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ABSTRACT

IZA DP No. 15839 DECEMBER 2022

The Morbidity Costs of Air Pollution 
through the Lens of Health Spending  
in China
This study is one of the first investigating the causal evidence of the morbidity costs of 

fine particulates (PM2.5) for all age cohorts in a developing country, using individual-level 

health spending data from a basic medical insurance program in Wuhan, China. Our 

instrumental variable (IV) approach uses thermal inversion to address potential endogeneity 

in PM2.5 concentrations and shows that PM2.5 imposes a significant impact on healthcare 

expenditures. The 2SLS estimates suggest that a 10 μg/m3 reduction in monthly average 

PM2.5 leads to a 2.36% decrease in the value of health spending and a 0.79% decline in 

the number of transactions in pharmacies and healthcare facilities. Also, this effect, largely 

driven by the increased spending in pharmacies, is more salient for males and children, as 

well as middle-aged and older adults. Moreover, our estimates may provide a lower bound 

to individuals’ willingness to pay, amounting to CNY 43.87 (or USD 7.09) per capita per 

year for a 10 μg/m3 reduction in PM2.5.
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1. Introduction 

There exists a large body of literature examining the effects of air pollution on 

health-related outcomes, including on mortality (Anderson 2020; Chay and Greenstone 

2003; Greenstone and Hanna 2014; He, Fan, and Zhou 2016), life expectancy (Chen et 

al. 2013; Ebenstein et al. 2017), hospitalization (Moretti and Neidell 2011; Schlenker 

and Walker 2016), and birth outcomes (Currie and Neidell 2005; Currie, Neidell, and 

Schmieder 2009), as well as defensive expenditures on facemasks and air purifiers (Ito 

and Zhang 2020; Zhang and Mu 2018). However, evidence on the causal effect of air 

pollution on health spending is relatively limited. The morbidity costs of air pollution 

could provide a lower bound estimate of individuals’ willingness to pay (WTP) for 

better air quality, which would be a requisite for the government to know when 

conducting cost–benefit analyses and introducing more optimal environmental 

regulations. A wide range of social costs of pollution other than solely morbidity costs, 

such as avoidance costs (e.g., masks, air filters) and mortality costs, have been 

documented in the existing literature and are therefore not accounted for in this study. 

While there has been a large number of epidemiological studies on the association 

between air pollution and health spending, it is still important to carefully design causal 

evaluations for examining the effect of air pollution on medical expenditures in order 

to address sources of bias due to the endogeneity problem. The first source is the 

unobserved factors. In this regard, time-varying local shocks may be correlated with 

both health spending and exposure to air pollution, and these cannot be fully removed 

by individual fixed effects and time-fixed effects. The second source relates to 

avoidance behaviors that are not fully observable given the limited information in the 

data. In recent years, air pollution has attracted greater public attention in China. On 

days when pollution levels are high, residents may reduce their outdoor activities 

(Neidell 2009), postpone visits to healthcare facilities, or take preventive measures by 

wearing particulate-filtering facemasks or using air-filtering products (Ito and Zhang 

2020; Sun, Kahn, and Zheng 2017; Zhang and Mu 2018). The third source is 
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measurement errors with regard to measuring air pollutants, which could also lead to 

attenuation bias. Measurement errors may be attributable to the aggregation of pollution 

data from sporadic monitoring stations or pollution data manipulations (Chen et al. 

2012; Ghanem and Zhang 2014). 

Only a few studies have attempted to identify the causal effects by employing 

plausibly exogenous variations. Deschênes, Greenstone, and Shapiro (2017) examine 

the effect of a decline in nitrogen oxides (NOX) emissions on pharmaceutical 

expenditures at the county-season-year level, employing a cap-and-trade NOX Budget 

Program (NBP) as a quasi-experiment. Instrumenting air pollution using changes in 

local wind directions, Deryugina et al. (2019) estimate the causal effects of daily fine 

particulates (PM2.5) on county-level inpatient emergency room (ER) spending for 

those aged 65 years old or older. Williams and Phaneuf (2019) identify the impact of 

PM2.5 on quarterly household health spending via instrumenting local air pollution 

using emissions from distant sources. Utilizing a similar instrumental variable (IV) 

strategy, Barwick et al. (2021) first analyze the medical burden from PM2.5 in a 

developing country, based on city-level credit and debit card transactions in China. 

Their IV estimates suggest that a 10 μg/m3 increase in PM2.5 over the past 90 days 

would lead to a 2.65% increase in the number of healthcare transactions and a 1.5% 

increase in out-of-pocket expenses. Liu and Ao (2021) estimate the impact of the daily 

air quality index (AQI) on outpatient healthcare expenditures for respiratory diseases at 

the township level using thermal inversion as an IV. Employing a similar IV, Xia et al. 

(2022) identify the short-term impact of PM2.5 concentrations on medical costs at a 

subpopulation level in Beijing. 

In this paper, we examine the causal impact of PM2.5 exposure on medical 

expenses at both pharmacies and all levels of healthcare facilities. Matching individual-

level health spending data with air pollution exposure between 2013 and 2015, we also 

estimate people’s WTP for cleaner air. We instrument PM2.5 concentrations using 

thermal inversion, a widely-used IV in recent studies (Arceo, Hanna, and Oliva 2016; 

Chen, Guo, and Huang 2018; Chen, Oliva, and Zhang 2022; Xia et al. 2022) to address 

potential endogeneity in air pollution. Thermal inversion is a meteorological 
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phenomenon that occurs when the air temperature is abnormally higher than that at 

lower altitudes. It reduces vertical circulation of the air and thus traps air pollutants near 

the ground. While thermal inversion does not pose a direct threat to health, it does lead 

to higher concentrations of air pollutants (Arceo et al. 2016). Our results suggest that a 

10 μg/m3 reduction in monthly average PM2.5 would lead to a 2.36% decrease in the 

value of health spending, and a 0.79% decrease in the number of transactions in 

pharmacies and healthcare facilities. This effect is more salient for males and children 

(up to age 10), as well as middle-aged and older adults (age 51 and older). Valuing air 

quality using total health spending data, our estimates suggest that people would be 

willing to pay 43.87 Chinese yuan (CNY) per capita per year for a 10 μg/m3 reduction 

in PM2.5. 

