kh( Ĵ), Ŵ 2 Kh( Ĵ)},

BRj(Ŵ) = { Ĵ 2 H1(R) : a( Ĵ, v � Ĵ) � (1 � eŵ, v � Ĵ), 8 v 2 Kj(Ŵ), Ĵ 2 Kj(Ŵ)}.

Then, BRh( Ĵ) and BRj(Ŵ) exist and are unique.

Proof of Step 1 - Proposition B.4. Here, we show that the value functions that are obtained from the best responses are well-defined.

For this, we need to verify the conditions in Proposition A.4. Basically, we need to show that Kj(Ŵ) is closed and convex, and

that a(·, ·) is coercive.

Kj(Ŵ) is closed and convex. First, we show that Kj(Ŵ) is closed. Take a sequence Ĵn 2 Kj(Ŵ) s.t. Ĵn converges to some Ĵ⇤.

Since Ĵn 2 Kj(Ŵ),

Ĵn
� 0, if Ŵ(ŵ) = 0 and ŵ  log(r̂Û), then Ĵn = 0

for all n. Taking the limit,

Ĵ⇤ � 0, if Ŵ(ŵ) = 0 and ŵ  log(r̂Û), then Ĵ⇤ = 0

where we use the fixed domain in the second limit. Thus, Kj(Ŵ) is closed.

To show that Kj(Ŵ) is convex, take Ĵ1, Ĵ2 2 Kj(Ŵ), then

Ĵ1
� 0, if Ŵ(ŵ) = 0 and ŵ  log(r̂Û), then Ĵ1 = 0,

Ĵ2
� 0, if Ŵ(ŵ) = 0 and ŵ  log(r̂Û), then Ĵ2 = 0.

Taking the convex combination with l 2 [0, 1]

l Ĵ1 + (1 � l) Ĵ2
� 0, if Ŵ(ŵ) = 0 and ŵ � 0, then l Ĵ1 + (1 � l) Ĵ2 = 0.

Thus, Kj(Ŵ) is convex.

a(u, v) is coercive. Operating over the bilinear operator

a(v, v) =
s2

2

ˆ
R

dv(ŵ)
dŵ

dv(ŵ)
dŵ

dŵ + ĝ

ˆ
R

dv(ŵ)
dŵ

v(ŵ)dŵ + (r̂ + d)
ˆ

R
v(ŵ)2dŵ

=(1) s2

2

ˆ
R

✓
dv(ŵ)

dŵ

◆2
dŵ

| {z }
�0

+ĝ v(ŵ)2
���
•

�•| {z }
= 0

+(r̂ + d)
ˆ

R
v(ŵ)2dŵ

�
(2) (r̂ + d)

ˆ
R

v(ŵ)2dŵ

= (r̂ + d)||v||2

Step (1) integrates
´

R
dv(ŵ)

dŵ v(ŵ)dŵ = 1
2 v(ŵ)2

���
•

�•
and uses compact support. Step (2) uses the non-negativity of the squared

derivative term.

With the properties verified, we can apply Proposition A.4. Thus, the best response exists, and it is unique.

Proposition B.5. Define Q(Ŵ) = (BRh � BRj)(Ŵ), then there exists a fixed point Q(Ŵ⇤) = Ŵ⇤ and Ĵ⇤ = BRj(Ŵ⇤). The set of fixed
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points is bounded above and below by

0  Ŵ  Ŵ⇤
 Ŵ,

0  Ĵ  Ĵ⇤  Ĵ,

where

a(Ŵ, v � Ŵ) � (eŵ
� r̂Û, Ŵ), 8 v 2 Ksmall , Ŵ 2 Ksmall ,

a( Ĵ, v � Ĵ) � (1 � eŵ, Ĵ), 8 v 2 Ksmall , Ĵ 2 Ksmall ,

a(Ŵ, v � Ŵ) � (eŵ
� r̂Û, Ŵ), 8 v 2 Kbig, Ŵ 2 Kbig,

a( Ĵ, v � Ĵ) � (1 � eŵ, Ĵ), 8 v 2 Kbig, Ĵ 2 Kbig,

with

Ksmall :=
�

v 2 V : v(ŵ) � 0 & i f ŵ /2 (log(r̂Û), 0) ) v(ŵ) = 0
 

,

Kbig := {v 2 V : v(ŵ) � 0} ,

with a maximum and minimum element.

Proof of Step 1 - Proposition B.5. The first step consists in showing that the function Q(W) is monotonically increasing—i.e., if

Ŵ1 � Ŵ2, then Q(Ŵ1) � Q(Ŵ2). To show this result, first, we need to prove that Kj(Ŵ) is increasing—i.e., if Ŵ1 � Ŵ2, then

Kj(Ŵ2) ⇢ Kj(Ŵ1). Take Ĵ2 2 Kj(Ŵ2), then

Ĵ2 � 0, & i f Ŵ2(ŵ) = 0 and ŵ  log(r̂Û) ) Ĵ2(ŵ) = 0.

Since Ŵ2(ŵ) � 0, we have that

Ĵ2 � 0, & Ĵ2(ŵ) = 0 8ŵ 2 {ŵ : Ŵ2(ŵ)  0 & ŵ  log(r̂Û)}.

Now, we show that {ŵ : Ŵ1(ŵ)  0 & ŵ  log(r̂Û)} ⇢ {ŵ : Ŵ2(ŵ)  0 & ŵ  log(r̂Û)}. Take ŵ 2 {ŵ : Ŵ1(ŵ)  0 & ŵ 

log(r̂Û)}. Then, Ŵ1(ŵ)  0 and, since Ŵ1(ŵ) � Ŵ2(ŵ), we have that Ŵ2(ŵ)  0. Since {ŵ : Ŵ1(ŵ)  0 & ŵ  log(r̂Û)} ⇢

{ŵ : Ŵ2(ŵ)  0 & ŵ  log(r̂Û)}, the previous condition holds for the larger set, so it will also hold for the smaller set

Ĵ2 � 0, & Ĵ2(ŵ) = 0, 8ŵ 2 {ŵ : Ŵ1(ŵ)  0 & ŵ  log(r̂Û)}.

Thus, Ĵ2 2 Kj(W1) and Kj(Ŵ2) ⇢ Kj(W1).

Now, let Ŵ1 � Ŵ2. We need to show that Ĵ1 = BRj(Ŵ1) � BRj(Ŵ2) = Ĵ2. Since Kj(Ŵ) is increasing—i.e., Kj(Ŵ2) ⇢

Kj(Ŵ1)— Ĵ1, Ĵ2 2 Kj(Ŵ1) and the envelope max{ Ĵ1, Ĵ2} 2 Kj(Ŵ1). Now, we show that min{ Ĵ1, Ĵ2} 2 Kj(Ŵ2). Since Ĵ1, Ĵ2 � 0,

we have that min{ Ĵ1, Ĵ2} � 0. Moreover, take a ŵ s.t. Ŵ2(ŵ)  0 and ŵ  log(r̂Û), then 0 = Ĵ2 = min{ Ĵ2, Ĵ1}. Thus,

min{ Ĵ1, Ĵ2} 2 Kj(Ŵ2). In conclusion, we can use max{ Ĵ1, Ĵ2} as a test function for Kj(Ŵ1) and min{ Ĵ1, Ĵ2} as a test function for

Kj(Ŵ2):

min{ Ĵ1, Ĵ2} = Ĵ2 � max{ Ĵ2 � Ĵ1, 0} for test function for Kj(Ŵ2)
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max{ Ĵ1, Ĵ2} = Ĵ1 + max{ Ĵ2 � Ĵ1, 0} for test function for Kj(Ŵ1)

Using the quasi-variational inequality

a( Ĵ2,�max{ Ĵ2 � Ĵ1, 0}) � (1 � eŵ,�max{ Ĵ2 � Ĵ1, 0})

a( Ĵ1, max{ Ĵ2 � Ĵ1, 0}) � (1 � eŵ, max{ Ĵ2 � Ĵ1, 0}).

Thus,

�a( Ĵ2, max{ Ĵ2 � Ĵ1, 0}) � �(1 � eŵ, max{ Ĵ2 � Ĵ1, 0})

a( Ĵ1, max{ Ĵ2 � Ĵ1, 0}) � (1 � eŵ, max{ Ĵ2 � Ĵ1, 0}).

Summing these two equalities, we obtain

a( Ĵ1, max{ Ĵ2 � Ĵ1, 0})� a( Ĵ2, max{ Ĵ2 � Ĵ1, 0}) � 0

or equivalently,

a( Ĵ2, max{ Ĵ2 � Ĵ1, 0})� a( Ĵ1, max{ Ĵ2 � Ĵ1, 0})  0.

Next, we show that the previous inequality implies a(max{ Ĵ2 � Ĵ1, 0}, max{ Ĵ2 � Ĵ1, 0})  0. Define the set X = {x : Ĵ2 > Ĵ1}.

Then,

a( Ĵ2, max{ Ĵ2 � Ĵ1, 0})� a( Ĵ1, max{ Ĵ2 � Ĵ1, 0})

=
s2

2

✓ˆ
X

d Ĵ2(ŵ)
dŵ

d( Ĵ2 � Ĵ1)
dŵ

dŵ �

ˆ
X

d Ĵ1(ŵ)
dŵ

d( Ĵ2 � Ĵ1)
dŵ

dŵ +
ˆ

R/X
0 dx

◆

· · ·+ ĝ

✓ˆ
X

d Ĵ2(ŵ)
dŵ

( Ĵ2 � Ĵ1)dŵ �

ˆ
X

d Ĵ1(ŵ)
dŵ

( Ĵ2 � Ĵ1)dŵ +
ˆ

R/X
0 dx

◆

· · ·+ (r̂ + d)

✓ˆ
X

Ĵ2( Ĵ2 � Ĵ1)dŵ �

ˆ
X

Ĵ1( Ĵ2 � Ĵ1)dŵ +
ˆ

R/X
0 dŵ

◆

=
s2

2

ˆ
X

✓
d( Ĵ2 � Ĵ1)

dŵ

◆2

dŵ + ĝ

ˆ
X

d( Ĵ2(ŵ)� Ĵ1)
dŵ

( Ĵ2 � Ĵ1)dŵ + (r̂ + d)

✓ˆ
X
( Ĵ2 � Ĵ1)

2 dŵ
◆

= a(max{ Ĵ2 � Ĵ1, 0}, max{ Ĵ2 � Ĵ1, 0}).

In conclusion, since a(·, ·) is a coercive bilinear form, 0 � a(max{ Ĵ2 � Ĵ1, 0}, max{ Ĵ2 � Ĵ1, 0}) � K||max{ Ĵ2 � Ĵ1, 0}||2. Thus,

Ĵ1 � Ĵ2 a.e., and by continuity Ĵ1 � Ĵ2 for all ŵ. Applying similar arguments to BRh( Ĵ), we have that if Ŵ1 � Ŵ2, then

Q(Ŵ1) � Q(Ŵ2), so by Proposition A.3, there exists a fixed point. Moreover, the set of fixed points has a maximum and a

minimum—i.e.,

{Ŵ 2 H1
0(R) : Ŵ = Q(Ŵ)}

has a Ŵmin and Ŵmax s.t. Ŵmin  Ŵ⇤  Ŵmax for all Ŵ⇤ 2 {Ŵ 2 H1
0(R) : Ŵ = Q(Ŵ)}. To find the upper and lower bound,

observe that we can write the non-trivial Nash equilibrium policies as

Ĵ⇤(w) = max
{t j2T :t jth⇤}

E

"ˆ t j

0
e�(r̂+d)t(1 � eŵt )dt|ŵ0 = ŵ

#
.
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Since • > th⇤ � t(log(r̂Û,0)),
14 we have that

0  Ĵ = max
{t j2T :t jt(log(r̂Û,0))}

E

"ˆ t j

0
e�(r̂+d)t(1 � eŵt )dt|ŵ0 = ŵ

#

 max
{t j2T :t jth⇤}

E

"ˆ t j

0
e�(r̂+d)t(1 � eŵt )dt|ŵ0 = ŵ

#

= Ĵ⇤(w)

 max
{t j2T }

E

"ˆ t j

0
e�(r̂+d)t(1 � eŵt )dt|ŵ0 = ŵ

#

= Ĵ.

Step 2. This step proves the uniqueness of the fixed point. The first proposition shows that Q : H1
0(R) ! H1

0(R) is concave.

Since the Q operator is only defined for non-negative functions, we assume that the domain is restricted to non-negative

functions without loss of generality. Since the game’s continuation region is bounded, flow payoffs are bounded. Therefore, the

equilibrium value functions are also bounded. For these reasons, without loss of generality, we restrict the Q : A ! A operator

in

A = {v 2 H1
0(R) : v(ŵ) 2 [0, v], 8ŵ}

Observe that A is order convex—i.e., if a, b 2 A with a  c  b, then c 2 A.

Define the operator a : A⇥A ! A, where

a(Ŵ 0, Ŵ 00) = a(ŵ)Ŵ 0(ŵ) + (1 � a(ŵ))Ŵ 00(ŵ),

with a(ŵ) 2 [0, 1].

Proposition B.6. Q : A ! A is strongly order concave—i.e.,

Q(a(Ŵ 0, Ŵ 00)) � a(Q(Ŵ 0), Q(Ŵ 00))

for all Ŵ 0  Ŵ 00.

Proof of Step 2 - Proposition B.6. Take Ŵ 0  Ŵ 00. The proof has three arguments. First, we show that Kj(a(Ŵ 0, Ŵ 00)) =

Kj(Ŵ 00). Then, with this result in hand, we show that the BRj(a(Ŵ 0, Ŵ 00)) � a(BRj(Ŵ 0), BRj(Ŵ 00)). Finally, we show that

Q(a(Ŵ 0, Ŵ 00)) � a(Q(Ŵ 0), Q(Ŵ 00)).

To see that Kj(a(Ŵ 0, Ŵ 00)) = Kj(Ŵ 00), observe that since a(Ŵ 0, Ŵ 00)  Ŵ 00 and since Kj(·) is increasing, we have that

Kj(a(Ŵ 0, Ŵ 00)) ⇢ Kj(Ŵ 00). Now, we show that Kj(Ŵ 00) ⇢ Kj(a(Ŵ 0, Ŵ 00)). Take any Ĵ 2 Kj(Ŵ 00). Then,

Ĵ � 0, & i f Ŵ 00(ŵ) = 0 and ŵ  log(r̂Û) ) Ĵ(ŵ) = 0.

14t(log(r̂Û,0)) := inf
�

t � 0 : ŵt /2 (log(r̂Û, 0))
 

.
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If Ŵ 00(ŵ) = 0, then Ŵ 00(ŵ) � Ŵ 0(ŵ) = 0, which is then also true for any convex combination. Thus, a(Ŵ 0, Ŵ 00)  Ŵ 00 = 0 and

Ĵ � 0, & i f a(Ŵ 0, Ŵ 00) = 0 and ŵ  log(r̂Û) ) Ĵ(ŵ) = 0.

In conclusion, Ĵ 2 Kj(a(Ŵ 0, Ŵ 00)) and Kj(Ŵ 00) ⇢ Kj(a(Ŵ 0, Ŵ 00)). Therefore, we have that Kj(a(Ŵ 0, Ŵ 00)) = Kj(Ŵ 00).

Since the constraint set—i.e., Ŵ and any test function v in Kj(·)—is the same for a(Ŵ 0, Ŵ 00) and Ŵ 00, we have that

BRj(a(Ŵ 0, Ŵ 00)) = BRj(Ŵ 00),

= a(BRj(Ŵ 00), BRj(Ŵ 00)),

� a(BRj(Ŵ 0), BRj(Ŵ 00)),

where we used the monotonicity of BRj(Ŵ) in the last inequality. A similar property holds for BRh( Ĵ). In conclusion, BRj(Ŵ)

and BRh( Ĵ) are increasing and strongly order concave. Using this result, for Ŵ 0  Ŵ 00, we have

Q(a(Ŵ 0, Ŵ 00)) = BRh(BRj(a(Ŵ 0, Ŵ 00)))

�
(1) BRh(a(BRj(Ŵ 0), BRj(Ŵ 00)))

�
(2) a(BRh(BRj(Ŵ 0)), BRh(BRj(Ŵ 00)))

= a(Q(Ŵ 0), Q(Ŵ 00)).

Step (1) uses the monotonicity of BRh( Ĵ) and the strongly order concavity of BRj(Ŵ). Step (2) uses the strongly order concavity

of BRh( Ĵ).

Proposition B.7. Q : A ! A has a unique fixed point.

Proof of Step 2 - Proposition B.7. We have shown that Q(Ŵ) is monotone and order concave defined in an order convex set. Now,

we prove the result by contradiction. Let Ŵ be the minimum fixed point and let Ŵ⇤ be another fixed point with Ŵ⇤ > Ŵ. Then,

we can write Ŵ = a⇤(0, Ŵ⇤) for some a⇤(ŵ) function, where zero is the lower bound in the domain. Importantly, it is easy to see

that a⇤(ŵ) 2 (0, 1) for all ŵ 2 (log(r̂Û, 0)). Thus,

Ŵ =(1) Q(Ŵ)

=(2) Q(a⇤(0, Ŵ⇤))

�
(3) a⇤(Q(0), Q(Ŵ⇤))

=(4) a⇤(Q(0), Ŵ⇤)

>(5) a⇤(0, Ŵ⇤)

=(6) Ŵ

Step (1) uses the fact that Ŵ is a fixed point and step (2) uses the fact that Ŵ = a⇤(0, Ŵ⇤). Step (3) uses the strongly order

concavity of Q. Step (4) uses the fact that Ŵ⇤ is a fixed point. Step (5) uses that Q(0) > 0 for all ŵ 2 (log(r̂Û), 0). Since it cannot

be that Ŵ > Ŵ, we have a contradiction.

Step 3. Let Ŵ⇤(ŵ; r̂Û) and Ĵ⇤(ŵ; r̂Û) be the value functions from the unique non-trivial Nash equilibrium. We now show

that they are continuous and decreasing in Û.
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Proposition B.8. Fix Ĵ. Let Ŵ(ŵ; r̂Û) = BRh( Ĵ; r̂Û) be the solution of

a(Ŵ, v � Ŵ) � (1 � r̂Û, v � Ŵ), 8v 2 Kh( Ĵ), Ŵ 2 Kh( Ĵ)

Then, Ŵ(ŵ; r̂Û) is continuous and decreasing in r̂Û.

Proof of Step 3 - Proposition B.8. First, we prove continuity. Take Û1 and Û2 and define Ŵ1 = BRh( Ĵ; r̂Û1) and Ŵ2 = BRh( Ĵ; r̂Û2).

Then,

a(Ŵ1, v � Ŵ1) � (1 � r̂Û1, v � Ŵ1), (B.31)

a(Ŵ2, v � Ŵ2) � (1 � r̂Û2, v � Ŵ2). (B.32)

Let Ŵ2 be the test function for (B.31) and let Ŵ1 be the test function for (B.32). Summing both equations

a(Ŵ1, Ŵ2 � Ŵ1) + a(Ŵ2, Ŵ1 � Ŵ2) � (1 � r̂Û1, Ŵ2 � Ŵ1) + (1 � r̂Û2, Ŵ1 � Ŵ2)

or equivalently

a(Ŵ1 � Ŵ2, Ŵ2 � Ŵ1) � (r̂(Û2 � Û1), Ŵ2 � Ŵ1).

Multiplying by -1 on both sides and under the observation that (r̂(Û2 � Û1), Ŵ2 � Ŵ1) = r̂(Û2 � Û1)(1, Ŵ2 � Ŵ1), we obtain

a(Ŵ2 � Ŵ1, Ŵ2 � Ŵ1)  r̂(Û1 � Û2)(1, Ŵ2 � Ŵ1).

Given that the operator is coercive and that

(1, Ŵ2 � Ŵ1) =
ˆ

R

�
Ŵ(ŵ; r̂Û2)� Ŵ(ŵ; r̂Û1)

�
dŵ 

✓ˆ
R

�
Ŵ(ŵ; r̂Û2)� Ŵ(ŵ; r̂Û1)

�2 dŵ
◆1/2

,

we have that

b||Ŵ2 � Ŵ1||
2
 a(Ŵ2 � Ŵ1, Ŵ2 � Ŵ1)  r̂(Û1 � Û2)(1, Ŵ2 � Ŵ1)  r̂|Û1 � Û2|||Ŵ2 � Ŵ1||

for some b > 0. Thus,

||Ŵ2 � Ŵ1|| 
r̂

b
|Û1 � Û2|

With this inequality, we can verify the continuity of Ŵ(ŵ; r̂Û). Let e > 0 and choose |Û1 � Û2| < e b
r̂ . Then

||Ŵ2 � Ŵ1|| < e.

Thus, Ŵ(ŵ; r̂Û) is continuous.

Now, we prove that Ŵ(ŵ; r̂Û) is decreasing in the second argument. Let Û1 > Û2 and define Ŵ1 = BRh( Ĵ; r̂Û1) and

Ŵ2 = BRh( Ĵ; r̂Û2). Observe that Ŵ1, Ŵ2 2 Kh( Ĵ). Thus, min{Ŵ1, Ŵ2} and max{Ŵ1, Ŵ2} 2 Kh( Ĵ). Therefore, we can use

min{Ŵ1, Ŵ2} = Ŵ1 � max{Ŵ1 � Ŵ2, 0} as a test function with Û1 and max{Ŵ1, Ŵ2} = Ŵ2 + max{Ŵ1 � Ŵ2, 0} as a test
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function with Û2. Therefore,

�a(Ŵ1, max{Ŵ1 � Ŵ2, 0}) � �(1 � r̂Û1, max{Ŵ1 � Ŵ2, 0}),

a(Ŵ2, max{Ŵ1 � Ŵ2, 0}) � (1 � r̂Û2, max{Ŵ1 � Ŵ2, 0}).

Adding both inequalities, we obtain

a(Ŵ2 � Ŵ1, max{Ŵ1 � Ŵ2, 0}) � r̂
�
Û1 � Û2

�
(1, max{Ŵ1 � Ŵ2, 0}).

Multiplying by -1 and under the observation that a(Ŵ1 � Ŵ2, max{Ŵ1 � Ŵ2, 0}) = a(max{Ŵ1 � Ŵ2, 0}, max{Ŵ1 � Ŵ2, 0}) �

b||max{Ŵ1 � Ŵ2, 0}||2 for some b > 0, we have that

||max{Ŵ1 � Ŵ2, 0}||2 
r̂

b

�
Û2 � Û1

�
(1, max{Ŵ1 � Ŵ2, 0}).

Since Û1 > Û2, we have that Û2 � Û1 < 0. Assume, by contradiction, that Ŵ1 > Ŵ2, then (1, max{Ŵ1 � Ŵ2, 0}) > 0. Operating,

0 < ||max{Ŵ1 � Ŵ2, 0}||2 
r̂

b

�
Û2 � Û1

�
(1, max{Ŵ1 � Ŵ2, 0}) < 0.

Thus, we have a contradiction. In conclusion, Ŵ(ŵ; r̂Û) is decreasing in the second argument. Observe that Ĵ(ŵ) = BRj(Ŵ) is

independent of r̂Û.

Proposition B.9. Let Ŵ⇤(ŵ; r̂Û) be the non-trivial Nash Equilibrium, then it is continuous and decreasing in the second argument.

Proof of Step 3 - Proposition B.9. First, we show that the value function from the non-trivial Nash equilibrium is decreasing in Û.

If Û1 > Û2, we have, by the previous step, that

Q(Ŵ, r̂Û1)  Q(Ŵ, r̂Û2).

Define recursively Qn(Ŵ, r̂Û1) = Q � Qn�1(Ŵ, r̂Û1). By monotonicity,

Qn(Ŵ, r̂Û1)  Qn(Ŵ, r̂Û2)

also holds for all n. By Theorem 18 of Marinacci and Montrucchio (2019),

Qn(Ŵ, r̂Û1) ! Ŵ⇤(ŵ; r̂Û1) and Qn(Ŵ, r̂Û2) ! Ŵ⇤(ŵ; r̂Û2).

Thus,

Ŵ⇤(ŵ; r̂Û1)  Ŵ⇤(ŵ; r̂Û2).

In conclusion, the non-trivial Nash equilibrium is decreasing in Û.

Now, we show continuity. Take Ûn " Û⇤ (resp. Ûn # Û⇤). Then, it is easy to see that Ŵ⇤(ŵ; r̂Ûn) is monotonic, and by

completeness, it is easy to see that Ŵ⇤(ŵ; r̂Ûn) is a convergent series. Thus, Ŵ⇤(ŵ; r̂Û) is continuous in the second element.
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Step 4. We now show the existence of the unique fixed point in r̂Û. Using the free entry condition, we can define the value of

the unemployed worker as

P(r̂Û) := B̃ + max
ŵ

1
K̃1/a

Ĵ(ŵ; r̂Û)
1�a

a Ŵ(ŵ; r̂Û).

We now show two propositions: (i) we show relevant properties of P(r̂Û), (ii) we use these properties to show the existence

of a unique fixed point P(r̂Û⇤) = r̂Û⇤.

Proposition B.10. The following properties hold for P(r̂Û):

• P(r̂Û) exists and is unique.

• P(r̂Û) is continuous.

• P : [B̃, P̄] ! [B̃, P̄] and it is decreasing.

Proof of Step 4 - Proposition B.10. From Proposition 2, we have that Ĉh \ Ĉ j is bounded, thus

max
ŵ

1
K̃1/a

Ĵ(ŵ; r̂Û)
1�a

a Ŵ(ŵ; r̂Û) = max
ŵ2cl{C j\Ch}

1
K̃1/a

Ĵ(ŵ; r̂Û)
1�a

a Ŵ(ŵ; r̂Û).

Since Ĵ(·; r̂Û) and Ŵ(·; r̂Û) are continuous and the optimization is conducted over a compact support, by the extreme value

theorem there exists a maximum and, clearly, is unique.

Since Ĵ(ŵ; r̂Û) and Ŵ(ŵ; r̂Û) are continuous in both arguments, by the maximum theorem, the maximal value is continuous.

Let ŵ⇤(r̂Û) be the solution to the optimization problem. Then, if Û < Û0,

1
K̃1/a

Ĵ(ŵ⇤(r̂Û); r̂Û)
1�a

a Ŵ(ŵ⇤(r̂Û); r̂Û) �(1) 1
K̃1/a

Ĵ(ŵ⇤(r̂Û0); r̂Û)
1�a

a Ŵ(ŵ⇤(r̂Û0), r̂Û)

�
(2) 1

K̃1/a
Ĵ(ŵ⇤(r̂Û0), r̂Û0)

1�a
a Ŵ(ŵ⇤(r̂Û0), r̂Û0).

Step (1) uses the optimality of ŵ⇤(r̂Û) and step (2) uses the fact that Ĵ and Ŵ are decreasing in the second argument. Thus,

P(r̂Û) is decreasing. By Proposition 2, we have that P̄ =: P(B̃) > B̃. Since P(r̂Û) � B̃ ( Ĵ(·) and Ŵ(·) are non-negative), we

have that P : [B̃, P̄] ! [B̃, P̄].

Proposition B.11. P(r̂Û) has a unique fixed point.

Proof of Step 4 - Proposition B.11. The existence of the fixed point follows directly from Brouwer’s fixed point theorem. To show

uniqueness, observe that if there were two fixed points Û1 < Û2, by definition, we would have that P(r̂Û1) = r̂Û1 < r̂Û2 =

P(r̂Û2) and P(r̂Û) would be strictly increasing. By Step 4-Proposition B.10, this is a contradiction.

