

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Scarelli, Thiago; Margolis, David N.

Working Paper

When You Can't Afford to Wait for a Job: The Role of Time Discounting for Own-Account Workers in Developing Countries

IZA Discussion Papers, No. 15926

Provided in Cooperation with:

IZA - Institute of Labor Economics

Suggested Citation: Scarelli, Thiago; Margolis, David N. (2023): When You Can't Afford to Wait for a Job: The Role of Time Discounting for Own-Account Workers in Developing Countries, IZA Discussion Papers, No. 15926, Institute of Labor Economics (IZA), Bonn

This Version is available at: https://hdl.handle.net/10419/272553

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

DISCUSSION PAPER SERIES

IZA DP No. 15926

When You Can't Afford to Wait for a Job: The Role of Time Discounting for Own-Account Workers in Developing Countries

Thiago Scarelli David N. Margolis

FEBRUARY 2023

DISCUSSION PAPER SERIES

IZA DP No. 15926

When You Can't Afford to Wait for a Job: The Role of Time Discounting for Own-Account Workers in Developing Countries

Thiago Scarelli

Paris School of Economics

David N. Margolis

Paris School of Economics, CNRS and IZA

FEBRUARY 2023

Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity.

The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world's largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society.

IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author.

ISSN: 2365-9793

IZA DP No. 15926 FEBRUARY 2023

ABSTRACT

When You Can't Afford to Wait for a Job: The Role of Time Discounting for Own-Account Workers in Developing Countries*

Frictional labor markets impose a fundamental trade-off: individuals may work on their own at any time, but can only take a potentially better-paid wage job after spending some time looking for it, suggesting that intertemporal considerations affect how people choose their occupation. We formalize this intuition under the job search framework and show that a sufficiently high subjective discount rate can justify the choice for own-account work even when it pays less than wage work. With this simple model, we estimate a lower bound for the discount rate that is implicit in the occupational choice of urban own-account workers in Brazil. We find that at least 65 percent of those workers appear to discount the future at rates superior to those available in the credit market, which suggests constrained occupational choice. Finally, we show that the estimated lower bound of the preference for the present is positively associated with food, clothing, and housing deprivation.

JEL Classification: J22, J24, J31, J64

Keywords: own-account work, self-employment, developing countries,

financial constraints, time discounting, Brazil

Corresponding author:

David N. Margolis Paris School of Economics 48 boulevard Jourdan 75014 Paris France

E-mail: David.N.Margolis@gmail.com

^{*} The authors thank Luc Behaghel, François Fontaine, Sylvie Lambert, Denis Cogneau, Karen Macours, Gary Fields, and Martha Chen for their feedback on earlier versions of this paper. We are also thankful for the comments received from the participants of the 2022 Society of Labor Economists (SOLE) Annual Meeting, the 34th Conference of the European Association of Labor Economists (EALE), the 38th Journées de Microéconomie Appliquée (JMA), and the 3rd IZA/World Bank/NJD Conference on Jobs and Development. This work has been funded by a French government subsidy managed by the Agence Nationale de la Recherche under the framework of the program "Investissements d'avenir", reference ANR-17-EURE-001, and by the Université Paris 1 Panthéon-Sorbonne. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

I. Introduction

Own-account workers — those who have neither a firm to report to, nor an employee to coordinate with — constitute about 40% of all working individuals in low- and middle-income countries, and often face labor income penalties relative to wage workers within their labor markets (Gindling, Mossaad, and Newhouse 2016; Scarelli, forthcoming). These recurring patterns motivate two questions: Why do some individuals work for a firm while others, despite being observationally similar, work on their own? Under which conditions can we say that their option for low-pay own-account work is a constrained choice?

To address these issues, this paper builds on the argument that own-account workers, by definition, do not need to match with a firm to start working. Under this perspective, the occupational choice can be summarized as a choice between two return flows: own-account work potentially paying less but starting sooner, versus wage employment potentially paying more but starting later. Hence, with everything else constant, individuals with a stronger consumption urgency would be more likely to work on their own instead of looking for a position in a firm, even when the second option offers them a relatively higher income in all future periods after a job is found. Our proposed channel thus complements the other explanations of the prevalence of own account work that have been proposed in the literature, which rely on individual heterogeneity in skills or tastes, non-monetary returns to work, or exogenous market segmentation, as we review in section II.

The proposed mechanism has three appealing features. First, it is parsimonious to model, in the sense that it does not require appending yet another behavioral parameter to the worker's optimization problem, as we are simply presenting a refined interpretation of the subjective discount rate that is already present in any intertemporal framework. The formalization of this mechanism is presented in section III, where we describe the occupational choice issue using the canonical job search framework augmented by the possibility of working on your own. The model shows how heterogeneity in consumption urgency can motivate the sorting into unproductive own-account-work that we observe in low- and middle-income countries.

Second, an empirical counterpart of this model can inform us about the subjective discount rates that are relevant for own-account workers in the labor market. To be concrete, a lower-bound estimate of the subjective discount rate of an own-account worker can be inferred as a function of the gap between her current labor income and the wage she could expect to receive as an employee, given the local market conditions — the larger the gap, the larger the minimum time discount rate required to make own-account work the preferred option. In section IV, we present the Brazilian Budget Survey (POF) and the Brazilian Household Survey (PNAD), two nationally representative data sources that we explore in tandem to operationalize these concepts, and in section V we discuss the estimation of the key components that make up the value of a counterfactual wage job: the minimum wage a person

would be willing to accept; how long she would take to find one; how much she could expect to earn after finding one; and how long it would last.

Third, our approach suggests a new criterion to discuss the issue of constrained own-account work. Because we can infer the minimum discount rate implied by their revealed choice, it is possible to identify the individuals whose decision suggests a subjective time discount rate strictly above the discount rate available in the formal credit market. Under the lens of our model, own-account work is still preferable in those cases because finding a job takes too long, there are pressing needs for consumption, and it is not possible to finance them at the market's rate. Under the baseline specification, we find that at least 65% of the own-account workers in Brazil are driven by this combination of necessity and financial constraints, as discussed in section VI.

This paper assumes that the workers' relative preference for consumption in the present need not be a fixed personality parameter and could, at least in part, be affected by their current living conditions, in line with the initial definition of this concept. Hence, a context of material scarcity in itself could increase the relative importance assigned to income in the near term and thus drive one's occupational choice. While this hypothesis does not affect the identification of the discount rates, it does change the implications of our findings. In section VII, we show that the own-account workers who report financial comfort and access to credit also have a lower estimate of the lower bound of their discount rate; while the opposite is true for those facing housing, clothing, and food deprivation. While these are descriptive results, they are aligned with our proposed mechanism and suggest an important development point for future research.

These are consequential questions because different mechanisms behind the labor supply choice can lead to different policy recommendations. In particular, our results suggest that policies that smooth consumption during liquidity shocks are likely to support wage employment and lead to longrun income gains by reducing the dependence on readily available (but poorly paid) labor income sources, leading to a more productive occupational structure in the long term. On the other hand, we offer a note of caution for policies aiming at promoting income growth via incentives for "entrepreneurship", as our findings suggest that the majority of own-account workers in the context of a developing country such as Brazil are plausibly taking this occupation as their second-best choice and that these workers could potentially access better-paid jobs without the subsidies, if only they could meet their short-run consumption needs while searching.

¹ "In general, it may be said that, other things being equal, the smaller the income, the higher the preference for present over future income; that is, the greater the impatience to acquire income as early as possible. It is true, of course, that a permanently small income implies a keen appreciation of future wants as well as of immediate wants. Poverty bears down heavily on all portions of a man's expected life. But it increases the want for immediate income even more than it increases the want for future income" (Fisher 1930, p.72, emphasis in the original).

II. Related literature

The intertemporal tradeoff approach presented in this paper contrasts with and offers a complement to a classic literature in labor economics that explains occupational choices in terms of comparative advantages, following the tradition of Roy (1951) and Lucas (1978). This approach claims that, all else equal, own-account work would be chosen by those endowed with a particular talent (or taste) for it. This mechanism alone, however, appears to be insufficient to explain a stylized fact in developing economies: the prevalence of own-account workers close to subsistence, and who would be willing and able to take a better paid employment position if they were offered one, as discussed in Banerjee and Duflo (2011) and Fields (2012).

The limitations of the skill heterogeneity view have been partially addressed by the segmented markets hypothesis (see Fields 2009, for a review). This literature argues that a particular sector can be preferable for all agents, but have a rationed number of positions, forcing the workers outside it to queue or to take less desirable occupations. Such an equilibrium, however, generally requires institutional or structural barriers to keep the equilibrium wage persistently above the market-clearing level, such as migration costs, formalization taxes, or a sector-specific minimum wage. Our model is consistent with the segmentation hypothesis, but it can be seen as a generalization of it, in the sense that we do not require extraneous barriers to motivate an income gap in equilibrium: as long as better positions take longer to be found, heterogeneity in time preference is enough to sort otherwise similar agents over different occupations.

In this sense, our approach relates to Zenou (2008), which offered an initial formalization of the classic dualism with the tools of the search and matching framework. He describes a free-entry, perfectly competitive informal market, adjacent to a frictional but more productive formal market. In equilibrium, being in informality or looking for a job have the same instantaneous return, thanks to the mobility condition. This model leads to segmentation, but cannot explain why some workers will be in a given market and not another without imposing that formal workers never look for informal jobs.

Albrecht, Navarro, and Vroman (2009) propose a search and matching labor market model where individuals can take up opportunities in the informal self-employed sector (where every worker is assumed to have the same productivity) or in the formal wage sector (where productivity is heterogeneous). Again, despite the formal/informal terminology, the puzzle they are addressing is analogous to ours, but in their model the workers with the lowest productivity in the formal sector will find it profitable to stay in informality, which explains poorly paid yet voluntary self-employment as a result of heterogeneity in skills. Relative to this work, our approach has the advantage of acknowledging the large differences in productivity found for own-account workers (refer to the discussion in section IV),

while presenting a segmentation mechanism that does not depend solely on skill heterogeneity in the wage employment market.

The distinction between informality and self-employment is present in Narita (2020), where self-employment, employment in formal firms, and employment in informal firms are modeled as three alternative labor market states. The formality aspect is relevant because the author's focus was on the effect of changes in tax policy for Brazilian firms, but the distinctive trait of the self-employed (own-account workers and employers combined) relative to wage workers in this model is that they are allowed to be low or high skill. More importantly, the subjective discount is assumed to be 0.5% per month (the Central Bank reference rate) homogeneously for all workers, a simplification that is also present in the two previously mentioned references, following the standard practice in this literature.

Given that the discount rate is required in any intertemporal model, it is surprising that the possibility of heterogeneity in this dimension has been systematically overlooked, under the argument of perfect financial markets. An exception is Postel-Vinay and Robin (2002), where the parameters of an equilibrium search model — including the discount rate — are estimated separately for seven categories of employees. Their focus was on explaining the dispersion of labor income between employees in the 1996-1998 greater Paris region, while we are interested in the gap between own-account workers and wage workers in the 2017-2018 urban Brazil, and one must keep those differences in mind when comparing the results. Under this caveat, we note that they find a monotonic ranking between work groups, going from executives (12% annual, or 0.9% monthly) to unskilled manual workers (57% annual, or 3.8% monthly), a gradient that would be consistent and complementary to the results we explore here. Put otherwise, we look at workers whose present needs are even more stringent than those documented for the most vulnerable of the wage workers in a developed country context. Interestingly, the market interest rate that determines the highest discount rate compatible with wage employment in our model (3.8% monthly, the consumer credit rate during the relevant period, as discussed in section V) is remarkably consistent with their results.

In this sense, our estimation strategy also adds to a broader literature on the identification of time preference parameters. Discount rates have been traditionally elicited via less-sooner vs. more-later discrete choice questionnaires or experiments (see Frederick, Loewenstein, and O'Donoghue 2002; Cohen et al. 2020, for an overview of those methods) and the present paper is one of the few that proposes to learn about an individual's time preference from their choices in the labor market.

In particular, our findings suggest that preference for the present and liquidity constraints can explain why rational individuals in developing countries fail to make profitable investments, alongside similar results documented in the context of fertilizer adoption in Kenya (Duflo, Kremer, and Robinson 2011), bednets in India (Tarozzi et al. 2014), fuel-efficient cookstoves in Uganda (Levine et al. 2018), and education investments in Colombia (Carrillo 2020). In this context, our contribution is to stress how searching for a job is also an investment, and hence underinvestment mechanisms could hinder it.