This study aims to contribute to the literature in several dimensions. First, the 

insurance claims data adopted by most of the existing studies do not cover drug 

expenses at pharmacies. As we possess detailed information on each category of 

transactions from pharmacies, clinics, and hospitals, we are able to examine the impact 

on the overall and respective medical expenditures at pharmacies and all levels of 

healthcare facilities.1 We identify a much stronger effect on the expenses at pharmacies 

compared to in healthcare facilities, highlighting the importance of incorporating this 

former segment of medical expenses in future analysis, and indicating some plausible 

behavior channels through which air pollution may impact overall health spending. To 

the best of our knowledge, Barwick et al. (2021) is the only paper that investigates the 

impact on expenditures at both pharmacies and hospitals using bank cards. However, 

they use total expenditures that combine inpatient and outpatient care, while inpatient 

care is often scheduled in advance and thus may largely be immune to transitory air 

pollution. In addition, vulnerable population groups, such as older adults and low-

income residents who are less likely to use debit or credit cards, tend not to be in their 

sample obtained from bank transaction records. 

Second, existing studies either focus on working-age and older populations or 

 
1 Medical expenses at pharmacies and healthcare facilities respectively account for 29.3% and 70.7% of 

the total spending in our data. 
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make no distinction by patient age. However, evidence on the healthcare costs of air 

pollution for young children is limited. As our sample covers all age cohorts of urban 

residents with information on patient age, our examinations of possible heterogeneities 

in the sensitivity to air pollution across age groups, as well as for respective age groups, 

attempt to fill this gap in the literature. 

Third, we use individual-level data to identify medical spending in response to air 

pollution. Previous studies tend to rely on aggregated health spending data that is 

subject to ecological fallacy. As such, the findings may be biased, depending on the 

level of aggregation, due to the omitted variables that often threaten identification in 

research linking air pollution to behavioral outcomes. Employing comprehensive 

individual-level data also enables us to test the heterogeneous effects across groups to 

understand which segments of the population are more affected by air pollution. To the 

best of our knowledge, only two economics studies have examined the effects of air 

pollution on medical expenditures at the disaggregated level (Liao, Du, and Chen 2021; 

Williams and Phaneuf 2019). However, they both obtained healthcare spending and 

utilization data from social surveys, which can suffer from recall error or other potential 

biases. 

Fourth, some time–invariant unobserved factors—such as individuals’ health stock 

and preference to live in a clean environment—are correlated with both health spending 

and exposure to air pollution, thereby biasing the estimations. By exploiting the 

longitudinal nature of our health spending data at the individual level, we are among 

the first to control for individual fixed effects in our estimation of the morbidity costs 

of air pollution, thereby mitigating concerns over individual heterogeneity in 

preferences or some other unobservables (Deschênes et al. 2017). 

Moreover, our paper contributes to the strand of literature that estimates 

individuals’ WTP for improved air quality. 2  Following the health production 

 
2 There are three main methods for valuing air quality. Each approach has its particular advantages and 

disadvantages. The hedonic approach infers the value of air quality from property values across regions 

with differing levels of air pollution exposure (Bayer, Keohane, and Timmins 2009; Chay and Greenstone 

2005; Ito and Zhang 2020; Smith and Huang 1995). This approach generally suffers from omitted 

variable problems, which make the value of air quality endogenous. On the other hand, the contingent 

valuation method (CVM) directly asks about people’s WTP for better air quality (Sun, Yuan, and Yao 
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framework established in the seminal work by Grossman (1972), Deschênes et al. (2017) 

and Williams and Phaneuf (2019) propose a theoretical model of WTP and show that 

the benefits that could be accrued by reduced health spending is merely one component 

of people’s WTP for improved air quality. Therefore, our estimated WTP using medical 

expenditures may offer a lower bound of the WTP for cleaner air.3 

Finally, we are among the first to estimate the morbidity costs of air pollution in a 

developing country using health spending records for all ages in the study cohort. Air 

pollution is generally worse in developing countries, such as Nepal, Bangladesh, India, 

China, and Pakistan.4 In fact, 98.6% of the population in China have been exposed to 

PM2.5 at unsafe levels according to the World Health Organization (WHO) guideline 

(Long et al. 2018). We obtain the health spending data from Wuhan, the capital city of 

Hubei province, China. As a major manufacturing city in central China, Wuhan tends 

to be exposed to high levels of air pollution with large daily variations. Therefore, the 

dose–response relationship between air pollution and medical expenses estimated in 

this study, using a wide spectrum of pollution exposures, may have implications for 

other developing countries with similar situations. 

The remainder of this paper is organized as follows. Section 2 describes the data 

sources. Section 3 discusses the empirical model and the identification strategy using 

thermal inversion as an instrument. Section 4 reports the main findings, including the 

baseline results, robustness checks, and heterogeneous effects. Section 5 compares our 

calculated WTP to others in the related literature. Section 6 concludes and proposes 

some future research directions. 

 
2016; Wang et al. 2015). However, this method is subject to the initial hypothetical monetary value 

adopted in the survey options and the manner in which the questions are framed. The happiness approach 

calculates the marginal rate of substitution between a reduction in air pollution and household per capita 

income by holding happiness constant to assess the monetary value of air pollution (Levinson 2012; 

Welsch 2006; Zhang et al. 2017b). This approach treats self-reported happiness as a proxy of utility and 

assumes that utility is comparable among respondents. 
3 Refer to Appendix B for the theoretical model. The model illustrates that people’s WTP for clean air 

can be estimated by adding up different components of the impact of air pollution on the population’s 

health and behavior. The marginal effect of air pollution on health spending is just one of the components, 

other components include mortality impact, reduction in quality of life, and the sub-optimal level of 

consumption distortion by the exposure to pollution. 
4  According to the 2018 Environmental Performance Index published by Yale University, the five 

countries with the most polluted air in the world are Nepal, Bangladesh, India, China, and Pakistan. 
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2. Data 

2.1. Health spending 

Health spending data are obtained from the universal basic medical insurance 

system, developed by the Chinese central government and covering 95% of China’s 

population as of 2011 (Yu 2015). The system includes two government programs in 

urban areas—namely, Urban Employee Basic Insurance (UEBMI) and Urban Resident 

Basic Medical Insurance (URBMI).5 We use a representative sample from the basic 

medical insurance program in urban areas of Wuhan, the capital city of Hubei province, 

China. Our dataset includes all the health expenditure records for 1% randomly sampled 

beneficiaries (approximately 40,000 individuals) from 130 hospitals, 643 clinics, and 

2,642 pharmacies between 2013 and 2015.6 For each record, we observe the patient 

unique ID, gender, age, location, date, and total value of expenses. Total health spending 

includes expenditures at pharmacies as well as outpatient and inpatient expenses at all 

levels of healthcare facilities (i.e., clinics and hospitals). Most inpatient health 

transactions are likely related to surgeries, with appointments usually made in advance, 

and thus these are insensitive to transitory air pollution. Therefore, we utilize only the 

expenses at pharmacies and outpatient health spending at healthcare facilities in our 

analysis. Medical expenses are further classified into three main categories: medication, 

examination, and treatment.7 Figure A1 plots the monthly values of health spending 

and the number of transactions from 2013 to 2015. Medical spending and the number 

of transactions tend to decline during holidays, especially during the Spring Festivals. 