B.4 Proof of Proposition 2

Proposition 2. The BRE has the following properties:

1. The joint match surplus satisfies

Ŝ(ŵ) = (1 � r̂Û)T (ŵ, r̂),

where

T (ŵ, r̂) := E

"ˆ tm⇤

0
e�r̂t dt|ŵ0 = ŵ

#
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is the expected discounted match duration and 1 > r̂Û > B̃.

2. The competitive entry wage ŵ⇤ coincides with the Nash bargaining solution with worker’s weight a:

ŵ⇤ = arg max
ŵ

n
Ŵ(ŵ)a Ĵ(ŵ)1�a

o
= arg max

ŵ

n
h(ŵ)a(1 � h(ŵ))1�a

T (ŵ, r̂)
o

,

with optimality condition

h0(ŵ⇤)

✓
a

h(ŵ⇤)
�

1 � a

1 � h(ŵ⇤)

◆

| {z }
Share channel

= �
Tŵ(ŵ⇤, r̂)
T (ŵ⇤, r̂)
| {z }

Surplus channel

.

3. Given h(ŵ⇤) and T (ŵ⇤, r̂), the equilibrium job finding rate f (ŵ⇤) and the flow opportunity cost of employment r̂Û are given by

f (ŵ⇤) =
⇥
(1 � h(ŵ⇤))(1 � r̂Û)T (ŵ⇤, r̂)/K̃

⇤ 1�a
a ,

r̂Û = B̃ +
⇣

K̃a�1 (1 � h(ŵ))1�a h(ŵ)a �1 � r̂Û
�
T (ŵ⇤, r̂)

⌘ 1
a .

4. Assume g 6= 0 or s 6= 0. Given Û, the worker’s and the firm’s continuation sets are connected, and the game’s continuation set is

bounded; i.e.

Ĉ
h = {ŵ : ŵ > ŵ�

} and Ĉ
j = {ŵ : ŵ < ŵ+

},

with �• < ŵ�  log(r̂Û) < 0  ŵ+ < •. The worker’s and firm’s value functions satisfy smooth pasting conditions at ŵ�

and ŵ+, respectively: Ŵ 0(ŵ�) = Ĵ0(ŵ+) = 0.

Proof. Now, we prove each equilibrium property.

1. Using the free entry condition and worker optimality, we have that q̂(ŵ) � 0 and Ŵ(ŵ) � 0 for all ŵ; thus, the product is

also non-negative at ŵ⇤ and

r̂Û = B̃ + max
ŵ

q̂(ŵ)1�aŴ(ŵ) � B̂ =) r̂U � B̃

Using the recursive definition of the value function, we have

Ŵ(ŵ) = Eŵ

"ˆ tm⇤

0
e�r̂t(eŵt � r̂Û)dt

#

Ĵ(ŵ) = Eŵ

"ˆ tm⇤

0
e�r̂t(1 � eŵt )dt

#

where tm⇤ is the non-trivial Nash equilibrium of the game between the firm and the worker. Summing up the previous

two equations, we have

Ŝ(ŵ) = Ŵ(ŵ) + Ĵ(ŵ) = Eŵ

"ˆ tm⇤

0
e�r̂t(1 � r̂Û)dt

#
= (1 � r̂Û)Eŵ

"ˆ tm⇤

0
e�r̂t dt

#
= (1 � r̂Û)T (ŵ, r̂).

Since Ŵ(ŵ), Ĵ(ŵ) � 0, Ŝ(ŵ) � 0 and

0  Ŝ(ŵ⇤) = (1 � r̂Û) T (ŵ⇤, r̂)
| {z }

>0

() 0  1 � r̂Û () 1 � r̂Û.

Therefore, 1 � r̂Û � B̃.
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Now, we show the strict inequality by contradiction. Assume that r̂Û = B̃ < 1. Then, we have that maxŵ q̂(ŵ)1�aŴ(ŵ) =

0 and, therefore, q̂(ŵ)1�aŴ(ŵ) = 0 8ŵ. By weakly dominated strategies, we have that (log(r̂Û), 0) = (log(B̃), 0) ⇢

Ĉj \ Ĉh. Thus, for any ŵ 2 (log(B̃), 0), we have that ( Ĵ(ŵ), Ŵ(ŵ)) > (0, 0) and using the free entry condition

q̂(ŵ)1�aŴ(ŵ) > 0. Thus, a contradiction. Assume instead that r̂Û = 1. Then, 0 = Ŝ(ŵ) � ( Ĵ(ŵ), Ŵ(ŵ)) � 0 8ŵ

and maxŵ⇤ q̂(ŵ⇤)1�aŴ(ŵ⇤) = 0. With these argument, we have that 1 = B̃ + maxŵ⇤ q̂(ŵ⇤)1�aŴ(ŵ⇤) = B̂ < 1, and we

have the contradiction.

2. To show this property, first we show that Ĵ(ŵ) > 0 for all ŵ 2 (log(r̂Û), 0). Define

t(w� ,0) = inf
t
{t : ŵt /2 (log(r̂Û), 0)}.

By optimality of the firm,

Ĵ(ŵ) = Eŵ

"ˆ tm⇤

0
e�r̂t(1 � eŵt )dt

#
� Eŵ

"ˆ min{t(log(r̂Û),0) ,t
m⇤}

0
e�r̂t(1 � eŵt )dt

#
> 0.

Thus, there is an open set around the optimally chosen starting wage ŵ that lies entirely within the continuation region

s.t. Ĵ(ŵ) > 0, q̂(ŵ) > 0, and Ĵ(ŵ)� K̂q̂(ŵ)a = 0. Therefore,

arg max
ŵ

�
f (q̂(ŵ))Ŵ(ŵ)

 
= arg max

ŵ

8
<

:

✓
Ĵ(ŵ)

K̃

◆ 1�a
a

Ŵ(ŵ)

9
=

; = arg max
ŵ

n
Ĵ(ŵ)1�aŴ(ŵ)a

o
.

Since Ŵ(ŵ) = h(ŵ)Ŝ(ŵ) and Ĵ(ŵ) = (1 � h(ŵ))Ŝ(ŵ) and Ŝ(ŵ) = (1 � r̂Û)T (ŵ, r̂),

arg max
ŵ

�
f (q̂(ŵ))Ŵ(ŵ)

 
= arg max

ŵ

n
Ĵ(ŵ)1�aŴ(ŵ)a

o
= arg max

ŵ

n
(1 � h(ŵ))1�ah(ŵ)a

T (ŵ, r̂)
o

.

Taking first order conditions

h0(ŵ⇤)

✓
a

h(ŵ⇤)
�

1 � a

1 � h(ŵ⇤)

◆
= �

T 0
ŵ(ŵ

⇤, r̂)

T (ŵ⇤, r̂)
.

3. This step follows directly from workers’ and firms’ optimality conditions.

4. To show that Ĉh and Ĉj are connected, assume they are not. Without loss of generality, assume that Ĉh = {ŵ : ŵ >

ŵ�} [ (a, b) with a < b < w�. Then, since ŵ�  r̂Û, it must be the case that for all ŵ 2 (a, b) , we have (eŵ � r̂Û) < 0

for all ŵ 2 (a, b), and Ŵ(ŵ) = Eŵ

h´ tĈh\Ĉj

0 e�(r̂+d)t(ewt � r̂Û)dt
i
< 0 for all ŵ 2 (a, b) due to continuity of Brownian

motions. Since Ŵ(ŵ) � 0, we have a contradiction. A similar argument holds for the firm’s continuation set.

We prove that �• < ŵ� by contradiction. Assume that �• = ŵ�, then

Ŵ(ŵ, ŵ+) := E

"ˆ t(�•,ŵ+)^td

0
e�r̂t

⇣
eŵt � r̂Û

⌘
dt|ŵ0 = ŵ

#
.

Then, since r̂Û < eŵ+
, it is easy to show

Ŵ(ŵ, ŵ+) = E

"ˆ t(�•,ŵ+)^td

0
e�r̂t

⇣
eŵt � r̂Û

⌘
dt|ŵ0 = ŵ

#

 E

ˆ •

0
e�(r̂+d)t

⇣
eŵt � r̂Û

⌘
dt|ŵ0 = ŵ

�

=
ew

r̂ + d + ĝ � s2/2
�

r̂Û
r̂ + d
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=
ew

r � g � s2/2 + d + g + s2 � s2/2
�

r̂Û
r � g � s2/2 + d

=
ew

r + d
�

r̂Û
r � g � s2/2 + d

Thus, there exists a small enough ŵ s.t. Ŵ(ŵ, ŵ+) < 0, and we have a contradiction. A similar argument holds for the

firm’s separation threshold.

Finally, the smooth pasting conditions are necessary and sufficient for the optimal stopping times (see Brekke and Øksendal,

1990).

B.5 Proof of Propositions 3, 4, and 5

Define Ĉ = (ŵ�, ŵ+). From Proposition 2, we can work with the following HJB conditions

(r̂ + d)Ŵ(ŵ) = eŵ
� r̂Û � ĝŴ 0(ŵ) +

s2

2
Ŵ 00(ŵ) 8ŵ 2 Ĉ

j
\ Ĉh (B.33)

(r̂ + d) Ĵ(ŵ) = 1 � eŵ
� ĝ Ĵ0(ŵ) +

s2

2
Ĵ00(ŵ) 8ŵ 2 Ĉ

j
\ Ĉ

h (B.34)

r̂Û = B̃ + K̃1�a�1
Ĵ(ŵ⇤)

1�a
a Ŵ(ŵ⇤)

(1 � a)
dlog Ĵ(ŵ⇤)

dŵ
= �a

dlog Ŵ(ŵ⇤)
dŵ

,

with the value matching conditions

Ŵ(ŵ�) = Ĵ(ŵ�) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0

and smooth pasting conditions

Ŵ 0(ŵ�) = Ĵ0(ŵ+) = 0.

Proposition 3. Assume ĝ = s = 0. Then, optimal policies are given by

(ŵ�, ŵ⇤, ŵ+) = log(r̂Û, a + (1 � a)r̂Û, 1),

with h(ŵ⇤) = a and T (ŵ⇤, r̂) = 1/(r̂ + d).

Proof. If ĝ = s = 0, conditions (B.33) and (B.34) imply

Ŵ(ŵ) =
eŵ � eŵ�

r̂ + d
; Ĵ(ŵ) =

eŵ+
� eŵ

r̂ + d
.

The variation inequalities imply

(r̂ + d)Ŵ(ŵ) = max{0, eŵ
� r̂Û}, 8ŵ 2 Ĉ

j,

(r̂ + d) Ĵ(ŵ) = max{0, 1 � eŵ
}, 8ŵ 2 Ĉ

h, .

Thus, Ŵ(ŵ�) = Ĵ(ŵ+) = 0 and

ŵ+ = 0 ; ŵ� = log
�
r̂Û
�

.
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Since

T (ŵ, r̂) =

8
<

:
(r̂ + d)�1 if ŵ 2 [ŵ�, ŵ+]

0 otherwise,

and Tŵ(ŵ⇤, r̂) = 0, we have that the worker’s share of the surplus h(ŵ⇤) = a.

Proposition 4. Assume ĝ = 0, a = 1/2 and a first-order approximation of the flow payoffs around ŵ⇤. Then ŵ± = ŵ⇤ ± h(j, F)

eŵ⇤

=
1 + r̂Û

2
and h(j, F) = w(2jF)F

with j =
p

2(r̂ + d)/s, F = 1�r̂Û
1+r̂Û . The following properties hold for w: (i) w(z) decreases for all z 2 (0, •), (ii) limz!0 w(z) = 3, (iii)

limz!• w(z) = 1, (iv) w(2jF)F is increasing in F, and (v) jw(2jF) is increasing in j. h(ŵ) = a and

T (ŵ⇤, r̂) =
1 � sech(jh(j, F))

r̂ + d

increasing in j and F.

Proof. Let us guess and verify the following solution w⇤ = log
⇣

1+r̂Û
2

⌘
and ŵ� = ŵ⇤ � h and ŵ+ = ŵ⇤ + h for a given h. Using

a Taylor approximation over the flow profits around w⇤

eŵ
� r̂Û ⇡ eŵ⇤

(1 + (ŵ � ŵ⇤))� r̂Û =
1 � r̂Û

2
+ eŵ⇤

(ŵ � ŵ⇤),

1 � eŵ
⇡ 1 � eŵ⇤

(1 + (ŵ � ŵ⇤)) =
1 � r̂Û

2
� eŵ⇤

(ŵ � ŵ⇤).

We can write the optimality conditions as

(r̂ + d)Ŵ(ŵ) =
1 � r̂Û

2
+ eŵ⇤

(ŵ � ŵ⇤) +
s2

2
Ŵ 00(ŵ), 8ŵ 2 (w⇤

� h, w⇤ + h)

(r̂ + d) Ĵ(ŵ) =
1 � r̂Û

2
� eŵ⇤

(ŵ � ŵ⇤) +
s2

2
Ĵ00(ŵ), 8ŵ 2 (w⇤

� h, w⇤ + h)

with the border conditions

Ŵ(ŵ⇤
� h) = Ĵ(ŵ⇤

� h) = Ŵ(ŵ⇤ + h) = Ĵ(ŵ⇤ + h) = 0,

Ŵ 0(ŵ⇤
� h) = Ĵ0(ŵ⇤ + h) = 0.

Now, we show that we can transform J(x) =
Ĵ(x+ŵ⇤)� 1�r̂Û

2(r̂+d)

ew⇤ . A similar argument applies to the value function of the worker.

Making the following transformation J(x) =
Ĵ(x+ŵ⇤)� 1�r̂Û

2(r̂+d)

ew⇤ , and using (B.34)

(r̂ + d)J(x) = (r̂ + d)

0

@
Ĵ(x + ŵ⇤)� 1�r̂Û

2(r̂+d)

ew⇤

1

A ,

= �x +
s2

2
1

ew⇤ Ĵ00(x + ŵ⇤),

= �x +
s2

2
J00(x).
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Thus,

(r̂ + d)W(x) = x +
s2

2
W 00(x) 8x 2 (�h, h)

(r̂ + d)J(x) = �x +
s2

2
J00(x) 8x 2 (�h, h)

Defining

F =
1�r̂Û

2
ew⇤ =

1 � r̂Û
1 + r̂Û

> 0,

it is easy to show

W(h) = J(h) = W(�h) = J(�h) = �
F

r̂ + d
; W 0(�h) = J0(h) = 0.

Thus, W(x) = J(�x). Given that this problem is symmetric, we verify the guess of symmetry of the Ss bands and 1
2 W 0(0) =

�
1
2 J0(�0). The latter property, implies that w⇤ satisfies the proposed Nash bargaining solution.

Now, we show that h = w(j)F with j =
p

2(r̂ + d)/s. Note that W(x) = J(�x). Thus, we can only focus on W(x) using

the smooth pasting condition evaluated at �h. The solution to this system of differential equations is given by

W(x) = Aejx + Be�jx +
x

r̂ + d

W(h) = W(�h) = �
F

r̂ + d
and W 0(�h) = 0

with j =
p

2(r̂ + d)/s. Writing the value matching conditions

Aejh + Be�jh +
h

r̂ + d
= �

F
r̂ + d

Ae�jh + Bejh
�

h
r̂ + d

= �
F

r̂ + d

Taking the difference and the sum

A
⇣

ejh + e�jh
⌘
+ B

⇣
e�jh + ejh

⌘
= �2

F
r̂ + d

A
⇣

ejh
� e�jh

⌘
+ B

⇣
e�jh

� ejh
⌘
= �2

h
r̂ + d

.

Solving for A and B,

A =
�2 F

r̂+d

⇣
e�jh � ejh

⌘
+ 2 h

r̂+d

⇣
e�jh + ejh

⌘

�
ejh + e�jh� �e�jh � ejh��

�
e�jh + ejh� �ejh � e�jh�

=
e�jh

⇣
�

F
r̂+d + h

r̂+d

⌘
+ ejh

⇣
h

r̂+d + F
r̂+d

⌘

�
ejh + e�jh� �e�jh � ejh�

= �
1

r̂ + d

e�jh (�F + h) + ejh (h + F)

e2jh � e�2jh

B =
�2 h

r̂+d

⇣
ejh + e�jh

⌘
+ 2 F

r̂+d

⇣
ejh � e�jh

⌘

�
ejh + e�jh� �e�jh � ejh��

�
e�jh + ejh� �ejh � e�jh�
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= �

ejh
⇣
�

F
r̂+d + h

r̂+d

⌘
+ e�jh

⇣
h

r̂+d + F
r̂+d

⌘

�
ejh + e�jh� �e�jh � ejh�

=
1

r̂ + d

ejh (�F + h) + e�jh (h + F)

e2jh � e�2jh

Therefore

W(x) = �
1

r̂ + d

e�jh (�F + h) + ejh (h + F)

e2jh � e�2jh ejx +
1

r̂ + d

ejh (F + h) + e�jh (h � F)

e2jh � e�2jh e�jx +
x

r̂ + d

Taking the derivative and evaluating in x = �h

W 0(�h) = �
1

r̂ + d

e�jh (�F + h) + ejh (h + F)

e2jh � e�2jh je�jh
�

1
r̂ + d

ejh (�F + h) + e�jh (h + F)

e2jh � e�2jh jejh +
1

r̂ + d
= 0

or equivalently

�F(e�2jh + e2jh
� 2) =

1
j
(e2jh

� e�2jh)�
1

2j
2jh

⇣
e2jh + e�2jh + 2

⌘
. (B.35)

It would be useful to express equation (B.35) using sinh(x) = ex�e�x

2 and cosh(x) = ex+e�x

2 . Using the hyperbolic functions,

�F2 (cosh(2jh)� 1) =
2 sinh(2jh)

j
� 2h (cosh(2jh) + 1) .

Multiplying both sides by j

�F2j (cosh(2jh)� 1) = 2 sinh(2jh)� j2h (cosh(2jh) + 1) .

Next, we change variables with x ⌘ 2jh and define x as the implicit solution of

�2Fj (cosh(x)� 1) + x (cosh(x) + 1) = 2 sinh(x).

Thus, h = x(2Fj)
2j . Let b = 2Fj > 0, then we can express the function x(·) as the solution of

b = �
2 sinh(x(b))� x(b) (cosh(x(b)) + 1)

(cosh(x(b))� 1)
.

Notice that if we define

f (x) = �
2 sinh(x)� x (cosh(x) + 1)

(cosh(x)� 1)
,

the following properties about f (x) hold:

1. limx!0 f (x) = 0 and limx!• f (x) = •.

2. f (x) is increasing and convex, with limx!0 f 0(x) = 1/3 and limx!• f (x) = 1.

3. dlog( f (x))
dlog(x) > 1.

Given these properties, we can write h(j, F) = f �1(2jF)
2j and show the following properties of h(j, F)

1. h(j, F) is increasing in F: Since f�1(·) is increasing, we have the result.

2. h(j, F) is decreasing in j: Taking the derivative of h(j, F) = f �1(2jF)
2j with respect to j and operating

∂h(j, F)
∂j

=
d f�1(x)

dx

�����
x=2jF

2F
2j

�
f�1(2jF)

2j2
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=
f�1(2jF)

2j2

2

4 d f�1(x)
dx

�����
x=2jF

2jF
f�1(2jF)

� 1

3

5

=
f�1(2jF)

2j2

"
dlog(x)

dlog( f (x))

����
x=2jF

2jF
f�1(2jF)

� 1

#

< 0.

3. limj#0 h(j, F) = 3F and limj!• h(j, F) = F: Applying L’Hopital’s rule and using properties of the derivative of the

inverse,

lim
j!•

h(j, F) = lim
j!•

f�1(2jF)
2j

= lim
j!•

1
f 0(2jF)

F = F

lim
j#0

h(j, F) = lim
j#0

f�1(2jF)
2j

= lim
j#0

1
f 0(2jF)

F = 3F

4. h(j, F) = w(2jF)F: Define w(z) = f �1(z)
z , then it is easy to see that h(j, F) = w(2jF)F. Moreover, from property 2

and 3, w(z) is decreasing with limz#0 w(z) = 3 and limz!• w(z) = 1. Moreover, it is easy to show with similar arguments

that w(2jF)F is increasing in F and w(2jF)j is increasing in j.

Now, we can compute h(ŵ⇤) and T (ŵ⇤, r̂). Note that we can define T(x) = T (x + ŵ⇤, r̂), which solves

(r̂ + d)T(x) = 1 +
s2

2
T00(x), with T(±h(j, F)) = 0.

The solution to this differential equation is given by

T(x) =
1 � ejx+e�jx

ejh+e�jh

r̂ + d
.

Thus, T0(0) = 0 and h(ŵ⇤) = a. Finally, using the property that sech(x) = 2
ex+e�x , we have

T (ŵ⇤, r̂) =
1 � sech(jw(2jF)F)

r̂ + d
.

Proposition 5. Assume s = 0 and ĝ � 0. Then ŵ� = log
�
r̂Û
�

and

w⇤ = ŵ� + T̃
✓

a + (1 � a)r̂Û
r̂Û

,
r̂ + d

ĝ
,
(1 � a)(1 � r̂Û)

r̂Û

◆
.

T̃ (·) is defined as

a = eT̃(a,b,c) 1 � e�(1+b)T̃(a,b,c)

1 � e�bT̃(a,b,c)
b

b + 1
� cb

e�bT̃(a,b,c)

1 � e�bT̃(a,b,c)

"
1 �

b + 1
b

1 � a�bT̃(a,b,c)

eT̃(a,b,c) � e�bT̃(a,b,c)

#
(B.36)

where T̃(·) is increasing in the first argument and decreasing in the second argument. The expected discounted duration and worker’s share

satisfies:

T (ŵ⇤, r̂) =
1 � e�

r̂+d
ĝ T̃(·)

r̂ + d
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h(ŵ⇤) =

eT̃(·) 1�e
�

✓
1+ r̂+d

ĝ

◆
T̃(·)

1�e�
r̂+d

ĝ T̃(·)

r̂+d
r̂+d+ĝ � 1

1 � r̂Û
r̂Û

Moreover,

1. If ĝ = 0, then

�
T̃(·), T (ŵ⇤, r̂), h(ŵ⇤)

�
!

✓
log
✓

a + (1 � a)r̂Û
r̂Û

◆
,

1
r̂ + d

, a

◆
.

2. If ĝ ! •, then T̃(·) ! T̃limit where

a + (1 � a)r̂Û
r̂Û

=
eT̃limit

� 1 � (1�a)(1�r̂Û)
r̂Û

⇣
1 � T̃limit

eT̃limit
�1

⌘

T̃limit ,

T (ŵ⇤, r̂) ! 0 and h(ŵ⇤) ! hlimit

hlimit = a +
1 � a

T̃limit
(1 � r̂Û)hlimit

hlimit + r̂Û(1 � hlimit)

Proof. Now, we take the limit s # 0. The equilibrium conditions in this case are

(r̂ + d)Ŵ(ŵ) = eŵ
� r̂Û � ĝŴ 0(ŵ) 8ŵ 2 Ĉ

j
\ Ĉh

(r̂ + d) Ĵ(ŵ) = 1 � eŵ
� ĝ Ĵ0(ŵ) 8ŵ 2 Ĉ

j
\ Ĉh

(1 � a)
dlog Ĵ(ŵ⇤)

dŵ
= �a

dlog Ŵ(ŵ⇤)
dŵ

with the value matching and smooth pasting conditions

Ŵ(ŵ�) = Ĵ(ŵ�) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0 ; Ŵ 0(ŵ�) = Ĵ0(ŵ+) = 0.

Without idiosyncratic shocks and g > 0 the upper Ss band is not active. Thus, we discard the optimality condition for ŵ+. In

this case, the stopping time is a deterministic function; hence, it is easier to work with the sequential formulation.

Ŵ(ŵ) = max
T

ˆ T

0
e�(r̂+d)s

⇣
eŵ�ĝs

� r̂Û
⌘

ds (B.37)

Ĵ(ŵ) =
ˆ T(ŵ)

0
e�(r̂+d)s

⇣
1 � eŵ�ĝs

⌘
ds. (B.38)

In equation (B.38), T(ŵ) is the optimal policy of the worker. Taking the first order conditions with respect to T(ŵ)

eŵ�ĝT(ŵ) = r̂Û.

Solving the previous equation,

T(ŵ) =
ŵ � log

�
r̂Û
�

ĝ
.

Thus, if ŵ = ŵ⇤, we have that ŵ� = ŵ⇤ � ĝT(ŵ⇤) satisfies

ŵ� = log(r̂Û).
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Taking the derivatives of Ŵ(ŵ) and Ĵ(ŵ), and using the envelope condition for Ŵ 0(ŵ), we have that

Ŵ 0(ŵ) =
ˆ T(w)

0
e�(r̂+d)s

⇣
eŵ�ĝs

⌘
ds, (B.39)

Ĵ0(ŵ) = �

ˆ T(w)

0
e�(r̂+d)s

⇣
eŵ�ĝs

⌘
ds + e�(r̂+d)T(ŵ)

⇣
1 � eŵ�ĝT(ŵ)

⌘
T0(ŵ)| {z }
=1/ĝ

. (B.40)

From equations (B.39) and (B.40), we get the Nash bargaining solution

�a

´ T⇤

0 e�(r̂+d)s �eŵ⇤�ĝs�ds´ T⇤

0 e�(r̂+d)s �eŵ⇤�ĝs � r̂Û
�

ds
= (1 � a)

h
�
´ T⇤

0 e�(r̂+d)s �eŵ⇤�ĝs�ds + e�(r̂+d)T⇤ (1�r̂Û)
ĝ

i

´ T⇤

0 e�(r̂+d)s (1 � eŵ⇤�ĝs)ds
(B.41)

Define

W(a, T⇤) :=
1 � e�aT⇤

a

Z :=
e�(r̂+d)T⇤

(1 � r̂Û)

ĝ
´ T⇤

0 e�(r̂+d)s (eŵ⇤�ĝs)ds

Operating

a

ˆ T⇤

0
e�(r̂+d)s

⇣
1 � eŵ⇤�ĝs

⌘
ds = (1 � a)

ˆ T⇤

0
e�(r̂+d)s

⇣
eŵ⇤�ĝs

� r̂Û
⌘

ds [1 �Z ] ()

a
h
W(r̂ + d, T⇤)� eŵ⇤

W(r̂ + d + ĝ, T⇤)
i
= (1 � a)

h
eŵ⇤

W(r̂ + d + ĝ, T⇤)� r̂ÛW(r̂ + d, T⇤)
i
⇥

. . .

"
1 �

e�(r̂+d)T⇤

(1 � r̂Û)

ĝeŵ⇤W(r̂ + d + ĝ, T⇤)

#
()

�
a + (1 � a)r̂Û

�
W(r̂ + d, T⇤) = eŵ⇤

W(r̂ + d + ĝ, T⇤) + . . .

. . . (1 � a)
h
eŵ⇤

W(r̂ + d + ĝ, T⇤)� r̂ÛW(r̂ + d, T⇤)
i e�(r̂+d)T⇤

(1 � r̂Û)

ĝeŵ⇤W(r̂ + d + ĝ, T⇤)
()

�
a + (1 � a)r̂Û

�
W(r̂ + d, T⇤) = eŵ⇤

W(r̂ + d + ĝ, T⇤)�
(1 � a)e�(r̂+d)T⇤

(1 � r̂Û)
ĝ


1 � r̂Û

W(r̂ + d, T⇤)

eŵ⇤W(r̂ + d + ĝ, T⇤)

�

The policy (T⇤, ŵ⇤) solves

eŵ⇤�ĝT⇤

= r̂Û

�
a + (1 � a)r̂Û

�
W(r̂ + d, T⇤) = eŵ⇤

W(r̂ + d + ĝ, T⇤)�
(1 � a)e�(r̂+d)T⇤

(1 � r̂Û)
ĝ


1 � r̂Û

W(r̂ + d, T⇤)

eŵ⇤W(r̂ + d + ĝ, T⇤)

�
.