Furthermore, we take part in the debate about who is a constrained self-employed worker and how many of them are there — open questions that are of particular relevance for developing countries (see Margolis 2014; Fields 2014, for reviews of this debate). Among the recent developments, Gindling and Newhouse (2014) propose to distinguish "successful entrepreneurship" cases based on whether the self-employed worker (1) is an employer, or (2) lives in a non-poor household. While they have the benefit of demanding little data, those criteria are not fully satisfactory: the first one assumes any self-employed would be aiming to be a growing firm, while some can be successful professional solo workers; and the second conflates success and poverty. An alternative approach, which has been applied mainly to data from Germany and the United States, focuses on whether people started working on their own coming from unemployment (Block and Sandner 2009; Fairlie and Fossen 2018). This criterion would be less informative for developing countries, since it would overlook own-account workers who were simply too constrained to spend time in unemployment in the first place. In all these cases, the sorting criterion is a signal assumed to be correlated with a general idea of "necessity", while the criteria we propose build on established economic theory to describe a potential mechanism through which the material needs manifest themselves — namely, the rate at which one values present resources relative to future resources.

Related to this discussion, we also note that our approach complements the view according to which constrained own-account workers are synonymous with small firms without access to resources to invest. Indeed, experimental interventions suggest that small firms often have returns above the market interest rate and would benefit from extra capital, as documented by de Mel, McKenzie, and Woodruff (2008) using randomized grants to microenterprises in Sri Lanka. However, a range of microcredit initiatives, meant to address this problem, have faced modest take-up and often failed to produce the expected transformative effects on borrowers, as discussed in Banerjee et al. (2015). These disappointing results suggest that alternative policies (such as supporting the transition to better-paid wage jobs) could complement earmarked microcredit, especially if own-account work is often a second-best choice, as we discuss here.

Finally, this work relates to the discussion about how poverty in itself can lead to behaviors that make it harder to escape poverty. Mullainathan and Shafir (2013) argue that scarcity causes tunneling (an excessive focus on immediate problems) and consumes mental bandwidth (the finite ability to command executive control and perform cognitive tasks). We complement this view with the idea that because scarcity makes present consumption seem more important, it can affect labor market behavior in ways that resemble the "suboptimal" decision-making found in other contexts of scarcity and can perpetuate a situation (low income from own account work) that leads to continued scarcity and a form of poverty trap.

III. Theory

The model we present here is a simple extension of the canonical job search framework in partial equilibrium (see Rogerson, Shimer, and Wright 2005, for a review of this framework). Agents are assumed to know the exogenous distribution of net wages they could expect to earn as an employee (F(w)), how often one might get a job offer when looking for it (λ) , the frequency at which those jobs end (δ) , and how much one earns, if anything, while unemployed (b). Agents also have some degree of preference for the present and any future flow of income is discounted by a rate ρ that converts it into a comparable present value. To these standard assumptions, we add that agents know the net labor income they could make by working on their own (y), which reflects any particular occupation-specific skills agents might have. The environment is stationary, in the sense that this set of labor market parameters does not depend on how long the individual has been in a given work state.

For tractability, individuals do not look for a job if they are already working.² Furthermore, we abstract from the details of the matching mechanism or any strategic behavior from firms when setting wages and assume an optimal stopping rule, whereby individuals sample from a given distribution of offers and stop searching whenever they find an offer above their reservation threshold.

We purposefully assume away any taste parameter — the choice criterion is based exclusively on the discounted flow of monetary returns, although we return to the implications of this assumption below.³ From a methodological perspective, the challenge is to justify the choice for own-account work without violating individual rationality and without relying on an arbitrary introduction of preferences.

A. The value of wage employment

The present discounted value of any wage job W(w) depends on the wage w it pays per time interval dt, accounting for the possibility that the job may end at a rate δ , in which case the worker would go back into unemployment, which has value U. Thus, we have the usual flow value for employment:

$$\rho W(w) = w + \delta \left[U - W(w) \right] \tag{1}$$

² Extending the model to allow for on-the-job search would not change our conclusions qualitatively, provided that one does not receive more (or better) job offers as an own-account worker relative to unemployed. This possibility seems implausible; otherwise, it would be trivially preferable for any individual to start as an own-account worker as a strategy to find good jobs faster, and unemployment would virtually disappear (except for exceptionally high values for unemployment-specific income). If employees can continue to receive offers while working and move up the job ladder, omitting on-the-job search leads to an underestimation of the present value of wage employment. In the context of the intertemporal trade-off we are interested in, adding this omitted piece would imply even higher discount rates for those who decide to be own-account workers instead of investing their time into finding a wage job that would open new doors — in which case the lower bound we discuss remains a valid lower bound.

³ In essence, here we take a position similar to Fields (2009, p. 478): "Especially in poor countries, in which large numbers of people value additional goods greatly compared to leisure, the utility-maximization assumption may often be fruitfully replaced by an income-maximization assumption."

B. The value of unemployment

The discounted value of unemployment U (or, equivalently, the value of looking for a wage job) is given by the flow b, summarizing any extra income that is only received while on unemployment, and by the expected gain from actually finding a job that will pay w, given that at rate λ the job-seeker draws an offer from the known distribution F(w).

$$\rho U = b + \lambda \int_{w_{-}}^{\infty} \left[W(w) - U \right] dF(w) \tag{2}$$

The equation above acknowledges that a job offer is only acceptable if it pays more than a given reservation wage w_r , defined as the lowest income necessary to make the individual indifferent between unemployment and wage employment. Therefore, any wage offer between 0 and w_r is refused and the individual remains unemployed.

C. The reservation wage

By definition, a job that pays the reservation wage has the same value as the unemployment state. Combining this definition with equation (1) and equation (2):

$$w_r = b + \frac{\lambda}{\rho + \delta} \int_{w_r}^{\infty} (w - w_r) dF(w)$$
 (3)

D. The value of own-account work

The value functions so far follow the canonical results. To add the possibility of own-account work, we make three assumptions.

First, own-account work is always available, in the practical sense there is no need to wait for it. By definition, this is an autonomous decision that precludes coordination with third parties. This assumption may seem strong, as one may argue that setting up a new activity may take time — for instance, it might be necessary to find clients. However, we note that someone looking for clients is already occupied when doing so, and hence is already an own-account worker, which is fundamentally different from a job-seeker waiting for a call-back.

Second, the net income generated by the own-account activity is determined by the individual's productivity and can be summarized in the individual-specific parameter y. Under the assumption that monetary returns define all the utility derived from work, individuals can rank all their possible alternatives under a single dimension. The parameter y can be interpreted as the activity that yields the highest net return among all options available to the individual, given his/her idiosyncratic skills and

market constraints. Moreover, since there are no principal-agent issues and no surplus to be shared, the worker is entitled to the full profit y.

Third, there is no exogenous destruction rate for own-account jobs. To be precise, *the probability that an own-account job ends is immaterial to that value of the job*, which is a logical consequence that follows from the two assumptions above and stationarity. If own-account work is always available, even if the current task were to come to an end, in the subsequent period another one with the same value would be available. Because we consider the return y, which fully characterizes the activity, to be an individual-specific parameter, the upcoming task is equivalent to a continuation of the previous one in every relevant aspect.

Own-account workers can review their occupational decision at every period and pick the best option between looking for a job and working alone. Hence, we can write the value of own-account work OAW(y) as:

$$OAW(y) = \left(\frac{1}{1+\rho \ dt}\right) \left[ydt + \max(U, OAW(y))\right]$$
(4)

Under the assumption of stationarity, this expression simplifies further. When the parameters of the labor market are stable, if own-account work is preferred to job searching *at any point in time*, it will be preferred *at all points in time*. Thus, for any own-account worker, it must be that $\max(U, OAW(y)) = OAW(y)$ in all subsequent periods. For this reason, we have that:

$$OAW(y) = \left(\frac{1}{1+\rho \ dt}\right) \left[y \ dt + OAW(y)\right] \tag{5}$$

$$\rho \ OAW(y) = y \tag{6}$$

E. The occupational choice

The usual job search framework assumes that, once the decision to enter the labor market is taken, individuals are either employed or unemployed. Here we allow workers to take into account what they can earn as own-account workers instead of looking for a job. Own-account work will be chosen if $OAW(y) \ge U$. Equivalently, using equation (3) and equation (6), the decision can be expressed as:

$$y \ge b + \frac{\lambda}{\rho + \delta} \cdot \int_{w_r}^{\infty} (w - w_r) dF(w)$$
 (7)

⁴ This assumes that the individual does not issue equity to undertake the own-account activity, which seems realistic for the vast majority of own-account work in developing countries. If the individual needs to borrow to finance the own-account work activity, then the cost of reimbursing that debt is deducted from revenues in the calculation of net income *y*.

Notice that the own-account work decision resembles the classic formulation of the participation decision, except that own-account work provides the outside option instead of inactivity. This interpretation allows us to derive a set of implications for the prevalence of own-account work in the economy. Given that the share of own-account workers is simply the proportion of individuals for whom the inequality above holds,

$$\mathbb{P}\left(y \ge b + \frac{\lambda}{\rho + \delta} \cdot \int_{w_r}^{\infty} \left(w - w_r\right) dF(w)\right) = \text{share of OAW in the workforce.}$$
 (8)

This expression suggests that people are more likely to work on their own if:

- 1. *The return to own-account work is high enough.* Individuals with particularly high autonomous productivity are more likely to opt for own-account work.
- 2. *Unemployment income is low enough.* Lack of an unemployment-specific flow of resources (such as an insurance) decreases the value of the unemployment state.
- 3. *The arrival rate of offers is low enough.* When individuals expect to wait a long time to receive offers, they will be more likely to choose own-account work.
- 4. *The destruction rate of wage jobs is high enough.* When jobs are short-lived, it is not rewarding to wait to get one.
- 5. *Expected wages are low enough*. Shifting the cumulative distribution of wages to the left decreases the expected return of looking for a job.
- 6. *The time discount rate is high enough.* When present consumption is a pressing need, it is preferable to secure an income source quickly.

F. A time discount rate lower bound for own-account workers

Having established that equation (7) can describe the occupational decision, we reorganize the terms to express this choice as a condition on the discount rate:

$$\rho \ge \frac{\lambda}{y - b} \cdot \int_{w_r}^{\infty} \left(w - w_r \right) dF(w) - \delta \tag{9}$$

Fundamentally, equation (9) shows that there can always be a level of subjective preference for the present that rationalizes the choice of own-account work. It highlights how a strong urgency for present consumption is in itself a sufficient condition to justify a rational preference for own-account work. Note that we can reinterpret equation (9) to accommodate the traditional narratives that emphasize relative productivity and non-monetary satisfaction as determinants of occupational choice. Differential productivity in own-account work relative to wage work is reflected in the difference between y and the distribution of w. Likewise, a higher preference for own account work, all else equal, can be formalized as a lower value of b insofar as it leads to a higher likelihood of choosing own account work for any distribution of w.

Furthermore, this model suggests how some individuals could be permanently stuck with low-paying activities even in the presence of a few better jobs around. A given worker might be allowed to try to change her occupation every day, but as long as equation (9) holds, she will prefer the alternative that provides low, but immediate income.

Finally, this argument also points to a way of identifying when the choice for own-account work, which is rational from the perspective of the individual, can be inefficient from the perspective of the aggregate economy. If this occupational choice is driven by a discount rate larger than the discount rate observed in the financial markets, this suggests that access to capital could be driving a situation in which poverty is rooted in labor market decisions (individuals opt for low-earning own account work when they could earn more from wage work) and that there could be potential welfare gains from improving the functioning of capital markets that are not being realized.

G. Outline of the empirical estimation protocol

To assess how relevant the potential heterogeneity in discount rates can be to actual occupational decisions, we propose a translation of the theoretical inequality established in equation (9) into its empirical counterpart. For this purpose, we just reexpress the integral from this expression as:

$$\rho \ge \frac{\lambda}{y - b} \cdot \left[\mathbb{E}(w \mid w > w_r) - w_r \cdot \overline{F}(w_r) \right] - \delta \tag{10}$$

and map this inequality into:

$$\rho_{i} \geq \frac{\mathbb{E}(\lambda \mid X_{i})}{y_{i} - \mathbb{E}(b \mid X_{i})} \cdot \left[\mathbb{E}(w \mid w > w_{r}, X_{i}) - \mathbb{E}(w_{r} \mid X_{i}) \cdot \mathbb{P}(w \geq w_{r}) \right] - \mathbb{E}(\delta \mid X_{i})$$
(11)

where the relevant parameters are replaced by conditional expectations that can be estimated for each own-account worker i, characterized by a vector of attributes X_i .