For our purposes, there are four advantages in employing data from the basic 

 
5 The UEBMI was launched in 1998 as an employment-based insurance program in urban areas, and its 

coverage reached 92% in 2010. The URBMI was launched in 2007 to target the unemployed, children, 

students, and the disabled in urban areas. It covered 93% of the target population as of 2010 (Yu 2015). 
6 As medical expenses covered by the Chinese public health insurance programs are directly billed on 

medical payment cards, all the payments for people enrolled in public insurance programs—UEBMI and 

URBMI—are included in the official database by design. Any money saved in the insurance account can 

be conveyed to the next year. Using others’ insurance accounts to purchase any health services was not 

allowed during the sample period. 
7 The medication expenses include Western medicine fees, Chinese patent medicine fees, and Chinese 

herb medicine fees. The examination expenses include laboratory examination fees and imaging 

examination (B ultrasound, CT and MRI) fees. The treatment expenses include non-surgical treatment 

fees, surgical treatment fees, and anesthesia fees. 
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medical insurance program in Wuhan. First, the program provides wide coverage in 

Wuhan, and the beneficiaries in our sample cover all age groups of urban residents, 

enabling us to examine heterogeneous effects across age cohorts and to understand 

which subpopulations are most affected by air pollution. Second, the health spending 

records in our sample include all pharmacy and health facility transactions, enabling us 

to estimate the morbidity costs of air pollution in a more comprehensive way than can 

studies that consider only medical expenses incurred in hospitals. Third, information on 

the geographic locations of pharmacies and healthcare facilities, as well as dates of 

service, enable us to precisely match individual-level healthcare expenditures with 

external air quality data. Fourth, the daily mean concentration of PM2.5 in Wuhan in 

2013–2015 was 80 μg/m3, a much higher figure than that in most developed countries. 

This useful setting provides us with an opportunity to not only examine the non-linear 

effect of PM2.5 on health spending, but also to estimate a wide range of dose–response 

relationships. 

2.2. Pollution and weather 

Air pollution measures are provided by the daily air quality report of the Ministry 

of Ecology and Environment (MEE) of China, which started to publish the 

concentrations of six air pollutants and an air quality index (AQI) in 2013.8 The report 

covers 10 monitoring stations in Wuhan City, with the longitudes and latitudes of each 

station provided. Given that PM2.5 is more toxic and can penetrate deeper into lungs 

than PM10, we mainly focus on PM2.5 (Pope and Dockery 2006).9 Figure A2 shows 

the daily mean PM2.5 concentration in Wuhan during the period from 2013 to 2015. 

From Figure A2, on most days, the concentrations of PM2.5 are higher than the daily 

air quality guideline values of the WHO (25 μg/m3). 

The weather data originates from the China National Meteorological Data Service 

 
8 The six air pollutant measures are particulate matter with a diameter smaller than 2.5 µm (PM2.5, fine 

particulates); particulate matter with a diameter smaller than 10 µm (PM10, coarse particulates); carbon 

monoxide (CO); nitrogen dioxide (NO2); ozone (O3); and sulfur dioxide (SO2). 
9 Zhang et al. (2017b) suggest that people have a much greater WTP for a reduction in PM2.5 than they 

do for PM10. 
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Center (CMDC), part of the National Meteorological Information Center of China. The 

dataset reports consecutive daily records of a wide range of weather conditions, 

including temperature, precipitation, wind speed, sunshine duration, and relative 

humidity. We calculate the mean values for each weather variable from two monitoring 

stations in Wuhan. 

2.3. Thermal inversion 

The data on thermal inversion is drawn from the product M2I6NPANA, version 

5.12.4, released by the U.S. National Aeronautics and Space Administration (NASA). 

The data reports air temperatures every six hours for each 0.5° × 0.625° (around 50 

km ×  60 km) grid, for 42 layers, ranging from 110 meters to 36,000 meters. We 

interpolate the data at a finer grid level and extract the mean values for each county in 

Wuhan. For every six-hour period, we further derive the temperature difference 

between the second layer (320 meters) and the first layer (110 meters). Under normal 

conditions, the difference would be negative, since temperature generally decreases as 

the latitude increases. However, thermal inversion occurs when the temperature 

difference is positive. If the difference is positive, the magnitude measures the thermal 

inversion strength. If the difference is negative, we truncate it to zero. We average the 

thermal inversion strength across the four six-hour periods and calculate the total 

number of thermal inversion occurrences for each day. Then we calculate the mean 

value for the thermal inversion strength and the total number of occurrences within each 

month based on the daily data. 

In order to match air pollution and thermal inversion with health spending data, 

we infer the residential address for each person from the location of the pharmacy that 

the person most often visited.10 We match air pollution concentrations from the nearest 

 
10 For each individual, we calculate the number of visits to each pharmacy during the sample period and 

sort the number of visits in descending order. We pick the location of the pharmacy that a person visited 

most as their home address. If the person did not visit any pharmacy during the sample period, we choose 

the health facility that the person most often visited. The average number of pharmacies a person visited 

is 5.27. 
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monitoring station and thermal inversion measures at the county level.11 Figure 1 plots 

the distribution of the monitoring stations and healthcare facilities in Wuhan. For the 

weather data, we match their monthly mean values from the two monitoring stations to 

each individual. 