Define T̃ = ĝT⇤ and W(a, T⇤) := 1�e�aT⇤

a = ĝ�1W( a
ĝ , T̃). Then

eŵ⇤�T̃ = r̂Û

�
a + (1 � a)r̂Û

�
ĝ�1W

✓
r̂ + d

ĝ
, T̃
◆
= eŵ⇤

ĝ�1W
✓

r̂ + d

ĝ
+ 1, T̃

◆
�

(1 � a)e�
r̂+d

ĝ T̃(1 � r̂Û)
ĝ

2

41 � r̂Û
W
⇣

r̂+d
ĝ , T̃

⌘

eŵ⇤W
⇣

r̂+d
ĝ + 1, T̃

⌘

3

5 .
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Therefore, the optimal stopping is given by

a + (1 � a)r̂Û
r̂Û

W
⇣

r̂+d
ĝ , T̃

⌘

W
⇣

r̂+d
ĝ + 1, T̃

⌘ = eT̃
�

(1 � a)(1 � r̂Û)
h
1 � r̂+d

ĝ W
⇣

r̂+d
ĝ , T̃

⌘i

r̂ÛW
⇣

r̂+d
ĝ + 1, T̃

⌘

2

41 �
W
⇣

r̂+d
ĝ , T̃

⌘

eT̃W
⇣

r̂+d
ĝ + 1, T̃

⌘

3

5

or

a + (1 � a)r̂Û
r̂Û

= eT̃
W
⇣

r̂+d
ĝ + 1, T̃

⌘

W
⇣

r̂+d
ĝ , T̃

⌘ �

(1 � a)(1 � r̂Û)
h
1 � r̂+d

ĝ W
⇣

r̂+d
ĝ , T̃

⌘i

r̂ÛW
⇣

r̂+d
ĝ , T̃

⌘

2

41 �
W
⇣

r̂+d
ĝ , T̃

⌘

eT̃W
⇣

r̂+d
ĝ + 1, T̃

⌘

3

5

Now, we show the properties satisfied by T̃
⇣

a+(1�a)r̂Û
r̂Û , r̂+d

ĝ , (1�a)(1�r̂Û)
r̂Û

⌘
. Let us define the following function:

f (a, b, c) := ea 1 � e�(1+b)a

1 � e�ba
b

b + 1
� c

"
1 � b 1�e�ba

b
1�e�ba

b

# "
1 �

1 � e�ba

1 � e�(1+b)a
b + 1
bea

#

= ea 1 � e�(1+b)a

1 � e�ba
b

b + 1
� c


b

1 � e�ba � b
� "

b(ea � e�ba)� (1 � e�ba)(b + 1)
b(ea � e�ba)

#

= ea 1 � e�(1+b)a

1 � e�ba
b

b + 1
� cb

e�ba

1 � e�ba

"
b(ea � e�ba)� (b + 1) + (1 + b)e�ba

b(ea � e�ba)

#

= ea 1 � e�(1+b)a

1 � e�ba
b

b + 1
� cb

e�ba

1 � e�ba

"
1 �

b + 1
b

1 � e�ba

ea � e�ba

#
.

Observe that with this function:

a + (1 � a)r̂Û
r̂Û

= f
✓

T̃
✓

a + (1 � a)r̂Û
r̂Û

,
r̂ + d

ĝ
,
(1 � a)(1 � r̂Û)

r̂Û

◆
,

r̂ + d

ĝ
,
(1 � a)(1 � r̂Û)

r̂Û

◆
.

The following properties are easy to show:

1. f (a, b, c) is increasing in a.

2. If a, c > 0, b ! •, then f (a, b, c) ! ea : To see this property, taking the limit

lim
a>0,b!•,cµb

"
ea 1 � e�(1+b)a

1 � e�ba
b

b + 1
� cb

e�ba

1 � e�ba

"
1 �

b + 1
b

1 � e�ba

ea � e�ba

##

= ea lim
a>0,b!•

1 � e�(1+b)a

1 � e�ba
| {z }

= 1

lim
a>0,b!•

b
b + 1

| {z }
= 1

� lim
a>0,b!•

cb
e�ba

1 � e�ba
| {z }

= 0

2

6664
1 � lim

b!•

b + 1
b| {z }

= 1

lim
a>0,b!•

1 � e�ba

ea � e�ba
| {z }

= e�a

3

7775

= ea.

3. If a, c > 0 and b ! 0 then f (a, b, c) ! ea�1�c(1� a
ea�1 )

a : To see this property, taking the limit

lim
a>0,b!0

"
ea 1 � e�(1+b)a

1 � e�ba
b

b + 1
� cb

e�ba

1 � e�ba

"
1 �

b + 1
b

1 � e�ba

ea � e�ba

##

= ea(1 � e�a) lim
a>0,b!0

b
1 � e�ba

| {z }
= 1/a

�c lim
a>0,b!0

b
1 � e�ba

| {z }
= 1/a

2

6641 �
1

ea � 1
lim

b!•

1 � e�ba

b| {z }
= a

3

775
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=
ea � 1 � c

⇣
1 � a

ea�1

⌘

a
.

4. ea � f (a, b, c) � ea�1�c(1� a
ea�1 )

a where the upper bound is reached when b ! • and the lower bound when b # 0.

5. Duration of the match: It is easy to show that

T (ŵ⇤, r̂) =
1 � e�

r̂+d
ĝ T̃(·)

r̂ + d
.

6. The worker’s share is given by

h(ŵ⇤) =
eĝT⇤(·)+log(r̂Û)

´ T⇤

0 e�(r̂+d+ĝ)t dt � r̂Û
´ T⇤

0 e�(r̂+d)t dt

(1 � r̂Û)
´ T⇤

0 e�(r̂+d)t dt

=

eT̃(·) 1�e
�

✓
1+ r̂+d

ĝ

◆
T̃(·)

1�e�
r̂+d

ĝ T̃(·)

r̂+d
r̂+d+ĝ � 1

1 � r̂Û
r̂Û (B.42)

With these properties, we can characterize the equilibrium policies:

1. T̃
⇣

a+(1�a)r̂Û
r̂Û , r̂+d

ĝ , (1�a)(1�r̂Û)
ĝr̂Û

⌘
is increasing in the first argument.

2. If ĝ ! 0, then r̂+d
ĝ ! •

lim
(r̂+d)/ĝ!•

T̃(·) = log
✓

a + (1 � a)r̂Û
r̂Û

◆

The expected discounted duration in the limit is equal to

lim
ĝ!0

T (ŵ⇤, r̂) =
1

r̂ + d

The worker’s share in the limit is equal to

h(ŵ⇤) =

eT̃(·) 1�e
�

✓
1+ r̂+d

ĝ

◆
T̃(·)

1�e�
r̂+d

ĝ T̃(·)

r̂+d
r̂+d+ĝ � 1

1 � r̂Û
r̂Û =

eT̃(·) � 1
1 � r̂Û

r̂Û =

a+(1�a)r̂Û
r̂Û � 1

1 � r̂Û
r̂Û = a

3. If ĝ ! •, then r̂+d
ĝ ! 0, which provides the same T̃(·) as r̂ + d ! 0. As we have shown before, under this limit, T̃(·)

converges to the implicit solution given by

a + (1 � a)r̂Û
r̂Û

=
eT̃(·) � 1 � (1�a)(1�r̂Û)

r̂Û

⇣
1 � T̃(·)

eT̃(·)�1

⌘

T̃(·)
.

Given the convergence, we now show the limit for h(ŵ⇤) since clearly T (ŵ⇤, r) ! 0. Let us depart from equation (B.41)

�a

´ T⇤

0 e�(r̂+d)s �eŵ⇤�ĝs�ds´ T⇤

0 e�(r̂+d)s �eŵ⇤�ĝs � r̂Û
�

ds
= (1 � a)

h
�
´ T⇤

0 e�(r̂+d)s �eŵ⇤�ĝs�ds + e�(r̂+d)T⇤ (1�r̂Û)
ĝ

i

´ T⇤

0 e�(r̂+d)s (1 � eŵ⇤�ĝs)ds

Taking the limit as r̂ + d ! 0

a

ˆ T⇤

0
(1 � ewt )dt = (1 � a)

ˆ T⇤

0

�
ewt � r̂Û

�
dt �

(1 � a)(1 � r̂Û)
ĝ

´ T⇤

0
�
ewt � r̂Û

�
dt´ T⇤

0 ewt dt
.
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Operating and using the occupancy measure

a + (1 � a)r̂Û +
(1 � a)(1 � r̂Û)

ĝT⇤

´ T⇤
0 ewt dt

T⇤ � r̂Û´ T⇤
0 ewt dt

T⇤

=

´ T⇤

0 ewt dt
T⇤

It is easy to check that

a + (1 � a)r̂Û +
1 � a

ĝT⇤

E[eŵ]� r̂Û
E[eŵ]

(1 � r̂Û) = E[eŵ].

From (B.42), since r̂ + d ! 0, we have that h(ŵ⇤) = E[eŵ ]�r̂Û
1�r̂Û . Combining these results

a + (1 � a)r̂Û +
1 � a

ĝT⇤

E[eŵ]� r̂Û
E[eŵ]

(1 � r̂Û) = E[eŵ] ()

a + (1 � a)r̂Û +
1 � a

ĝT⇤

(1 � r̂Û)h(ŵ⇤)

(1 � r̂Û)h(ŵ⇤) + r̂Û
(1 � r̂Û) = (1 � r̂Û)h(ŵ⇤) + r̂Û ()

a(1 � r̂Û) +
1 � a

ĝT⇤

(1 � r̂Û)h(ŵ⇤)

(1 � r̂Û)h(ŵ⇤) + r̂Û
(1 � r̂Û) = (1 � r̂Û)h(ŵ⇤)

h(ŵ⇤) = a +
1 � a

T̃
(1 � r̂Û)h(ŵ⇤)

h(ŵ⇤) + r̂Û(1 � h(ŵ⇤))
.
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C Extension with Staggered Wage Renegotiations

Overview. In the baseline model, wages are completely rigid within a worker-firm match. We now consider a generalization

of the baseline model that adds staggered wage renegotiations à la Calvo (1983). The resulting insight is that all our key results

can be extended to this more general environment.

In the model extension, renegotiations occur within a match according to a Poisson process with rate dr � 0. The

renegotiation hazard induces a stochastic duration tr between the last wage setting event (i.e., match formation or renegotiations)

and a new round of renegotiations. We assume that renegotiations entail the wage within a worker-firm match being set

according to a Nash bargain with worker bargaining weight a (i.e., the elasticity of the matching function with respect to

unemployment) over the prevailing surplus at the time of renegotiations. As dr ! 0, we recover the baseline model with fully

rigid wages within a match. As dr ! •, we obtain the polar opposite case with flexible wages that are continuously reset.

Notation. Let N 2 N+ denote the number of segments with distinct wages realized during a job spell (i.e., N � 1 is the

number of renegotiations that occur) between match formation and match dissolution. We index all stopping times by the

segment n 2 {1, 2, . . . , N} during which they occur. By construction, wages are constant within but vary across segments.

For each segment n 2 {1, 2, . . . , N}, there are two cases. First, if min{th,n, t j,n, td,n} < tr,n, then the job spell ends with

segment n = N. Second, if min{th,n, t j,n, td,n} > tr,n, then renegotiations occur and the match enters segment n + 1  N of the

job spell with a renegotiated wage.15 Given a collection of stopping times associated with a job spell, ~tm = {~tm,n}n2{1,...,N},

where ~tm,n = {th,n, t j,n, td,n, tr,n} for each segment n 2 {1, . . . , N}, we define tm,n := min~tm,n as the minimum stopping time

of segment n and we define tm := ÂN
n=1 tm,n = ÂN�1

n=1 tr,n + min{th,N , t j,N , td,N} as the total match duration.

The wage prevailing during segment n 2 {1, 2, . . . , N} of a job spell starting at time t = 0 is given by

wt =

8
><

>:

w⇤(z0) t 2
⇥
0, tm,1� ,

w⇤(ztr,n�1 ) t 2
⇥
tr,n�1, tm,n� , 1 < n  N.

Sequence Formulation. The value of an unemployed worker with productivity z is

U(z) = max
{wt}

tu
t=0

E0

"ˆ tu

0
e�rtB(ezt )dt + e�rtu

H(wtu , ztu ,~tm(wtu , ztu ))

#
.

The value of a worker employed at wage w with productivity z is

H(w, z,~tm) = E0

"ˆ tm

0
e�rtewt dt + e�rtm

U(ztm )

#
.

That is, an employed worker consumes a stochastic wage stream wt until time tm, when she either endogenously or exogenously

transitions to unemployment. Similarly, the value of a firm matched with a worker with wage wage w and productivity z is

J(w, z,~tm) = E0

"ˆ tm

0
e�rt [ezt � ewt ]dt

#
.

15Note that P[min{th,n, t j,n, td,n} = tr,n] = 0 for all n 2 {1, 2, . . . , N} since renegotiations occur independently from other
separation events.
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Recursive Formulation. The Hamilton-Jacobi-Bellman (HJB) equation of an unemployed worker is still

ru(z) = B̃ez + g
∂u(z)

∂z
+

s2

2
∂2u(z)

∂z2 + max
w

f (w, z)[h(z; w)� u(z)].

The HJB equation of a worker employed at log wage w with log productivity z 2 C j(w), for which the firm prefers to continue, is

now

rh(z; w) = max
⇢

ew + g
∂h(z; w)

∂z
+

s2

2
∂2h(z; w)

∂z2 � dr[h(z; w)� h(z; w⇤(z))]� d[h(z; w)� u(z)] , ru(z)
�

.

Similarly, the HJB equation of a firm employing a worker at log wage w with log productivity z 2 Ch(w), for which the worker

prefers to continue, is now

rj(z; w) = max
⇢

ez
� ew + g

∂j(z; w)
∂z

+
s2

2
∂2 j(z; w)

∂z2 � dr[j(z; w)� j(z; w⇤(z))]� dj(z; w) , 0
�

.

Here, w⇤(z) is the solution to a Nash bargain with worker bargaining weight a (i.e., the elasticity of the matching function with

respect to unemployment), which satisfies the Hosios (1990) condition:

w⇤(z) = arg max
w

n
h(z; w)a j(z; w)1�a

o

Change of Notation. Using the change of notation from Lemma 2, ŵ := w � z, r̂ := r � g � s2/2 and ĝ := g + s2, we

define

�
Û, Ĵ(w � z), Ŵ(w � z), q̂(w � z)

�
=

✓
u(z)

ez ,
j(z; w)

ez ,
h(z; w)� u(z)

ez , q(w, z)
◆

.

Rewriting the HJB equations using this change of notation, we get

r̂Û = B̃ + max
ŵ

q̂(ŵ)1�aŴ(ŵ)

(r̂ + d + dr)Ŵ(ŵ) = max
⇢

eŵ + drŴ(ŵ⇤)� r̂Û � ĝŴ 0(ŵ) +
s2

2
Ŵ 00(ŵ) , 0

�

(r̂ + d + dr) Ĵ(ŵ) = max
⇢

1 � eŵ + dr Ĵ(ŵ⇤)� ĝ Ĵ0(ŵ) +
s2

2
Ĵ00(ŵ) , 0

�
.

Here, drŴ(ŵ⇤) and dr Ĵ(ŵ⇤) are just constants, since the reset wage ŵ⇤ does not depend on the current value of ŵ. Therefore, the

problem is identical to that in the baseline model with completely rigid wages (i.e., with dr = 0), except for three features. First,

the effective discount rate of workers and firms is now r̂ + d + dr instead of the previous expression r̂ + d. Second, the flow

value of the worker is now eŵ + drŴ(ŵ⇤)� r̂Û instead of the previous expression eŵ � r̂Û. Third, the flow value of the firm is

now 1 � eŵ + dr Ĵ(ŵ⇤) instead of the previous expression 1 � eŵ. Note that these expressions simplify to those from the baseline

model as dr ! 0.

Results. We now restate without proof some of the key results from the baseline model to the extended environment with

staggered wage renegotiations.

Proposition C.1. There exists a unique block recursive equilibrium (BRE).

Proposition C.2. With wage renegotiations à la Calvo (1983), the BRE has the following properties:
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1. The joint match surplus satisfies

Ŝ(ŵ) =
1 � r̂Û

1 � drT (ŵ⇤, r̂)
T (ŵ, r̂ + dr),

where

T (ŵ, r̂ + dr) := Eŵ

"ˆ tm⇤

0
e�(r̂+dr)t dt

#

is the expected discounted duration of current wages and 1 > r̂Û > B̃.

2. The competitive entry wage ŵ⇤ coincides with the Nash bargaining solution with worker’s weight a:

ŵ⇤ = arg max
ŵ

n
Ŵ(ŵ)a Ĵ(ŵ)1�a

o
= arg max

ŵ

n
h(ŵ)a(1 � h(ŵ))1�a

T (ŵ, r̂ + dr)
o

,

with optimality condition

h0(ŵ⇤)

✓
a

h(ŵ⇤)
�

1 � a

1 � h(ŵ⇤)

◆

| {z }
Share channel

= �
Tŵ(ŵ⇤, r̂ + dr)
T (ŵ⇤, r̂ + dr)
| {z }

Surplus channel

.

3. Given h(ŵ⇤) and T (ŵ⇤, r̂ + dr), the equilibrium job finding rate f (ŵ⇤) and the flow opportunity cost of employment r̂Û are given

by

f (ŵ⇤) =
⇥
(1 � h(ŵ⇤))(1 + drŜ(ŵ⇤)� r̂Û)T (ŵ⇤, r̂ + dr)/K̃

⇤ 1�a
a ,

r̂Û = B̃ +
⇣

K̃a�1 (1 � h(ŵ))1�a h(ŵ)a(1 + drŜ(ŵ⇤)� r̂Û)T (ŵ⇤, r̂ + dr)
⌘ 1

a .

4. Assume g 6= 0 or s 6= 0. Given Û, the worker’s and the firm’s continuation sets are connected, and the game’s continuation set is

bounded; i.e.,

Ĉ
h = {ŵ : ŵ > ŵ�

} and Ĉ
j = {ŵ : ŵ < ŵ+

}.

The worker’s and firm’s value functions satisfy smooth pasting conditions at ŵ� and ŵ+, respectively: Ŵ 0(ŵ�) = Ĵ0(ŵ+) = 0.

Proof. Now, we prove each equilibrium property.

1. The fact that r̂U � B̃ follows from the same argument as before. Combining the sequence and recursive formulations of

the value functions, we have

Ŵ(ŵ) = Eŵ

"ˆ tm⇤

0
e�(r̂+dr)t(eŵt + drŴ(ŵ⇤)� r̂Û)dt

#

Ĵ(ŵ) = Eŵ

"ˆ tm⇤

0
e�(r̂+dr)t(1 � eŵt + dr Ĵ(ŵ⇤))dt

#

where tm⇤ is the optimal stopping time. Summing up the previous two equations, we have

Ŝ(ŵ) = Ŵ(ŵ) + Ĵ(ŵ) = Eŵ

"ˆ tm⇤

0
e�(r̂+dr)t(1 + drŜ(ŵ⇤)� r̂Û)dt

#

= (1 + drŜ(ŵ⇤)� r̂Û)Eŵ

"ˆ tm⇤

0
e�(r̂+dr)t dt

#
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= (1 + drŜ(ŵ⇤)� r̂Û)T (ŵ, r̂ + dr).

Note that, in the limit as dr ! •, we get

lim
dr!•

T (ŵ, r̂ + dr) = lim
dr!•

Eŵ

"ˆ tm⇤

0
e�(r̂+dr)t dt

#

= lim
dr!•

Eŵ


�

1
r̂ + dr

h
e�(r̂+dr)t

itm

t=0

�

= lim
dr!•

�
1

r̂ + dr Eŵ

h
e�(r̂+dr)tm

� 1
i
= 0

Evaluating the expression for match surplus Ŝ(ŵ) at ŵ⇤, we get

Ŝ(ŵ⇤) = (1 + drŜ(ŵ⇤)� r̂Û)T (ŵ⇤, r̂ + dr)

and thus

Ŝ(ŵ⇤) =
1 � r̂Û

1 � drT (ŵ⇤, r̂ + dr)
T (ŵ⇤, r̂ + dr).

Plugging this back into the above, we get

Ŝ(ŵ) =
1 � r̂Û

1 � drT (ŵ⇤, r̂ + dr)
T (ŵ, r̂ + dr),

which is an expression for Ŝ(ŵ) that depends only on Û, T (ŵ⇤, r̂ + dr), and T (ŵ, r̂ + dr) but not on Ŝ(ŵ⇤). Since

Ŵ(ŵ), Ĵ(ŵ) � 0, then Ŝ(ŵ) � 0 and thus

0  Ŝ(ŵ⇤) = (1 � r̂Û)
T (ŵ⇤, r̂ + dr)

1 � drT (ŵ⇤, r̂ + dr)
| {z }

>0

() 0  1 � r̂Û () 1 � r̂Û.

Therefore, 1 � r̂Û � B̃. To go from weak to strict inequalities, we follow the same logic as previously.

Notice that in the limit as dr ! •, T (ŵ⇤ ,r̂+dr)
1�drT (ŵ⇤ ,r̂+dr) !

1
r̂+d , thus the model converges to the model with flexible wages as in

Moen (1997).

2. An analogous proof goes through.

3. The same optimality conditions apply.

4. Once more, an analogous proof goes through.

Interpretation. The introduction of staggered wage renegotiations à la Calvo (1983) changes the match surplus in a single

way: It changes the expected discounted match duration T (ŵ⇤, r̂) to T (ŵ⇤, r̂ + dr)/(1 � drT (ŵ⇤, r̂ + dr)) > 1, which reflects

the extended match duration due to future renegotiations.
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D Proofs for Section 3: The Consequences of Monetary Shocks in Non-

Coasean Labor Markets

D.1 Proof of Proposition 6

Proposition 6. Let Q0 = 1 be the numéraire and assume µ = r + p � z2/2. Then, Pt = Mt and the value of a worker at time 0 is

V0 = max
{lmit}

•
t=0

E0

"ˆ •

0
e�rt Y(lmt

i )

Pt
dt

#
+ k,

where k is a constant independent of the worker’s choices and the present discounted value of financial wealth.

Proof. Let V0 be the present discounted value of the optimal plan. The worker’s value is given by

V0 = max
{Cit ,M̂it ,lmit}

•
t=0

E0

ˆ •

t=0
e�rt

✓
Cit + µ log

✓
M̂it
Pt

◆◆
dt
�

,

subject to

E0

ˆ •

t=0
Qt
�

PtCit + it M̂it � Y(lmt
i )� Tit

�
dt
�
 Mi0. (D.1)

The first-order conditions for consumption and money holdings, combined with the definition of the nominal interest rate, are

given by

e�rt = LiQtPt, (D.2)

µ
e�rt

M̂it
= LiQtit, (D.3)

E[dQt] = �itQt dt. (D.4)

Here, Li is the Lagrange multiplier of (D.1) for each worker. Equation (D.2) shows that Li = L for all i. Taking integrals over

(D.3), we can replace M̂ti = Mt. With these results, we guess and verify the following equilibrium outcomes

Pt = Ap Mt,

it = Ai, (D.5)

Qt =
AQe�rt

Mt
.

given a set of constants Ap, Ai, and AQ. Using the guess in (D.2) and (D.3)

1 = LAQ AP, (D.6)

µ = LAQ Ai. (D.7)

Equations (D.6) and (D.7) provide the equilibrium values for AQ and AP given Ai. Applying Ito’s lemma and using the guess

over (D.4)

dQt = AQ d
✓

e�rt

elog(Mt)

◆
,
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= �rAQ
✓

e�rt

elog(Mt)

◆
dt � AQ e�rt

elog(Mt)
dlog(Mt) + AQ e�rt

2elog(Mt)
(dlog(Mt))

2,

= �rQt dt � pQt dt � zQt dWm
t +

z2

2
Qt dt.

Thus, using the guess (D.5) and E[dWm
t ] = 0

E[dQt] = �

✓
r + p �

z2

2

◆

| {z }
=Ai

Qt dt.

If we take as numéraire Q0 = 1, then we verify the guess with µ = r + p �
z2

2 :

AQ = M0,

Ai = r + p �
z2

2
= µ,

L =
µ

M0(r + p � z2/2)
=

1
M0

,

AP =
r + p � z2/2

µ
= 1.

Using the budget constraint (D.1)

E0

ˆ •

0
Qt
�

PtCit + it M̂it � Y(lmt
i )� Tit

�
dt
�
= Mi0 ()

E0

ˆ •

0

M0e�rt

Mt

�
MtCit + µMt � Y(lmt

i )� Tit
�

dt
�
= Mi0 ()

M0E0

ˆ •

0
e�rtCit dt

�
= Mi0 + M0E0

"ˆ •

0
e�rt Y(lmt

i )

Mt

#
+ M0E0

ˆ •

0
e�rt Tit

Mt
dt
�
�

M0
r

µ ()

E0

ˆ •

0
e�rtCit dt

�
= E0

"ˆ •

0
e�rt Y(lmt

i )

Mt

#
+ ki,

where ki is a constant independent of the worker’s policies. Thus,

V0 = max
{Cit ,M̂it ,lmit}

•
t=0

E0

ˆ •

0
e�rt

✓
Cit + µ log

✓
M̂it
Pt

◆◆
dt
�

,

= max
{Cit ,lmit}

•
t=0

E0

ˆ •

0
e�rt

✓
Cit + µ log

✓
µ

r + p � z2/2

◆◆
dt
�

,

= max
{Cit ,lmit}

•
t=0

E0

ˆ •

0
e�rtCit dt

�
,

= max
{lmit}

•
t=0

E0

"ˆ •

0
e�rt Y(lmt

i )

Mt

#
+ ki.
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D.2 Proof of Proposition 7: CIR of employment with Flexible Entry Wage

We divide the proof of Proposition 7 into three propositions. Proposition D.1 relates the CIR to a perturbation of two Bellman

equations describing future employment fluctuations for initially employed and unemployed workers. This proposition covers

both the case with flexible and sticky entry wages. Proposition D.2 relates steady-state moments of the perturbed Bellman

equations to steady-state moments of the distribution of Dz. Finally, Proposition D.3 related the steady-state moments of Dz to

observable moments in the steady-state.

Let gh(Dz) and gu(Dz) be the distributions of Dz across employed and unemployed workers, respectively. The support

of gh(Dz) is given by [�D�, D+], where D� := ŵ⇤ � ŵ� and D+ := ŵ+ � ŵ⇤. We denote by Eh[·] and Eu[·] the expectation

operators under the distributions gh(Dz) and gu(Dz), respectively.

Proposition D.1. Given steady-state policies (ŵ�, ŵ⇤, ŵ+) and distributions (gh(Dz), gu(Dz)), the CIR is given by

CIRE (z) =
ˆ •

�•
mE ,h(Dz)gh(Dz + z)dDz +

ˆ •

�•
mE ,u(Dz, z)gu(Dz + z)dDz,

where the value functions mE ,h(Dz) and mE ,u(Dz, z) are defined as:

mE ,h(Dz) = E

"ˆ tm

0
(1 � Ess)dt + mE ,u(0, 0)

�����Dz0 = Dz

#
, (D.8)

mE ,u(Dz, z) = E

"ˆ tu(z)

0
(�Ess)dt + mE ,h(�z)

�����Dz0 = Dz

#
. (D.9)

0 =
ˆ •

�•
mE ,h(Dz)gh(Dz)dDz +

ˆ •

�•
mE ,u(Dz, 0)gu(Dz)dDz.

with tu(z) being distributed according to a Poisson process with arrival rate f (ŵ⇤ � z).