We proceed empirically as follows:

1. $\mathbb{E}(w \mid w > w_r, X_i)$: The expected potential wage is estimated by fitting a selection-corrected linear regression on the log net labor income of employees;

- 2. $\mathbb{E}(w_r \mid X_i)$: The expected reservation wage is estimated via quantile regression, focusing on low quantiles of net labor income;
- 3. $\mathbb{E}(b \mid X_i)$: Consistent with the data (see section V.E), the unemployment-specific income is assumed to be negligible;
- 4. $\mathbb{E}(\delta \mid X_i)$: The expected job destruction rate is estimated using a proportional hazards duration model for employment with an exponential baseline hazard, allowing for a two-type mixture of unobserved heterogeneity;
- 5. $\mathbb{E}(\lambda \mid X_i)$: The expected job offer arrival rate is estimated using a proportional hazards duration model for unemployment with an exponential baseline hazard, allowing for a two-type mixture of unobserved heterogeneity, accounting for the probability that a received offer is acceptable and turns into a job;
- 6. $\mathbb{P}(w \ge w_r)$: the probability that an offer will be acceptable is calculated off the estimated potential wage from (1), the reservation wage from (2), and the variance of accepted wages under a parametric assumption about the wage offer distribution;
- 7. y_i : The labor income as an own-account worker is directly observed for those in this occupation.

The interpretation of the right-hand side of equation (10) as a lower bound for the subjective discount rate ρ_i will be valid as long as equation (10) captures the relevant components of the occupational decision, to a first-order approximation, and equation (11) is an unbiased counterpart of it. In short, we assume our estimated expected values (in the statistical sense) to be a translation of the values expected by the individual (in the conceptual sense). From a technical perspective, we assume the error components of estimations (1), (2), (4) and (5) to be uncorrelated. Under these conditions, revealed preference provides identification of the relevant boundary.

In other words, we take the econometric results to approximate the perception of the individuals when asking themselves "how much people like me can make in a wage job?", "how many months will it take me to find one?" and "how long is this job likely to last?". We combine the answers to those questions to uncover a parameter that is harder to observe: "given how long I might have to wait and what I can expect to earn, is it worth it for me to forego current labor income in order to look for a job?"

An important limitation of our approach is that we explicitly neglect non-earnings dimensions of own-account and wage jobs. This assumption is adopted in the interest of model parsimony, but also due to data limitations, and the impact of its omission can be seen as affecting the y or w terms. Without further information about individual preferences, however, we are unable to sign what the potential net bias might be. In particular, if an individual appreciates own-account work for reasons unrelated

to income (such as flexibility or autonomy), the value of monthly payment alone would underestimate the utility derived from this occupation, and we would be overestimating the associated discount rate lower bound.⁵ Conversely, if wage positions are valued for reasons unrelated to income (for instance, stability, skill acquisition, or career concerns), the associated minimum discount rate would be higher — in which case, the estimates we present here are still valid lower bounds.

IV. Data

A. The POF and the PNAD surveys

The empirical analysis is based on two large Brazilian surveys. The main data source is the 2017-18 edition of the Household Budget Survey ("Pesquisa de Orçamentos Familiares", or POF), which compiles information on the earnings and expenses of Brazilian households and their members (Instituto Brasileiro de Geografia e Estatística 2019).

From our perspective, the POF survey offers two particular advantages. First, it collects information on earnings using a detailed questionnaire that makes it possible to calculate net disposable labor income in a comprehensive sense (adding extra hours, performance bonuses, and work-related government transfers, deducting taxes) while reducing the mismeasurement one typically finds in labor market surveys when earnings are calculated from responses to a limited number of generic questions. Second, this particular edition of the survey was enriched by a set of questions about personal finance and material living conditions, including food security, which is rare in nationally representative datasets.

Given the quality of this data, POF is taken to be the reference source for most of the estimations in what follows. Unfortunately, it is cross-sectional in nature and does not offer sufficient retrospective information about employment or unemployment spells. We overcome this limitation by using a second dataset, the National Household Survey ("Pesquisa Nacional por Amostra de Domicílios", or PNAD), a regular labor market survey with a rotating panel structure that has been run regularly since 2012. The PNAD is less detailed than POF, but it follows the sampled households for five consecutive quarters, allowing us to observe transitions between labor market states (Instituto Brasileiro de Geografia e Estatística 2018). We note that these surveys include employment information for both formal and informal workers, and thus offer more comprehensive coverage of the Brazilian labor market than administrative datasets that only cover registered firms or formal workers.

help mitigate this particular bias.

⁵ This omitted preference component can be particularly relevant among employers (the high-end self-employed who have employees working for them), as their personal engagement can plausibly be driven by more than monetary returns. Autonomy, flexibility, status, and identification with the enterprise are more likely to play a role for them. However, we explicitly distinguish own-account workers from employers here, keeping the second group outside the scope of analysis, which can

Using those two sources in tandem is possible because they represent the same population, adopt nearly identical socioeconomic concepts, and were run simultaneously. Both surveys were designed by the Brazilian statistical office to be nationally representative, and employ a common stratified cluster-based sampling scheme based on Brazil's 2010 national census. Moreover, both surveys compile the basic socioeconomic attributes of the household members (family position, ethnicity, gender, age, and schooling) using the same definitions, and both allow us to infer the general structure of the household similarly. For transparency, we calculate the summary statistics for the population of interest using both sources (see table 1), and it is reassuring to see that the first moments of the key variables are similar, even if the very large sample size makes some of the small differences appear statistically significant. Nevertheless, to check the robustness of our results, we rederive weights for the PNAD sample and make its first moments match those of the POF sample exactly in Appendix D.

B. The population of interest

A simple reason why own-account workers may have a low average income at the national level is that this is a common status for rural workers, who often work in activities that have lower average productivity. Furthermore, the land ownership patterns and the social organization of labor are very distinct in rural and urban areas, in ways that could confound the preference for occupations and the monetary returns to labor. To keep our discussion clean of those considerations, we focus on the population living in urban areas only (85% of Brazil's population). We also restrict the analysis to individuals between 14 and 64 years of age (72% of the urban population), as they are more likely to be economically active.

In summary, the universe of analysis comprehends 125 million urban, working-age individuals (or 60% of all Brazilians) over the 2017-18 period. Among them, 52% are female, 55% are nonwhite (44% mixed ethnicity, 10% black, and 1% others), 84% have completed at most high school (about 13 years of education or less), and 24% are between 14 and 24 years old.

⁻

⁶ A master sample divides the country into small neighborhoods of at least 60 households (the Primary Sampling Units, or PSUs), which are organized in mutually exclusive and relatively homogeneous regions (the strata), according to their sociogeographical characteristics. In any given survey, the PSUs are independently sampled within their stratum, and a subset of random households from the sampled PSUs are interviewed (Freitas and Antonaci 2014). In this sense, the POF sample and each of the quarterly inflow waves of PNAD can be seen as separate draws from a common population.

Table 1: Overview of the population of interest

	POF survey (2017/2018) Urban areas, working age pop.		PNAD survey (2017Q1-2018Q4) Urban areas, working age pop.		Difference between surveys	
	A	std. err.	В	std. err.	A - B	p-value
Gender and ethnicity (in %)						
Female	52.31	(0.16)	52.26	(0.06)	0.05	0.759
Nonwhite	54.74	(0.43)	55.12	(0.22)	-0.38	0.430
Education level (in %)						
Less than prim. school	28.08	(0.32)	27.35	(0.16)	0.74	0.039
Primary school	19.19	(0.22)	18.81	(0.09)	0.38	0.115
High school	37.10	(0.28)	38.00	(0.13)	-0.90	0.004
College or above	15.63	(0.37)	15.85	(0.20)	-0.21	0.608
Age group (in %)						
Age 14-24	24.03	(0.21)	24.04	(0.09)	-0.01	0.957
Age 25-34	20.87	(0.22)	21.19	(0.09)	-0.32	0.184
Age 35-44	21.03	(0.22)	21.73	(0.09)	-0.70	0.003
Age 45-54	18.82	(0.20)	18.41	(0.08)	0.40	0.058
Age 55-64	15.26	(0.21)	14.63	(0.09)	0.63	0.005
Survey structure						
Strata	373		373	•		
Primary Sampling Units	4 597		13 907			
Unique households	41 002	•	325 711	•	•	•
Unique individuals	96 175		828 925	•	•	•
Observations	96 175	•	2311201	•		

Notes: [1] Individual observations are weighted by the inverse of their sampling probability, following the survey design, to render the coefficients meaningful for the population the sample represents. The standard errors around the point estimates are calculated via linearization, accounting for the stratification design, and the p-value was calculated based on the z-statistic of the difference between the estimates. [2] The POF survey conducted interviews between July 2017 and July 2018. In order to capture a similar time window, we use the 8 quarterly rounds of PNAD from 2017 and 2018: four of them overlapping with the data collection interval from POF, plus two quarters before, and two after it. [3] PNAD currently provides unique identifiers to households but not to household members. To track individuals across quarters, we adopt the advanced identification methodology proposed by Ribas and Soares (2008), as implemented in Stata (StataCorp 2015) by the program -datazoom_pnadcontinua- (version 1.0) from the Economics Department of PUC-Rio University.

C. Who are the own-account workers?

Within the population of interest, about 81 million individuals received some form of labor income in the preceding 12 months, according to the POF survey. For 30 million of them, the average monthly amount, net of taxes, was between R\$ 1 000 and R\$ 2 000 (or US\$ 455 to US\$ 910, adjusting for purchase power parity), as shown at the top of figure 1. In general terms, the distribution of labor income is approximately log-normal, with some excess mass at the right side due to the presence of a minimum wage (R\$ 954) that is binding for formal employees.

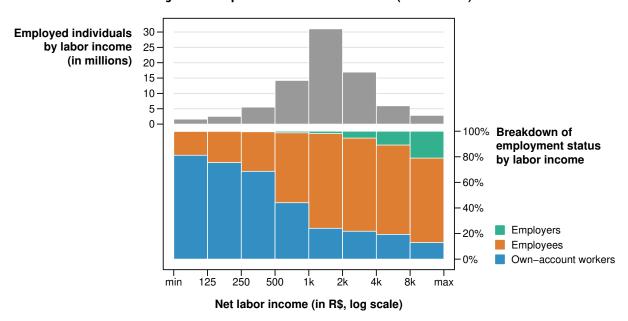


Figure 1: Occupations and labor income level (POF 2017-18)

Notes: The calculations refer to the income associated with a worker's primary occupation, net of taxes. The results are representative of urban, working-age (14-64) individuals, at national level. Monetary values in R\$, at prices of January 2018. For context, R\$ 1 000 here are equivalent to US\$ 455, adjusting for purchase power parity.

A more interesting picture emerges as we break down the employment status within each labor income level, at the bottom of figure 1. A first stylized fact: own-account workers are a relatively large group, accounting for about a third of all individuals with some labor income in the population of interest.⁷ Put otherwise, there is about one own-account worker for every two wage employees in this population, which contrasts with a ratio of 1 to 13 in urban areas of high-income countries, calculated using estimates from the International Labour Organization (ILO, 2022). This evidence stresses why

⁷ Note that this share is higher than the official figures (around 25%) because the national statistics office classifies domestic workers as employees, while we count them as own-account workers. We examine the alternative hypothesis, grouping domestic workers with employees, in Appendix C. This methodological choice is based on the argument that domestic workers are selling their services to the final consumer, and not selling their labor to a firm, a distinction that puts them closer to those working on their own in the framework proposed here.

urban own-account work is a central issue for non-rich countries, in complement to the extensive literature on rural self-employment in development economics.

Second, own-account workers are dispersed across all the income range —highlighting that this is a heterogeneous category that includes from small service providers to specialized professionals—yet they are heavily concentrated at the bottom of the distribution. In this sense, they contrast with employers, who are negligible at the bottom but make up an increasing share of the working population as we move up the income ladder. This distribution is not unique to Brazil, as own-account workers are systematically overrepresented (and employers, underrepresented) among the poorest working individuals in a large range of low- and middle-income countries (Bandiera et al. 2022; Scarelli, forthcoming). Such a strong empirical distinction between own-account workers and employers is lost if one discusses self-employment in general, and that is why this paper explicitly defines own-account work as a category in itself, leaving employers out of the scope, as motivated in section II. In what follows, the focus is on the contrast between own-account workers and employees.

Third, urban Brazilians working by themselves are indeed systematically different from those who work for a firm: they comprise a higher share of female and nonwhite workers, and are generally less educated and older, as detailed in table 2. These patterns suggest that their prevalence at the bottom of the income distribution reflects differences in the jobs to which those workers can apply and differences in the returns to their skills. The question is whether this observable heterogeneity is sufficient to rationalize their occupational choices. In the next section, we estimate the labor market opportunities that each own-account worker could reasonably expect to face had they decided to look for a wage job, and we argue that part of the remaining variation could be explained by heterogeneity in time preferences, as some workers have a stronger need for securing income quickly.

But is own-account work really something easy to start? So far, we offered a formal argument, noting that they do not need to match with a firm, by definition. A closer inspection of their activities offers further support to this assumption. More than 3/4 of the own-account workers in this population are informal, in the sense that they have neither a registration as a small business nor as an autonomous worker, implying that paperwork does not prevent own-account workers from starting their activities. Furthermore, own-account workers usually do not require a dedicated store or an office space: nearly half of them work in the place chosen by the client or in the client's home, while 15% work in their vehicle, in a public area, or in other spaces. From the 12% that work from home, most do so in a non-exclusive area. As a comparison, 64% of the wage employees have a formal contract, and 83% have a dedicated workplace.⁸

17

⁸ The workplace statistics refer to 2018, hence before the widespread adoption of work-from-home following the Covid sanitary emergency. In that context, working in a non-exclusive area of one's house is less a signal of healthy flexibility and more suggestive of constrained improvisation.