Our dataset contains around 1.38 million transactions in pharmacies and all levels 

of healthcare facilities by 40,000 individuals. We calculate the total value of health 

spending as well as the number of transactions in pharmacies and healthcare facilities 

by each person in each month. If no health expenditure records exist for one specific 

month, we assign a value of zero. In this way, we are able to construct a data panel at 

the individual-month level. The final dataset for analysis includes over 1.44 million 

person-month observations.12 

Table 1 displays the key variables and their summary statistics. The beneficiaries, 

on average, spend 154.86 yuan and make 0.939 transactions per month in pharmacies 

and healthcare facilities. The monthly average PM2.5 concentration is 81.914 μg/m3 

and the monthly average thermal inversion strength is 0.245 °C. 

3. Empirical strategy 

Our baseline econometric specification is: 

arcsinh ijt ijt ijt t i jt t ijtHealth P X r Wα φ λ δ η ε′ ′= + + + + + +  (1) 

The dependent variable Healthijt is the value of health spending, or the number of 

transactions in pharmacies and healthcare facilities for individual i living in county j 

during month t. Since our data contain many zero-valued observations, we apply the 

inverse hyperbolic sine (arcsinh) transformation to the dependent variable. 13  The 

advantage of the arcsinh transformation is that it approximates the natural logarithm 

 
11 The average matching distance between the residential address and the nearest monitoring station is 

3.85 km. 
12 We also conduct empirical analysis using data at the individual-daily level without assigning zeros, 

controlling for demographic variables, daily weather covariates, individual, pharmacy, county-by-year, 

month and day-of-week fixed effects. The results are displayed in Table A1. The pattern of the estimates 

is similar to those based on the individual-monthly level data. As we estimate the results only using the 

subsample for those whose healthcare expenses are positive, indicating that they may either tend to be 

less healthy or could afford more healthcare expenses, the estimated WTP becomes much larger. 
13 58.7% of the value of health spending/number of transactions are zeros. 
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transformation and allows retaining zero-valued observations (Bellemare and Wichman 

2020).14 The key variable Pijt represents the monthly mean concentration of PM2.5. We 

include a set of demographic controls Xijt, including age and its squared term. We also 

control for a vector of rich weather conditions Wt, involving number of days falling in 

each temperature bin (<12 °C, 12-16 °C, 16-20 °C, 20-24 °C, 24-28 °C, >28 °C), 

precipitation, wind speed, sunshine duration, and relative humidity in square 

polynomial forms to mitigate the concern that they are correlated with both health 

spending and air quality. λi represents individual fixed effects. Finally, we control for 

county specific time trend by including county-by-year fixed effects (δjt) and 

seasonality by including month fixed effects (ηt). εijt is the error term. Standard errors 

are clustered at the county level. Since there are 13 counties, we estimate wild 

bootstrapped standard errors to address the possibility of small sample bias (Cameron, 

Gelbach, and Miller 2008; Roodman et al. 2019). 

OLS estimates of equation (1) are prone to bias resulting from potential sources of 

endogeneity, such as time-varying unobserved factors, avoidance behaviors, and 

measurement error in air pollution due to the aggregation of pollution data from 

sporadic monitoring stations at the city level. We address endogeneity by employing an 

IV strategy, using thermal inversion as an instrument for air pollution. Thermal 

inversion is a common phenomenon that occurs when a layer of hot air covers a layer 

of cooler air near the ground. It prevents air flow by trapping air pollutants in the lower 

atmosphere and has no adverse effects on human health (Arceo et al. 2016). We take 

advantage of this exogenous shock in order to identify the effects of air pollution on 

health spending. 

The specification for our first stage is: 

ijt jt ijt t i jt t ijtP TI X r W uβ φ λ δ η′ ′= + + + + + +  (2) 

Following Chen et al. (2022), we use the monthly average thermal inversion 

strength (TIjt) as the excluded instrument. Thermal inversion strength is defined as the 

air temperature at the second layer (320 meters) minus the temperature near the ground 

 
14 The arcsinh transformation is arcsinh(y) = ln (y + �𝑦𝑦2 + 1). 
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(110 meters). We keep the positive differences and truncate the negative differences to 

zero. Standard errors are clustered at the county level. Other control variables are as 

defined in equation (1). After flexibly controlling for a large number of fixed effects 

and covariates, our identification assumption is that changes in a city’s thermal 

inversion are unrelated to changes in health spending, except through air pollution. 

Figure 2 illustrates the relationship between PM2.5 and thermal inversion strength 

at the monthly level during the sample period. As shown by the figures, thermal 

inversion strength is highly correlated with PM2.5 concentrations, indicating that 

thermal inversion is a strong predictor of air pollution levels. 

Before undertaking quantitative analyses, we plot the relationship between PM2.5 

and health spending outcomes. As shown in Figure 3, the value of health spending, as 

well as the number of transactions in pharmacies and healthcare facilities, is slightly 

positively correlated with PM2.5 levels. Of course, these bivariate plots provide 

suggestive evidence only. More rigorous analyses are needed to control for other 

confounding factors. 

4. Results 

4.1. Baseline results 

Table 2 presents the first-stage estimates of the effect of thermal inversions on 

PM2.5 concentrations. The regression controls for individual fixed effects, 

demographic controls, and weather controls, as well as county-by-year and month fixed 

effects. As the magnitude of the coefficient is difficult to interpret, we convert the point 

estimate to elasticity. The point estimate indicates that a 1 percent increase in thermal 

inversion is associated with a 0.20 percent (67.729×0.245/81.914) increase in PM2.5 

concentrations. Overall, we find a strong first-stage relationship. The Kleibergen–Paap 

(KP) F-statistics is well above the Stock–Yogo critical value. 

Table 3 shows our baseline results for the effects of air pollution on the value of 

health spending in panel A and on the number of transactions in panel B. Columns (1) 

and (3) report the OLS estimates of equation (1), while columns (2) and (4) report the 
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IV estimates. The OLS estimate in column (1) suggests a significant positive correlation 

between the PM2.5 concentration and the value of health spending after controlling for 

individual fixed effects, demographic controls, weather controls, and county-by-year 

and month fixed effects. The point estimate indicates that a 1 μg/m3 reduction in 

monthly average PM2.5 leads to a decrease in medical expenditures by 0.664‰.15 As 

the marginal effect of exposure to air pollution on health spending provides a lower 

bound of people’s WTP for better air quality, the coefficient on PM2.5 indicates that 

people are, on average, willing to allocate 0.664% of their medical expenditure for a 10 

μg/m3 monthly reduction in PM2.5. To put this into context, note that the mean monthly 

health spending is CNY 154.86. The WTP amounts to CNY 12.34 per year (= 0.664% 

× 154.86 × 12) for a 10 μg/m3 reduction in PM2.5. These two numbers are reported in 

the last two rows of Table 3. 