Proof. We define the cumulative impulse response of aggregate employment to a monetary shock as

CIRE (z) =
ˆ •

0

ˆ •

�•

⇣
gh(Dz, z, t)� gh(Dz)

⌘
dDz dt

Note that Et =
´ •
�• gh(Dz, z, t)dDz is a function of z since aggregate shocks affect net flows into employment. The proof proceeds

in three steps. Step 1 rewrites the CIR as the integral over time of two value functions, one for employed and unemployed

workers, up to a finite time T . Step 2 expresses the CIR as T ! •. Step 3 uses the equivalence of the combined Dirichlet-Poisson

problem (i.e., the mapping between the sequential problem and the corresponding HJB equations and boundary conditions).

Step 1. Here, we follow a recursive representation for the CIR. The CIR satisfies

CIRE (z) =
ˆ •

�•
lim
T !•

h
mE ,h(Dz, T )gh(Dz + z) + mE ,u(Dz, T )gu(Dz + z)

i
dDz

where we defined

mE ,h(Dz0, T ) :=
ˆ

T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, t|Dz0, h) + (�Ess)gu(Dz, t|Dz0, h)

i
dDz dt

�
(D.10)

mE ,u(Dz0, z, T ) :=
ˆ

T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, z, t|Dz0, u) + (�Ess)gu(Dz, z, t|Dz0, u)

i
dDz dt

�
(D.11)

Proof of Step 1. Starting from the definition of the CIR, (1) adds and subtracts employment in t, Et; (2) operates over the integral;
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(3) and (4) use the fact that the integral operator is a linear operator; (5) applies the definition of a conditional expectation, where

gh(Dz, t|Dz0, h)dDz is the probability of a worker being in the state Dz at time t when the initial productivity is Dz0 and the

initial employment state is h (mutatis mutandis if the initial employment state is u); (6) uses the fact that conditional on being

initially employed, the transition probabilities are independent of z; (6) and (7) apply Fubini’s theorem and the definition of the

limit of an integral; (8) relabels the resulting terms.

CIRE (z) =
ˆ •

0

ˆ •

�•

⇣
gh(Dz, z, t)� gh(Dz)

⌘
dDz dt

=(1)
ˆ •

0

ˆ •

�•

⇣
gh(Dz, z, t)� gh(Dz)(Et + 1 � Et)

⌘
dDz dt

=(2)
ˆ •

0

ˆ •

�•
gh(Dz, z, t)dDz � Ess

✓ˆ •

�•
gh(Dz, z, t)dDz +

ˆ •

�•
gu(Dz, z, t)dDz

◆�
dt

=(3)
ˆ •

0

ˆ •

�•
(1 � Ess) gh(Dz, z, t)dDz dt +

ˆ •

0

ˆ •

�•
(�Ess)gu(Dz, z, t)dDz dt

=(4)
ˆ •

0

ˆ •

�•

h
(1 � Ess) gh(Dz, z, t) + (�Ess)gu(Dz, z, t)

i
dDz dt

=(5)
ˆ •

0

ˆ •

�•

ˆ •

�•

h
(1 � Ess) gh(Dz, t|Dz0, h) + (�Ess)gu(Dz, t|Dz0, h)

i
gh(Dz0, 0)dDz0 dDz dt

�
. . .

· · ·+
ˆ •

0

ˆ •

�•

ˆ •

�•

h
(1 � Ess) gh(Dz, z, t|Dz0, u) + (�Ess)gu(Dz, z, t|Dz0, u)

i
gu(Dz0, 0)dDz0 dDz dt

�

=(6)
ˆ •

�•

ˆ •

0

ˆ •

�•

h
(1 � Ess) gh(Dz, t|Dz0, h) + (�Ess)gu(Dz, t|Dz0, h)

i
dDz dt

�
gh(Dz0 + z)dDz0 . . .

· · ·+
ˆ •

�•

ˆ •

0

ˆ •

�•

h
(1 � Ess) gh(Dz, z, t|Dz0, u) + (�Ess)gu(Dz, z, t|Dz0, u)

i
dDz dt

�
gu(Dz0 + z)dDz0

=(7)
ˆ •

�•
lim
T !•

ˆ
T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, t|Dz0, h) + (�Ess)gu(Dz, t|Dz0, h)

i
dDz dt

�

| {z }
mE ,h(Dz0,T )

gh(Dz0 + z)dDz0 . . .

· · ·+
ˆ •

�•
lim
T !•

ˆ
T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, z, t|Dz0, u) + (�Ess)gu(Dz, z, t|Dz0, u)

i
dDz dt

�

| {z }
mE ,u(Dz0,z,T )

gu(Dz0 + z)dDz0

=(8)
ˆ •

�•
lim
T !•

mE ,h(Dz, T )gh(Dz + z)dDz +
ˆ •

�•
lim
T !•

mE ,u(Dz, z, T )gu(Dz + z)dDz (D.12)

where we define

mE ,h(Dz0, T ) ⌘
ˆ

T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, t|Dz0, h) + (�Ess)gu(Dz, t|Dz0, h)

i
dDz dt

�

mE ,u(Dz0, z, T ) ⌘
ˆ

T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, z, t|Dz0, u) + (�Ess)gu(Dz, z, t|Dz0, u)

i
dDz dt

�
.

Step 2. The CIR satisfies

CIRE (z) =
ˆ •

�•
mE ,h(Dz)gh(Dz + z)dDz +

ˆ •

�•
mE ,u(Dz, z)gu(Dz + z)dDz

and the value functions mE ,h(Dz0) and mE ,u(Dz0, z) satisfy the following HJB and border conditions:

0 = 1 � Ess � (g + p)
dmE ,h(Dz)

dDz
+

s2

2
d2mE ,h(Dz)

dDz2 + d(mE ,u(0, 0)� mE ,h(Dz)), (D.13)
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0 = �Ess � (g + p)
dmE ,u(Dz, z)

dDz
+

s2

2
d2mE ,u(Dz, z)

dDz2 + f (ŵ⇤
� z)(mE ,h(�z)� mE ,u(Dz, z)) (D.14)

mE ,u(0, 0) = mE ,h(Dz), for all Dz /2 (�D�, D+) (D.15)

0 = lim
Dz!�•

dmE ,u(Dz, z)

dDz
= lim

Dz!•

dmE ,u(Dz, z)

dDz
(D.16)

0 =
ˆ •

�•
mE ,h(Dz)gh(Dz)dDz +

ˆ •

�•
mE ,u(Dz, 0)gu(Dz)dDz. (D.17)

Proof of Step 2. We divide this proof in steps a to d.

a. We show that limT !• mE ,h(Dz, T ) = mE ,h(Dz) and limT !• mE ,u(Dz, z, T ) = mE ,u(Dz, z): This property holds due to the

convergence of the distribution of Dz over time to its ergodic distribution for any initial condition (Stokey, 1989).

b. We show that 0 =
´ •
�• mE ,h(Dz, T )gh(Dz)dDz +

´ •
�• mE ,u(Dz, 0, T )gu(Dz)dDz: The logic of the proof is to repeat the steps

behind (D.12) in the reverse order. Departing from the definition,

ˆ •

�•
mE ,h(Dz0, T )gh(Dz0)dDz0 +

ˆ •

�•
mE ,u(Dz0, 0, T )gu(Dz0)dDz0

=(1)
ˆ •

�•

ˆ
T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, t|Dz0, h) + (�Ess)gu(Dz, t|Dz0, h)

i
dDz dt

�
gh(Dz0)dDz0

· · ·+
ˆ •

�•

ˆ
T

0

ˆ •

�•

h
(1 � Ess) gh(Dz, 0, t|Dz0, u) + (�Ess)gu(Dz, 0, t|Dz0, u)

i
dDz dt

�
gu(Dz0)dDz0

=(2)
ˆ

T

0

ˆ •

�•

ˆ •

�•

h
(1 � Ess) gh(Dz, t|Dz0, h) + (�Ess)gu(Dz, t|Dz0, h)

i
gh(Dz0)dz0 dDz

�
dt

· · ·+
ˆ

T

0

ˆ •

�•

ˆ •

�•

h
(1 � Ess) gh(Dz, 0, t|Dz0, u) + (�Ess)gu(Dz, 0, t|Dz0, u)

i
gu(Dz0) dDz0 dDz

�
dt

=(3)
ˆ

T

0

ˆ •

�•

2

6664(
1 � Ess)

ˆ •

�•
gh(Dz, 0, t|Dz0)g(Dz0)dDz0

| {z }
= gh(Dz)

dDz + (�Ess)
ˆ •

�•
gu(Dz, 0, t|Dz0)g(Dz0)dDz0

| {z }
= gu(Dz)

dDz

3

7775
dt

=(4)
ˆ

T

0
(1 � Ess) Ess dt +

ˆ
T

0
(�Ess) (1 � Ess)dt

= 0

In (1), we apply the definitions (D.10) and (D.11); (2) applies Fubini’s theorem; (3) uses the steady-state conditions for gh(·)

and gu(·), and the definition g(Dz) = gh(Dz) + gu(Dz); and (4) computes the integral using the definitions of aggregate

employment and unemployment.

c. We show that 0 =
´ D+

�D� mE ,h(Dz)gh(Dz)dDz +
´ D+

�D� mE ,u(Dz, 0)gu(Dz)dDz: See Baley and Blanco (2022).

d. We show that the CIR satisfies (D.12) with mE ,h(Dz0) and mE ,u(Dz0, z) satisfying (D.13)–(D.17): Writing the HJB for

mE ,h(Dz0, T ) and mE ,u(Dz0, z, T ), we have that

0 = 1 � Ess �
dmE ,h(Dz, T )

dT
� (g + p)

dmE ,h(Dz, T )

dDz
+

s2

2
d2mE ,h(Dz, T )

dDz2 + d(mE ,u(0, 0, T )� mE ,h(Dz, T )),

0 = �Ess �
dmE ,u(Dz, z, T )

dT
� (g + p)

dmE ,u(Dz, z, T )

dDz
+

s2

2
d2mE ,u(Dz, z, T )

dDz2 + f (ŵ⇤
� z)(mE ,h(�z, T )� mE ,u(Dz, z, T ))
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mE ,u(0, 0, T ) = mE ,h(Dz, T ), for all Dz /2 (�D�, D+)

0 = lim
Dz!�•

dmE ,u(Dz, z, T )

dDz
= lim

Dz!•

dmE ,u(Dz, z, T )

dDz

0 =
ˆ D+

�D�

mE ,h(Dz, T )gh(Dz)dDz +
ˆ D+

�D�

mE ,u(Dz, 0, T )gu(Dz)dDz.

The border condition for mE ,u(Dz, z, T ) is implied from the fact that the job finding rate f (ŵ⇤) is independent of Dz, so

the function mE ,u(Dz, z, T ) is constant in the entire domain. Taking the limit T ! • and using point-wise convergence of

mE ,h(Dz0, T ) and mE ,u(Dz0, z, T ), we have the desired result.

Step 3. The solution of the differential equations (D.13) to (D.16) satisfy (D.8) and (D.9).

Proof of Step 3. This is just an application of Øksendal (2007), Chapter 9.

Before starting the next step of the proof, we summarize the conditions that characterize the distributions of Dz.

Steady-State Cross-Sectional Distribution Dz. Below, we describe the Kolmogorov Forward Equations (KFE) for

gh(Dz) and gu(Dz).

dgh(Dz) = (g + p)(gh)0(Dz) +
s2

2
(gh)00(Dz) for all Dz 2 (�D�, D+)/{0}, (D.18)

f (ŵ⇤)gu(Dz) = (g + p)(gu)0(Dz) +
s2

2
(gu)00(Dz) for all Dz 2 (�•, •)/{0}. (D.19)

gh(Dz) = 0, for all Dz /2 (�D�, D+) (D.20)

lim
Dz!�•

gu(Dz) = lim
Dz!•

gu(Dz) = 0. (D.21)

1 =
ˆ •

�•
gu(Dz)dDz +

ˆ D+

�D�

gh(Dz)dDz, (D.22)

f (ŵ⇤)(1 � E) = dE +
s2

2


lim

Dz#�D�

(gh)0(Dz)� lim
Dz"D+

(gh)0(Dz)
�

, (D.23)

gh(Dz), gu(Dz) 2 C, C1({0}), C2({0})

Proposition D.2. Assume flexible entry wages. Up to first order, the CIR of employment is given by:

CIRE (z)
z

= �(1 � Ess)
(g + p)Eh[a] + Eh[Dz]

s2 + o(z).

Proof. The proof proceeds in three steps. Step 1 computes the value function for an unemployed worker mE ,u(Dz) (when entry

wages are flexible, the job-finding rate and this value function are independent of the shock z, so we omit this argument). Step 2

computes the value for the employed worker at Dz = 0—i.e., mE ,h(0). Step 3 characterizes the CIR as a function of steady-state

aggregate variables and moments.
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Step 1. The CIR is given by

CIRE (z) =
ˆ •

�•
mE ,h(Dz)gh(Dz + z)dDz +

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆
(1 � Ess),

with

0 = 1 � Ess � (g + p)
dmE ,h(Dz)

dDz
+

s2

2
d2mE ,h(Dz)

dDz2 + d

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)� mE ,h(Dz)
◆

,

�
Ess

f (ŵ⇤)
+ mE ,h(0) = mE ,h(Dz), for all Dz /2 (�D�, D+)

0 =
ˆ •

�•
mE ,h(Dz)gh(Dz)dDz +

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆
(1 � Ess). (D.24)

Proof of Step 1. To show this result, observe that the solution to (D.14) and (D.16) is

mE ,u(Dz) = mE ,u(0), for all Dz.

Thus,

0 = �Ess + f (ŵ⇤)(mE ,h(0)� mE ,u(0)) () mE ,u(0) = �
Ess

f (ŵ⇤)
+ mE ,h(0). (D.25)

Replacing (D.25) into the CIR, we have the result.

Step 2. We show that mE ,h(0) =
Ess

f (ŵ⇤) � (1 � Ess)Eh[a], where Eh[a] is the cross-sectional expected age of the match or the

worker’s tenure at the current match.

Proof of Step 2. Observe that mE ,h(Dz) satisfies the following recursive representation

mE ,h(Dz) = E

"ˆ tm

0
(1 � Ess)dt +

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆�����Dz0 = Dz

#
. (D.26)

Define the following auxiliary function

Y(Dz|j) = E

"ˆ tm

0
ejt(1 � Ess)dt + ejtm

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆�����Dz0 = Dz

#
. (D.27)

and note that Y(Dz|0) = mE ,h(Dz). The auxiliary function Y(Dz|j) satisfies the following HJB and border conditions:

�jY(Dz|j) + d

✓
Y(Dz|j)�

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆◆

= (1 � Ess)� (g + p)
∂Y(Dz|j)

∂Dz
+

s2

2
∂2Y(Dz|j)

∂Dz2 , (D.28)

Y(Dz, j) =

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆

for all Dz /2 (�D�, D+).

Taking the derivative with respect to j in (D.28), we have that

(d � j)
∂Y(Dz|j)

∂j
� Y(Dz|j) = �(g + p)

∂2Y(Dz, j)
∂Dz∂j

+
s2

2
∂3Y(Dz|j)

∂Dz2∂j
,

∂Y(Dz|j)
∂j

= 0 for all Dz /2 (�D�, D+).
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Using the Schwarz theorem to exchange partial derivatives, evaluating at j = 0, and using Y(Dz|0) = mE ,h(Dz), we obtain

d
∂Y(Dz|0)

∂j
� mE ,h(Dz) = �(g + p)

∂

∂Dz

✓
∂Y(Dz|0)

∂j

◆
+

s2

2
∂2

∂Dz2

✓
∂Y(Dz|0)

∂j

◆
, (D.29)

∂Y(�D�|0)
∂j

=
∂Y(D+|0)

∂j
= 0. (D.30)

Equations (D.29) and (D.30) correspond to the HJB and border conditions of the function ∂Y(Dz|0)
∂j = E

h´ tm

0 mE ,h(Dzt)dt
���Dz0 = Dz

i
.

Evaluating ∂Y(Dz|0)
∂j at Dz = 0, using the occupancy measure and result (D.24), we write the previous equation as:

∂Y(0|0)
∂j

= E

"ˆ tm

0
mE ,h(Dzt)dt

���Dz0 = 0

#

= ED [t
m]

´ •
�• mE ,h(Dz)gh(Dz)dDz

Ess

= ED [t
m]

✓
Ess

f (ŵ⇤)
� mE ,h(0)

◆
(1 � Ess)

Ess
, (D.31)

where ED [·] is the mean duration of completed employment spells (the subscript highlights that the moment can be easily

computed from the data). From (D.27), we also have that

∂Y(0|0)
∂j

= E

"ˆ tm

0
s (1 � Ess)ds + tm

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆�����Dz0 = 0

#

= ED [tm]


(1 � Ess)

Eh[a]
Ess

+

✓
�

Ess
f (ŵ⇤)

+ mE ,h(0)
◆�

, (D.32)

Combining (D.31) and (D.32), and solving for mE ,h(0) we obtain:

mE ,h(0) =
Ess

f (ŵ⇤)
� (1 � Ess)Eh[a]

Step 3. Up to a first-order approximation, the CIR is given by:

CIRE (z) = �(1 � Ess)
(g + p)Eh[a] + Eh[Dz]

s2 z + o(z2).

Proof of Step 3. To help the reader, we summarize below the conditions used in this step of the proof.

CIRE (z) =
ˆ •

�•
mE ,h(Dz)gh(Dz + z)dDz +

✓
�

Ess
f (q⇤)

+ mE ,h(0)
◆
(1 � Ess) (D.33)

with

dmE ,h(Dz) = 1 � Ess � (g + p)
dmE ,h(Dz)

dDz
+

s2

2
d2mE ,h(Dz)

dDz2 + dmE ,u(0), (D.34)

mE ,u(0) = mE ,h(Dz) for all Dz /2 (�D�, D+) (D.35)

0 =
ˆ •

�•
mE ,h(Dz)gh(Dz)dDz + mE ,u(0)(1 � Ess). (D.36)

1. Zero-order: If z = 0, condition (D.36) implies

CIRE (0) =
ˆ •

�•
mE ,h(Dz)gh(Dz)dDz +

✓
�

Ess
f (q⇤)

+ mE ,h(0)
◆
(1 � Ess) = 0.
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2. First-order: Taking the derivative of (D.33) we obtain

CIR0
E
(z) =

ˆ •

�•
mE ,h(Dz)(gh)0(Dz + z)dDz,

which evaluated at z = 0 becomes

CIR0
E
(0) =

ˆ D+

�D�

mE ,h(Dz)(gh)0(Dz)dDz.

Using condition (D.18) to replace d =
(g+p)(gh)0(Dz)+ s2

2 (gh)00(Dz)
gh(Dz) into equation (D.34), we obtain

(g + p)(gh)0(Dz) + s2

2 (gh)00(Dz)
gh(Dz)

mE ,h(Dz) = 1 � Ess � (g + p)m0

E ,h(Dz) +
s2

2
m00

E ,h(Dz)

+
(g + p)g0(Dz) + s2

2 g00(Dz)
g(Dz)

mE ,u(0).

Multiplying both sides by gh(Dz)Dz and integrating between �D� and D+,

0 = (1 � Ess)Eh[Dz]� (g + p)T1 +
s2

2
T2 + mE ,u(0)T3 (D.37)

T1 =
ˆ D+

�D�

Dz
h
m0

E ,h(Dz)gh(Dz) + mE ,h(Dz)(gh)0(Dz)
i

dDz

T2 =
ˆ D+

�D�

Dz
h
m00

E ,h(Dz)gh(Dz)� mE ,h(Dz)(gh)00(Dz)
i

dDz

T3 =
ˆ D+

�D�

Dz
✓
(g + p)(gh)0(Dz) +

s2

2
(gh)00(Dz)

◆
dDz.

Next, we operate on the terms T1, T2, and T3. The term T1 is equal to

T1 =
ˆ D+

�D�

Dz
h
m0

E ,h(Dz)gh(Dz) + mE ,h(Dz)(gh)0(Dz)
i

dDz (D.38)

=(1)
ˆ 0

�D�

Dz
h
m0

E ,h(Dz)gh(Dz) + mE ,h(Dz)(gh)0(Dz)
i

dDz +
ˆ D+

0
Dz
h
m0

E ,h(Dz)gh(Dz) + mE ,h(Dz)(gh)0(Dz)
i

dDz

=(2)
ˆ 0

�D�

Dz
d
⇣

mE ,h(Dz)gh(Dz)
⌘

dDz
dDz +

ˆ D+

0
Dz

d
⇣

mE ,h(Dz)gh(Dz)
⌘

dDz
dDz

=(3) DzmE ,h(Dz)gh(Dz)
���
0

�D�
+ DzmE ,h(Dz)gh(Dz)

���
D+

0| {z }
= 0

· · ·�

"ˆ 0

�D�

mE ,h(Dz)gh(Dz)dDz +
ˆ D+

0
mE ,h(Dz)gh(Dz)dDz

#

=(4)
�

ˆ D+

�D�

mE ,h(Dz)gh(Dz)dDz

=(5) mE ,u(0)(1 � Ess).

Here, (1) divides the integral at the discontinuity point of gh(Dz); (2) uses the property of the derivative of a product

of functions; (3) integrates and uses the border conditions for gh(Dz); (4) uses the continuity of mE ,h(Dz)gh(Dz); and (5)

uses (D.36).
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The term T2 satisfies

T2 =
ˆ D+

�D�

Dz
h
m00

E ,h(Dz)gh(Dz)� mE ,h(Dz)(gh)00(Dz)
i

dDz (D.39)

=(1)
ˆ 0

�D�

Dz
h
m00

E ,h(Dz)gh(Dz)� mE ,h(Dz)(gh)00(Dz)
i

dDz +
ˆ D+

0
Dz
h
m00

E ,h(Dz)g(Dz)� mE ,h(Dz)(gh)00(Dz)
i

dDz

=(2) Dz
h
m0

E ,h(Dz)gh(D)� mE ,h(Dz)(gh)0(Dz)
i���

0

�D�
+ Dz

h
m0

E ,h(Dz)gh(D)� mE ,h(Dz)(gh)0(Dz)
i���

D+

0

· · ·�

"ˆ 0

�D�

h
m0

E ,h(Dz)gh(Dz)� mE ,h(Dz)(gh)0(Dz)
i

dDz +
ˆ D+

0

h
m0

E ,h(Dz)gh(Dz)� mE ,h(Dz)(gh)0(Dz)
i

dDz

#

=(3) Dz
h
m0

E ,h(Dz)gh(D)� mE ,h(Dz)(gh)0(Dz)
i���

D+

D�| {z }
= �mE ,u(0) Dz(gh)0(Dz)|D

+

D�

· · ·�

"ˆ 0

�D�

h
m0

E ,h(Dz)gh(Dz)� mE ,h(Dz)(gh)0(Dz)
i

dDz +
ˆ D+

0

h
m0

E ,h(Dz)gh(Dz)� mE ,h(Dz)(gh)0(Dz)
i

dDz

#

=(4)
�mE ,u(0) Dz(gh)0(Dz)

���
D+

D�
�

ˆ D+

D�

m0

E ,h(Dz)gh(Dz)dDz +
ˆ D+

D�

mE ,h(Dz)(gh)0(Dz)dDz

=(5)
�mE ,u(0) Dz(gh)0(Dz)

���
D+

D�
�

2

664mE ,h(Dz)gh(Dz)
���
D+

D�| {z }
= 0

�

ˆ D+

D�

mE ,h(Dz)(gh)0(Dz)dDz

3

775+
ˆ D+

D�

mE ,h(Dz)(gh)0(Dz)dDz

= �mE ,u(0) Dz(gh)0(Dz)
���
D+

D�
+ 2
ˆ D+

D�

mE ,h(Dz)g0(Dz)dDz.

Here, (1) divides the integral at the discontinuity point of gh(Dz); (2) uses the equality m00

E ,h(Dz)gh(Dz)�mE ,h(Dz)(gh)00(Dz)

=
d[m0

E ,h(Dz)gh(Dz)�mE ,h(Dz)(gh)0(Dz)]
dDz and integrates by parts; (3) uses conditions (D.35) and the border conditions of gh(Dz);

and (4)-(5) integrate by parts and operate.

Finally, the term T3 is equal to

T3 =
ˆ D+

�D�
Dz
✓
(g + p)(gh)0(Dz) +

s2

2
(gh)00(Dz)

◆
dDz (D.40)

=(1) (g + p)

"ˆ 0

�D�

Dz(gh)0(Dz)dDz +
ˆ D+

0
Dz(gh)0(Dz)dDz

#
+

s2

2

"ˆ 0

D�

Dz(gh)00(Dz)dDz +
ˆ D+

0
Dz(gh)00(Dz)dDz

#

=(2) (g + p)

2

6664
Dzgh(Dz)

���
0

�D�
+ Dzgh(Dz)

���
D+

0| {z }
= 0

�

ˆ D+

�D�

gh(Dz)dDz
| {z }

= Ess

3

7775

· · ·+
s2

2

"
Dz(gh)0(Dz)

���
0

�D�
+ Dz(gh)0(Dz)

���
D+

0
�

ˆ D+

�D�

(gh)0(Dz)dDz

#

=(3)
�(g + p)Ess +

s2

2

2

664Dz(gh)0(Dz)
���
D+

D�
� gh(Dz)

���
D+

D�| {z }
= 0

3

775

=(4)
�(g + p)Ess +

s2

2


Dz(gh)0(Dz)

���
D+

D�

�

Here, (1) divides the integral at the discontinuity point of gh(Dz); (2) integrates by parts; and (3) and (4) use the border
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conditions of gh(Dz).

Combining results (D.37), (D.38), (D.39), (D.40) and those in Step 2, we obtain

0 = (1 � Ess)Eh[Dz]� (g + p)T1 +
s2

2
T2 + mE ,u(0)T3

= (1 � Ess)Eh[Dz]� (g + p)mE ,u(0)(1 � Ess) +
s2

2

"
�mE ,u(0) Dz(gh)0(Dz)

���
D+

�D�
+ 2
ˆ D+

�D�

mE ,h(Dz)(gh)0(Dz)dDz

#

· · ·+ mE ,u(0)

�(g + p)Ess +

s2

2


Dz(gh)0(Dz)

���
D+

�D�

��

= (1 � Ess)Eh[Dz]� (g + p)mE ,u(0) + s2
ˆ D+

�D�

mE ,h(Dz)(gh)0(Dz)dDz,

which implies

ˆ D+

�D�

mE ,h(Dz)(gh)0(Dz)dDz =
(g + p)

⇣
�

Ess
f (q⇤) +

Ess
f (q⇤) � (1 � Ess)Eh[a]

⌘
� (1 � Ess)Eh[Dz]

s2 ,

= �(1 � Ess)
[(g + p)Eh[a] + Eh[Dz]]

s2 .

Proposition D.3. Up to first order, the CIRE (z) can be expressed in terms of data moments as follows:

(i) If (g + p) = 0,

CIRE (z)
z

=
1

f (ŵ⇤)
| {z }

avg. u dur.

1
VarD [Dw]| {z }

dispersion

2

6664
1
3

ED


Dw

Dw2

ED [Dw2]

�

| {z }
asymmetries

3

7775
+ o(z).

(ii) If (g + p) 6= 0,

CIRE (z)
z

=
1

f (ŵ⇤)
| {z }

avg. u dur.

1

VarD
h⇣

Dw �
ED [Dw]
ED [t]

t
⌘i

| {z }
dispersion

⇥

2

666664
ED [Dw]

0

@Ess

0

@CovD
h
fDw, fDw � t̃

i
+

VarD [t̃]� EssVarD
h
ftm
i

2

1

A+ (1 � Ess)

0

@
VarD

h
fDw
i
� 1

2

1

A

1

A

| {z }
asymmetries

3

777775
+ o(z).