Table 2: Descriptive statistics for own-account workers and employees in Brazil

	Own-Account Workers	Employees		
Total subpopulation size	22.7 million	49.9 million		
Ethnicity and gender				
Nonwhite female	29.6%	21.4%		
White female	21.0%	22.4%		
Nonwhite male	28.3%	30.9%		
White male	21.1%	25.3%		
Education level				
Less than prim. school	34.8%	15.4%		
Primary school	18.0%	13.5%		
High school	35.3%	45.6%		
College or above	11.9%	25.5%		
Age group				
Age 14-24	7.9%	17.8%		
Age 25-34	20.0%	28.2%		
Age 35-44	28.0%	27.0%		
Age 45-54	26.5%	18.4%		
Age 55-64	17.6%	8.6%		
Formal work status	24.1%	63.7%		
Usual workplace				
Dedicated store, office	26.3%	83.4%		
Place chosen by client, employer	21.2%	6.9%		
Client's, employer's home	25.6%	0.3%		
Worker's home (dedicated area)	4.9%	0.1%		
Worker's home (shared area)	7.2%	0.2%		
Worker's vehicle	5.8%	3.7%		
Public space	5.7%	0.9%		
Other places	3.3%	4.5%		
Most frequent occupations				
1st	Domestic Cleaners, Helpers: 17.6%	Office Clerks: 6.4%		
2nd	Bricklayers: 8.1%	Shop Sales Assistants: 6.1%		
3rd	Shopkeepers: 7.0%	Cleaners, Helpers in Offices, Stores: 4.39		
4th	Door-to-door Salespersons: 4.6%	Primary School Teachers: 2.4%		
5th	Hairdressers: 3.5%	Security Guards: 2.4%		
6th	Car, Taxi and Van Drivers: 3.3%	Heavy Truck Drivers: 2.3%		
7th	Beauticians: 3.3%	Cashiers and Ticket Clerks: 1.9%		
8th	Child Care Workers: 2.5%	Nursing Associate Professionals: 1.8%		
9th	Home-based Personal Care Workers: 2.2%	Building Construction Labourers: 1.7%		
10th	Building Construction Labourers: 2.0%	Cooks: 1.6%		

Notes: [1] These summary statistics were calculated using the National Household Survey (PNAD) and refer to all working-age individuals (14-64 years old), living in Brazil's urban areas, who reported being occupied as either own-account workers or wage employees. [2] The results represent the average over the 8 quarters of 2017-18, with the exception of the workplace information, which is only available for the 4 quarters of 2018. [3] Employment status, formality status, workplace, and occupation all refer to an individual's main employment. [4] The reported occupations are the most granular category (level 4) in the International Standard Classification of Occupations (ISCO). [5] A worker is assigned a formal work status by having a register either as worker ("carteira assinada") or as a small business ("CNPJ"). [6] The group of own-account workers include the domestic workers, who are by default defined as employees in the official figures from the Brazilian statistical office. This methodological decision is adopted throughout this paper. An overview of the results under the standard classification is available in the appendix.

Those patterns are consistent with the type of activities the own-account workers are typically running in this context. Looking at the most granular level of the International Standard Classification of Occupations (ISCO), the most common occupations for Brazilian urban own-account workers are domestic cleaners, bricklayers and other construction workers, small shopkeepers and door-to-door salespeople, hairdressers and beauticians, drivers, and care workers — in all cases, occupations with relatively low entry barriers.

V. Estimation results

A. Potential wages

The first step is to estimate the wage a given own-account worker could expect to earn working for a firm, based on the labor income from employees who are observationally similar to them. Higher potential wages make paid employment a more attractive option relative to own-account work, everything else constant, and thus suggest a higher discount would be required to make own-account work preferable.

The statistical specification is a regression of log monthly net labor income on a set of socioe-conomic attributes that provide information about the worker's human capital and their relevant labor market. In choosing the covariates, our objective was to be flexible and parsimonious: individuals are split over ethnicity-gender and age-education groups, to capture arbitrarily non-linear effects on those dimensions. All models control for interregional differences, with a region being defined as either the capital, the capital's metropolitan area (if any), or the remaining cities, for each one of the 27 Brazilian States, in a total of 77 mutually exclusive and relatively homogeneous areas.

To purge the potential selection bias in the estimates of the marginal contribution of someone's attributes to their potential wage, the wage regression includes a control function, as suggested by Heckman (1979). Current school attendance and variation in household composition are added as exclusion restrictions in the model of selection into the status of wage employee.

The coefficients for the main equation and the selection equation are reported in table 3 in the appendix. As expected, wages are increasing in education, and the gap between those who finished college and those with less than primary school increases with age. We also find an effect of ethnicity and gender, increasing from nonwhite females (the reference group), to nonwhite males (+8.5%), to white females (+9.7%), to white males (+30%).

In light of those results, we can argue that one reason why nonwhites, females, and those without college are overrepresented among own-account workers is that, everything else constant, the jobs they would find in a firm are the worst paid ones to start with. But this is not the full story,

since 82% of Brazilian own-account workers report a net labor income inferior to their potential wage,⁹ even after accounting for individual heterogeneity, as shown in figure 2.

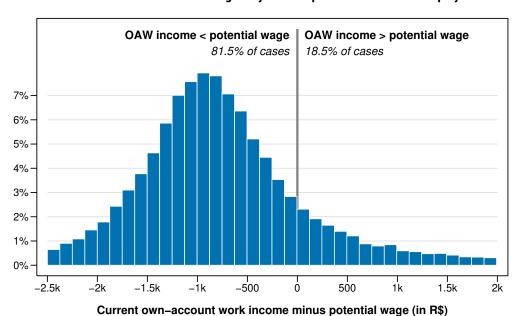


Figure 2: Distribution of the estimated gap between the labor income received by ownaccount workers and the wage they could expected to receive as employees

Empirical measures of the reservation wage remain an important challenge in applied work, since there are few plausible references for it, specially in developing countries.¹⁰ In the present case, neither POF nor PNAD asks about the lowest wage level individuals would be willing to accept, and hence we need to estimate it.

B. Reservation wages

As a starting point, one could simply take the absolute lowest value observed at conditional cells defined by relevant individual attributes. The main drawback of this nonparametric strategy is that its consistency requires a large number of cells, each with a large number of observations, as the estimation of extrema is much more demanding and much more vulnerable to outliers than the estimation of averages.

To overcome those difficulties, our strategy is to use quantile regression to predict the conditional expected value *at a sufficiently low rank in the wage distribution*. In the baseline specification, we assume that the 10th percentile of the distribution is a reasonable proxy for the reservation wage, as

⁹ The fitted values for potential wages are obtained from the linear index composed by the estimated coefficients $\hat{\beta}$ and the individual attributes X_i . To avoid a known transformation bias when translating this index $X_i\hat{\beta}$ back from log into R\$ levels, we adopt the "smearing" technique from Duan (1983), which has been shown to perform well in large samples like ours.

¹⁰ A notable exception is Krueger and Mueller (2016), who document reservation wages for unemployed workers in New Jersey, US.

there may be unsystematic measurement errors in reported wages at the bottom of the distribution.¹¹ To examine the sensitivity of the results to different cutoffs, we replicate the estimation with 5th and 15th percentiles in Appendix B.

The most important difference relative to the previous estimation is that now we introduce family characteristics into the main equation. This econometric choice is motivated by the idea that having children should not affect the wage opportunities a worker expect to see in the market (after correcting for selection), but it can affect the minimum monthly income someone is willing to accept (which is one channel that can lead to the selection itself).

Table 4 provides the results of this estimation. Indeed, we find that the presence of dependents in a household (children, young, or senior members) is associated with a decrease of between 3.3% and 4.6% in wages at the 10th percentile level. This result is consistent with a preference for part-time jobs (hence lower monthly earnings), but also with a lower selectivity for offers (due to more urgent family consumption needs).

The signs of the remaining coefficients are largely aligned with what we found in the previous section, although the margins there refer to the average wage, while here they affect the expected wage at the 10th percentile of the wage distribution.

C. Employment and unemployment duration

To calculate the value of looking for a job, we also need to estimate how long people usually spend in unemployment, and how long wage jobs typically last. Here we follow a long tradition in applied economics that uses duration techniques to model the length of spells in different employment states conditional on covariates. Because our theoretical model assumes agents form expectations for the steady-state, the consistent choice is to use a parametric proportional hazards duration model that fits the duration outcome using an exponential baseline hazard distribution, which imposes that the instantaneous transition rate is independent of the time previously spent in the spell. Our model allows for unobserved heterogeneity to affect transition rates using the approach of Heckman and Singer (1984); see Appendix E for details.

When modeling the transition from unemployment into wage employment, all other transitions from unemployment (namely, into inactivity or self-employment) are treated as censoring events — technically, those changes prevent us from observing a transition into a wage job in the same way that the end of the observation window does. Conversely, in the case of end of employment, we treat all transitions out of employment as the observed end of the spell, since the present discounted value of the job is affected only by its expected duration, regardless of the subsequent state.

¹¹ Such noise would not affect the expected wage estimates, as long as it is uncorrelated with observables.

¹² Classic works in this literature include Kiefer (1988) and Meyer (1990). For a comprehensive treatment of these techniques, see Kalbfleisch and Prentice (2002).

As seen in table 5, we estimate that males can expect to find wage jobs faster, while job-seekers above 44 years of age would spend more time in unemployment. Interestingly, more educated individuals appear to find jobs at similar rates than less educated ones — but they spend longer in wage employment once a position is found, which makes this occupation more valuable for them, all else equal.

D. The job offer arrival rate

The previous section described the estimation of the rate at which job-seekers move from unemployment into wage employment (denoted h below). However, the parameter of interest in the model is the rate at which new offers arrive to a job-seeker (λ). Since neither POF nor PNAD collects data on offers, h represents the product of the offer arrival rate λ and the likelihood that an offer is accepted once it has been received,

$$h = \lambda \cdot \mathbb{P}(w > w_r) \tag{12}$$

Assuming the wage offer distribution for a given worker is log-normal, centered at the log of the expected wage (w_i) and with standard deviation (σ) common to all workers, we can write

$$h = \lambda \cdot \left[1 - \Phi \left(\frac{\log(w_r) - \log(w)}{\sigma} \right) \right]$$
 (13)

Thus, one can recover λ for each individual from the estimated counterparts of h, w, w_r , and σ , according to the expression above. In practice, we find that nearly all offers are good enough to be accepted — equivalently, $\mathbb{P}(w > w_r) \approx 1$ for most individuals — and thus $\lambda \approx h$ in general.¹³

All in all, we estimate that if Brazilian own-account workers were to seek a wage job, it would take them on average 7.6 months to receive an offer, half of them would receive their first offer only after 6 months of looking for it, and they would be willing to accept 95% of these jobs. This result is of interest for it suggests that own-account workers may not be discouraged to look for wage employment because it does not pay enough, but rather because it is too hard to come by.

E. The expected value of unemployment income

Any income that is specific to the job-seeking state would increase the value of unemployment, which could be meaningful in the context of a country with an extensive social insurance system. In the case of Brazil, the information available in both surveys used here suggests that unemployment benefits are negligible in practice: the vast majority of the job-seekers report receiving no benefit at all.

¹³ The finding that nearly all offers would be accepted is not surprising. From a theoretical perspective, it is consistent with the idea that, in general equilibrium, firms have no incentive to propose wages below reservation levels (as one finds, for instance, in wage posting-models following Burdett and Mortensen 1998, even though in our case we abstract from any firm behavior.

This is because unemployment insurance requires unjustified layoff from formal wage employment, plus a track record of 12 months of employment over the previous 18 months when applying for it for the first time. Hence, people looking for their first job, coming from short or informal positions, or in a long unemployment spell cannot receive it. Virtually no own-account worker would qualify, with the major exception of domestic workers, under the same conditions above.

Informal transfers within the individual's network could play a similar insurance role, but those are difficult to observe, even with POF's detailed income data. In any case, missing a permanent or unsystematic transfer does not affect our results, as long as it is independent of one's labor market state.¹⁴

For those reasons, we take unemployment-specific income b to be negligible in the context of our estimation. This is a conservative assumption since it can only lead to an underestimation of the value of unemployment, and thus to an overestimation of the implicit discount rate, which means that the lower bound calculated without b remains a lower bound.