Column (2) presents the corresponding IV estimate of the causal effect of PM2.5 

on the value of health spending. The IV estimate is approximately 3–4 times larger than 

the corresponding OLS estimate, suggesting that the OLS estimation suffers from 

significant bias. Furthermore, the IV estimate implies that people are, on average, 

willing to pay CNY 43.87 per year (= 2.361% × 154.86 × 12) for a 10 μg/m3 reduction 

in PM2.5. 

A large difference between the OLS and IV results on the effects of air pollution 

on health spending is common in the literature (Barwick et al. 2021; Deryugina et al. 

2019; Williams and Phaneuf 2019).16 Two possible reasons exist for this downward 

bias. First, some time-varying omitted variables, such as economic prosperity and 

avoidance behavior, are positively correlated with air pollution. As these factors are 

likely to reduce health spending, the omitted variable bias tends to be negative. Second, 

measurement errors in PM2.5 could lead to attenuation bias. 

 
15  In the estimable equation of the form arcsinh(y) = α + βx + ε , the semi-elasticity is 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∙ 1
𝜕𝜕

=

𝛽̂𝛽 �𝜕𝜕2+1
𝜕𝜕

. As lim
𝜕𝜕→∞

�𝜕𝜕2+1
𝜕𝜕

= 1, for large values of y, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∙ 1
𝜕𝜕

= 𝛽̂𝛽. Therefore, 𝛽̂𝛽 indicates a semi-elasticity 

in the arcsinh transformation of y of no less than 10, as suggested by Bellemare and Wichman (2020). 

Please refer to Bellemare and Wichman (2020) for details. 
16  For example, the IV estimates are substantially (6–17 times) larger than the OLS estimates in 

(Deryugina et al. 2019). 
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Panel B of Table 3 shows the effect of the exposure to PM2.5 on the number of 

transactions at the monthly level. Similarly, it can be seen that the IV estimates are 

larger than the corresponding OLS estimates, indicating that OLS estimation still 

suffers from downward bias. As presented in column (4), the IV estimate suggests that 

a 10 μg/m3 reduction in monthly average PM2.5 would lead to a 0.791% decrease in 

the number of transactions in pharmacies and healthcare facilities. 

4.2. Robustness checks 

In this section, we conduct a set of regressions to check the robustness of our main 

results. The first issue is that the concentrations of various air pollutants are highly 

correlated, and thus the estimation of the WTP for PM2.5 reduction may involve 

payments for other co-pollutants. 17  In order to address this concern, we add co-

pollutants, including PM2.5–10, CO, O3, SO2, and NO2, in each column of Table 4, 

respectively. As PM10 includes PM2.5, we add PM2.5–10, which represents particulate 

matter with a diameter between 2.5 to 10 μm, as a co-pollutant. We instrument for 

PM2.5 utilizing the thermal inversion strength. 18  As revealed in Table 4, the 

coefficients on PM2.5 remain significant and the magnitudes barely change. The WTP 

values for a 10 μg/m3 reduction in PM2.5 are within a reasonable range, between CNY 

39.51 and CNY 47.61 per year. 

Table 5 presents alternative specifications. Column (1) of Table 5 replicates the 

baseline results in column (2) of Table 3 for ease of comparison. In column (2), we 

perform placebo tests by examining whether “PM2.5 in the same month next year” 

affects health spending. “PM2.5 in the same month next year” is instrumented by 

“thermal inversion in the same month next year”. As expected, this variable is not 

statistically significant. 

We estimate a non-linear relationship between PM2.5 and health spending in 

column (3) of Table 5. We classify PM2.5 concentrations into three categories, i.e., 

 
17 Table A2 presents the correlations between air pollutants. 
18 We tried to instrument for PM2.5 and another co-pollutant using the thermal inversion strength and 

the number of occurrences in columns (2)–(6) of Table 4. However, we could not pass the weak 

identification test. 
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PM2.5 ≤ 70 μg/m3, 70 < PM2.5 ≤ 100 μg/m3, and PM2.5 > 100 μg/m3, and assign each 

category a dummy variable, with PM2.5 ≤ 70 μg/m3 designated as the reference group. 

We estimate this model utilizing two IVs: thermal inversion strength and the number of 

occurrences.19 Exposure to heavy air pollution, relative to the reference group, is found 

to be associated with a significant increase in medical expenditures. 

In the previous analysis, we inferred the home address for each person from the 

location of the pharmacy that the person most often visited, and matched the air 

pollution from the nearest monitoring station. In column (4) of Table 5, we conduct a 

robustness check by calculating the weighted average of pollution of all the 

pharmacies/healthcare facilities a person visited, where the weight equals the number 

of visits. Our estimates are qualitatively unchanged after using the weighted average 

PM2.5. 

In order to address the concern around using linear models for our dependent 

variable with a large share of zeros, we check the robustness of our main results by 

presenting estimates from the Correlated Random Effects Tobit (CRE Tobit) model with 

a lower limit zero. We implement a two-stage control function approach with 

bootstrapped standard errors using thermal inversion as an exclusion restriction to 

account for potential endogeneities.20 We report the average partial effects in column 

(5) of Table 5. The CRE Tobit model produces positive and significant results and their 

magnitude implies an estimated WTP up to CNY61.90, which is similar to our 2SLS 

estimates. Therefore, the CRE Tobit model results suggest that our findings are 

generally robust to accounting for the limited dependent variable nature of our data. 

In addition, in column (6) of Table 5, we replace the arcsinh transformation by a 

logarithmic transformation (i.e., ln(x+1)), considering that the latter has been widely 

adopted in the literature. The IV estimate indicates that logarithmic transformation of 

the dependent variables would lead to a relatively smaller effect than the arcsinh case 

(as shown in column (1) of Table 5). Nevertheless, the similar magnitude of the 

 
19 See columns (2) through (3) of Table 2 for the first-stage estimates. 
20 A similar practice can be found in Williams and Phaneuf (2019), who also study medical expenditure 

data with a large number of zeros. 
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estimated WTP suggests the robustness of using arcsinh transformation. 