Proof. The goal is to express the sufficient statistics of the CIR, Eh[a] and Eh[Dz], in terms of moments of the distribution of Dw

and (tu, tm). We do so separately for the case with (g + p) = 0 and (g + p) 6= 0. Let x̃ ⌘ x/ED [x] denote random variable x

relative to its mean in the data.

Proposition G.5 expresses moments of the wage distribution as a linear combination of moments of the distribution of

productivity changes among completed employment and unemployment spells:

ED [Dw] = � [Ēu [Dz] + Ēh [Dz]]

ED

h
Dw2

i
=
h
Ēu
h
Dz2

i
+ 2Ēh [Dz] Ēu [Dz] + Ēh

h
Dz2

ii
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ED

h
Dw3

i
= �

h
Ēu
h
Dz3

i
+ 3Ēh [Dz] Ēu

h
Dz2

i
+ 3Ēh

h
Dz2

i
Ēu [Dz] + Ēh

h
Dz3

ii
,

where Ēh[·] and Ēu[·] denote the expectation operators under the distributions ḡh(Dz) and ḡu(Dz), respectively. Using results

from the same Proposition, we can express the moments of productivity changes for completed unemployment spells in terms of

model parameters:

Ēu [Dz] =

⇣
L
�1
2 � L2

⌘

L1

Ēu
h
Dz2

i
=

2
⇣
L
�2
2 + L2

2 � 1
⌘

L2
1

Ēu
h
Dz3

i
=

6
⇣
�L3

2 + L2 � L
�1
2 + L

�3
2

⌘

L3
1

,

where

L1 =

r
2 f (ŵ⇤)

s2 and L2 =

s
(g + p) +

p
(g + p)2 + 2s2 f (ŵ⇤)

�(g + p) +
p
(g + p)2 + 2s2 f (ŵ⇤)

.

From these two sets of equations, we solve for the moments of productivity changes for completed employment spells and

obtain

Ēh [Dz] = �

0

@

⇣
L
�1
2 � L2

⌘

L1

1

A� ED [Dw]

Ēh

h
Dz2

i
= ED

h
Dw2

i
+ 2ED [Dw]

0

@

⇣
L
�1
2 � L2

⌘

L1

1

A�
2
L2

1

Ēh

h
Dz3

i
= �ED

h
Dw3

i
� 3ED

h
Dw2

i
0

@

⇣
L
�1
2 � L2

⌘

L1

1

A+
6
L2

1
ED [Dw] .

The remaining steps are case-specific.

Case I: (g + p) = 0. To obtain Eh[Dz], evaluate (G.10) at m = 1, use the fact that L2 = 1, ED [Dw] = 0 and ED [tu ]
ED [t]

= Ess,

and substitute s2 from Lemma F.1:

Eh [Dz] =
Ess
3

Ēh
⇥
Dz3⇤

Ēh [Dz2]

=
Ess
3

0

@
�ED

⇥
Dw3⇤+ ED [Dw] 6

L2
1

ED [Dw2]� 2
L2

1

1

A

= �
Ess
3

 
ED

⇥
Dw3⇤

ED [Dw2]� s2ED [tu]

!

= �
ED

⇥
Dw3⇤

3ED [Dw2]
.

Finally, replace this expression into (36):

CIRE (z)
z

= � (1 � Ess)
Eh [Dz]

s2
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= (1 � Ess)

ED [Dw3]
3ED [Dw2]

ED [Dw2]
ED [t]

=
1

f (ŵ⇤)

ED

⇥
Dw3⇤

3ED [Dw2]2

=
1

f (ŵ⇤)
1

VarD [Dw2]

1
3

ED


Dw

Dw2

ED [Dw2]

�
.

Case II: (g + p) 6= 0. To obtain Eh[Dz], evaluate (G.11) at m = 1, use the result that
⇣
L
�1
2 � L2

⌘
/L1 = �(g + p)/ f (ŵ⇤)

and ED [tu ]
ED [t]

= Ess, and substitute (g + p) and s2 from Lemma F.1:

Eh [Dz] =
Ess
2

Ēh
⇥
Dz2⇤

Ēh [Dz]
�

s2

2(g + p)

=
Ess
2

0

B@
ED

⇥
Dw2⇤� 2 ED [Dw]2ED [tu ]

ED [t]
� s2ED [t

u]

�ED [Dw]
⇣

1 � ED [tu ]
ED [t]

⌘

1

CA�
s2

2(g + p)

= �
1
2

ED [Dw]

✓
ED

h
fDw

2i
� 2

ED [t
u]

ED [t]

◆
+

1
2

s2

ED [Dw]
(ED [t

u]� ED [t])

= �
1
2

ED [Dw]

✓
ED

h
fDw

2i
� 2

ED [t
u]

ED [t]

◆
+

1
2

ED [(Dw � (g + p)t)2]
ED [t]ED [Dw]

(ED [t
u]� ED [t])

= �ED [Dw]

✓
1
2

✓
ED

h
fDw

2i
� 2

ED [t
u]

ED [t]

◆
+

1
2

ED [(fDw � t̃)2]

✓
1 �

ED [t
u]

ED [t]

◆◆

= �ED [Dw]

✓
1
2

⇣
varD

h
fDw
i
� 1
⌘
+ Ess

✓
1 +

1
2

varD [(fDw � t̃)]

◆◆
.

The average cross-sectional age of a job spell is obtained from the occupancy measure:

Eh[a] = Ess
E[
´ tm

0 t dt|ŵ0 = ŵ⇤]

E[tm|ŵ0 = ŵ⇤]
=

Ess
2

ED [t
m2]

ED [tm]
,

where we solve the Reimann integral.

Finally, we replace these expressions into (36):

CIRE (z)
z

= � (1 � Ess)
Eh [Dz] + (g + p)E[a]

s2

= �
ED [t

u]
ED [t]

ED [t]

ED

h⇣
Dw �

ED [Dw]
ED [t]

t
⌘

2
i
✓
�ED [Dw]

✓
1
2

⇣
VarD

h
fDw
i
� 1
⌘
+ Ess

✓
1 +

1
2

⇣
VarD [fDw � t̃]

⌘◆◆
+ (g + p)E[a]

◆

=
ED [Dw]

f (ŵ⇤)VarD
h⇣

Dw �
ED [Dw]
ED [t]

t
⌘i
✓

1
2

⇣
VarD

h
fDw
i
� 1
⌘
+ Ess

✓
1 +

1
2

⇣
VarD [fDw � t̃]

⌘◆
�

1
ED [t]

E[a]
◆

=
ED [Dw]

f (ŵ⇤)VarD
h⇣

Dw �
ED [Dw]
ED [t]

t
⌘i
✓

1
2

⇣
VarD

h
fDw
i
� 1
⌘
(1 � Ess + Ess) + Ess

✓
1 +

1
2

⇣
VarD [fDw � t̃]

⌘◆
�

1
ED [t]

E[a]
◆

=
ED [Dw]

2 f (ŵ⇤)VarD
h⇣

Dw �
ED [Dw]
ED [t]

t
⌘i
✓⇣

VarD
h
fDw
i
� 1
⌘
(1 � Ess) + Ess

⇣
1 +

⇣
VarD [fDw � t̃]

⌘
+ VarD

h
fDw
i⌘

�
2

ED [t]
E[a]

◆

=
ED [Dw]

2 f (ŵ⇤)VarD
h⇣

Dw �
ED [Dw]
ED [t]

t
⌘i
✓⇣

VarD
h
fDw
i
� 1
⌘
(1 � Ess) + Ess

⇣
1 +

⇣
VarD [fDw � t̃]

⌘
+ VarD

h
fDw
i⌘

� Ess
ED [t

m]
ED [t]

ED [ftm2
]

◆

=
ED [Dw]

2 f (ŵ⇤)VarD
h⇣

Dw �
ED [Dw]
ED [t]

t
⌘i
⇣⇣

VarD
h
fDw
i
� 1
⌘
(1 � Ess) + Ess

⇣
1 +

⇣
VarD [fDw � t̃]

⌘
+ VarD

h
fDw
i
� EssED [ftm2

]
⌘⌘
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=
ED [Dw]

f (ŵ⇤)VarD
h⇣

Dw �
ED [Dw]
ED [t]

t
⌘i

0

@

⇣
VarD

h
fDw
i
� 1
⌘

2
(1 � Ess) + Ess

 
CovD

h
fDw, fDw � t̃

i
+

VarD [t̃]� EssVarD [ftm2
]

2

!1

A .

D.3 Proof of Proposition 8: CIR of Employment with Sticky Entry Wage

Proposition 8. Assume sticky entry wages. Up to first order, the CIR of employment is given by:

CIRE (z)
z

= (1 � Ess)


�
[gEh[a] + Eh[Dz]]

s2 +
1

f (ŵ⇤) + s


h0(ŵ⇤)
h(ŵ⇤)

+
T 0

ŵ(ŵ
⇤, r̂)

T (ŵ⇤, r̂)
�

T 0
ŵ(ŵ

⇤, 0)
T (ŵ⇤, 0)

��
+ o(z). (D.41)

Proof. We divide the proof in two steps. Step 1 characterizes mE ,u(Dz, z). Steps 2 uses the equilibrium conditions to show (D.41).

The starting point is the CIR for employment, which is given by

CIRE (z) =
ˆ •

�•
mE ,h(Dz)gh(Dz + z)dDz +

ˆ •

�•
mE ,u(Dz, z)gu(Dz + z)dDz, (D.42)

with

0 = 1 � Ess � g
dmE ,h(Dz)

dDz
+

s2

2
d2mE ,h(Dz)

dDz2 + d(mE ,u(0, 0)� mE ,h(Dz)), for all Dz 2 (�D�, D+) (D.43)

0 = �Ess � g
dmE ,u(Dz, z)

dDz
+

s2

2
d2mE ,u(Dz, z)

dDz2 + f (ŵ⇤
� z)(mE ,h(�z)� mE ,u(Dz, z)) (D.44)

mE ,u(0, 0) = mE ,h(Dz), for all Dz /2 (�D�, D+) (D.45)

0 = lim
Dz!�•

dmE ,u(Dz, z)

dDz
= lim

Dz!•

dmE ,u(Dz, z)

dDz
(D.46)

0 =
ˆ •

�•
mE ,h(Dz)gh(Dz)dDz +

ˆ •

�•
mE ,u(Dz)gu(Dz)dDz (D.47)

The key differences between the CIR with flexible wages and the CIR with sticky wages are found in the HJB equation at

the moment of the shock. With sticky entry wages, the job-finding probability is given by f (ŵ⇤ � z), since now the real entry

wage is lower. As a consequence, we need to evaluate mE ,h(Dz) at Dz = �z because conditional on finding a job, the real entry

wage is lower. Observe that following the first job separation, the monetary shock is fully absorbed (see the term mE ,u(0, 0) in

equation (D.43)).

Step 1. The value function mE ,u(Dz, z) is independent of Dz and satisfies

mE ,u(Dz, z) = �
Ess

f (ŵ⇤ � z)
+ mE ,h(�z).

Proof of Step 1. We guess and verify that mE ,u(Dz, z) = mE ,u(0, z) for all Dz. From the equilibrium conditions (D.44) and (D.46),

0 = �Ess + f (ŵ⇤
� z)(mE ,h(�z)� mE ,u(0, z)).

Thus,

mE ,u(0, z) = mE ,u(Dz, z) = �
Ess

f (ŵ⇤ � z)
+ mE ,h(�z).
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Step 2. Up to a first-order approximation, the CIR is given by:

CIRE (z) = �(1 � Ess)
gEh[a] + Eh[Dz]

s2 z +
(1 � Ess)
f (ŵ⇤) + s

✓
h0(ŵ⇤)
h(ŵ⇤)

+
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

�
T 0(ŵ⇤, 0)
T (ŵ⇤, 0)

◆
z + o(z2).

Proof of Step 2. From Step 1, we have that

CIR0
E
(0) =

ˆ •

�•
mE ,h(Dz)(gh)0(Dz)dDz +

✓
�
Ess f 0(ŵ⇤)

f (ŵ⇤)2 � m0

E ,h(0)
◆
(1 � Ess).

Since
´ •
�• mE ,h(Dz)(gh)0(Dz)dDz satisfies the same system of functional equations as the CIR with flexible entry wages charac-

terized in Online Appendix D.2,

ˆ •

�•
mE ,h(Dz)(gh)0(Dz)dDz = �(1 � Ess)

gEh[a] + Eh[Dz]
s2 . (D.48)

Observe that we can write

mE ,h(Dz) = E

"ˆ tm

0
(1 � Ess)dt + mE ,u(Dz, 0)

�����Dz0 = Dz

#
,

= (1 � Ess)T (ŵ⇤ + Dz, 0)�
Ess

f (ŵ⇤)
+ mE ,h(0).

Taking the derivative with respect to Dz, evaluating it at Dz = 0, and using s = 1/T (ŵ⇤, 0) from the Renewal Principle, we have

that

m0

E ,h(0) = (1 � Ess)T
0

ŵ(ŵ
⇤, 0) =

s
f (ŵ⇤) + s

T
0

ŵ(ŵ
⇤, 0) =

1
f (ŵ⇤) + s

T 0(ŵ⇤, 0)
T (ŵ⇤, 0)

. (D.49)

From the free entry condition

f (ŵ⇤) =

✓
Ĵ(ŵ⇤)

K̃

◆ 1�a
a

,

and the definition (1 � h(ŵ⇤)) = Ĵ(ŵ⇤)/Ŝ(ŵ⇤), we can compute the elasticity of the job finding rate with respect to the entry

wage:

f 0(ŵ⇤)
f (ŵ⇤)

=

1�a
a

⇣
Ĵ(ŵ⇤)

K̃

⌘ 1�a
a �1 Ĵ0(ŵ⇤)

k̃

⇣
Ĵ(ŵ⇤)

K̃

⌘ 1�a
a

,

=
1 � a

a

Ĵ0(ŵ⇤)

Ĵ(ŵ⇤)
,

=
1 � a

a


�

h0(ŵ⇤)
(1 � h(ŵ⇤))

+
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

�
.

Finally, combining this result with the fact that Ess =
f (ŵ⇤)

f (ŵ⇤)+s , s = 1
T (ŵ⇤ ,0) , h0(ŵ⇤)

⇣
a

h(ŵ⇤) �
1�a

1�h(ŵ⇤)

⌘
= �

T 0(ŵ⇤ ,r̂)
T (ŵ⇤ ,r̂) , and operating,

we obtain

�
Ess f 0(ŵ⇤)

f (ŵ⇤)2 = �
Ess

f (ŵ⇤)
f 0(ŵ⇤)
f (ŵ⇤)

=
1

f (ŵ⇤) + s


�

1 � a

a


�

h0(ŵ⇤)
(1 � h(ŵ⇤))

+
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

��

=
1

f (ŵ⇤) + s


�

1
a


�

h0(ŵ⇤)(1 � a)
(1 � h(ŵ⇤))

+ (1 � a)
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

��
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=
1

f (ŵ⇤) + s


�

1
a


�

h0(ŵ⇤)a
h(ŵ⇤)

� a
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

��

=
1

f (ŵ⇤) + s


h0(ŵ⇤)
h(ŵ⇤)

+
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

�
. (D.50)

Combining results in equations (D.48), (D.49), and (D.50), we obtain the desired result:

CIR0
E
(0) = �(1 � Ess)

[gEh[a] + Eh[Dz]]
s2 +

1 � Ess
f (ŵ⇤) + s


h0(ŵ⇤)
h(ŵ⇤)

+
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

�
T 0(ŵ⇤, 0)
T (ŵ⇤, 0)

�
.

D.4 Proof of Lemma 3

The following proposition provides a broad characterization of T 0
ŵ(ŵ

⇤, r̂)/T (ŵ⇤, r̂), which includes the result in Lemma 3.

Proposition D.4. The following properties hold for T 0
ŵ(ŵ

⇤, r̂)/T (ŵ⇤, r̂):

a. Assume that D� = D+ and g + p = 0. Then, T 0
ŵ(ŵ

⇤, r̂) = 0 and, up to a 3rd order approximation of T (ŵ, r̂) around ŵ = ŵ⇤,

T (ŵ⇤, r̂) =
1

r̂ + d + (s/D+)2 .

b. Up to a 2nd order approximation of T (ŵ, r̂) around ŵ = ŵ⇤,

T 0
ŵ(ŵ

⇤, r̂)

T (ŵ⇤, r̂)
=

D+ � D�

D+D�
.

c. If r̂ = 0, then

T 0
ŵ(ŵ

⇤, 0)
T (ŵ⇤, 0)

=
1

s2gh(0)


send

⇣
Ess � 2Gh(0)

⌘
+

s2

2

✓
lim

Dz"D+
(gh)0(Dz) + lim

Dz#�D�

(gh)0(Dz)
◆�

.

d. If r̂ > 0, then

T 0
ŵ(ŵ

⇤, r̂)

T (ŵ⇤, r̂)
=

T (ŵ⇤, 0)
T (ŵ⇤, r̂)Ess

2

4�r̂
(g + p)Eh[a] + Eh[Dz]

s2 +
s2

4


lim

Dz#D�

� lim
Dz"D+

� d2
h
T (ŵ⇤ + Dz, r̂)gh(Dz)

i

dDz2

3

5+ o(r̂2),

where T (ŵ⇤ + Dz, r̂) solves, up to a first-order approximation around r̂ = 0, the 2-step procedure given by

T (ŵ⇤ + Dz, r̂) =
gh(Dz)
gh(0)

2

4T (ŵ⇤, r̂)e
(g+p)2

s2 Dz +
2gh(0)

s2

8
<

:

´ 0
Dz e

(g+p)2
s2 (Dz�s) ´ s

�D�

(1+r̂T (ŵ⇤+x,0))gh(x)
gh(s)2 dx ds if Dz < 0

´ Dz
0 e

(g+p)2
s2 (Dz�s) ´ D+

s
(1+r̂T (ŵ⇤+x,0))gh(x)

gh(s)2 dx ds if Dz > 0

3

5 .

with

lim
Dz#D�

d2
h
T (ŵ⇤ + Dz, r̂)gh(Dz)

i

dDz2 = lim
Dz#�D�

2
(gh)0(Dz)2

gh(0)

"
T̃ (0, r̂)e�

(g+p)2
s2 D�

+
2gh(0)

s2

ˆ 0

�D�

e
(g+p)2

s2 (�D��s)
ˆ s

�D�

(1 + r̂T (ŵ⇤ + x, 0))gh(x)
gh(s)2 dx ds

#

lim
Dz"D+

d2
h
T (ŵ⇤ + Dz, r̂)gh(Dz)

i

dDz2 = lim
Dz"D+

2
(gh)0(Dz)2

gh(0)

"
T̃ (0, r̂)e

(g+p)2
s2 D+

+
2gh(0)

s2

ˆ D+

0
e
(g+p)2

s2 (D+�s)
ˆ D+

s

(1 + r̂T (ŵ⇤ + x, 0))gh(x)
gh(s)2 dx ds

#
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Proof. We proceed to prove items a-d of the Proposition. To show these properties, it would be useful to change the state variable

in T (ŵ, r̂) from ŵ to Dz. Define T̃ (Dz, r̂) := T (ŵ⇤ + Dz, r̂). Then, applying Itô’s Lemma, we obtain

dT̃ (Dz, r̂) = 1 � r̂T̃ (Dz, r̂)� (g + p)T̃ 0
Dz(Dz, r̂) +

s2

2
T̃

00

Dz2 (Dz, r̂) 8 Dz 2 (�D�, D+), (D.51)

T̃ (Dz, r̂) = 0 8 Dz /2 (�D�, D+). (D.52)

a. Assume that D� = D+ and (g + p) = 0. Then, it is easy to show that T̃ (Dz, r̂) = T̃ (�Dz, r̂), and by definition of a derivative,

T̃
0

Dz(0, r̂) = lim
e#0

T̃ (e, r̂)� T̃ (�e, r̂)
2e| {z }
= 0

= 0.

A similar argument applies to T̃ 000

Dz3 (0, r̂). Thus, T̃ 0
Dz(0, r̂) = T̃ 000

Dz3 (0, r̂) = 0. Applying a third-order Taylor approximation to

T̃ (Dz, r̂) around Dz = 0,

T̃ (Dz, r̂) = T̃ (0, r̂) +
1
2
T̃

00

Dz2 (0, r̂)Dz2 + O(Dz4).

From the HJB equation in (D.51),

T̃ (0, r̂) =
1 + s2

2 T̃ 00

Dz2 (0, r̂)

r̂ + d
.

Combining the Taylor approximation with the border conditions in (D.52), we obtain (we omit the term O(Dz4) to save on

notation)

T̃ (0, r̂) = �
1
2
T̃

00

Dz2 (0, r̂)(D+)2.

Combining the last two equations, we have that

�
1
2
T̃

00

Dz2 (0, r̂)(D+)2 =
1 + s2

2 T̃ 00

Dz2 (0, r̂)

r̂ + d
() T̃

00

Dz2 (0, r̂) = �
1

r̂ + d

✓
(D+)2

2
+

s2

2(r̂ + d)

◆�1

and

T̃ (0, r̂) = T (ŵ⇤, r̂) =
1

r̂ + d +
� s

D+

�2 ; T̃
0

Dz(0, r̂) = T
0

ŵ⇤ (ŵ⇤, r̂) = 0.

b. Now, we let (g + p) 6= 0 and D+ 6= D�. In this case, we proceed with a second-order Taylor approximation of T̃ (Dz, r̂)

around Dz = 0,

T̃ (Dz, r̂) = T̃ (0, r̂) + T̃
0

Dz(0, r̂)Dz +
1
2
T̃

00

Dz2 (0, r̂)Dz2 + O(Dz3).

From the border conditions in (D.52), we obtain (we omit the term O(Dz3) to save on notation)

T̃ (0, r̂) + T̃
0

Dz(0, r̂)D+ +
1
2
T̃

00

Dz2 (0, r̂)(D+)2 = 0, (D.53)

T̃ (0, r̂) + T̃
0

Dz(0, r̂)(�D�) +
1
2
T̃

00

Dz2 (0, r̂)(D�)2 = 0.

Taking the difference

T̃
0

Dz(0, r̂)(D+ + D�) = �
1
2
T̃

00

Dz2 (0, r̂)
⇣
(D+)2

� (D�)2
⌘

() T̃
0

Dz(0, r̂) = �
1
2
T̃

00

Dz2 (0, r̂)
�
D+

� D�
�

.
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Replacing this last equation into the HJB equation in (D.51) evaluated at Dz = 0 and into (D.53), we obtain

T̃ (0, r̂) =
1 +

⇣
s2+(g+p)(D+�D�)

2

⌘
T̃ 00

Dz2 (0, r̂)

r̂ + d

T̃ (0, r̂) = �
1
2
T̃

00

Dz2 (0, r̂)
⇣
(D+)2

� D+ �D+
� D�

�⌘
.

Combining these equations and solving for T̃ (0, r̂), we have

T̃ (0, r̂) =
1

r̂ + d + s2+(g+p)(D+�D�)
(D+)2�D+(D+�D�)

,

T̃
0

Dz(0, r̂) =
(D+ � D�)

(r̂ + d) ((D+)2 � D+(D+ � D�)) + s2 + (g + p)(D+ � D�)
,

T̃
00

Dz2 (0, r̂) = �
2

(r̂ + d) ((D+)2 � D+(D+ � D�)) + s2 + (g + p)(D+ � D�)
.

and
T̃ 0

Dz(0, r̂)

T̃ (0, r̂)
=

T 0
ŵ⇤ (ŵ⇤, r̂)

T (ŵ⇤, r̂)
=

D+ � D�

D+D�
.

c. Set r̂ = 0. Combining (D.18), (D.51), and (D.52)

0 = gh(Dz)� (g + p)
⇣
(gh)0(Dz)T̃ (Dz, 0) + gh(Dz)T̃ 0

Dz(Dz, 0)
⌘
+

s2

2

⇣
T̃

00

Dz2 (Dz, 0)gh(Dz)� T̃ (Dz, 0)(gh)00(Dz)
⌘

Integrating between �D� and Dz < 0,

0 = Gh(Dz)� (g + p)
ˆ Dz

�D�

⇣
(gh)0(x)T̃ (x, 0) + gh(x)T̃ 0

Dz(x, 0)
⌘

dx +
s2

2

ˆ Dz

�D�

⇣
T̃

00

Dz2 (x, 0)gh(x)� T̃ (x, 0)(gh)00(x)
⌘

dx

= Gh(Dz)� (g + p)
ˆ Dz

�D�

d
⇣

gh(x)T̃ (x, 0)
⌘

dx
dx +

s2

2

ˆ Dz

�D�

d
⇣
T̃ 0

Dz(x, 0)gh(x)� T̃ (x, 0)(gh)0(x)
⌘

dx
dx,

= Gh(Dz)� (g + p)gh(Dz)T̃ (Dz, 0) +
s2

2
(T̃ 0

Dz(Dz, 0)gh(Dz)� T̃ (Dz, 0)(gh)0(Dz)).

In the last step, we use the fact that limDz#�D� gh(Dz) = limDz#�D� T̃ (Dz, 0) = 0. Applying similar steps to integrate from

Dz > 0 to D+, we have that

0 = Ess � Gh(Dz) + (g + p)gh(Dz)T̃ (Dz, 0)�
s2

2
(T̃ 0

Dz(Dz, 0)gh(Dz)� T̃ (Dz, 0)(gh)0(Dz)).

Thus, T̃ (Dz, 0) satisfies the following first order differential equation, once we write it as a function of gh(Dz):

T̃
0

Dz(Dz, 0) =

8
>>><

>>>:

�
2
s2

Gh(Dz)
gh(Dz) +

⇣
(gh)0(Dz)

gh(Dz) + 2(g+p)
s2

⌘
T̃ (Dz, 0) if Dz 2 (�D�, 0)

2
s2

Ess�Gh(Dz)
gh(Dz) +

⇣
(gh)0(Dz)

gh(Dz) + 2(g+p)
s2

⌘
T̃ (Dz, 0) if Dz 2 (0, D+)

(D.54)

Integrating the Kolmogorov forward equation (D.18) from 0 to D+ and from �D� to 0, we obtain

�
2

s2


d
⇣
Ess � Gh(0)

⌘
�

s2

2
lim

Dz"D+
(gh)0(Dz) + (g + p)gh(0)

�
= lim

Dz#0
(gh)0(Dz), (D.55)

2
s2


dGh(0) +

s2

2
lim

Dz#�D�

(gh)0(Dz)� (g + p)gh(0)
�
= lim

Dz"0
(gh)0(Dz), (D.56)
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respectively. Next, we sum the limits of (D.54) as Dz ! 0 from the left and right, use the continuity of Gh(D), gh(D), T̃ 0(Dz, 0)

together with (D.55) and (D.56) to obtain

2T̃ 0
Dz(0, 0) =

2
s2

Ess � 2Gh(0)
gh(0)

+

 
limDz#0(gh)0(Dz) + limDz"0(gh)0(Dz)

gh(0)
+

4(g + p)

s2

!
T̃ (0, 0),

=
2

s2
Ess � 2Gh(0)

gh(0)
⇥
1 � dT̃ (0, 0)

⇤
+

limDz#�D� (gh)0(Dz) + limDz"D+ (gh)0(Dz)
gh(0)

T̃ (0, 0),

=
2

s2
Ess � 2Gh(0)

gh(0)


1 �

sexo

s

�

| {z }
= send/s

+
limDz#�D� (gh)0(Dz) + limDz"D+ (gh)0(Dz)

gh(0)
T̃ (0, 0),

where the last equation uses s = 1/T̃ (0, 0). Operating the last expression, we obtain

T̃ 0
Dz(0, 0)
T̃ (0, 0)

=
T 0

ŵ⇤ (ŵ⇤, 0)
T (ŵ⇤, 0)

=
1

s2

"
send Ess � 2Gh(0)

gh(0)
+

s2

2
limDz"D+ (gh)0(Dz) + limDz#�D� (gh)0(Dz)

gh(0)

#
.

d. Now, we study the case with r̂ > 0. Let Y(Dz, r̂) := T̃ 0
Dz(Dz, r̂). Differentiating the HJB in (D.51), we obtain a new HJB

dY(Dz, r̂) = �r̂T̃ 0
Dz(Dz, r̂)� (g + p)Y0

Dz(Dz, r̂) +
s2

2
Y00

Dz2 (Dz, r̂) 8 Dz 2 (�D�, D+),

with new border conditions for Y(Dz, r̂)

T̃
0

Dz(�D�, r̂) = Y(�D�, r̂) ; T̃ 0
Dz(D

+, r̂) = Y(D+, r̂).