VI. The discount rate lower bound and constrained own-account workers

The main results of this paper follow from the individual-specific lower bound discount rates inferred for a sample of nationally representative own-account workers. To be precise, the object we recover is the minimum discount rate that makes the present value of own-account work superior to the present value of looking for a wage job, as defined in equation (11), based on the full set of results shown in section VI and using microsimulation for the sample of individuals in the POF. We find that this lower bound has a median of 9.7% per month, and an average of 24% per month, evidence of the salience of the intertemporal trade-off in the occupational choice of Brazilian own-account workers.

To make sense of these estimates, we compare them against the typical interest rate levels adopted in retail credit operations to finance household consumption. According to the Central Bank, the average rate in consumer credit in the period 2017-18, weighted by total loan volume, was equivalent to 3.8% per month. Those are non-earmarked and non-secured credit lines that could be directed to any consumption needs, and their average rate is taken as a reference for the ongoing price at which banks were willing to exchange future and present resources in the period of analysis.

The fact that most own-account workers appear to have a subjective time discount above this credit rate suggests that they could not access such market — had they been able to borrow at the prevailing rate, they would have done so and chosen to search for wage work instead, under the assumptions of the proposed framework. The cumulative distribution function of the lower bound of

¹⁴ The availability of income sources other than one's labor income can still affect the value of different occupations in our framework — precisely because they may affect the time preference in itself. Anticipating the findings to be discussed in section VI, there is suggestive evidence that own-account workers who can count on transfers have a lower implicit urgency in their occupation decision because transfer income helps alleviate material deprivation.

 ρ , as plotted in figure 3, tells us that such financial constraint is binding for at least 2/3 of the urban own-account workers in Brazil.

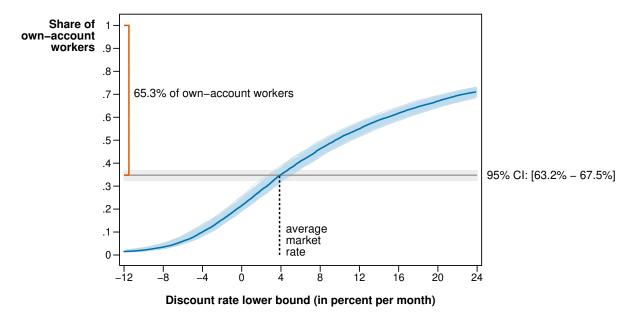


Figure 3: Empirical cumulative density of the estimated discount rate lower bound

Notes: The dark blue curve shows the CDF at the baseline specification, and the light blue curves represent each one of the 400 replications of such estimation, leading to the bootstrapped confidence interval described on the right side. The dashed reference line marks the average consumer credit rate for individuals in 2017-18.

This distribution implies that the occupational choice of at most 1/3 of the own-account workers (those at the left of the reference rate) is their first best choice in relative monetary terms, after taking into account income differences and labor market frictions, which lead us to classify those as *unconstrained cases*. Importantly, this share is higher than the 18% who are simply earning more than they could expect to earn as employees (see figure 2) since that comparison is missing the intertemporal dimension. Note also that the first best choice here does not necessarily mean that those own-account workers have a comfortable material life, since the comparison is always with the individual-specific opportunities in the wage market, an alternative that could well be a precarious one to start with.

In contrast, the occupational choice of the remaining own-account workers is their best *constrained* option: it is still the one with the highest present value, but only because they assign strong relative importance to income in the near-term and cannot discount the future using the market rates, but are still able to bypass unemployment by working on their own. In other words, at least 2/3 of the Brazilian urban own account workers cannot afford to wait for a job.

A. The discount rate lower bound and household conditions

If households facing more precarious material conditions have relatively higher discount rates, one would expect to see them disproportionately among the own account workers that our model suggests are facing capital market constraints that keep them from looking for wage work. In this section, we present descriptive evidence that supports this hypothesis.

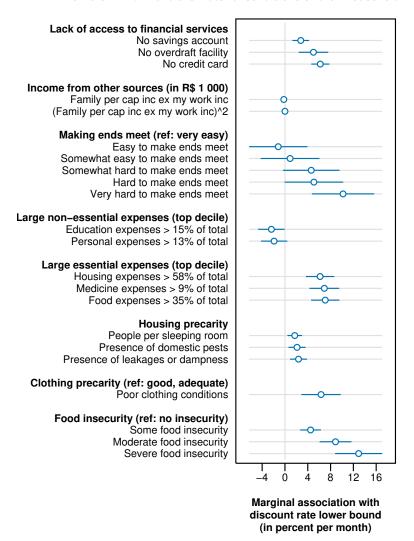
Regressing the estimated discount rate lower bound on a set of living conditions indicators, we find that it tends to be higher for own-account workers (a) without access to financial services, (b) subject to financial stress, (c) with a large share of their budget committed to basic expenses, and (d) who report inadequate housing, clothing, or food availability. The coefficients of interest are summarized in figure 4 and the regression output under different specifications are available in table 6.

The lack of access to financial services such as a savings account, overdraft facilities, and a credit card are all associated with relatively higher subjective time discounts (+2.7 percentage points to +6.2 percentage points), in line with the mechanism proposed. Notably, the availability of income from sources other than one's occupation (non-labor income, any income from other household members, and systematic transfers) appears to be associated with a lower discount, if we focus on financial indicators only (see model A from table 6). However, the association disappears once we control for other markers of actual material precariousness, suggesting that non-labor income may go directly to supporting basic consumption, leaving other urgent needs unmet.

To assess how tight the family budget is, we look at one's perception of how hard it is to make ends meet and find a clear association with the estimated lower bound discount rate. These subjective indicators are complemented with an analysis of the share of income spent on education, personal goods and services, housing, medicine, and food. In all those categories, we take the top decile as a reference for "spending too much" in a given category. For instance, 10% of the Brazilian urban, working-age individuals are in a household where food expenses account for more than 35% of total expenses — and we find that the own-account workers in this group tend to have a higher implicit lower bound discount rate, all else constant. Interestingly, the same holds for medicine or housing expenses, but the opposite is true for personal and education expenses, categories that individuals may consider to be non-essential items. The fact that own-account workers with lower urgency also tend to be members of families that spend more on education is consistent with the view that education is an investment and people with lower discount rates are more willing to invest.

We conclude by documenting a strong association between basic deprivation (housing, clothing, and food inadequacy) and the estimated lower bound of the discount rate. All else constant, members of families facing hunger are also more likely to take up own-account work paying less what they could find in wage employment, and the association with the estimated lower bound of the discount rate is monotonically increasing with the degree of food insecurity. This is a dire translation of the empirical content of the otherwise abstract idea of "urgency" we refer to in this paper.

Figure 4: Association between the estimated discount lower bound of own-account workers in Brazil and the material conditions of their household



Notes: The line around the point estimate represents the 95% confidence interval, with standard errors clustered at the PSU level. Additional controls include ethnicity, gender, age, education, position of the worker in the family, family composition, and region.

These results are also coherent with a body of research that has consistently documented a negative association between socioeconomic status and preference for the present under the traditional measurement protocols (see Green et al. 1996; Harrison, Lau, and Williams 2002; Kirby et al. 2002; de Wit et al. 2007; Reimers et al. 2009; Tanaka, Camerer, and Nguyen 2010; Haushofer and Fehr 2014; Cassar, Healy, and von Kessler 2017; Di Falco et al. 2019).

Nevertheless, we take this evidence with caution. In the absence of exogenous variation in living conditions, it remains unclear how much of the association is due to financial stress leading to the choice of an occupation with lower short-term returns, and how much of it is due to low returns leading to financial stress. All in all, it is reasonable to expect that both reinforce each other (and the associated occupational choice), which would characterize a form of low-income occupational trap.

VII. Concluding remarks

In this paper, we discuss how the individual time discount rate — understood as a measure of subjective consumption urgency — can play a role when individuals decide between working by themselves or trying to work for a firm, particularly in the high-friction, low-liquidity context of labor markets in developing countries. We highlight that this approach leads to a novel definition of constrained own-account work, which we estimate to be the case for at least 65% of own-account workers in Brazil, assuming our estimates of the labor market parameters are sufficiently close to how workers perceive their potential labor opportunities. Finally, we provide suggestive evidence that financial stress and material precariousness are strongly associated with a higher subjective discount lower bound as estimated on Brazilian urban own-account workers.

Our model offers a note of caution to the classic view according to which liquidity constraints would *prevent people from working on their own*, and thus initiatives that improve access to credit (such as microcredit) would allow a larger number of people to do so. We argue that liquidity constraints could *prevent people from searching for a wage job*, pushing them into own-account work instead. This apparent contradiction is partly due to the confusion between low-end self-employment and high-end entrepreneurship, and we hope our discussion about own-account work contributes to a more nuanced understanding of this type of work.

From a public policy perspective, the model (1) highlights the relevance of programs that insure consumption during income shocks in general, and (2) points out why part of own-account workers should be targeted by labor market policies that support transitions into wage jobs, even though they are already working. Unemployment is often taken as the marker of the highest labor market vulnerability, but those observed in unemployment can at least afford to invest time in job searching.

Absent such financial support, agents facing frictional labor markets and imperfect financial markets could rationally drift into unproductive own-account work to bypass the job search period, and get permanently stuck in a low-consumption equilibrium. According to our estimates, this is not a remote possibility — it can be the driver for a clear majority of own-account workers in a developing country.

References

- Albrecht, James, Lucas Navarro, and Susan Vroman. 2009. "The Effects of Labour Market Policies in an Economy with an Informal Sector." *The Economic Journal* 119 (539): 1105–1129. https://doi.org/10.1111/j.1468-0297.2009.02268.x.
- Bandiera, Oriana, Ahmed Elsayed, Andrea Smurra, and Céline Zipfel. 2022. "Young Adults and Labor Markets in Africa." *Journal of Economic Perspectives* 36 (1): 81–100. https://doi.org/10.1257/jep.36. 1.81.
- Banerjee, Abhijit, and Esther Duflo. 2011. *Poor Economics: A Radical Rethinking of the Way to Fight Global Poverty*. New York: PublicAffairs.
- Banerjee, Abhijit, Esther Duflo, Rachel Glennerster, and Cynthia Kinnan. 2015. "The Miracle of Microfinance? Evidence from a Randomized Evaluation." *American Economic Journal: Applied Economics* 7 (1): 22–53. https://doi.org/10.1257/app.20130533.
- Block, Jörn, and Philipp Sandner. 2009. "Necessity and Opportunity Entrepreneurs and Their Duration in Self-employment: Evidence from German Micro Data." *Journal of Industry, Competition and Trade* 9, no. 2 (2009): 117–137. https://doi.org/10.1007/s10842-007-0029-3.
- Burdett, Kenneth, and Dale T. Mortensen. 1998. "Wage Differentials, Employer Size, and Unemployment." *International Economic Review* 39 (2): 257–273. https://doi.org/10.2307/2527292.
- Cameron, A. C., and P. K. Trivedi. 2005. *Microeconometrics: Methods and Applications*. New York: Cambridge University Press.
- Carrillo, Bladimir. 2020. "Present Bias and Underinvestment in Education? Long-Run Effects of Childhood Exposure to Booms in Colombia." *Journal of Labor Economics* 38, no. 4 (2020): 1127–1265. https://doi.org/10.1086/706535.
- Cassar, Alessandra, Andrew Healy, and Carl von Kessler. 2017. "Trust, Risk, and Time Preferences After a Natural Disaster: Experimental Evidence from Thailand." *World Development* 94:90–105. https://doi.org/10.1016/j.worlddev.2016.12.042.
- Cohen, Jonathan, Keith Marzilli Ericson, David Laibson, and John Myles White. 2020. "Measuring Time Preferences." *Journal of Economic Literature* 58 (2): 299–347. https://doi.org/10.1257/jel.20191074.
- De Mel, Suresh, David McKenzie, and Christopher Woodruff. 2008. "Returns to Capital in Microenterprises: Evidence from a Field Experiment." *Quarterly Journal of Economics* 123 (4): 1329–1372. https://doi.org/10.1162/qjec.2008.123.4.1329.