Furthermore, we conduct a robustness check by controlling for holiday-month-by-

year fixed effects in order to better account for fluctuations in health spending brought 

about by holidays.21 As revealed in column (7) of Table 5, our baseline result is robust 

to this change. 

Finally, since we match individuals to their most-visited pharmacies and 

interpolate air pollution from the nearest monitoring station, the pollution variation 

comes at the healthcare facility level. We therefore further supplement our empirical 

analysis by aggregating the health expenditure data at the healthcare facility level. The 

results are displayed in Tables A3 through A5. Our main findings still hold and the 

patterns revealed by the heterogeneous analysis are similar. 

4.3. Heterogeneous effects 

In this section, we examine the heterogeneous effect of air pollution on health 

spending and estimate the associated WTP across subpopulations. First, we divide the 

whole sample into seven age cohorts of patients (0–10, 11–20, 21–30, 31–40, 41–50, 

51–60, and 61+ years old) and then test the impact of PM2.5 for the seven age groups, 

separately by gender. Table 6 reports the results. Panel A refers to the estimates for 

males, while panel B is for females. As revealed in Table 6, males are generally more 

vulnerable to air pollution than their female counterparts. This finding is consistent with 

the literature, which shows that men’s hedonic happiness and cognitive performance 

are more affected than women’s (Zhang, Chen, and Zhang 2018; Zhang, Zhang, and 

Chen 2017a). Moreover, the young (aged 10 years and lower) and the old (aged 51 years 

and above) are more sensitive to air pollution than the middle-aged (11–50 years old). 

The more salient effects for young children and older adults are consistent with the 

findings in the literature on air pollution and health (He et al. 2016; Schlenker and 

Walker 2016). Old people (61 years old and above) are on average more willing to pay 

the most for a 10 μg/m3 reduction in PM2.5: CNY 268.17 and CNY 138.47 per year for 

 
21 The holiday month refers to the month that contains holidays. 
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males and females, respectively. 

In Table 7, we divide health spending into three categories: medication (including 

expenses in pharmacies and healthcare facilities), examination (including laboratory 

examination fees and imaging examination fees), and treatment (including non-surgical 

treatment fees, surgical treatment fees, and anesthesia fees). As shown in Table 7, 

healthcare expenditures in both medication and laboratory examination increase 

significantly with increasing PM2.5 concentration. 

One unique feature of our dataset is that the records of health spending include 

expenditures in both pharmacies and all levels of healthcare facilities. In the first two 

columns of Table 7, we estimate the effect of PM2.5 on medication expenses by 

spending location. We find that the expenses at pharmacies are much more affected by 

air pollution. It is possible that people visit pharmacies instead of healthcare facilities 

for treatment for nonessential diseases during polluted days. Therefore, some of the 

impact of pollution on outpatient expenses can be absorbed in the rising drug expenses 

at pharmacies. This finding of stronger responses to air pollution in terms of more 

expenses at pharmacies is particularly important, which suggests that a narrow focus on 

medical expenditures in healthcare facilities may result in biased estimates. 

5. Discussion 

Our preferred specification shows that a 10 μg/m3 reduction in monthly average 

PM2.5 would lead to a 2.36% decrease in the value of health spending and a 0.79% 

decrease in the number of transactions in pharmacies and healthcare facilities. As the 

marginal effect of air pollution exposure on total health spending provides a lower 

bound WTP for improved air quality, our results indicate that people are willing to pay 

at least CNY 43.87 (or USD 7.09) per capita per year for a 10 μg/m3 reduction in 

PM2.5.22 

To better understand the size of our estimates, in Table A6, we compare our 

calculated WTP to others in the related literature. Generally, our WTP result is lower 

 
22 Using the average 2013–15 exchange rate of USD 1 = CNY 6.1880 from the Wind Economic Database. 
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than the values estimated using other methods, since our approach provides only a lower 

bound related to the effect on healthcare spending. For example, Zhang et al. (2017b) 

find that people, on average, are willing to pay CNY 539 (USD 87.74, or 3.8% of annual 

household per capita income) per year per person for a 1 μg/m3 reduction in PM2.5. 

Valuing air quality based on health spending data, Deryugina et al. (2019) find that 

a 10 μg/m3 increase in PM2.5 results in an increase in ER inpatient spending of USD 

59.86 per capita per year among the population aged 65 years old or older. Williams 

and Phaneuf (2019) show that a 10 μg/m3 increase in PM2.5 results in a 33.1% increase 

in spending on asthma and chronic obstructive pulmonary disease (COPD). However, 

all of these studies utilize data from developed countries. Barwick et al. (2021) conduct 

the first study to examine the morbidity costs of air pollution in China using debit and 

credit card transactions aggregated at the city level. Their results suggest that a 10 μg/m3 

reduction in PM2.5 over the past 90 days leads to a 1.5% decrease in the value of 

transactions, which is smaller than our estimates. Two issues may contribute to the 

difference. First, our individual-level longitudinal data allow us to remove individual 

heterogeneity in our estimations, thereby addressing preferences over the living 

environment. Second, older persons and low-income residents are more vulnerable to 

air pollution but less likely to use debit and credit cards, therefore they tend to be 

excluded from the analysis in Barwick et al. (2021), resulting in a potential 

underestimation. 

6. Conclusion 

Previous studies in economics have mainly focused on examining the effects of 

exposure to air pollution on health factors, such as mortality and hospitalization. Far 

less is known about the ways in which air pollution affects medical expenditures, 

especially in developing countries. Our paper is among the first to estimate the 

morbidity costs of PM2.5 levels by using individual-level health spending data from 

both pharmacies and healthcare facilities for all age cohorts in China. We employ an IV 

strategy using thermal inversion as the instrument for the PM2.5 concentration in order 
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to address the potential endogeneity in air pollution measures. 

Our analysis shows that PM2.5 has a significant impact on medical expenditures. 

The estimates suggest that a 10 μg/m3 reduction in monthly average PM2.5 leads to a 

2.36% decline in the value of health spending, in addition to a 0.79% decline in the 

number of transactions in pharmacies and healthcare facilities. This effect is more 

salient for males, children (10 years old or younger) and middle-aged and older adults 

(aged 51 or older). Valuing air quality by utilizing health spending data at the individual-

monthly level, our estimates suggest that people are willing to pay CNY 43.87 

(equivalent to 0.13% of disposal income23) per capita per year for a 10 μg/m3 reduction 

in PM2.5.24 The optimal environmental regulations depend on the tradeoffs between 

their costs and benefits. Our valuations of air quality provide useful insights into the 

benefits of tightening environment regulations. 