Thus,

Y(Dz, r̂) = E

"ˆ tm

0
�r̂T̃ 0

Dz(Dzt, r̂)dt + T̃
0

Dz(Dztm , r̂) [Dztm = D+ or Dztm = �D�]|Dz0 = Dz

#
.

Evaluating at zero and using the occupancy measure,

Y(0, r̂) = �r̂
Eh[T̃

0
Dz(Dz, r̂)]

Ess
T̃ (0, 0) +

s2

2

"
lim

Dz#�D�

T̃
0

Dz(Dz, r̂)
(gh)0(Dz)

sEss
� lim

Dz"D+
T̃

0
Dz(Dz, r̂)

(gh)0(Dz)
sEss

#
.

Using the fact that s = 1
T̃ (0,0) , we have that

T̃ 0
Dz(0, r̂)

T̃ (0, r̂)
=

T̃ (0, 0)
T̃ (0, r̂)Ess


�r̂Eh[T̃

0
Dz(Dz, r̂)] +

s2

2


lim

Dz#�D�

T̃
0

Dz(Dz, r̂)(gh)0(Dz)� lim
Dz"D+

T̃
0

Dz(Dz, r̂)(gh)0(Dz)
��

.

Notice that for small r̂, we can apply a first-order approximation to r̂Eh[T̃
0

Dz(Dz, r̂)] around r̂ = 0:

r̂Eh[T̃
0

Dz(Dz, r̂)] =

0

BBB@
Eh[T̃

0
Dz(Dz, 0)] + r̂Eh

"
∂T̃ 0

Dz
∂r̂

(Dz, 0)

#

| {z }
= 0

1

CCCA
r̂ + o(r̂2) = Eh[T̃

0
Dz(Dz, 0)]r̂ + O(r̂2).

Thus,

T̃ 0
Dz(0, r̂)

T̃ (0, r̂)
=

T̃ (0, 0)
T̃ (0, r̂)Ess


�r̂Eh[T̃

0
Dz(Dz, 0)] +

s2

2


lim

Dz#�D�

T̃
0

Dz(Dz, r̂)(gh)0(Dz)� lim
Dz"D+

T̃
0

Dz(Dz, r̂)(gh)0(Dz)
��

+ O(r̂2).
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Next, we show that Eh[T̃
0

Dz(Dz, 0)] = (g+p)Eh [a]+Eh [Dz]
s2 :

Eh[T̃
0

Dz(Dz, 0)] =
ˆ D+

�D�

T̃
0

Dz(Dz, 0)gh(Dz)dDz,

=(1)
T (Dz, 0)gh(Dz)

���
D+

�D�
�

ˆ D+

�D�

T (Dz, 0)(gh)0(Dz)dDz,

=(2)
�

ˆ D+

�D�


mE ,h(Dz)
1 � Ess

�
mE ,u(0, 0)

1 � Ess

�
(gh)0(Dz)dDz,

=(3) mE ,u(0)
1 � Ess

gh(Dz)
���
D+

�D�
�

ˆ D+

�D�

mE ,h(Dz)
1 � Ess

(gh)0(Dz)dDz,

=(4) [(g + p)Eh[a] + Eh[Dz]]
s2 .

Step (1) applies integration by parts; step (2) uses the border conditions for gh(Dz); step (3) uses the recursive definition of

mE ,h(Dz) = (1 � Ess)T̃ (Dz) + mE ,u(0, 0); and step (4) uses the results in Subsection D.2. Thus,

T̃ 0
Dz(0, r̂)

T̃ (0, r̂)
=

T̃ (0, 0)
T̃ (0, r̂)Ess


�r̂

[(g + p)Eh[a] + Eh[Dz]]
s2 +

s2

2


lim

Dz#�D�

T̃
0

Dz(Dz, r̂)(gh)0(Dz)� lim
Dz"D+

T̃
0

Dz(Dz, r̂)(gh)0(Dz)
��

+ o(r̂2).

(D.57)

To further operate on the limits, observe that

d2(T̃ (Dz, r̂)(gh)(Dz))
dDz2 = T̃

00

Dz2 (Dz, r̂)gh(Dz) + 2T̃ 0
Dz(Dz, r̂)(gh)0(Dz) + T̃ (Dz, r̂)(gh)00(Dz).

The limits of this expression as Dz # �D� and Dz # D+ are given by


lim

Dz#�D�

� lim
Dz"D+

�
d2(T̃ (Dz, r̂)(gh)(Dz))

dDz2 =


lim

Dz#�D�

� lim
Dz"D+

�
2T̃ 0

Dz(Dz, r̂)(gh)0(Dz).

Replacing this expression into (D.57), we obtain

T 0
ŵ⇤ (ŵ⇤, r̂)

T (ŵ⇤, r̂)
=

T (ŵ⇤, 0)
T (ŵ⇤, r̂)Ess

2

4�r̂
(g + p)Eh[a] + Eh[Dz]

s2 +
s2

4


lim

Dz#�D�

� lim
Dz"D+

� d2
h
T (ŵ⇤ + Dz, r̂)gh(Dz)

i

dDz2

3

5+ O(r̂2).

Finally, we characterize the marginal duration at the separation triggers as a function of gh(Dz). Using (D.18), (D.51), and

(D.52)

0 = gh(Dz)� r̂T̃ (Dz, r̂)gh(Dz)� (g + p)
⇣
(gh)0(Dz)T̃ (Dz, r̂) + gh(Dz)T̃ 0

Dz(Dz, r̂)
⌘

+
s2

2

⇣
T̃

00

Dz2 (Dz, r̂)gh(Dz)� T̃ (Dz, r̂)(gh)00(Dz)
⌘

.

After applying a similar first-order approximation to r̂T̃ (Dz, r̂)gh(Dz) around r̂ = 0, we obtain

0 = gh(Dz)� r̂T̃ (Dz, 0)gh(Dz)� (g + p)
⇣
(gh)0(Dz)T̃ (Dz, r̂) + gh(Dz)T̃ 0

Dz(Dz, r̂)
⌘

+
s2

2

⇣
T̃

00

Dz2 (Dz, r̂)gh(Dz)� T̃ (Dz, r̂)(gh)00(Dz)
⌘
+ O(r̂2).
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To save on notation, we omit the term O(r̂2). Define

F�(Dz) =
ˆ Dz

�D�

(1 � r̂T̃ (x, 0))gh(x)dx

F+(Dz) =
ˆ D+

Dz
(1 � r̂T̃ (x, 0))gh(x)dx.

Then, after applying similar steps as in item c, T̃ (Dz, r̂) satisfies a first order differential equation, once we write it as a function

of gh(Dz):

T̃
0

Dz(Dz, 0) =

8
<

:
�

2
s2

F�(Dz)
gh(Dz) +

⇣
(gh)0(Dz)

gh(Dz) + 2(g+p)
s2

⌘
T̃ (Dz, 0) if Dz 2 (�D�, 0)

2
s2

F+(Dz)
gh(Dz) +

⇣
(gh)0(Dz)

gh(Dz) + 2(g+p)
s2

⌘
T̃ (Dz, 0) if Dz 2 (0, D+)

Guessing and verifying the solution, it is easy to see that the solution is given by

T̃ (Dz, r̂) = T̃ (0, r̂)
gh(Dz)
gh(0)

e
2(g+p)

s2 Dz +

8
<

:

2g(Dz)
s2

´ 0
Dz e

2(g+p)

s2 (Dz�s) F�(s)
gh(s)2 ds if Dz < 0

2g(Dz)
s2

´ Dz
0 e

2(g+p)

s2 (Dz�s) F+(s)
gh(s)2 ds if Dz > 0

=
gh(Dz)
gh(0)

2

4T̃ (0, r̂)e
2(g+p)

s2 Dz +
2g(0)

s2

8
<

:

´ 0
Dz e

2(g+p)

s2 (Dz�s) F�(s)
gh(s)2 ds if Dz < 0

´ Dz
0 e

2(g+p)

s2 (Dz�s) F+(s)
gh(s)2 ds if Dz > 0

3

5

Next, we characterize the marginal duration. Taking the derivative of the solution, and using L’Hopital’s rule, limD#�D�

⇣
Gh(Dz)
gh(Dz) , Gh(Dz)

gh(Dz)2

⌘
=

(0, 1), when Dz # �D�

T̃ (0, r̂)
g(0)

e
2(g+p)

s2 Dz


g0(Dz) +
2(g + p)

s2 g(Dz)
�
!

T̃ (0, r̂)
g(0)

e�
2(g+p)

s2 D�

g0(�D�),

2g0(Dz)
s2

ˆ 0

Dz
e

2(g+p)

s2 (Dz�s) F�(s)
gh(s)2 ds !

2g0(�D�)

s2

ˆ 0

�D�

e
2(g+p)

s2 (Dz�s) F�(s)
gh(s)2 ds,

2g(Dz)
s2

2(g + p)

s2

ˆ 0

Dz
e

2(g+p)

s2 (Dz�s) gh(s)
gh(s)2 ds +

2g(Dz)
s2

2(g + p)

s2
Gh(Dz)
gh(Dz)2 ds ! 0.

Combining these results, we obtain

lim
Dz#�D�

T̃
0

Dz(Dz, r̂) = lim
Dz#�D�

(gh)0(Dz)
gh(0)

"
T̃ (0, r̂)e�

2(g+p)

s2 D�

+
2gh(0)

s2

ˆ 0

�D�

e
2(g+p)

s2 (�D��s) F�(Dz)
gh(s)2 ds

#

and

lim
Dz"D+

T̃
0

Dz(Dz, r̂) = lim
Dz"D+

(gh)0(Dz)
g(0)

"
T̃ (0, r̂)e

2(g+p)

s2 D+

+
2gh(0)

s2

ˆ D+

0
e

2(g+p)

s2 (D+�s) F+(Dz)
gh(s)2 ds

#
.

Therefore,

lim
Dz#D�

d2
h
T (ŵ⇤ + Dz, r̂)gh(Dz)

i

dDz2 = lim
Dz#�D�

2
(gh)0(Dz)2

gh(0)

"
T̃ (0, r̂)e�

2(g+p)

s2 D�

+
2gh(0)

s2

ˆ 0

�D�

e
2(g+p)

s2 (�D��s) F�(Dz)
gh(s)2 ds

#

lim
Dz"D+

d2
h
T (ŵ⇤ + Dz, r̂)gh(Dz)

i

dDz2 = lim
Dz"D+

2
(gh)0(Dz)2

gh(0)

"
T̃ (0, r̂)e

2(g+p)

s2 D+

+
2gh(0)

s2

ˆ D+

0
e

2(g+p)

s2 (D+�s) F+(Dz)
gh(s)2 ds,

#

which proves the result.
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D.5 Proof of Proposition 9

We divide Proposition 9 into two propositions. Proposition D.5 “re-scales the speed of time” to provide a recursive representation

of h(ŵ).

Proposition D.5. Define

tend = inf{t � 0 : Gt /2 (ŵ�, ŵ+)}

where (ŵ�, ŵ+) is a Nash equilibrium. Then, the worker’s share h(ŵ) satisfies the following Bellman equation

h(ŵ) = E

"ˆ tend

0
e�(r̂+d)t(r̂ + d)

eGt � r̂Û
1 � r̂Û

dt + e�(r̂+d)tend
[Dztend = D+]|G0 = ŵ

#

with

dGt = (r̂ + d)(�ĝT (Gt, r̂) + s2
T

0
ŵ(Gt, r̂))dt + s

q
T (Gt, r̂)(r̂ + d)dW z

t .

Proof. The HJB equations for the worker’s value and the surplus of the match are

(r̂ + d)Ŵ(ŵ) = eŵ
� r̂Û � ĝŴ 0(ŵ) +

s2

2
Ŵ 00(ŵ) 8ŵ 2 (ŵ�, ŵ+)

(r̂ + d)Ŝ(ŵ) = 1 � r̂Û � ĝŜ0(ŵ) +
s2

2
Ŝ00(ŵ) 8ŵ 2 (ŵ�, ŵ+),

respectively. Replacing the definition of the worker’s share h(ŵ) = Ŵ(ŵ)/Ŝ(ŵ) into the worker’s value function, we obtain

(r̂ + d)(h(ŵ)Ŝ(ŵ)) = eŵ
� r̂Û � ĝ

�
h(ŵ)Ŝ0(ŵ) + h0(ŵ)Ŝ(ŵ)

�
+

s2

2
�
h(ŵ)Ŝ00(ŵ) + 2h0(ŵ)Ŝ0(ŵ) + h00(ŵ)Ŝ(ŵ)

�
8ŵ 2 (ŵ�, ŵ+).

Using the HJB equation of the surplus to replace (r̂ + d)Ŝ(ŵ) on the left hand side,

(1 � r̂Û)h(ŵ) = eŵ
� r̂Û + h0(ŵ)(�ĝŜ(ŵ) + s2Ŝ0(ŵ)) + h00(ŵ)

s2

2
Ŝ(ŵ) 8ŵ 2 (ŵ�, ŵ+).

Since Ŝ(ŵ) = (1 � r̂Û)T (ŵ, r̂),

h(ŵ) =
eŵ � r̂Û
1 � r̂Û

+ h0(ŵ)(�ĝT (ŵ, r̂) + s2
T

0
ŵ(ŵ, r̂)) + h00(ŵ)

s2

2
T (ŵ, r̂) 8ŵ 2 (ŵ�, ŵ+).

Multiplying by (r̂ + d), we arrive at

(r̂ + d)h(ŵ) = (r̂ + d)
eŵ � r̂Û
1 � r̂Û

+ h0(ŵ)(r̂ + d)(�ĝT (ŵ, r̂) + s2
T

0
ŵ(ŵ, r̂)) + h00(ŵ)

s2

2
(r̂ + d)T (ŵ, r̂) 8ŵ 2 (ŵ�, ŵ+).

Finally, recall the value-matching conditions

Ŵ(ŵ�) = Ĵ(ŵ�) = Ŵ(ŵ+) = Ĵ(ŵ+) = 0,

and the smooth pasting conditions

Ŵ 0(�D�) = Ĵ0(D+) = 0.
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The L’Hôpital’s rule implies

lim
ŵ#ŵ�

h(ŵ) = lim
ŵ#ŵ�

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ#ŵ�

Ŵ 0(ŵ)

Ĵ0(ŵ)
= 0

lim
ŵ"ŵ+

h(ŵ) = lim
ŵ"ŵ+

Ŵ(ŵ)

Ŝ(ŵ)
= lim

ŵ"ŵ+

Ŵ 0(ŵ)

Ŵ 0(ŵ)
= 1,

which are the boundary values for the worker’s share at the separation triggers.

Finally, the equivalence of the combined Dirichlet-Poisson problem (i.e., the mapping from the corresponding HJB equations

and boundary conditions of h(ŵ) to the sequential formulation) gives us the following Bellman equation

h(ŵ) = E

"ˆ tend

0
e�(r̂+d)t(r̂ + d)

eGt � r̂Û
1 � r̂Û

dt + e�(r̂+d)tend
[Dztend = D+]|G0 = ŵ

#
,

where

tend = inf{t � 0 : Gt /2 (ŵ�, ŵ+)}

and

dGt = (r̂ + d)(�ĝT (Gt, r̂) + s2
T

0
ŵ(Gt, r̂))dt + s

q
T (Gt, r̂)(r̂ + d)dW z

t .

Proposition 9. The following properties hold for dlog(h(ŵ))
dŵ

���
ŵ=ŵ⇤

:

a. If D+, D� ! •, then
dlog(h(ŵ))

dŵ

����
ŵ=ŵ⇤

=

⇥
a + (1 � a)r̂Û

⇤

a(1 � r̂Û)
.

b. Assume g + p = 0, D+ = D�, and D+ small enough, then

dlog(h(ŵ))
dŵ

����
ŵ=ŵ⇤

=

p

send

2as
.

Proof. Below, we prove each property.

1. If D+, D� ! •, then T (ŵ, r̂) =
´ •

0 e�(r̂+d)t dt = 1
r̂+d . The optimality condition for ŵ⇤ implies

0 = �
T 0(ŵ⇤, r̂)
T (ŵ⇤, r̂)

= h0(ŵ⇤)

✓
a

h(ŵ⇤)
�

1 � a

1 � h(ŵ⇤)

◆
() a = h(ŵ⇤).

Therefore, by the definition of h(ŵ),

a = h(ŵ⇤) =
E
h´ tm

0 e�r̂t+ŵt dt|ŵ0 = ŵ⇤

i
� r̂ÛT (ŵ, r̂)

(1 � r̂Û)T (ŵ, r̂)
()

⇥
a + (1 � a)r̂Û

⇤
T (ŵ, r̂) = E

"ˆ tm

0
e�r̂t+ŵt dt|ŵ0 = ŵ⇤

#
.

Since T (ŵ, r̂) is constant, the HJB equation of the worker’s share h(ŵ) is given by

(r̂ + d)h(ŵ) = (r̂ + d)
eŵ � r̂Û
1 � r̂Û

� ĝh0(ŵ) + h00(ŵ)
s2

2
8ŵ 2 (�•, •). (D.58)
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Taking the derivative of (D.58) with respect to ŵ yields

(r̂ + d)h0(ŵ) = (r̂ + d)
eŵ

1 � r̂Û
� ĝh00(ŵ) + h000(ŵ)

s2

2
8ŵ 2 (�•, •).

This expression corresponds to the HJB of the function h0(ŵ), which can be expressed as

h0(ŵ⇤) = (r̂ + d)
E
h´ tm

0 e�r̂t+ŵt dt|ŵ0 = ŵ⇤

i

1 � r̂Û

Combining all these results, we finally obtain

h0(ŵ⇤)
h(ŵ⇤)

=
h0(ŵ⇤)

a
= (r̂ + d)

E
h´ tm

0 e�r̂t+ŵt dt|ŵ0 = ŵ⇤

i

a(1 � r̂Û)
= (r̂ + d)

⇥
a + (1 � a)r̂Û

⇤
T (ŵ, r̂)

a(1 � r̂Û)
=

⇥
a + (1 � a)r̂Û

⇤

a(1 � r̂Û)
.

2. If g + p = 0 and D+ = D�, then T 0
ŵ(ŵ

⇤, r̂) = 0 and h(ŵ⇤) = a (see the proof of Proposition D.4, item a). If (D+ + D�) is

small enough, then we can use a second-order approximation of h(ŵ) around ŵ = ŵ⇤ to characterize h0(ŵ⇤) only using

the border conditions. The approximation is given by

h(ŵ) = h(ŵ⇤) + h0(ŵ⇤)(ŵ � ŵ⇤) +
1
2

h00(ŵ⇤)(ŵ � ŵ⇤)2 + O((ŵ � ŵ⇤)3).

Evaluating this expression at ŵ� and ŵ+, and omiting any terms of the order O((ŵ � ŵ⇤)3), we obtain

h(ŵ⇤) + h0(ŵ⇤)(ŵ�
� ŵ⇤) +

1
2

h00(ŵ⇤)(ŵ�
� ŵ⇤)2 = 0,

h(ŵ⇤) + h0(ŵ⇤)(ŵ+
� ŵ⇤) +

1
2

h00(ŵ⇤)(ŵ+
� ŵ⇤)2 = 1,

respectively. The difference between both equations is given by

h0(ŵ⇤) =
1

D+ + D�
.

From the proof of Proposition D.4 item b, we know that T̃ (0, 0) = 1/s = 1/(d + (s/D+)2) ) send = (s/D+)2. Replacing

this result in the previous equation, we obtain,

h0(ŵ⇤)
h(ŵ⇤)

=
1
a

1
D+ + D�

=

p

send

2as
.
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E Additional Results for Section 3: The Consequences of Monetary Shocks

in Non-Coasean Labor Markets

E.1 Characterization of the CIR of employment as a function of the CIR of the job-separation

and job-finding rates

Proposition E.1. Define

IRFE (z, t) = Et(z)� Ess, IRFs(z, t) = st(z)� sss, IRFf (z, t) = ft(z)� fss

and

CIRx(z) =
ˆ •

0
IRFx(z, t)dt, with x 2 {E , s, f }.

Assume that dE0(0)
dz = 0 (i.e., there is no first order change in employment on impact) and limt!• Et(z) = Ess. Then

CIRE (z)
z

= (1 � Ess)Ess

 
fss

CIRf (0)
dz

� sss
CIRs(0)

dz

!
+ o(z).

Proof. Since (Et(0), pt(0), st(0)) = (Ess, pss, sss), a first order Taylor approximation with respect to z around z = 0 yields

Et(z) = Ess +
dEt(0)

dz
z + ot(z

2),

ft(z) = fss +
d ft(0)

dz
z + ot(z

2),

st(z) = sss +
dst(0)

dz
z + ot(z

2).

and the law of motion

dEt = (�stEt + ft(1 � Et))dt , E0(z) = Ess + o(z2).

Replacing the first order Taylor approximations in the law of motion of employment, we obtain

dEt = (�stEt + ft(1 � Et))dt,

⇡

0

@�sssEss + fss(1 � Ess)| {z }
= 0

+(1 � Ess)
d ft(0)

dz
� Ess

dst(0)
dz

� ( fss + sss)
dEt(0)

dz

1

Adtz.

At the same time, we have

dEt = d(Ess +
dEt(0)

dz
z) + ot(z

2),

⇡ d
✓

dEt(0)
dz

◆
z

Combining both expressions and cancelling z from both sides we obtain

d
✓

dEt(0)
dz

◆
=

✓
(1 � Ess)

d ft(0)
dz

� Ess
dst(0)

dz
� ( fss + sss)

dEt(0)
dz

◆
dt.
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Taking the integral between 0 and T,

ˆ T

0
d
✓

dEt(0)
dz

◆
= (1 � Ess)

ˆ T

0

d ft(0)
dz

dt � Ess

ˆ T

0

dst(0)
dz

dt � ( fss + sss)
ˆ T

0

dEt(0)
dz

dt.

Since
´ T

0 d
⇣

dEt(0)
dz

⌘
= dET(0)

dz �
dE0(0)

dz = dET(0)
dz , we have that

dEt(0)
dz

= (1 � Ess)
ˆ T

0

d ft(0)
dz

dt � Ess

ˆ T

0

dst(0)
dz

dt � ( fss + sss)
ˆ T

0

dEt(0)
dz

dt.

Taking the limit, since limt!• Et(z) = Ess, we have that limT!•
dEt(0)

dz = 0 and

ˆ •

0

dEt(0)
dz

dt =
(1 � Ess)
( fss + sss)

ˆ •

0

d ft(0)
dz

dt �
Ess

( fss + sss)

ˆ •

0

dst(0)
dz

dt.

Since

dCIRE (0)
dz

=
ˆ •

0

dEt(0)
dz

dt,

dCIR f (0)
dz

=
ˆ •

0

d ft(0)
dz

dt,

dCIRs(0)
dz

=
ˆ •

0

dst(0)
dz

dt,

we can combine the previous result and Ess =
fss

sss+ fss
, to obtain

dCIRE (0)
dz

= (1 � Ess)Ess

 
f�1
ss

dCIR f (0)
dz

� s�1
ss

dCIRs(0)
dz

!
.

Since CIRx(z) = CIRx(0) +
dCIRx(0)

dz z + o(z2) and CIRx(0) = 0, we have

CIRE (z)
z

= (1 � Ess)Ess

 
fss

CIR f (0)
z

� sss
CIRs(0)

z

!
+ o(z)

E.2 Second-Order Approximation of the CIR of Employment with Flexible Wages

Proposition E.2. Assume flexible entry wages. Up to a second-order approximation,

CIR00
E
(0) =

(1 � Ess)Ess � g(CIRE )
0(0)

s2 �
1
2

⇣
Dzm0

E ,h(Dz)(gh)0(Dz)
⌘���

D+

�D�

+
1
2

⇣
(gh)0(0�)� (gh)0(0+)

⌘ �
mE ,u(0)� mE ,h(0)

�
.

Proof. Taking the second derivative of (D.33), we obtain

CIR00
E
(z) = � lim

Dz!�z
mE ,h(Dz)(gh)0(Dz + z) + lim

Dz!�D��z
mE ,h(Dz)(gh)0(Dz + z) +

ˆ
�z

�D��z
mE ,h(Dz)(gh)00(Dz + z)dDz

� lim
Dz!D+�z

mE ,h(Dz)(gh)0(Dz + z) + lim
Dz!�z

mE ,h(Dz)(gh)0(Dz + z) +
ˆ D+�z

�z
mE ,h(Dz)(gh)00(Dz + z)dDz,
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which evaluated at z = 0 becomes

CIR00
E
(0) = � mE ,h(Dz)(gh)0(Dz) |0

�D� +
ˆ 0

�D�

mE ,h(Dz)(gh)00(Dz)dDz.

� mE ,h(Dz)(gh)0(Dz) |D
+

0 +
ˆ D+

0
mE ,h(Dz)(gh)00(Dz)dDz.

Differentiating condition (G.1) to replace d =
g(gh)00(Dz)+ s2

2 (gh)000(Dz)
(gh)0(Dz) into equation (D.34) we obtain

g(gh)00(Dz) + s2

2 (gh)000(Dz)
(gh)0(Dz)

mE ,h(Dz) = 1 � Ess � gm0

E ,h(Dz) +
s2

2
m00

E ,h(Dz) +
gg00(Dz) + s2

2 g000(Dz)
(gh)0(Dz)

mE ,u(0).

Multiplying by (gh)0(Dz)Dz and integrating between �D� and D+

0 = (1 � Ess) T1 � gT2 +
s2

2
T3 + mE ,u(0)T4 (E.1)

T1 =
ˆ D+

�D�

Dz(gh)0(Dz)d Dz

T2 =
ˆ D+

�D�

Dz
h
mE ,h(Dz)(gh)00(Dz) + m0

E ,h(Dz)(gh)0(Dz)
i

d Dz

T3 =
ˆ D+

�D�

Dz
h
m00

E ,h(Dz)(gh)0(Dz)� mE ,h(Dz)(gh)000(Dz)
i

d Dz

T4 =
ˆ D+

�D�

Dz
✓

g(gh)00(Dz) +
s2

2
(gh)000(Dz)

◆
d Dz.

T1 is equal to

T1 =
ˆ D+

�D�
Dz(gh)0(Dz)d Dz (E.2)

=
ˆ 0

�D�
Dz(gh)0(Dz)d Dz +

ˆ D+

0
Dz(gh)0(Dz)d Dz

= Dzgh(Dz)
���
0

�D�
+ Dzgh(Dz)

���
D+

0| {z }
=0

�

ˆ D+

�D�

gh(Dz)d Dz
| {z }

=Ess

= �Ess.