- De Wit, Harriet, Janine D. Flory, Ashley Acheson, Michael McCloskey, and Stephen B. Manuck. 2007. "IQ and Nonplanning Impulsivity Are Independently Associated with Delay Discounting in Middle-Aged Adults." *Personality and Individual Differences* 42 (1): 111–121. https://doi.org/10.1016/j.paid. 2006.06.026.
- Di Falco, Salvatore, Peter Berck, Mintewab Bezabih, and Gunnar Köhlin. 2019. "Rain and Impatience: Evidence from Rural Ethiopia." *Journal of Economic Behavior & Organization* 160:40–51. https://doi.org/10.1016/j.jebo.2019.02.016.
- Duan, Naihua. 1983. "Smearing Estimate: A Nonparametric Retransformation Method." *Journal of the American Statistical Association* 78 (383): 605–610. https://doi.org/10.2307/2288126.
- Duflo, Esther, Michael Kremer, and Jonathan Robinson. 2011. "Nudging Farmers to Use Fertilizer: Theory and Experimental Evidence from Kenya." *American Economic Review* 101 (6): 2350–2390. https://doi.org/10.1257/aer.101.6.2350.
- Fairlie, Robert W., and Frank M. Fossen. 2018. *Defining Opportunity Versus Necessity Entrepreneurship:*Two Components of Business Creation. Working Paper 17-014. Institute for Economic Policy Research (SIEPR), 2018.
- Fields, Gary S. 2009. "Segmented Labor Market Models in Developing Countries." In *The Oxford Hand-book of Philosophy of Economics*, edited by Don Ross and Harold Kincaid. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195189254.003.0018.
- ———. 2012. Working Hard, Working Poor: A Global Journey. New York: Oxford University Press.
- 2014. "Self-Employment and Poverty in Developing Countries." *IZA World of Labor* (2014). https://doi.org/10.15185/izawol.60.
- Fisher, Irving. 1930. The Theory of Interest as Determined by Impatience to Spend Income and Opportunity to Invest It. New York: Macmillan.
- Frederick, Shane, George Loewenstein, and Ted O'Donoghue. 2002. "Time Discounting and Time Preference: A Critical Review." *Journal of Economic Literature* 40 (2): 351–401. https://www.jstor.org/stable/2698382.
- Freitas, Marcos Paulo Soares de, and Giuseppe de Abreu Antonaci. 2014. *Sistema Integrado De Pesquisas Domiciliares: Amostra Mestra 2010 e Amostra da PNAD Contínua*, Textos para Discussão 50. Rio de Janeiro: IBGE.

- Gindling, T. H., Nadwa Mossaad, and David L. Newhouse. 2016. *Earnings Premiums and Penalties for Self-Employment and Informal Employees Around the World*. Policy Research Working Paper 7530. Washington, DC: World Bank. https://openknowledge.worldbank.org/handle/10986/23630.
- Gindling, Thomas H., and David Newhouse. 2014. "Self-Employment in the Developing World." *World Development* 56:313–331. https://doi.org/10.1016/j.worlddev.2013.03.003.
- Green, Leonard, Joel Myerson, David Lichtman, Suzanne Rosen, and Astrid Fry. 1996. "Temporal Discounting in Choice Between Delayed Rewards: The Role of Age and Income." *Psychology and Aging* 11 (1): 79–84. https://doi.org/10.1037/0882-7974.11.1.79.
- Hainmueller, Jens. 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies." *Political Analysis* 20 (1): 25–46. https://doi.org/10.1093/pan/mpr025.
- Harrison, Glenn W., Morten I. Lau, and Melonie B. Williams. 2002. "Estimating Individual Discount Rates in Denmark: A Field Experiment." *American Economic Review* 92, no. 5 (2002): 1606–1617. https://doi.org/10.1257/000282802762024674.
- Haushofer, J., and E. Fehr. 2014. "On the Psychology of Poverty." *Science* 344, no. 6186 (2014): 862–867. https://doi.org/10.1126/science.1232491.
- Heckman, J., and B. Singer. 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data." *Econometrica* 52 (2): 271–320. https://doi.org/10.2307/1911491.
- Heckman, James J. 1979. "Sample Selection Bias as a Specification Error." *Econometrica* 47 (1): 153–161. https://doi.org/10.2307/1912352.
- Instituto Brasileiro de Geografia e Estatística. 2018. *Pesquisa Nacional por Amostra de Domicílios Continua: Notas Técnicas v1.5.* Rio de Janeiro.
- ———. 2019. Pesquisa de Orçamentos Familiares 2017-2018: Primeiros Resultados. Rio de Janeiro.
- International Labour Organization. 2022. "ILO Modelled Estimates and Projections." ILOSTAT database. Accessed October 10, 2022. https://ilostat.ilo.org/data.
- Kalbfleisch, J. D., and Ross L. Prentice. 2002. *The Statistical Analysis of Failure Time Data*. 2nd ed. Hoboken, N.J.: John Wiley.
- Kiefer, Nicholas M. 1988. "Economic Duration Data and Hazard Functions." *Journal of Economic Literature* 26 (2): 646–679. https://www.jstor.org/stable/2726365.

- Kirby, Kris N, Ricardo Godoy, Victoria Reyes-García, Elizabeth Byron, Lilian Apaza, William Leonard, Eddy Pérez, Vincent Vadez, and David Wilkie. 2002. "Correlates of Delay-Discount Rates: Evidence from Tsimane Amerindians of the Bolivian Rain Forest." *Journal of Economic Psychology* 23 (3): 291–316. https://doi.org/10.1016/S0167-4870(02)00078-8.
- Krueger, Alan B., and Andreas I. Mueller. 2016. "A Contribution to the Empirics of Reservation Wages." *American Economic Journal: Economic Policy* 8 (1): 142–179. https://doi.org/10.1257/pol.20140211.
- Levine, David I, Theresa Beltramo, Garrick Blalock, Carolyn Cotterman, and Andrew M Simons. 2018. "What Impedes Efficient Adoption of Products? Evidence from Randomized Sales Offers for Fuel-Efficient Cookstoves in Uganda." *Journal of the European Economic Association* 16, no. 6 (2018): 1850–1880. https://doi.org/10.1093/jeea/jvx051.
- Lucas, Robert E. 1978. "On the Size Distribution of Business Firms." *The Bell Journal of Economics* 9 (2): 508–523. https://doi.org/10.2307/3003596.
- Margolis, David N. 2014. "By Choice and by Necessity: Entrepreneurship and Self-Employment in the Developing World." *The European Journal of Development Research* 26 (4): 419–436. https://doi.org/10.1057/ejdr.2014.25.
- Meyer, Bruce D. 1990. "Unemployment Insurance and Unemployment Spells." *Econometrica* 58 (4): 757–782. https://doi.org/10.2307/2938349.
- Mullainathan, Sendhil, and Eldar Shafir. 2013. *Scarcity: Why Having Too Little Means so Much.* New York: Times Books.
- Narita, Renata. 2020. "Self-Employment in Developing Countries: A Search-Equilibrium Approach." *Review of Economic Dynamics* 35:1–34. https://doi.org/10.1016/j.red.2019.04.001.
- Postel-Vinay, Fabien, and Jean-Marc Robin. 2002. "Equilibrium Wage Dispersion with Worker and Employer Heterogeneity." *Econometrica* 70 (6): 2295–2350. https://www.jstor.org/stable/3081988.
- Reimers, Stian, Elizabeth A. Maylor, Neil Stewart, and Nick Chater. 2009. "Associations Between a One-Shot Delay Discounting Measure and Age, Income, Education and Real-World Impulsive Behavior." *Personality and Individual Differences* 47 (8): 973–978. https://doi.org/10.1016/j.paid.2009.07.026.
- Ribas, Rafael Perez, and Sergei Suarez Dillon Soares. 2008. Sobre o Painel da Pesquisa Mensal de Emprego (PME) do IBGE. Texto para Discussão 1348. Rio de Janeiro: IPEA.

- Rogerson, Richard, Robert Shimer, and Randall Wright. 2005. "Search-Theoretic Models of the Labor Market: A Survey." *Journal of Economic Literature* 43 (4): 959–988. https://doi.org/10.1257/002205105775362014.
- Roy, A. D. 1951. "Some Thoughts on the Distribution of Earnings." *Oxford Economic Papers* 3 (2): 135–146. http://www.jstor.org/stable/2662082.
- Scarelli, Thiago. Forthcoming. "Occupations and Wealth in Developing Countries." Revue d'économie du développement.
- StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.
- Tanaka, Tomomi, Colin F. Camerer, and Quang Nguyen. 2010. "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam." *The American Economic Review* 100 (1): 557–571. https://www.jstor.org/stable/27804941.
- Tarozzi, Alessandro, Aprajit Mahajan, Brian Blackburn, Dan Kopf, Lakshmi Krishnan, and Joanne Yoong. 2014. "Micro-loans, Insecticide-Treated Bednets, and Malaria: Evidence from a Randomized Controlled Trial in Orissa, India." *American Economic Review* 104 (7): 1909–1941. https://doi.org/10.1257/aer.104.7.1909.
- Zenou, Yves. 2008. "Job Search and Mobility in Developing Countries. Theory and Policy Implications." *Journal of Development Economics* 86, no. 2 (2008): 336–355. https://doi.org/10.1016/j.jdeveco. 2007.06.009.

Appendix A. Estimation output tables

Table 3: Estimation of potential wages with adjustment for selection.

	Main equation Log wage		Selection equation P(state = employee)	
	coef.	s.e.	coef.	s.e.
Ethnicity and gender (ref: Nonwhite female))			
White female	0.093***	(0.016)	-0.002	(0.018)
Nonwhite male	0.082***	(0.013)	0.473***	(0.016)
White male	0.264***	(0.015)	0.270***	(0.019)
Age and education (ref: 14-24, less than prin	n. school)			
14-24, primary school	-0.076^{*}	(0.038)	0.382***	(0.036)
14-24, high school	-0.004	(0.036)	0.599***	(0.039)
14-24, college or above	0.237***	(0.054)	0.995***	(0.075)
25-34, less than primary school	0.194***	(0.039)	0.211***	(0.044)
25-34, primary school	0.203***	(0.040)	0.384***	(0.047)
25-34, high school	0.264***	(0.035)	0.683***	(0.039)
25-34, college or above	0.666***	(0.042)	1.047***	(0.046)
35-44, less than primary school	0.317***	(0.038)	-0.021	(0.043)
35-44, primary school	0.306***	(0.041)	0.303***	(0.047)
35-44, high school	0.468***	(0.036)	0.516***	(0.040)
35-44, college or above	0.963***	(0.042)	1.006***	(0.051)
45-54, less than primary school	0.454***	(0.038)	-0.184***	(0.041)
45-54, primary school	0.505***	(0.041)	-0.044	(0.049)
45-54, high school	0.673***	(0.038)	0.266***	(0.044)
45-54, college or above	1.152***	(0.050)	0.868***	(0.058)
55-64, less than primary school	0.577***	(0.039)	-0.543***	(0.044)
55-64, primary school	0.625***	(0.049)	-0.322***	(0.059)
55-64, high school	0.870***	(0.048)	-0.130^{*}	(0.051)
55-64, college or above	1.445***	(0.056)	0.254***	(0.061)
Current schooling status (ref: Not currently	studying)			
Attending school			-0.584***	(0.033)
Attending college or above			0.114***	(0.022)

Table 3: Estimation of potential wages with adjustment for selection. [continued]

	Main equation Log wage		Selection e P(state = er	-	
	coef.	s.e.	coef.	s.e.	
Household position (ref: Head, with partne	er, no kids)				
Head, with partner, with kids			0.037	(0.028)	
Head, no partner, no kids			-0.044	(0.031)	
Head, no partner, with kids			-0.075^{*}	(0.031)	
Partner, no kids			-0.231***	(0.031)	
Partner, with kids			-0.249***	(0.028)	
Child			-0.491***	(0.029)	
Other young hh member			-0.489***	(0.046)	
Other adult hh member	•		-0.344***	(0.033)	
Number of household members by age					
N. kids (less than 15 years old)		•	-0.034***	(0.007)	
N. young members (15-21)			-0.011	(0.008)	
N. adult members (22-64)			0.013*	(0.007)	
N. elderly members (65+)			-0.044**	(0.015)	
Heckman selection model ancillary param	eters				
Errors correlation	-0.815***	(0.009)			
Standard deviation of errors	0.751***	(0.009)			

Notes: [1] The selection equation is estimated on 96 175 working-age individuals (14-64) living in urban areas in Brazil, and the main wage equation is estimated on the 37 582 of them whose primary occupation is wage employment, using data from the POF 2017-18 survey. [2] Individual observations are weighted by the inverse of their sampling probability, following the survey design, in order to render the coefficients meaningful for the population this sample represents. [3] All models include controls for region, defined as (i) the State capital; (ii) the metropolitan area outside the capital (in the States where such region is defined); or (iii) non-metropolitan urban areas, at each one of the 26 Brazilian States and the Federal District, making up a total of 77 geographic areas. [4] The stars next to the coefficients denote statistical significance at 5% (*), 1% (**), and 0.1% (***).

Table 4: Estimation of reservation wages: quantile regressions at 5th, 10th (baseline) and 15th centiles.