Our study also has some limitations that call for further research. First, healthcare 

data are only available for one metropolitan, Wuhan, in China. As reimbursement 

schemes for outpatient care in other cities were not implemented during the sample 

period (2013–2015), which created a disincentive to seek care elsewhere for economic 

concerns, we cannot rule out the possibility that some medical spending may be 

mistakenly recorded as zero but may actually have been incurred in cities outside 

Wuhan. It also remains unknown to what extent we may generalize our findings to 

China or even developing countries in general. Future work examining the impact of 

air pollution on health spending will benefit from evidence from various areas. Second, 

we do not have data on ICD codes and therefore could not distinguish the impact of air 

pollution on various disease categories. Future research is warranted to collect and 

 
23 The average disposal income per capita per year of Wuhan urban residents during 2013–2015 was 

33175.87 yuan (Wuhan Statistical Yearbook 2016). 
24 Considering that our current WTP measure only accounts for willingness to pay to mitigate pollution-

related morbidity costs (excluding other health aspects of social costs, such as mortality costs and 

avoidance costs, like facemasks and air filters), and that our individual-monthly level sample has a large 

share of zero healthcare expenses (i.e., people in a healthy status or who could not afford medical 

treatment), our measured WTP as a share of disposal income should be a lower-bound estimate. When 

we instead measure using individual-daily data with positive healthcare expenses only, i.e., among those 

who were sick and who could afford medical treatment, our estimates suggest that these people are 

willing to pay much more (CNY 699.29; around 2.11% of average disposal income) per capita per year 

for the same 10 μg/m3 reduction in PM2.5. 
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incorporate this information. Third, people who are more vulnerable to air pollution 

may even migrate to avoid more polluted areas in the long term (Chen et al. 2022). 

However, our IV estimates cannot fully address this concern on residential sorting. 

Finally, air pollution exposure is likely measured with errors, due to the aggregation of 

air pollution data from sporadic outdoor monitoring stations at the individual level. 
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Figure 1 Distribution of monitoring stations and healthcare facilities in Wuhan, China 
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Figure 2 Monthly trend of value of health spending, PM2.5 and thermal inversion strength 
in Wuhan, 2013-2015 

 
Note: The figure plots the monthly mean value of health spending (million yuan), PM2.5 

concentration level (μg/m3), and thermal inversion strength (°C) in Wuhan during 2013-2015. 
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Figure 3 Relationship between health spending outcomes and PM2.5 concentrations 

 

 
Note: Each dot denotes the in-group average of the health spending outcomes. Groups are binned 

by percentiles of the x-axis variable, PM2.5. 
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Table 1 Summary statistics of key variables 
Variable Mean Std. Dev. 
Insurance claims data   

value of health spending per month, yuan 154.86 1023.50 

number of transactions per month 0.939 1.577 

male 0.492 0.500 

age 42.063 19.045 

Air pollution   

average PM2.5 concentration, μg/m3 81.914 40.779 

Thermal inversion   

average strength, °C 0.245 0.157 

number of occurrences per month 24.163 10.628 

Weather   

number of days per month in temperature:   

<12 °C 9.997 12.390 

12-16 °C 3.278 4.730 

16-20 °C (reference group) 3.109 4.846 

20-24 °C 5.171 6.357 

24-28 °C 5.421 7.208 

>28 °C 3.440 7.153 

precipitation, cm 3.744 2.607 

wind speed, m/s 2.014 0.289 

sunshine duration, hour 4.919 1.698 

relative humidity, % 75.652 5.816 

Note: The insurance claims data are obtained from the universal basic medical 

insurance system. The air pollution data are provided by the daily air quality report of 

the Ministry of Ecology and Environment (MEE) of China. The thermal inversion data 

are calculated from the product M2I6NPANA, version 5.12.4, released by the U.S. 

National Aeronautics and Space Administration (NASA). The weather data come from 

the China National Meteorological Data Service Center (CMDC). 
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Table 2 Effects of thermal inversion on air pollution (first stage) 

Dependent variable PM2.5, μg/m3  

Indicator 

(70<PM2.5≤ 
100 μg/m3) 

 

Indicator 

(PM2.5>100 

μg/m3) 

 (1)  (2)  (3) 

      

Thermal inversion      

average strength, °C 67.729***  -1.442***  0.142 

 (9.376)  (0.144)  (0.171) 

number of occurrences per month   0.011**  0.021*** 

   (0.003)  (0.006) 

      

demographic controls Yes  Yes  Yes 

weather controls Yes  Yes  Yes 

individual fixed effects Yes  Yes  Yes 

county-by-year and month fixed effects Yes  Yes  Yes 

KP first-stage F-statistic 52.19  32.88  32.88 

Observations 1,440,324  1,440,324  1,440,324 

Note: The demographic controls include age and its square term. The weather controls include number 

of days falling in each temperature bin (<12 °C, 12-16 °C, 16-20 °C, 20-24 °C, 24-28 °C, >28 °C), 

total precipitation, mean wind speed, sunshine duration, and relative humidity in polynomial forms. 

Wild bootstrapped standard errors, clustered at the county level, are presented in parentheses. *10% 

significance level. **5% significance level. ***1% significance level. 
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Table 3 Effects of PM2.5 on the value of health spending and number of transactions 
Dependent variable A. Value of health spending  B. Number of transactions 
 OLS  IV  OLS  IV 
 (1)  (2)  (3)  (4) 

        

PM2.5 0.664**  2.361***  0.276***  0.791*** 

 (0.239)  (0.655)  (0.068)  (0.181) 

        

demographic controls Yes  Yes  Yes  Yes 

weather controls Yes  Yes  Yes  Yes 

individual fixed effects Yes  Yes  Yes  Yes 

county-by-year and month fixed effects Yes  Yes  Yes  Yes 

KP first-stage F-statistic   52.19    52.19 

Observations 1,440,324  1,440,324  1,440,324  1,440,324 

% to pay for a 10 μg/m3 reduction per month 0.664%  2.361%  --  -- 

WTP for a 10 μg/m3 reduction per year, yuan 12.34  43.87  --  -- 

Note: The dependent variable is arcsinh(value of health spending) in Panel A and arcsinh(number of transactions) in Panel B. The 

demographic controls include age and its square term. The weather controls include number of days falling in each temperature bin 