T2 satisfies

T2 =
ˆ D+

�D�

Dz
h
mE ,h(Dz)(gh)00(Dz)� m0

E ,h(Dz)(gh)00(Dz)
i

d Dz (E.3)

=(1)
ˆ 0

�D�

Dz
h
mE ,h(Dz)(gh)00(Dz)� m0

E ,h(Dz)(gh)0(Dz)
i

d Dz +
ˆ D+

0
Dz
h
mE ,h(Dz)(gh)00(Dz)� m0

E ,h(Dz)(gh)0(Dz)
i

d Dz

=(2) DzmE ,h(Dz)(gh)0(Dz)
���
0

�D�
+ DzmE ,h(Dz)(gh)0(Dz)

���
D+

0

· · ·�

"ˆ 0

�D�

h
mE ,h(Dz)(gh)0(Dz)

i
d Dz +

ˆ D+

0

h
mE ,h(Dz)(gh)0(Dz)

i
d Dz

#

=(3) mE ,u(0) Dz(gh)0(Dz)
���
D+

D�
�

ˆ D+

D�

mE ,h(Dz)g0(Dz)d Dz

E3



=(4) mE ,u(0) Dz(gh)0(Dz)
���
D+

D�
� CIR0

E
(0).

Here, step (1) divides the integral at the discontinuity point; (2) uses the equality mE ,h(Dz)(gh)00(Dz) + m0

E ,h(Dz)(gh)0(Dz) =
d [mE ,h(Dz)(gh)0(Dz)]

d Dz and integrates by parts; (3) uses conditions (D.35) and (E.7); and (4) uses the definition of CIR0
E
(0). T3 satisfies

T3 =
ˆ D+

�D�

Dz
h
m00

E ,h(Dz)(gh)0(Dz)� mE ,h(Dz)(gh)000(Dz)
i

d Dz (E.4)

=(1)
ˆ 0

�D�

Dz
h
m00

E ,h(Dz)(gh)0(Dz)� mE ,h(Dz)(gh)000(Dz)
i

d Dz +
ˆ D+

0
Dz
h
m00

E ,h(Dz)(gh)0(Dz)� mE ,h(Dz)(gh)000(Dz)
i

d Dz

=(2) Dz
⇣

m0

E ,h(Dz)(gh)0(Dz)� mE ,h(Dz)(gh)00(Dz)
⌘���

D+

�D�

· · ·�

"ˆ 0

�D�

h
m0

E ,h(Dz)(gh)0(Dz)� mE ,h(Dz)(gh)00(Dz)
i

d Dz +
ˆ D+

0

h
m0

E ,h(Dz)(gh)0(Dz)� mE ,h(Dz)(gh)00(Dz)
i

d Dz

#

=(3) Dz
⇣

m0

E ,h(Dz)(gh)0(Dz)� mE ,u(0)(gh)00(Dz)
⌘���

D+

�D�

· · ·�

"
mE ,h(Dz)(gh)0(Dz)

���
0

�D�
� 2
ˆ 0

�D�

h
mE ,h(Dz)(gh)00(Dz)

i
d Dz

#

· · ·�

"
mE ,h(Dz)(gh)0(Dz)

���
D+

0
� 2
ˆ D+

0

h
mE ,h(Dz)(gh)00(Dz)

i
d Dz

#
.

Here, (1) divides the integral at the discontinuity point; (2) uses the equality m00

E ,h(Dz)(gh)0(Dz) � mE ,h(Dz)(gh)000(Dz) =
d [m0

E ,h(Dz)(gh)0(Dz)�mE ,h(Dz)(gh)00(Dz)]
d Dz and integrates by parts; and (3) uses conditions (D.35) and integrates by parts.

Finally, for T4

T4 =
ˆ D+

�D�
Dz
✓

g(gh)00(Dz) +
s2

2
(gh)000(Dz)

◆
d Dz (E.5)

=(1)
ˆ 0

�D�
Dz
✓

g(gh)00(Dz) +
s2

2
(gh)000(Dz)

◆
d Dz +

ˆ D+

0
Dz
✓

g(gh)00(Dz) +
s2

2
(gh)000(Dz)

◆
d Dz

=(2) Dz


g(gh)0(Dz) +
s2

2
(gh)00(Dz)

�����
0

�D�

+ Dz


g(gh)0(Dz) +
s2

2
(gh)00(Dz)

�����
D+

0

· · ·�

ˆ D+

�D�

g(gh)0(Dz) +
s2

2
(gh)00(Dz)d Dz

=(3) Dz


g(gh)0(Dz) +
s2

2
(gh)00(Dz)

�����
D+

�D�

� g


gh(Dz)

���
0

�D�
+ gh(Dz)

���
D+

0

�

| {z }
=0

· · ·�
s2

2


(gh)0(Dz)

���
0

�D�
+ (gh)0(Dz)

���
D+

0

�

= Dz


g(gh)0(Dz) +
s2

2
(gh)00(Dz)

�����
D+

�D�

�
s2

2


(gh)0(Dz)

���
0

�D�
+ (gh)0(Dz)

���
D+

0

�
.

Here, (1) divides the integral at the discontinuity point; (2) integrates by parts; (3) operates the integral and uses the border

conditions.

Combining results (E.1), (E.2), (E.3), (E.4), (E.5), we obtain

0 = (1 � Ess) T1 � gT2 +
s2

2
T3 + mE ,u(0)T4

E4



0 = �(1 � Ess)Ess � g

✓
mE ,u(0) Dz(gh)0(Dz)

���
D+

D�
� CIR0

E
(0)
◆

· · ·+
s2

2

"
Dz
⇣

m0

E ,h(Dz)(gh)0(Dz)� mE ,u(0)(gh)00(Dz)
⌘���

D+

�D�

· · ·�

"
mE ,h(Dz)(gh)0(Dz)

���
0

�D�
� 2
ˆ 0

�D�

h
mE ,h(Dz)(gh)00(Dz)

i
d Dz

#

· · ·�

"
mE ,h(Dz)(gh)0(Dz)

���
D+

0
� 2
ˆ D+

0

h
mE ,h(Dz)(gh)00(Dz)

i
d Dz

# #

· · ·+ mE ,u(0)

 
Dz


g(gh)0(Dz) +
s2

2
(gh)00(Dz)

�����
D+

�D�

�
s2

2


(gh)0(Dz)

���
0

�D�
+ (gh)0(Dz)

���
D+

0

�!
,

which implies

CIR00
E
(0) =

(1 � Ess)Ess � g(CIRE )
0(0)

s2 �
1
2

⇣
Dzm0

E ,h(Dz)(gh)0(Dz)
⌘���

D+

�D�

+
1
2

⇣
(gh)0(0�)� (gh)0(0+)

⌘ �
mE ,u(0)� mE ,h(0)

�
.

E.3 Characterizing the CIR for real wages with flexible entry wages

We define the CIR of the average wage per capita to a monetary shock as

CIRw(z) =
ˆ •

0

ˆ ŵ+

ŵ�

ŵ
⇣

gh(ŵ, t)� g(ŵ)
⌘

dŵ dt.

The strategy to find the sufficient statistic is similar to the strategy used for CIRE (z), with few differences in the implementation

of the steps. For this reason, we skip the proof of some of the similar steps. The main difference is the associated Bellman

equation that describes the total sum of the differences between the average wage in period t and the steady-state average wage.

Step 1. The CIR satisfies

CIRw(z) =
ˆ •

�•
mw,h(Dz)gh(Dz + z)dDz +

ˆ •

�•
mw,u(Dz)gu(Dz + z)dDz

with

mw,h(Dz) ⌘ E

"ˆ tm

0
[Dzt � Eh[Dz]]dt + mw,u(0)|Dz0 = Dz

#

mw,u(Dz) ⌘ E
⇥
mw,h(0)|Dz0 = Dz

⇤

0 =
ˆ D+

�D�

mw,h(Dz)gh(Dz)dDz +
ˆ D+

�D�

mw,u(Dz)gu(Dz)dDz.

Step 2. Up to first order, the CIRw(z) is the solution of

CIRw(z) =
ˆ •

�•
mw,h(Dz)gh(Dz + z)dDz + mw,h(0)(1 � Ess),

E5



where

0 = Dz � Eh[Dz]� g(mw,h)
0(Dz) +

s2

2
(mw,h)

00(Dz) + d(mw,h(0)� (mw,h)
0(Dz)) (E.6)

mw,h(0) = mw,h(�D�) = mw,h(D+),

0 =
ˆ D+

�D�

mw,h(Dz)gh(Dz)dDz + mw,h(0)(1 � Ess),

dgh(Dz) = g(gh)0(Dz) +
s2

2
(gh)00(Dz) for all Dz 2 (�D�, D+)/{0},

gh(�D�) = gh(D+) = 0, (E.7)

Ess =
ˆ D+

�D�

gh(Dz)dDz,

gh(Dz) 2 C, C1({0}), C2({0}).

Step 3. We show that mw,h(0) =
Covh [a,Dz]

1�Ess
.

Proof of Step 3. Define f (Dzt) = Dzt � Eh[Dz]. Observe that mw,h(Dz) satisfies the following recursive representation

mw,h(Dz) = E

"ˆ tm

0
f (Dzt)dt + mw,h(0)

�����Dz0 = Dz

#
.

Define the following auxiliary function

Y(Dz|j) = E

"ˆ tm

0
ejt f (Dzt)dt + ejtm

mw,h(0)

�����Dz0 = Dz

#
. (E.8)

Then, following similar steps, we obtain

∂Y(0|0)
∂j

= E

"ˆ tm

0
mw,h(Dzt)dt

���Dz0 = 0

#

= E[tm]

´ D+

�D� mw,h(Dz)gh(Dz)dDz
Ess

= �E[tm]mw,h(0)
(1 � Ess)

Ess
. (E.9)

From (E.8), we have that

∂Y(0|0)
∂j

= E

"ˆ tm

0
s f (Dzs)ds + tmmw,h(0)

�����Dz0 = 0

#

= E [tm]


Eh[a f (Dzs)]

Ess
+ mw,h(0)

�
, (E.10)

Combining (E.9) and (E.10), and solving for mw,h(0) we obtain:

mw,h(0) =
Covh[a, Dz]

1 � Ess

E6



Step 4. Up to a first-order approximation, the CIR is given by:

CIRw(z) = �
Covh[Dz + ga, Dz]

s2 + o(z2).

Proof of Step 4. To help the reader, we summarize below the conditions we use in this proof.

CIRw(z) =
ˆ •

�•
mw,h(Dz)gh(Dz + z)dDz + mw,h(0)(1 � Ess), (E.11)

where

0 = f (Dz)� g(mw,h)
0(Dz) +

s2

2
(mw,h)

00(Dz) + d(mw,h(0)� mw,h(Dz))

mw,h(0) = mw,h(�D�) = mw,h(D+), (E.12)

0 =
ˆ D+

�D�

mw,h(Dz)gh(Dz)dDz + mw,h(0)(1 � Ess). (E.13)

1. Zero-order: If z = 0, condition (E.13) implies

CIRw(0) =
ˆ •

�•
mw,h(Dz)gh(Dz)dDz + mw,h(0)(1 � Ess) = 0.

2. First-order: Taking the derivative of (E.11) we obtain

CIR0
w(z) =

ˆ •

�•
mw,h(Dz)(gh)0(Dz + z)dDz,

which evaluated at z = 0 becomes

CIR0
w(0) =

ˆ D+

�D�

mw,h(Dz)(gh)0(Dz)dDz.

Using condition (G.1) to replace d =
g(gh)0(Dz)+ s2

2 (gh)00(Dz)
gh(Dz) into the HJB equation (E.6), we obtain

g(gh)0(Dz) + s2

2 (gh)00(Dz)
gh(Dz)

mw,h(Dz) = f (Dz)� g(mw,h)
0(Dz) +

s2

2
(mw,h)

00(Dz) +
g(gh)0(Dz) + s2

2 (gh)00(Dz)
gh(Dz)

mw,h(0).

Multiplying by gh(Dz)Dz and taking the integral between �D� and D+

0 = Varh[Dz]� gT1 +
s2

2
T2 + mw,h(0)T3

T1 =
ˆ D+

�D�

Dz
h
(mw,h)

0(Dz)gh(Dz) + mw,h(Dz)(gh)0(Dz)
i

d Dz

T2 =
ˆ D+

�D�

Dz
h
(mw,h)

00(Dz)gh(Dz)� mw,h(Dz)(gh)00(Dz)
i

d Dz

T3 =
ˆ D+

�D�

Dz
✓

g(gh)0(Dz) +
s2

2
(gh)00(Dz)

◆
d Dz.

T1 is equal to

T1 =
ˆ D+

�D�

Dz
h
(mw,h)

0(Dz)gh(Dz) + mw,h(Dz)(gh)0(Dz)
i

d Dz

E7



=(1)
ˆ 0

�D�

Dz
h
(mw,h)

0(Dz)gh(Dz) + mw,h(Dz)(gh)0(Dz)
i

d Dz

+
ˆ D+

0
Dz
h
(mw,h)

0(Dz)gh(Dz) + mw,h(Dz)(gh)0(Dz)
i

d Dz

=(2)
ˆ 0

�D�

Dz
d
⇣

mw,h(Dz)gh(Dz)
⌘

d Dz
d Dz +

ˆ D+

0
Dz

d
⇣

mw,h(Dz)gh(Dz)
⌘

d Dz
d Dz

=(3) Dzmw,h(Dz)gh(Dz)
���
0

�D�
+ Dzmw,h(Dz)gh(Dz)

���
D+

0| {z }
=0

· · ·�

"ˆ 0

�D�

mw,h(Dz)gh(Dz)d Dz +
ˆ D+

0
mw,h(Dz)gh(Dz)d Dz

#

=(4)
�

ˆ D+

�D�

mw,h(Dz)gh(Dz)d Dz

=(5) mw,h(0)(1 � Ess)

Here, (1) divides the integral at the discontinuity point of gh(Dz); (2) uses the property of the derivative of a product of

functions; (3) integrates and uses the border conditions (E.7); (4) uses continuity of mw,h(Dz)gh(Dz); and (6) uses (E.13).

T2 satisfies

T2 =
ˆ D+

�D�

Dz
h
(mw,h)

00(Dz)gh(Dz)� mw,h(Dz)(gh)00(Dz)
i

d Dz

=(1)
ˆ 0

�D�

Dz
h
(mw,h)

00(Dz)gh(Dz)� mw,h(Dz)(gh)00(Dz)
i

d Dz

+
ˆ D+

0
Dz
h
(mw,h)

00(Dz)gh(Dz)� mw,h(Dz)(gh)00(Dz)
i

d Dz

=(2) Dz
h
(mw,h)

0(Dz)gh(Dz)� mw,h(Dz)(gh)0(Dz)
i���

0

�D�
+ Dz

h
(mw,h)

0(Dz)gh(Dz)� mw,h(Dz)(gh)0(Dz)
i���

D+

0

· · ·�

"ˆ 0

�D�

h
(mw,h)

0(Dz)gh(Dz)� mw,h(Dz)(gh)0(Dz)
i

d Dz +
ˆ D+

0

h
(mw,h)

0(Dz)gh(Dz)� mw,h(Dz)(gh)0(Dz)
i

d Dz

#

=(3) Dz
h
(mw,h)

0(Dz)gh(Dz)� mw,h(Dz)(gh)0(Dz)
i���

D+

D�| {z }
=�mw,h(0) Dz(gh)0(Dz)|D

+

D�

· · ·�

"ˆ 0

�D�

h
(mw,h)

0(Dz)gh(Dz)� mw,h(Dz)(gh)0(Dz)
i

d Dz +
ˆ D+

0

h
(mw,h)

0(Dz)gh(Dz)� mw,h(Dz)(gh)0(Dz)
i

d Dz

#

=(4)
�mw,h(0) Dz(gh)0(Dz)

���
D+

D�
�

ˆ D+

D�

(mw,h)
0(Dz)gh(Dz)d Dz +

ˆ D+

D�

mw,h(Dz)(gh)0(Dz)d Dz

=(5)
�mw,h(0) Dz(gh)0(Dz)

���
D+

D�
�

2

664mw,h(Dz)gh(Dz)
���
D+

D�| {z }
=0

�

ˆ D+

D�

mw,h(Dz)(gh)0(Dz)d Dz

3

775

+
ˆ D+

D�

mw,h(Dz)(gh)0(Dz)d Dz

= �mw,h(0) Dz(gh)0(Dz)
���
D+

D�
+ 2
ˆ D+

D�

mw,h(Dz)(gh)0(Dz)d Dz.

Here, (1) divides the integral at the discontinuity point; (2) uses the equality (mw,h)
00(Dz)gh(Dz)� mw,h(Dz)(gh)00(Dz) =

E8



d [(mw,h)0(Dz)gh(Dz)�mw,h(Dz)(gh)0(Dz)]
d Dz and integrates by parts; (3) uses conditions (E.12) and (E.7); and (4)-(5) integrate by

parts and operate.

Finally, for T3

T3 =
ˆ D+

�D�
Dz
✓

g(gh)0(Dz) +
s2

2
(gh)00(Dz)

◆
d Dz

= g

"ˆ 0

�D�

Dz(gh)0(Dz)d Dz +
ˆ D+

0
Dz(gh)0(Dz)d Dz

#
+

s2

2

"ˆ 0

D�

Dz(gh)00(Dz)d Dz +
ˆ D+

0
Dz(gh)00(Dz)d Dz

#

= g

2

6664
Dzgh(Dz)

���
0

�D�
+ Dzgh(Dz)

���
D+

0| {z }
=0

�

ˆ D+

�D�

gh(Dz)d Dz
| {z }

=Ess

3

7775

· · ·+
s2

2

"
Dz(gh)0(Dz)

���
0

�D�
+ Dz(gh)0(Dz)

���
D+

0
�

ˆ D+

�D�

(gh)0(Dz)d Dz

#

= �gEss +
s2

2

2

664Dz(gh)0(Dz)
���
D+

D�
� gh(Dz)

���
D+

D�| {z }
=0

3

775

= �gEss +
s2

2


Dz(gh)0(Dz)

���
D+

D�

�
.

Combining all these results

0 = Varh[Dz]� gT1 +
s2

2
T2 + mw,h(0)T3

0 = Varh[Dz]� gmw,h(0)(1 � Ess)

+
s2

2

 
�mw,h(0) Dz(gh)0(Dz)

���
D+

D�
+ 2
ˆ D+

D�

mw,h(Dz)(gh)0(Dz)d Dz

!

+ mw,h(0)
✓
�gEss +

s2

2


Dz(gh)0(Dz)

���
D+

D�

�◆

0 = Varh[Dz]� gmw,h(0) + s2
ˆ D+

D�

mw,h(Dz)(gh)0(Dz)d Dz,

which implies

ˆ D+

�D�

mw,h(Dz)(gh)0(Dz) =
gmw,h(0)� Varh[Dz]

s2

= �
Covh[Dz + ga, Dz]

s2 .
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F Proofs for Section 4: Identifying the Model Based on Labor Market Micro-

data

Characterizing the Equilibrium Distributions of Cumulative Productivity Shocks gh(Dz) and gu(Dz). The equilibrium

policies (ŵ�, ŵ⇤, ŵ+) together with the stochastic process guiding Dz and the exogenous job separation rate, determine the

equilibrium distributions of cumulative productivity shocks gh(Dz) and gu(Dz). Due to the law of motion for Dz being

independent of the worker’s employment state, the Kolmogorov forward equations (KFEs) for employed and unemployed

workers are

dgh(Dz) = (g + p)(gh)0(Dz) +
s2

2
(gh)00(Dz) 8Dz 2 (�D�, D+)\{0}, (F.1)

f (ŵ⇤)gu(Dz) = (g + p)(gu)0(Dz) +
s2

2
(gu)00(Dz) 8Dz 2 R\{0}. (F.2)

Here, d is the exogenous exit rate of employed workers, and f (ŵ⇤) is the job finding rate of unemployed workers. Since the

entry state for a newly employed or unemployed worker is Dz = 0, the KFEs (F.1)–(F.2) do not hold at this point, but gh(·) and

gu(·) must be continuous there.

The boundary conditions impose a zero measure of workers at the borders of the support,

gh(�D�) = gh(D+) = 0,

lim
Dz!�•

gu(Dz) = lim
Dz!•

gu(Dz) = 0.

These distributions must also be consistent with (i) a unit measure of workers and (ii) a flow balance equation implying constant

steady-state employment:

1 =
ˆ •

�•
gu(Dz)dDz +

ˆ D+

�D�

gh(Dz)dDz, (F.3)

f (ŵ⇤)(1 � E)
| {z }

u-to-h flows

= dE +
s2

2


lim

Dz#�D�

(gh)0(Dz)� lim
Dz"D+

(gh)0(Dz)
�

| {z }
h-to-u flows

. (F.4)

In equation (F.3), the unit measure of workers is composed of
´ •
�• gu(Dz)dDz = 1 � E unemployed and

´ D+

�D� gh(Dz)dDz =

E employed workers. In equation (F.4), the mass of u-toh flows is f (ŵ⇤)(1 � E), while the mass of h-to-u flows is dE +
s2

2 [limDz#�D� (gh)0(Dz) � limDz"D+ (gh)0(Dz)]—i.e., the sum of exogenous and endogenous job separations.

To summarize, equations (F.1)–(F.4), together with the continuity of gu(Dz) and gh(Dz) at Dz = 0, constitute the equilibrium

conditions for the steady-state distributions of cumulative productivity shocks.

F.1 Proof of Proposition 10

We divide the proof of Proposition 10 into three steps. Proposition F.1 identifies the parameters of the stochastic process of the

wage-to-revenue productivity ratio Dz. Proposition F.2 recovers the distribution of cumulative productivity shocks conditional

on job transitions Ḡh(Dz). Finally, Proposition F.3 recovers the distribution of Dz among employed workers Gh(Dz).

Proposition F.1. The drift (g + p) and volatility s of the stochastic process guiding cumulative productivity shocks can be recovered from

F1



the data with

g + p =
ED [Dw]
ED [t]

,

s2 =
ED [(Dw � (g + p)t)2]

ED [t]

where t := tm + tu.

Proof. From the law of motion dzt = (g + p)dt + s dW z
t and the fact that at the beginning of a new job spell wt0 � zt0 = ŵ⇤, we

have that

Dw = �Dzt = (g + p)t + sW z
t . (F.5)

Drift: Taking expectation on both sides conditional on a h-to-u-to-h transition, we have that sE[W z
t ] = ED [Dw]� (g+p)ED [t].

Since W z
t is a martingale, by Doob’s Optional Stopping Theorem (OST) W z

t is also a martingale, and E[W z
t ] = E[W z

0 ] = 0. Thus,

(g + p) =
ED [Dw]
ED [t]

.

Idiosyncratic volatility: Let us define Yt = (Dzt + (g + p)t)2. We apply Itô’s Lemma to Yt and obtain

dYt = 2 (Dzt + (g + p)t) (dDzt + (g + p)dt) +
1
2

2(dDzt)
2 = 2s (Dzt + (g + p)t)dW z

t + s2 dt

Integrating the previous equation between 0 and t and using condition (F.5), we obtain

(Dw � (g + p)t)2 = 2s

ˆ t

0
(Dzt + (g + p)t)dW z

t + s2t.

Since
´ t

0 (Dzt + (g + p)t)dW z
t is a martingale, by the OST,

´ t
0 (Dzt + (g + p)t)dW z

t is a martingale and E[
´ t

0 (Dzt + (g + p)t)dW z
t ] =

0. Thus,

ED [(Dw � (g + p)t)2] = 2sE

ˆ t

0
(Dzt + (g + p)t)dW z

t ,
�
+ s2ED [t] = s2ED [t]

which completes the proof of Proposition F.1.

Proposition F.2. The cumulative distribution of Dz conditional on a job separation is given by

Ḡh(Dz) =
s2

2 f (ŵ⇤)
dlw(�Dz)

dz
�

(g + p)
f (ŵ⇤)

lw(�Dz)� [1 � Lw(�Dz)] . (F.6)

where Lw(Dw) denotes the cumulative distribution function (CDF) corresponding to the marginal distribution lw(Dw).

Proof. The objective in this proof is to use the non-differentiability of the distribution of ḡs(Dz) for s = {h, u} at Dz = 0 to

express the distribution of Dz conditional on a separation. Observe that

Lw(a) = Prlw
(Dw  a)

=(1) PrḠh ,Ḡu
(�(Dzh + Dzu)  a)

=(2) PrḠh ,Ḡu
(Dzh + Dzu

� �a)

=(3) 1 � Pr(Dzh + Dzu
 �a)
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=(4) 1 �
ˆ •

�•
Ḡh(�a � y)ḡu(y)dy.

Here, in step (1) we use the definition of Dw, and steps (2) to (4) operate and use the independence of Ḡh(·) and ḡu(·). From

Proposition G.1, we have

ḡu(Dz) = Gu

8
<

:
eb2( f (ŵ⇤))Dz if Dz 2 (�•, 0]

eb1( f (ŵ⇤))Dz if Dz 2 [0, •)

and

Lw(Dw) = 1 � C1(Dw)� C2(Dw), (F.7)

where

C1(Dw) = Gu

ˆ •

0
Ḡh(�Dw � u)eb1( f (ŵ⇤))u du,

C2(Dw) = Gu

ˆ 0

�•
Ḡh(�Dw � u)eb2( f (ŵ⇤))u du.

Departing from Lw(Dw) = 1 �
´ •
�• Ḡh(�Dw � y)ḡu(y)dy and doing the change of variable x = �Dw � y with dx = �dy, we

obtain

Lw(Dw) = 1 �
ˆ •

�•
Ḡh(x)ḡu(�Dw � x)dx.

Taking the derivative on both sides with respect to Dw we obtain

lw(Dw) =
ˆ •

�•
Ḡh(x) (ḡu)0 (�Dw � x)dx.

Reverting the change of variables and using the fact that ḡu(�Dw � x) is non-differentiable at 0, we obtain

lw(Dw) =
ˆ •

�•
Ḡh(�Dw � u)(ḡu)0(u)du

=
ˆ 0

�•
Ḡh(�Dw � u)Gub2( f (ŵ⇤))eb2( f (ŵ⇤))u du +

ˆ •

0
Ḡh(�Dw � u)Gub1( f (ŵ⇤))eb1( f (ŵ⇤))u du

= b1( f (ŵ⇤))C1(Dw) + b2( f (ŵ⇤))C2(Dw).

Thus,

lw(Dw) = b1( f (ŵ⇤))C1(Dw) + b2( f (ŵ⇤))C2(Dw). (F.8)

To obtain the last condition, observe that

C1(Dw) =
ˆ •

0
Ḡh(�Dw � u)Gueb1( f (ŵ⇤))u du,

= �Gu

ˆ
�•

�Dw
Ḡh(y)eb1( f (ŵ⇤))(�Dw�y) dy,

= Gu

ˆ
�Dw

�•
Ḡh(y)eb1( f (ŵ⇤))(�Dw�y) dy.

and

C2(Dw) =
ˆ 0

�•
Ḡh(�Dw � u)Gueb2( f (ŵ⇤))u du.
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= �Gu

ˆ
�Dw

•
Ḡh(y)eb2( f (ŵ⇤))(�Dw�y) dy,

= Gu

ˆ •

�Dw
Ḡh(y)eb2( f (ŵ⇤))(�Dw�y) dy.