	Quantil	e 0.05	Quantil		Quantil	
	Log w	rage	Log w	age	Log w	age
	coef.	s.e.	coef.	s.e.	coef.	s.e.
Ethnicity and gender (ref: Nonwhite female)						
White female	0.071***	(0.018)	0.066***	(0.011)	0.050***	(0.009)
Nonwhite male	0.221***	(0.018)	0.216***	(0.010)	0.184***	(0.009)
White male	0.296***	(0.019)	0.300***	(0.010)	0.256***	(0.010)
Age and education (ref: 14-24, less than prim.	school)					
14-24, primary school	0.393*	(0.156)	0.333***	(0.043)	0.414***	(0.081)
14-24, high school	0.763***	(0.150)	0.617***	(0.021)	0.551***	(0.080)
14-24, college or above	0.880***	(0.264)	0.895***	(0.092)	0.899***	(0.087)
25-34, less than primary school	0.666***	(0.162)	0.528***	(0.074)	0.457***	(0.088)
25-34, primary school	0.836***	(0.155)	0.741***	(0.024)	0.691***	(0.081)
25-34, high school	1.121***	(0.150)	0.895***	(0.023)	0.809***	(0.080)
25-34, college or above	1.365***	(0.152)	1.164***	(0.024)	1.118***	(0.082)
35-44, less than primary school	0.611***	(0.151)	0.578***	(0.103)	0.577***	(0.082)
35-44, primary school	0.788***	(0.170)	0.801***	(0.030)	0.727***	(0.083)
35-44, high school	1.240***	(0.150)	0.959***	(0.023)	0.882***	(0.080)
35-44, college or above	1.592***	(0.151)	1.373***	(0.028)	1.310***	(0.081)
45-54, less than primary school	0.681***	(0.151)	0.670***	(0.031)	0.628***	(0.081)
45-54, primary school	1.030***	(0.154)	0.835***	(0.028)	0.751***	(0.081)
45-54, high school	1.202***	(0.150)	0.961***	(0.024)	0.872***	(0.080)
45-54, college or above	1.570***	(0.152)	1.397***	(0.031)	1.378***	(0.081)
55-64, less than primary school	0.599***	(0.179)	0.518***	(0.065)	0.520***	(0.099)
55-64, primary school	0.938***	(0.157)	0.696***	(0.037)	0.659***	(0.083)
55-64, high school	1.099***	(0.150)	0.893***	(0.026)	0.838***	(0.080)
55-64, college or above	1.436***	(0.152)	1.351***	(0.058)	1.270***	(0.081)
Current schooling status (ref: Not currently st	tudying)					
Attending school	-0.408***	(0.116)	-0.401***	(0.105)	-0.458***	(0.039)
Attending college or above	-0.125***	(0.019)	-0.061***	(0.010)	-0.066***	(0.010)

Table 4: Estimation of reservation wages: quantile regressions at 5th, 10th (baseline) and 15th centiles. [continued]

	Quantile 0.05 Log wage			Quantile 0.10 Log wage		e 0.15 age
	coef.	s.e.	coef.	s.e.	coef.	s.e.
Household position (ref: Head, with partn	ier, no kids)					
Head, with partner, with kids	0.049*	(0.025)	0.060***	(0.014)	0.019	(0.014)
Head, no partner, no kids	-0.065**	(0.025)	-0.065^{**}	(0.020)	-0.093***	(0.017)
Head, no partner, with kids	-0.045	(0.024)	0.007	(0.013)	-0.058***	(0.016)
Partner, no kids	-0.104***	(0.027)	-0.068***	(0.018)	-0.089***	(0.022)
Partner, with kids	-0.049^{*}	(0.023)	-0.040	(0.028)	-0.078***	(0.015)
Child	-0.324***	(0.029)	-0.334***	(0.013)	-0.356***	(0.020)
Other young hh member	-0.400***	(0.046)	-0.405***	(0.031)	-0.410***	(0.023)
Other adult hh member	-0.184***	(0.020)	-0.165***	(0.016)	-0.214***	(0.015)
Number of household members by age						
N. kids (less than 15 years old)	-0.052***	(0.007)	-0.033***	(0.004)	-0.025***	(0.005)
N. young members (15-21)	-0.060***	(0.010)	-0.045***	(0.005)	-0.039***	(0.005)
N. adult members (22-64)	-0.001	(0.006)	0.001	(0.005)	-0.000	(0.004)
N. elderly members (65+)	-0.086***	(0.015)	-0.045***	(0.013)	-0.052***	(0.007)

Notes: [1] All models are estimated on 37 582 working-age individuals (14-64), living in urban areas in Brazil, whose primary occupation is wage employment, using data from the POF 2017-18 survey. [2] Individual observations are weighted by the inverse of their sampling probability, following the survey design, in order to render the coefficients meaningful for the population this sample represents. [3] All models include controls for region, defined as (i) the State capital; (ii) the metropolitan area outside the capital (in the States where such region is defined); or (iii) non-metropolitan urban areas, at each one of the 26 Brazilian States and the Federal District, making up a total of 77 geographic areas. [4] The stars next to the coefficients denote statistical significance at 5% (*), 1% (***), and 0.1% (****).

Table 5: Estimation of employment and unemployment duration using an exponential transition model with twotypes mixture for unobservable components.

	Out of wag transition		Unemp. into v	_
	haz. ratio	s.e.	haz. ratio	s.e.
Ethnicity and gender (ref: Nonwhite femal	e)			
White female	1.062**	(0.022)	1.127**	(0.045)
Nonwhite male	0.976	(0.017)	1.873***	(0.059)
White male	0.965	(0.021)	1.652***	(0.066)
Age and education (ref: 14-24, less than pri	im. school)			
14-24, primary school	0.742***	(0.030)	1.042	(0.068)
14-24, high school	0.456***	(0.020)	0.986	(0.065)
14-24, college or above	0.274***	(0.025)	1.397**	(0.149)
25-34, less than primary school	0.757***	(0.032)	1.104	(0.094)
25-34, primary school	0.551***	(0.024)	1.170	(0.100)
25-34, high school	0.346***	(0.015)	1.100	(0.078)
25-34, college or above	0.222***	(0.011)	1.107	(0.100)
35-44, less than primary school	0.678***	(0.029)	0.920	(0.072)
35-44, primary school	0.489***	(0.025)	0.957	(0.087)
35-44, high school	0.323***	(0.014)	0.969	(0.073)
35-44, college or above	0.192***	(0.010)	1.001	(0.101)
45-54, less than primary school	0.637***	(0.027)	0.813*	(0.072)
45-54, primary school	0.473***	(0.026)	0.798^{*}	(0.088)
45-54, high school	0.347***	(0.017)	0.790^{*}	(0.080)
45-54, college or above	0.207***	(0.011)	0.754*	(0.108)
55-64, less than primary school	0.726***	(0.033)	0.586***	(0.063)
55-64, primary school	0.581***	(0.033)	0.453***	(0.081)
55-64, high school	0.456***	(0.024)	0.500***	(0.080)
55-64, college or above	0.353***	(0.019)	0.333***	(0.077)
Current schooling status (ref: Not currently	studying)			
Attending school	1.411***	(0.047)	0.765***	(0.043)
Attending college or above	0.926**	(0.024)	1.294***	(0.053)

Table 5: Employment and unemployment duration models. [continued]

	Out of wag		Unemp. into v	
	haz. ratio	s.e.	haz. ratio	s.e.
Household position (ref: Head, with partne	er, no kids)			
Head, with partner, with kids	0.899***	(0.027)	0.963	(0.068)
Head, no partner, no kids	1.042	(0.036)	0.852^{*}	(0.063)
Head, no partner, with kids	0.975	(0.033)	0.882	(0.078)
Partner, no kids	1.037	(0.036)	0.925	(0.074)
Partner, with kids	0.971	(0.029)	0.946	(0.063)
Child	1.257***	(0.039)	0.674***	(0.047)
Other young hh member	1.263***	(0.074)	0.800^{*}	(0.077)
Other adult hh member	1.132**	(0.048)	0.845^{*}	(0.067)
Number of household members by age				
N. kids (less than 15 years old)	1.064***	(0.008)	1.039**	(0.014)
N. young members (15-21)	1.077***	(0.010)	1.002	(0.019)
N. adult members (22-64)	1.014	(0.008)	0.993	(0.014)
N. elderly members (65+)	1.017	(0.016)	0.927*	(0.030)
Ancillary mixture parameters				
Hazard ratio for high type	6.186***	(0.248)	3.325***	(0.096)
Share of high type	0.418***	(0.012)	0.662***	(0.021)

Notes: [1] The employment (resp. unemployment) duration model is estimated on 259 262 (50 065) working-age individuals, living in urban areas in Brazil, who reported wage employment (unemployment) status in at least one interview, before transition or censoring, over the 8 quarters of 2017 and 2018, using data from the PNAD survey. [2] Individual observations are weighted by the inverse of their sampling probability, following the survey design, in order to render the coefficients meaningful for the population this sample represents. [3] Individual identifiers for PNAD are assigned using the advanced methodology from ribas_2008, as implemented in Stata statacorp_2015 by the user-written program -datazoom_pnadcontinua- from the Economics Department of PUC-Rio University. [4] All models include controls for region, defined as (i) the State capital; (ii) the metropolitan area outside the capital (in the States where such region is defined); or (iii) non-metropolitan urban areas, at each one of the 26 Brazilian States and the Federal District, making up a total of 77 geographic areas. [5] The reported coefficients and standard errors were bootstrapped over 400 replications, with Primary Sampling Units being resampled with replacement independently at each one of the 77 geographic areas. [6] The stars next to the coefficients denote statistical significance at 5% (*), 1% (***), and 0.1% (****).

Table 6: Association between the estimated discount lower bound of own-account workers in Brazil (in percent per month) and the material conditions of their household.

	Model A other inc. sources		Mod	el B	Mod	el C	Mode	el D
			budget conditions		living conditions		full specification	
	coef.	s.e.	coef.	s.e.	coef.	s.e.	coef.	s.e.
Access to financial services								
No savings account	3.63***	(0.75)					2.77***	(0.75)
No overdraft facility	6.89***	(1.32)					5.00***	(1.32)
No credit card	8.23***	(0.81)	•				6.20***	(0.81)
Income from other sources (in R\$ 1 000)								
Family per cap inc ex my work inc	-1.13***	(0.27)			•		-0.20	(0.27)
(Family per cap inc ex my work inc) ²	0.02***	(0.00)	•	•	٠		0.00	(0.01)
Financial stress (ref: very easy)								
Easy to make ends meet			-0.99	(2.58)		•	-1.18	(2.61)
Somewhat easy to make ends meet			1.74	(2.59)			0.90	(2.63)
Somewhat hard to make ends meet		•	7.93**	(2.50)			4.61	(2.53)
Hard to make ends meet		•	10.98***	(2.60)			5.08	(2.62)
Very hard to make ends meet			19.73***	(2.70)			10.19***	(2.79)
Large non-essential expenses (top decile)								
Education expenses > 15% of total		•	-2.79^{*}	(1.18)			-2.38*	(1.19)
Personal expenses > 13% of total		•	-0.95	(1.17)			-1.90	(1.18)
Large essential expenses (top decile)								
Housing expenses > 58% of total			7.53***	(1.27)			6.17***	(1.27)
Medicine expenses > 9% of total			8.21***	(1.35)			6.91***	(1.33)
Food expenses > 35% of total		•	8.38***	(1.28)			7.07***	(1.27)

Table 6: Association between the estimated discount lower bound of own-account workers in Brazil (in percent per month) and the material conditions of their household. [continued]

	other inc.		Mod	lel B	Mod	el C	Mod	el D
			budget conditions		living conditions		full specification	
	coef.	s.e.	coef.	s.e.	coef.	s.e.	coef.	s.e.
Housing adequacy								
People per sleeping room					2.40***	(0.68)	1.72**	(0.66)
Presence of domestic pests					2.41**	(0.77)	2.11**	(0.76)
Presence of leakages or dampness					3.01***	(0.76)	2.38**	(0.76)
Clothing adequacy (ref: good, adequate)								
Poor clothing conditions	•	•			7.95***	(1.76)	6.33***	(1.75)
Food adequacy (ref: no food insecurity)								
Some food insecurity					7.65***	(0.91)	4.49***	(0.93)
Moderate food insecurity					13.87***	(1.37)	8.87***	(1.42)
Severe food insecurity	•	•		•	19.10***	(2.00)	12.92***	(2.11)
Model statistics								
Adjused R ²	0.1	135	0.1	48	0.1	48	0.10	66
Number of observations	20	424	20	424	20 4	124	20 4	24

Notes: [1] All models are estimated on 20 424 working-age own-account workers, living in urban areas in Brazil, using data from the POF 2017-18 survey and our estimation of the lower bound of their subjective time discount rate. [2] Individual observations are weighted by the inverse of their sampling probability, following the survey design, in order to render the coefficients meaningful for the population this sample represents, and the errors are clustered the the level of their Primary Sampling Unit. [3] All models include also controls for ethnicity, gender, age, education, position of the worker in the family, family composition, and geographic region. [4] The stars next to the coefficients denote statistical significance at 5% (*), 1% (***), and 0.1% (****).

Appendix B. Alternative thresholds for the reservation wage

In the baseline estimation, we adopted the conditional 10th percentile of the wage distribution as a proxy for the concept of reservation wage. As a robustness exercise, in this section we briefly examine how the main result changes under different conditional quantiles.