Taking the derivative with respect to Dw and using the Leibniz rule, we obtain

C0
1(Dw) = �GuḠh(�Dw)� b1( f (ŵ⇤))Gu

ˆ
�Dw

�•
Ḡh(y)eb1( f (ŵ⇤))(�Dw�y) dy,

= �GuḠh(�Dw)� b1( f (ŵ⇤))C1(Dw) (F.9)

C0
2(Dw) = GuḠh(�Dw)� b2( f (ŵ⇤))C2(Dw). (F.10)

Taking derivative of (F.8),

(lw)0(Dw) = b1( f (ŵ⇤))C0
1(Dw) + b2( f (ŵ⇤))C0

2(Dw)

and using conditions (F.9) and (F.10),

(lw)0(Dw) = Ḡh(�Dw)Gu[b2( f (ŵ⇤))� b1( f (ŵ⇤))]� b1( f (ŵ⇤))2C1(Dw)� b2( f (ŵ⇤))2C2(Dw). (F.11)

Equations (F.7), (F.8), and (F.11) provide the following system of three functional equations with three unknowns

1 � Lw(Dw) = C1(Dw) + C2(Dw),

lw(Dw) = b1( f (ŵ⇤))C1(Dw) + b2( f (ŵ⇤))C2(Dw),

(lw)0(Dw) = Ḡh(�Dw)Gu[b2( f (ŵ⇤))� b1( f (ŵ⇤))]� b1( f (ŵ⇤))2C1(Dw)� b2( f (ŵ⇤))2C2(Dw).

Operating over the system of functional equations

(lw)0(Dw) + [b2( f (ŵ⇤)) + b1( f (ŵ⇤))] lw(Dw) + b1( f (ŵ⇤))b2( f (ŵ⇤)) [1 � Lw(Dw)] = Ḡh(�Dw)Gu[b2( f (ŵ⇤))� b1( f (ŵ⇤))],

with

Gu =
⇣

b2( f (ŵ⇤))�1
� b1( f (ŵ⇤))�1

⌘�1

b1( f (ŵ⇤)) =
�(g + p)�

p
(g + p)2 + 2s2 f (ŵ⇤)

s2 ,

b2( f (ŵ⇤)) =
�(g + p) +

p
(g + p)2 + 2s2 f (ŵ⇤)

s2 .

Then,

Gu[b2( f (ŵ⇤))� b1( f (ŵ⇤))] =
b2( f (ŵ⇤))� b1( f (ŵ⇤))

b2( f (ŵ⇤))�1 � b1( f (ŵ⇤))�1 ,

= �b1( f (ŵ⇤))b2( f (ŵ⇤)),

= �

 
�(g + p)�

p
(g + p)2 + 2s2 f (ŵ⇤)

s2

! 
�(g + p) +

p
(g + p)2 + 2s2 f (ŵ⇤)

s2

!

=
2 f (ŵ⇤)

s2
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b2( f (ŵ⇤)) + b1( f (ŵ⇤))
Gu[b2( f (ŵ⇤))� b1( f (ŵ⇤))]

=
b2( f (ŵ⇤)) + b1( f (ŵ⇤))

b1( f (ŵ⇤))b2( f (ŵ⇤))
,

=

✓
�(g+p)�

p
(g+p)2+2s2 f (ŵ⇤)�(g+p)+

p
(g+p)2+2s2 f (ŵ⇤)

s2

◆

2 f (ŵ⇤)
s2

= �
(g + p)

f (ŵ⇤)
.

b1( f (ŵ⇤))b2( f (ŵ⇤))
Gu[b2( f (ŵ⇤))� b1( f (ŵ⇤))]

= �1.

Therefore, the differential equation is given by (F.6).

Proposition F.3. If (g + p) = 0, the distribution of cumulative productivity shocks gh(Dz) is given by

gh(Dz) = sE

"ˆ Dz

�D�

2(Dz � y)
s2 ḡh(y)dy + Ḡh(�D�)

2(Dz + D�)

s2

#
.

If (g + p) 6= 0, the distribution of cumulative productivity shocks gh(Dz) is given by

gh(Dz) =
sE

(g + p)

"ˆ Dz

�D�

✓
1 � e

2(g+p)

s2 (y�Dz)
◆

ḡh(y)dy + Ḡh(�D�)


1 � e�

2(g+p)

s2 (Dz+D�)
�#

.

Proof. During employment, the distribution of cumulative productivity shocks satisfies the following KFE and the boundary

conditions

dgh(Dz) = (g + p)(gh)0(Dz) +
s2

2
(gh)00(Dz) 8Dz 2 (�D�, D+)/{0}

gh(�D�) = gh(D+) = 0, Gh(D+) = E ,

gh(Dz) 2 C.

The distribution of cumulative productivity shocks conditional on a job separation satisfies

Ḡh(Dz) =

8
>>><

>>>:

1 if Dz 2 [D+, •)
1

sE

h
s2

2 limDz#�D� (gh)0(Dz) + d
´ Dz
�D� gh(x)dx

i
if Dz 2 [�D�, D+)

0 if Dz 2 (�•,�D�).

Combining these two conditions, we obtain

sE ḡh(Dz) = (g + p)(gh)0(Dz) +
s2

2
(gh)00(Dz) 8Dz 2 (�D�, D+)/{0}

gh(�D�) = gh(D+) = 0, Gh(D+) = E .

Multiplying both sides of the first equation by e
2(g+p)

s2 Dz we get

sE e
2(g+p)

s2 Dz ḡh(Dz) = (g + p)e
2(g+p)

s2 Dz(gh)0(Dz) +
s2

2
e

2(g+p)

s2 Dz(gh)00(Dz) 8Dz 2 (�D�, D+)/{0}

=
s2

2
d(e

2(g+p)

s2 Dz(gh)0(Dz))
dDz

.
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Integrating both sides from �D� to Dz, we obtain

sE
ˆ Dz

�D�

e
2(g+p)

s2 x ḡh(x)dx =
s2

2


e

2(g+p)

s2 Dz(gh)0(Dz)� lim
x#�D�

e
2(g+p)

s2 x(gh)0(x)
�

,

=
s2

2
e

2(g+p)

s2 Dz(gh)0(Dz)� sE e�
2(g+p)

s2 D�

Ḡh(�D�),

where the last equation uses the value of Ḡh(Dz) evaluated at Dz = �D�. Solving for (gh)0(Dz),

2sE
s2

"ˆ Dz

�D�

e
2(g+p)

s2 (x�Dz) ḡh(x)dx + e�
2(g+p)

s2 (D�+Dz)Ḡh(�D�)

#
= (gh)0(Dz).

Integrating this equation from �D� to Dz, we obtain

ˆ Dz

�D�

(gh)0(x)dx = gh(Dz)� gh(�D�)
| {z }

= 0

=
2sE
s2

ˆ Dz

�D�

ˆ x

�D�

e
2(g+p)

s2 (y�x) ḡh(y)dy + e�
2(g+p)

s2 (D�+x)Ḡh(�D�)

�
dx

=
2sE
s2

"ˆ Dz

�D�

ˆ x

�D�

e
2(g+p)

s2 (y�x) ḡh(y)dy dx +
s2

2(g + p)
Ḡh(�D�)


1 � e�

2(g+p)

s2 (Dz+D�)
�#

=
2sE
s2

"ˆ Dz

�D�

ˆ Dz

y
e

2(g+p)

s2 (y�x) ḡh(y)dx dy +
s2

2(g + p)
Ḡh(�D�)


1 � e�

2(g+p)

s2 (Dz+D�)
�#

=
2sE
s2

2

6666666664

ˆ Dz

�D�

"ˆ Dz

y
e

2(g+p)

s2 (y�x) dx

#

| {z }

= s2
2(g+p)

 
1�e

2(g+p)
s2 (y�Dz)

!

ḡh(y)dy +
s2

2(g + p)
Ḡh(�D�)


1 � e�

2(g+p)

s2 (Dz+D�)
�

3

7777777775

=
sE

(g + p)

"ˆ Dz

�D�

✓
1 � e

2(g+p)

s2 (y�Dz)
◆

ḡh(y)dy + Ḡh(�D�)


1 � e�

2(g+p)

s2 (Dz+D�)
�#

.

Taking the limit as (g + p) # 0

gh(Dz) = lim
(g+p)!0

sE
(g + p)

"ˆ Dz

�D�

✓
1 � e

2(g+p)

s2 (y�Dz)
◆

ḡh(y)dy + Ḡh(�D�)


1 � e�

2(g+p)

s2 (Dz+D�)
�#

= sE

2

4
ˆ Dz

�D�

lim
(g+p)!0

1 � e
2(g+p)

s2 (y�Dz)

(g + p)
ḡh(y)dy + Ḡh(�D�) lim

(g+p)!0

1 � e�
2(g+p)

s2 (Dz+D�)

(g + p)

3

5

= sE

"ˆ Dz

�D�

2(Dz � y)
s2 ḡh(y)dy + Ḡh(�D�)

2(Dz + D�)

s2

#
.
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G Additional Results for Section 4: Identifying the Model Based on Labor

Market Microdata

G.1 Characterization of gh(Dz) and gu(Dz)

Proposition G.1. Assume d > 0. Then, gh(Dz) and gu(Dz) are given by

gh(Dz) = EGh

8
<

:

eb1(d)(Dz+D� )�eb2(d)(Dz+D� )

eb1(d)D��eb2(d)D�
if Dz 2 (�D�, 0]

eb1(d)(Dz�D+)�eb2(d)(Dz�D+)

e�b1(d)D+�e�b2(d)D+
if Dz 2 [0, D+)

gu(Dz) = (1 � E)Gu

8
<

:
eb2( f (ŵ⇤))Dz if Dz 2 (�•, 0]

eb1( f (ŵ⇤)Dz if Dz 2 [0, •)

where

b1(x) =
�g �

p
g2 + 2s2x
s2 , b2(x) =

�g +
p

g2 + 2s2x
s2 ,

E =
f (ŵ⇤)

f (ŵ⇤) + d + s2

2 Gh

h
b1(d)�b2(d)

eb1(d)D��eb2(d)D�
�

b1(d)�b2(d)

e�b1(d)D+�e�b2(d)D+

i ,

Gh =

2

4
eb1(d)D

�
�1

b1(d)
�

eb2(d)D
�
�1

b2(d)

eb1(d)D�

� eb2(d)D�
+

1�e�b1D+

b1(d)
�

1�e�b2D+

b2(d)

e�b1(d)D+
� e�b2(d)D+

3

5

�1

,

Gu =
h
�b1( f (ŵ⇤))�1 + b2( f (ŵ⇤))�1

i�1
.

Proof. Let us write the KFE and border conditions:

dgh(Dz) = g(gh)0(Dz) +
s2

2
(gh)00(Dz) 8Dz 2 (�D�, D+)/{0} (G.1)

gh(�D�) = gh(D+) = 0, (G.2)

f (ŵ⇤)gu(Dz) = g(gu)0(Dz) +
s2

2
(gu)00(Dz) 8Dz 2 (�•, •)/{0}, (G.3)

lim
Dz!�•

gu(Dz) = lim
Dz!•

gu(Dz) = 0, (G.4)

1 =
ˆ •

�•
gu(Dz)dDz +

ˆ D+

�D�

gh(Dz)dDz, (G.5)

f (ŵ⇤)(1 � E) = dE +
s2

2


lim

Dz#�D�

(gh)0(Dz)� lim
Dz"D+

(gh)0(Dz)
�

, (G.6)

gh(Dz), gu(Dz) 2 C.

We guess and verify the proposed solution. Substituting the guess for gh(Dz) in (G.1) for Dz < 0, we have

0 = �dEGh
eb1(d)(Dz+D�)

eb1(d)D�

� eb2(d)D�
+ gb1(d)EGh

eb1(d)(Dz+D�)

eb1(d)D�

� eb2(d)D�
+ EGh

s2

2
b1(d)

2 eb1(d)(Dz+D�)

eb1(d)D�

� eb2(d)D�
()

0 = �d + gb1(d) +
s2

2
b1(d)

2,

mutatis mutandis for the terms that include b2(d). Given the definition of b1(d), the guess satisfies (G.1). A similar argument
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applies when (G.1) is evaluated at Dz > 0. It is easy to verify that the boundary conditions (G.2) are satisfied and that gh(Dz)

is continuous at Dz = 0. Following the same steps for gu(Dz), we verify conditions (G.3) and (G.4). Next, we verify condition

(G.5):

ˆ •

�•
gu(Dz)dDz +

ˆ D+

�D�

gh(Dz)dDz

= (1 � E)Gu

"ˆ 0

�•
eb2( f (ŵ⇤))Dz dDz +

ˆ •

0
eb1( f (ŵ⇤))Dz dDz

#
+ . . .

. . . EGh

"ˆ 0

�D�

eb1(d)(Dz+D�) � eb2(d)(Dz+D�)

eb1(d)D�

� eb2(d)D�
dDz +

ˆ D+

0

eb1(d)(Dz�D+) � eb2(d)(Dz�D+)

e�b1(d)D+
� e�b2(d)D+ dDz

#

= (1 � E)Gu

"
1 � limDz!�• eb2( f (ŵ⇤))Dz

b2( f (ŵ⇤))
+

limDz!• eb1( f (ŵ⇤))Dz � 1
b1( f (ŵ⇤))

#
+ . . .

. . . EGh

2

4
eb1(d)D

�
�1

b1(d)
�

eb2(d)D
�
�1

b2(d)

eb1(d)D�

� eb2(d)D�
+

1�e�b1D+

b1(d)
�

1�e�b2D+

b2(d)

e�b1(d)D+
� e�b2(d)D+

3

5

= (1 � E) + E = 1.

Finally, combining condition (G.6) with the definition of gh(Dz), the employment rate is

E =
f (ŵ⇤)

f (ŵ⇤) + d + s2

2E
⇥
limDz#�D� (gh)0(Dz)� limDz"D+ (gh)0(Dz)

⇤ ,

=
f (ŵ⇤)

f (ŵ⇤) + d + s2

2 Gh

h
b1(d)�b2(d)

eb1(d)D��eb2(d)D�
�

b1(d)�b2(d)

e�b1(d)D+�e�b2(d)D+

i .

G.2 Characterization of the job finding rate f (ŵ⇤) and job separation rate s

Proposition G.2. The job finding rate f (ŵ⇤) and the job separation rate s are given by

f (ŵ⇤) =
s2

2(1 � E)


lim
Dz"0

(gh)0(Dz)� lim
Dz#0

(gh)0(Dz)
�

,

s =
s2

2E


lim
Dz"0

(gu)0(Dz)� lim
Dz#0

(gu)0(Dz)
�

.

The ratio of endogenous send to total job separations s is given by

send

s
=

s2

2E

h
limDz#�D� (gh)0(Dz)� limDz"D+ (gh)0(Dz)

i

s

and d = s � send.

Proof. The proof comes directly from the equilibrium conditions described in Online Appendix F.
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G.3 Characterization of lu(tu) and lm(tm)

In the proposition below, g should be interpred as the sum of the productivity and inflation drift. The symbol p instead

represents the irrational number 3.14. . . .

Proposition G.3. Let D+� := D+ + D�. The distributions of tu and tm are given by

lu(tu) = f (ŵ⇤)e� f (ŵ⇤)tu
,

lm(tm) = e�dtm

"
d +

•

Â
n=1

A(n)
✓

e�B(n)tm
�

d

B(n)

⇣
1 � e�B(n)tm

⌘◆#
. (G.7)

with

A(n) =
ps2n(�1)n�1

D2
+�


sin
✓

pn
D�

D+�

◆
e�

g

s2 D+

+ sin
✓

pnD+

D+�

◆
e

g

s2 D�

�
,

B(n) =
1
2

 
n2p2s2

D2
+�

+
g2

s2

!
.

Proof. The distribution lu(tu) is the exponential distribution that arises from a Poisson process with arrival rate f (ŵ⇤). Next, we

derive the formula for lm(tm). Since tm = min{td, th⇤, t j⇤}, we have that

Pr(tm
 T) = Pr(min{th⇤, t j⇤

}  T|td
� T)Pr(td

� T) + Pr(td
 T)

= Pr(min{th⇤, t j⇤
}  T|td

� T)[1 � Pr(td
 T)] + Pr(td

 T)

= Pr(min{th⇤, t j⇤
}  T)[e�dT ] + [1 � e�dT ],

where the last equation uses the fact that td is distributed according to an exponential distribution with rate d. Taking the

derivative with respect to T, we obtain

lm(T) = e�dT

"
dPr(min{th⇤, t j⇤}  T)

dT
� dPr(min{th⇤, t j⇤

}  T) + d

#
. (G.8)

From Kolkiewicz (2002), we have that

dPr(min{th⇤, t j⇤}  T)
dT

=
ps2

(ŵ+ � ŵ�)2

•

Â
n=1

n(�1)n�1e�
n2p2s2

2(ŵ+�ŵ� )2
T


sin
✓

pn
ŵ⇤ � ŵ�

ŵ+ � ŵ�

◆
e�

g

2s2 (2(ŵ
+�ŵ⇤)+gT) + sin

✓
pn

ŵ+ � ŵ⇤

ŵ+ � ŵ�

◆
e�

g

2s2 (2(ŵ
��ŵ⇤)+gT)

�

=
ps2

D2
+�

•

Â
n=1

n(�1)n�1e
�

✓
n2p2s2

2D2
+�

+ g2

2s2

◆
T


sin
✓

pnD�

D+�

◆
e�

g

s2 D+

+ sin
✓

pnD+

D+�

◆
e

g

s2 D�

�

=
•

Â
n=1

A(n)e�B(n)T . (G.9)

Combining (G.8) and (G.9), we obtain (G.7).
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G.4 Characterization of lw(Dw)

Proposition G.4. The distribution of log nominal wage changes satisfies

lw(Dw) = Gu
h

b2( f (ŵ⇤))e�b2( f (ŵ⇤))DwG2(Dw) + b1( f (ŵ⇤))e�b1( f (ŵ⇤))DwG1(Dw)
i

with

(G1(c), G2(c)) =
✓ˆ

�c

�•
e�b1( f (ŵ⇤)))xḠh(x)dx,

ˆ •

�c
e�b2( f (ŵ⇤))xḠh(x)dx

◆
.

Proof. Fix a date t0 and focus on a newly hired worker. Then, the distribution of wage changes between two new jobs is given by

Pr(Dw  c) = Pr(wt0+tm+tu � wt0  c)

=(1) Pr(wt0+tm+tu � zt0+tm+tu � (wt0 � zt0 ) + (zt0+tm+tu � zt0 )  c)

=(2) Pr(ŵ⇤
� ŵ⇤ + (zt0+tm+tu � zt0 )  c)

=(3) Pr(�(Dzh + Dzu)  c),

where Dzh and Dzu denote cumulative productivity shocks during completed employment and unemployment spells, respec-

tively. Here, step (1) adds and subtracts productivity at the beginning of both job spells. In step (2), we use the result that ŵ⇤ is

constant across jobs. Step 3 uses the facts that tu and the Brownian motion increments are independent of the filtration Ftu .

Therefore, the distributions of cumulative productivity shocks for completed employment and unemployment spells are given

by

Ḡh(Dz) =

8
>>><

>>>:

1 if Dz 2 [D+, •)
1

sE

h
s2

2 limDz#�D� (gh)0(Dz) + d
´ Dz
�D� gh(x)dx

i
if Dz 2 [�D�, D+)

0 if Dz 2 (�•,�D�)

ḡu(Dz) = Gu

8
<

:
eb2( f (ŵ⇤))Dz if Dz 2 (�•, 0]

eb1( f (ŵ⇤))Dz if Dz 2 [0, •)

Thus,

Pr(Dw  c)

= Pr(�(Dzu + Dzh)  c)

= 1 � Pr(Dzu + Dzh
 �c)

=(1) 1 �
ˆ •

�•
Ḡh(�(c + Dz))ḡu(Dz)dDz

=(2) 1 � Gu

"ˆ 0

�•
eb2( f (ŵ⇤))DzḠh(�(c + Dz))dDz +

ˆ •

0
eb1( f (ŵ⇤))DzḠh(�(c + Dz))dDz

#

=(3) 1 + Gu

ˆ
�c

•
e�b2( f (ŵ⇤))(c+x)Ḡh(x)dx +

ˆ
�•

�c
e�b1( f (ŵ⇤))(c+x)Ḡh(x)dx

�

=(4) 1 � Gu


e�b2( f (ŵ⇤))c

ˆ •

�c
e�b2( f (ŵ⇤))xḠh(x)dx + e�b1( f (ŵ⇤))c

ˆ
�c

�•
e�b1( f (ŵ⇤))xḠh(x)dx

�
.

In step (1), we use the independence of Dzu and Dzh. In step (2), we use the definition of ḡu(Dz). In step (3), we integrate by
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substituting x = �c � Dz, and in step (4), we use the properties of an integral. The last step involves defining

(G1(c), G2(c)) =
✓ˆ

�c

�•
e�b1( f (ŵ⇤))xḠh(x)dx,

ˆ •

�c
e�b2( f (ŵ⇤))xḠh(x)dx

◆
.

G.5 Characterization of Eh[Dzn]

We denote by Ēh[·] and Ēu[·] the expectation operators under the distributions ḡh(Dz) and ḡu(Dz), respectively.

Proposition G.5. Define the weights whn(Dz) = Dzn

Ēh [Dzn ]
with the property that

Ēh

h
whn(Dz)

i
= 1.

If g = 0, then Eh[(Dz)n] can be recovered from

Eh[(Dz)n] =
2E

(n + 1)(n + 2)
Ēh

h
(Dz)nwh2(Dz)

i
. (G.10)

If g 6= 0, then Eh[(Dz)n] can be recovered recursively from

Eh[(Dz)n] =
E

n + 1
Ēh[(Dz)nwh1(Dz)] +

s2n
2g

Eh[(Dz)n�1]. (G.11)

The moments Ēh

h
(Dz)nwhk(Dz)

i
=

Ēh[(Dz)n+k]
Ēh [(Dz)k ]

can be recovered from the following linear system of equations:

ED [Dwn] = (�1)n
n

Â
i=0

0

@ n

i

1

A Ēh[Dzi]Ēu[Dzn�i],

Ēu[(Dz)n�i] =
(n � i)!

L
n�i
1

⇣
L2 + L

�1
2

⌘
⇣
L
�(n�i+1)
2 � (�L2)

(n�i+1)
⌘

,

where

L1 =

r
2 f (ŵ⇤)

s2 and L2 =

s
g +

p
g2 + 2s2 f (ŵ⇤)

�g +
p

g2 + 2s2 f (ŵ⇤)
.

Proof. We divide the proof into 3 steps.

Step 1. We first show that

Eh[(Dz)n] =
E

n + 1
Ēh[(Dz)nwh1(Dz)]�

s2n
2g

Eh[(Dz)n�1].

when g 6= 0. For the case with g = 0, see Baley and Blanco (2021).

Let us define Yt = (Dzt)n. The law of motion for Dzt is given by dDzt = �g dt + s dW z
t . Applying Itô’s Lemma, we obtain

dYt = n(Dzt)
n�1 dDzt +

1
2

n(n � 1)(Dzt)
n�2(dDzt)

2

=


�gn(Dzt)

n�1 +
s2

2
n(n � 1)(Dzt)

n�2
�

dt + ns(Dzt)
n�1 dW z

t
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Thus,

(Dztm )n = �gn
ˆ tm

0
(Dzt)

n�1 dt +
s2

2
n(n � 1)

ˆ tm

0
(Dzt)

n�2 dt + n
ˆ tm

0
(Dzt)

n�1s dW z
t .

Following the same arguments as in the proof of Proposition F.1 and using the Renewal Principle to have ED [t
m] = 1/s, we

obtain

Ēh[(Dz)n] = �gnED [t
m]

Eh[(Dz)n�1]
E

+
s2n(n � 1)

2s
Eh[(Dz)n�2]

E

or equivalently

Eh[(Dz)n] = �
E

gED [tm]
Ēh[(Dz)n+1]

n + 1
+

s2n
2g

Eh[(Dz)n�1].

From Propostion F.1, we have that gED [t
m] = �Ēh[(Dz)] and Ēh [(Dz)n+1]

Ēh [(Dz)] = Ēh[(Dz)nwh1(Dz)]. Thus,

Eh[(Dz)n] =
E

n + 1
Ēh[(Dz)nwh1(Dz)] +

s2n
2g

Eh[(Dz)n�1].

Step 2. Here we show that

ED [Dwn] = (�1)n
n

Â
i=0

0

@ n

i

1

A Ēh[Dzn]Ēu[Dzn�i].

Using the independence of cumulative productivity shocks during employment and unemployment, we obtain

ED [Dwn] = Ē[(�Dzh
� Dzu)n],

=
n

Â
i=0

0

@ n

i

1

A Ē[(�Dzh)i(�Duu)n�i],

=
n

Â
i=0

0

@ n

i

1

A Ēh[(�Dz)i]Ēu[(�Dz)n�i],

= (�1)n
n

Â
i=0

0

@ n

i

1

A Ēh[Dzi]Ēu[Dzn�i],

Step 3. Here we show that

Ēu[(Dz)n�i] =
(n � i)!

L
n�i
1

⇣
L2 + L

�1
2

⌘
⇣
L
�(n�i+1)
2 � (�L2)

(n�i+1)
⌘

.

Let us depart from the definition of ḡu(Dz), which is given by

ḡu(Dz) =
h
�b1( f (ŵ⇤))�1 + b2( f (ŵ⇤))�1

i�1
8
<

:
eb2( f (ŵ⇤))Dz if Dz 2 (�•, 0]

eb1( f (ŵ⇤)Dz if Dz 2 [0, •)

where b1(x) = �g�
p

g2+2s2x
s2 and b2(x) = �g+

p
g2+2s2x

s2 . This step consist of showing that ḡu(Dz) is an asymmetric Laplace

distribution with parameters

L1 =

r
2 f (ŵ⇤)

s2 and L2 =

s
g +

p
g2 + 2s2 f (ŵ⇤)

�g +
p

g2 + 2s2 f (ŵ⇤)

G6



The ratio between L1 and L2 is

L1
L2

=

s
2 f (ŵ⇤)

s2
�g +

p
g2 + 2s2 f (ŵ⇤)

g +
p

g2 + 2s2 f (ŵ⇤)

=

vuuut
2 f (ŵ⇤)

s2 (�g +
q

g2 + 2s2 f (ŵ⇤))
�g +

p
g2 + 2s2 f (ŵ⇤)

⇣p
g2 + 2s2 f (ŵ⇤)

⌘2
� g2

= (�g +
q

g2 + 2s2 f (ŵ⇤))

s
2 f (ŵ⇤)

s2
1

2s2 f (ŵ⇤)

=
�g +

p
g2 + 2s2 f (ŵ⇤)

s2 = b2( f (ŵ⇤)).

The product between L1 and L2 is

�L1L2 = �

s
2 f (ŵ⇤)

s2
g +

p
g2 + 2s2 f (ŵ⇤)

�g +
p

g2 + 2s2 f (ŵ⇤)

= �

vuuut
2 f (ŵ⇤)

s2 (g +
q

g2 + 2s2 f (ŵ⇤))
g +

p
g2 + 2s2 f (ŵ⇤)

�g2 +
⇣p

g2 + 2s2 f (ŵ⇤)
⌘2

= �(g +
q

g2 + 2s2 f (ŵ⇤))

s
2 f (ŵ⇤)

s2
1

2s2 f (ŵ⇤)

= �
g +

p
g2 + 2s2 f (ŵ⇤)

s2 = b1( f (ŵ⇤)).

Therefore, we can write ḡu(Dz)

ḡu(Dz) =
L1

L2 + L
�1
2

8
<

:
e
L1
L2

Dz if Dz 2 (�•, 0]

e�L1L2Dz if Dz 2 [0, •),

which is the probability distribution function of an asymmetric Laplace distribution. It is a standard result that the n-th moment

for an asymmetric Laplace distribution is given by

Ēu[(Dz)n] =
n!

Ln
1

⇣
L2 + L

�1
2

⌘
⇣
L
�(n+1)
2 � (�L2)

(n+1)
⌘

.
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