Within the framework adopted here, a lower reservation wage generally implies a higher discount rate. As a consequence, we can expect the discount rate lower bound calculated with reservation wage at the 5th conditional quantile to stochastically dominate the baseline model, which in turn should dominate the specification at the 15th centile.

Indeed, we find that the alternative definitions affect the results in the expected direction (see figure 5). Under the 5th percentile proxy, the estimation suggests 70% of own-account workers would have a subjective lower bound discount rate above the market rate, or 5 percentage points more than the baseline result. Under the 15th percentile proxy, the share would be 63%. We thus conclude that, under a reasonable range of reservation wages, there are between 6 and 7 constrained cases for every 10 own-account workers in Brazil.

Share of own-account .9 workers 8. Reserv. wage at .15 .7 Reserv. wage at .10 (base) Reserv. wage at .05 .6 .5 .4 63.0% constr. OAWs 65.3% constr. OAWs (base) 69.5% constr. OAWs .3 .2 average .1 market rate 0 -8 8 12 20 24 -12 16 Discount rate lower bound (in percent per month)

Figure 5: Empirical CDF of the estimated discount rate lower bound under alternative proxies for the concept of reservation wage

Appendix C. Alternative specifications: domestic workers as employees

This paper argues that the economic activities performed by domestic workers fall within the proposed definition of own-account workers, as discussed in section IV. For completeness, this section describes this group in more detail and presents how the main results change if we were to classify them as employees instead, as the Brazilian national statistics office does.

This classification matters because this is a large and relatively homogeneous group: in any given quarter, there are 5.2 million people occupied as domestic workers among the urban, workingage Brazilians. Among them, there are 95% are women; 66% are nonwhites; 48% have less than primary education; and 61% are between 35 and 54 years old, as shown in table 7.

Without domestic workers, the proportion of nonwhite females among own-account workers falls from 29.6% to 19.9%, and men become a clear majority (from 49.4% to 62.4%). This comparison shows that the discussion about gender, ethnicity, and self-employment in Brazil depends on how one understands the group of domestic workers.

If we replicate the estimation of potential wages for own-account workers from section A, now using the statistics office's classification, we find that 75% of them could plausibly expect a higher net work income working for a firm (figure 6). This share is smaller than the 82% found at baseline (figure 2) because the inclusion of domestic workers decreases the average gains from wage employment.

Looking at monthly wages only, this smaller gap would imply a lower share of constrained own-account workers. Yet, accounting for expected unemployment duration reverses this conclusion. Under the baseline classification, if an unemployed individual becomes a domestic worker, the unemployment spell is censored — we cannot see how long it would take her to find wage employment because something else happened before. In contrast, under the alternative classification, the same observation is now considered a transition to wage employment. Because of this distinction, the estimated average time to an offer falls to 5.9 months, about seven weeks less than the baseline. After integrating the individual-specific expected wage, expected unemployment time, and expected employment duration time, the distribution of the implicit discount rate under the alternative specification stochastically dominates the baseline curve (see figure 7).

In other words, if one views domestic work as wage employment, the resulting expectation about the monetary return of a wage job decreases, but it also becomes easier to find a job, on average. This result does not affect everybody the same way (because the conditional expectations are still individual-specific, black females are the most affected by this change in the definition), but the aggregate result suggests that the gains in transition time more than offset the losses in wage for those who are affected. Because the average discounted value of a wage job increases, the implicit discount rate of those who have preferred to work on their own also increases, and the estimated share of constrained own-account workers rises from 65% to 72%.

Table 7: Descriptive statistics for domestic workers, other own-account workers and employees

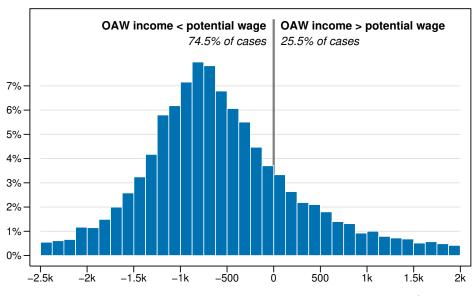
	Domestic Workers	Own-Account Workers	Employees
Total subpopulation size	5.2 million	17.5 million	49.9 million
Ethnicity and gender			
Nonwhite female	62.6%	19.9%	21.4%
White female	32.0%	17.7%	22.4%
Nonwhite male	3.5%	35.6%	30.9%
White male	1.9%	26.8%	25.3%
Education level			
Less than prim. school	48.2%	30.8%	15.4%
Primary school	21.8%	16.9%	13.5%
High school	28.7%	37.2%	45.6%
College or above	1.2%	15.1%	25.5%
Age group			
Age 14-24	7.4%	8.0%	17.8%
Age 25-34	15.5%	21.3%	28.2%
Age 35-44	30.5%	27.3%	27.0%
Age 45-54	30.2%	25.4%	18.4%
Age 55-64	16.4%	18.0%	8.6%
Formal work status	29.9%	22.4%	63.7%
Usual workplace			
Dedicated store, office	0.0%	34.1%	83.4%
Place chosen by client, employer	0.0%	27.5%	6.9%
Client's, employer's home	100.0%	3.6%	0.3%
Worker's home (dedicated area)	0.0%	6.4%	0.1%
Worker's home (shared area)	0.0%	9.3%	0.2%
Worker's vehicle	0.0%	7.5%	3.7%
Public space	0.0%	7.3%	0.9%
Other places	0.0%	4.3%	4.5%

Table 7: Descriptive statistics for domestic workers, other own-account workers and employees [continued]

	Domestic Workers	Own-Account Workers	Employees
Most frequent occupations			
1st	Domestic Cleaners, Helpers: 76.6%	Bricklayers: 10.5%	Office Clerks: 6.4%
2nd	Child Care Workers: 9.6%	Shopkeepers: 9.1%	Shop Sales Assistants: 6.1%
3rd	Home-based Personal Care Workers: 9.4%	Door-to-door Salespersons: 6.0%	Cleaners, Helpers in Offices, Stores: 4.39
4th	Cooks: 1.8%	Hairdressers: 4.6%	Primary School Teachers: 2.4%
5th	Tree and Shrub Crop Growers: 1.5%	Beauticians: 4.2%	Security Guards: 2.4%
6th	Car, Taxi and Van Drivers: 0.7%	Car, Taxi and Van Drivers: 4.1%	Heavy Truck Drivers: 2.3%
7th	Domestic Housekeepers: 0.2%	Building Construction Labourers: 2.6%	Cashiers and Ticket Clerks: 1.9%
8th	Security Guards: 0.1%	Painters: 2.4%	Nursing Associate Professionals: 1.8%
9th	Kitchen Helpers: 0.0%	Street Vendors (excluding Food): 2.3%	Building Construction Labourers: 1.7%
10th	Animal Care Workers: 0.0%	Lawyers: 2.1%	Cooks: 1.6%

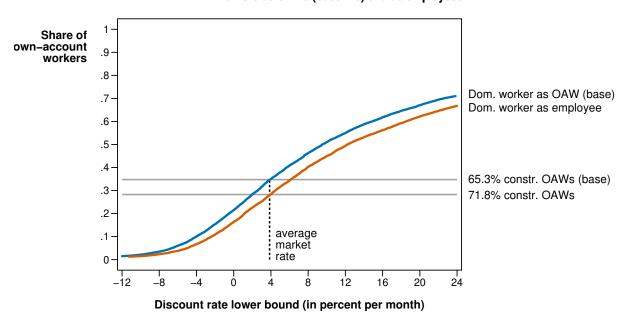
Notes: [1] These summary statistics were calculated using the National Household Survey (PNAD) and refer to all working-age individuals (14-64 years old), living in Brazil's urban areas, who reported being occupied as either own-account workers or wage employees. [2] The results represent the average over the 8 quarters of 2017-18, with the exception of the workplace information, which is only available for the 4 quarters of 2018. [3] Employment status, formality status, workplace, and occupation all refer to an individual's main employment. [4] The reported occupations are the most granular category (level 4) in the International Standard Classification of Occupations (ISCO). [5] A worker is assigned a formal work status by having a register either as worker ("carteira assinada") or as a small business ("CNPJ").

Figure 6: Distribution of the estimated gap between the labor income received by ownaccount workers and the wage they could expected to receive as employees (with domestic workers included among employees)



Current own-account work income minus potential wage (in R\$)

Figure 7: Empirical CDF of the estimated discount rate lower bound taking domestic workers as OAWs (baseline) and as employees



45

Appendix D. Alternative specifications: reweighted PNAD

The baseline estimation adopts the original survey weights from both POF and PNAD, given that the surveys are meant to represent the same population, as discussed in section IV. The descriptive statistics presented in table 1 reinforce that the population of interest indeed has very similar attributes, be it using POF's or PNAD's data. However, at a 5% confidence level, we cannot rule out that the population of interest is slightly less educated and a bit older in the POF, relative to the PNAD. A meaningful difference in the populations could compromise the strategy of using the hazard coefficients estimated with PNAD to fit conditional employment and unemployment durations on POF data.

In all cases, the differences are very small in magnitude. For instance, the share of people in the age interval 35-44 is 21.0% in POF and 21.7% in PNAD, but given the large size of both samples, this gap falls outside the confidence interval. It is not clear whether this is a false positive or a true small difference, and for robustness we run the estimation also using a reweighted version of PNAD.

The covariate balancing protocol aims to adjust the original survey weights to ensure that the first and the second moments of the basic socioeconomic variables in PNAD (ethnicity, gender, age, and education) coincide exactly with the ones we calculate for POF, for each quarter and in each region. Since the data sources are very similar to begin with, the algorithm converges quickly, leads to small adjustments, and the estimation results are nearly indistinguishable (see figure 8). This compatibility can be seen as evidence that supports the baseline (non-reweighted) findings.

Share of own-account .9 workers .8 PNAD original weight (base) .7 PNAD reweighted .6 .5 4 65.3% constr. OAWs (base) 66.2% constr. OAWs .3 .2 average .1 market rate 0 12 -8 16 20 24 -İ2 Discount rate lower bound (in percent per month)

Figure 8: Empirical CDF of the estimated discount rate lower bound adopting original survey weights (baseline) and reweighted PNAD survey

46

¹⁵ In practice, we adopt an entropy balancing technique that finds the set of unit weights that satisfies the imposed moment constraints, as proposed by Hainmueller (2012) and implemented in Stata (StataCorp 2015) by the program -ebalance-.

Appendix E. Maximum likelihood estimation of the duration models

To the best of our knowledge, no statistical software to date offers a built-in semi-parametric estimation of transition hazards that, at the same time, accommodates the possibility of stock sampling, interval observation, and a potential mixture of unobserved components, despite an established framework about how it could be done (see Cameron and Trivedi 2005). To bridge this gap, we write a statistical model that is flexible enough to use the information available in all the different cases recorded in our data, and estimate it with a maximum likelihood approach. Even though the statistical model could allow for an arbitrary parametric baseline hazard, we constrain the estimation to the exponential case to impose a constant hazard over the spell, mirroring the stationarity conditions assumed in the theoretical framework.

As discussed in section IV, PNAD follows households during 5 quarters. When an individual enters the sample, she might be already employed (resp. unemployed) for a given known duration, which amounts to stock sampling. It is well understood that failing to account for it would bias the estimation, as people who tend to stay longer in a state would be more likely to be sampled. Furthermore, when there is a state transition, we can only see that it took place somewhere between the last interview and the current interview: hence, transitions are known to happen within an interval. While this is the case for most labor market surveys, empirical applications tend to overlook the issue and assume a transition at the midpoint, which may be a tolerable approximation when using monthly or weekly data. Since we have quarterly intervals, this imprecision would be more consequential.

The final component is related to unobservables. In linear regression models, omitted covariates that are independent of the observed ones are absorbed into the constant term and do not bias the estimation. This is generally not the case with the estimation of conditional hazard functions, and even independent unobservables could affect the estimation. To minimize this bias, we allow the population to be composed of a mixture of high and low types, as suggested by Heckman and Singer (1984). The likelihood model then becomes a weighted average with two types, allowing them to have different intercepts while sharing the remaining coefficients.

In practice, we can interpret it as some share of the population transitioning faster than the rest due to unobserved factors. Technically, both the share of the types and the gap between the different intercepts enter as additional parameters in the function to be minimized, subject to convenient regularity conditions: both shares are constrained to be in the interval [0, 1], must sum up to one, and the intercept gap is constrained to be positive to ensure a single solution, without loss of generality. In this sense, the estimation is more flexible: an exponential distribution is assumed for the hazard, but the mixture of the unobserved term itself is just an average from two arbitrary mass points.

The introduction of a mixture reduces the bias in the coefficients of the model, but we cannot identify the type of a given individual. Therefore, to predict a conditional duration, we adopt a weighted average that combines the linear index of the individual attributes and the model coefficients for high and low types, using the weights fitted by the model.