(<12 °C, 12-16 °C, 16-20 °C, 20-24 °C, 24-28 °C, >28 °C), total precipitation, mean wind speed, sunshine duration, and relative 

humidity in polynomial forms. We instrument for PM2.5 using thermal inversion strength. The coefficients on PM2.5 are scaled by 
1000 to make them more readable. Each column reports the percentage change in the value of health spending (Panel A) and number 

of transactions (Panel B) per 10 μg/m3 increase in PM2.5 concentration. Wild bootstrapped standard errors, clustered at the county 

level, are presented in parentheses. *10% significance level. **5% significance level. ***1% significance level. 
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Table 4 Robustness checks - addressing correlations between PM2.5 and other co-pollutants (2SLS estimates) 
 Co-pollutants 

 PM2.5  
PM2.5&PM

2.5-10 
 PM2.5&CO  PM2.5&O3  PM2.5&SO2  PM2.5&NO2 

 (1)  (2)  (3)  (4)  (5)  (6) 

            

PM2.5 2.361***  2.411***  2.126**  2.562***  2.296***  2.507*** 

 (0.655)  (0.641)  (0.713)  (0.705)  (0.678)  (0.748) 

PM2.5-10   -0.672         

   (0.492)         

CO     0.028       

     (0.021)       

O3       0.072     

       (0.077)     

SO2         0.233   

         (0.312)   

NO2           -0.884 

           (0.759) 

            

KP first-stage F-statistic 52.19  40.31  41.54  40.80  43.92  38.88 

Observations 1,440,324  1,440,324  1,440,324  1,440,324  1,440,324  1,437,579 

% to pay for a 10 μg/m3 reduction per month 2.361%  2.411%  2.126%  2.562%  2.296%  2.507% 

WTP for a 10 μg/m3 reduction per year, yuan 43.87  44.80  39.51  47.61  42.67  46.59 

Note: The dependent variable is arcsinh(value of health spending). Other covariates and fixed effects are the same as those in column (2) of Table 3. The 

same IV strategy as in Table 3 is used. The coefficients on air pollutants are scaled by 1000 to make them more readable. Wild bootstrapped standard 

errors, clustered at the county level, are presented in parentheses. *10% significance level. **5% significance level. ***1% significance level. 
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Table 5 Robustness checks - other specifications 

 Baseline 

 Placebo test  

Non-
linearity 

 
Weighted 
average 
PM2.5 

 

CRE Tobit 

 
ln(value of 

health 
spending+1) 

 Adding 
holiday-

month-by-
year FEs 

 

PM2.5 in 

the same 

month next 

year 

 

  

 

 

 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

              

PM2.5 2.361***      2.360***  3.331***  2.136***  2.717** 

 (0.655)      (0.660)  (0.397)  (0.581)  (0.891) 

PM2.5 in the same month next year   -0.019           

   (0.455)           

Non-linearity              

Indicator (PM2.5≤70 μg/m3) 

(reference group)     --   
 

   
 

 

                

Indicator (70<PM2.5≤ 100 μg/m3)     -0.046         

       (0.026)         

Indicator (PM2.5>100 μg/m3)     0.127**         

       (0.046)         

              

KP first-stage F-statistic 52.19  176.5  32.88  53.65  --  52.19  43.76 

Observations 1,440,324  1,440,249  1,440,324  1,440,324  1,440,324  1,440,324  1,440,324 

% to pay for a 10 μg/m3 reduction per month 2.361%  --  --  2.360%  3.331%  2.136%  2.717% 

WTP for a 10 μg/m3 reduction per year, yuan 43.87  --  --  43.86  61.90  39.69  50.49 

Note: The dependent variable is arcsinh(value of health spending) in columns (1)-(5) and (7). The dependent variable is ln(value of health spending+1) in column (6). 

Other covariates and fixed effects are the same as those in column (2) of Table 3. In columns (1), (4), (6) and (7), we use thermal inversion as the instrument for PM2.5. 

In column (2), the “PM2.5 in the same month next year” is instrumented by the “thermal inversion in the same month next year”. In column (3), We use two IVs: 

thermal inversion strength and the number of occurrences per month. In column (5), the Correlated Random Effects Tobit (CRE Tobit) model uses a two-stage control 

function approach with the thermal inversion as an exclusion restriction. The Tobit coefficient is presented as the average partial effect of xi on E(y|x) with bootstrapped 

standard errors in parentheses. The coefficients on PM2.5 and PM2.5 the same month next year are scaled by 1000 to make them more readable. The 

corresponding OLS estimates of Table 5 is displayed in Table A7. In columns (1)-(4) and (6)-(7), wild bootstrapped standard errors, clustered at the county level, are 

presented in parentheses. *10% significance level. **5% significance level. ***1% significance level. 
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Table 6 Heterogeneous effects of PM2.5 on value of health spending, by gender & age (2SLS estimates) 
A. Male 

 0-10  11-20  21-30  31-40  41-50  51-60  61+ 

 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

Health spending mean, yuan 109.99  56.08  52.03  111.83  153.22  206.78  369.32 
              

PM2.5 9.798**  2.691  -0.255  0.735  1.750  4.513**  6.051*** 

 (2.100)  (3.449)  (1.224)  (1.864)  (1.134)  (1.787)  (0.996) 

              

KP first-stage F-statistic 79.43  37.82  39.20  42.57  57.50  77.28  87.34 

Observations 45,503  24,228  176,652  119,412  119,268  110,556  112,392 

% to pay for a 10 μg/m3 reduction per month 9.798%  --  --  --  --  4.513%  6.051% 

WTP for a 10 μg/m3 reduction per year, yuan 129.32  --  --  --  --  111.98  268.17 

B. Female 
 0-10  11-20  21-30  31-40  41-50  51-60  61+ 

 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

Health spending mean, yuan 99.89  40.18  78.25  110.16  138.50  204.85  309.86 
              

PM2.5 7.139***  0.148  -2.540  0.832  4.624**  5.366**  3.724*** 

 (1.028)  (3.854)  (1.344)  (1.558)  (1.797)  (1.978)  (1.250) 

              

KP first-stage F-statistic 77.58  37.06  39.06  53.41  66.35  92.56  113.5 

Observations 38,953  21,492  187,380  126,360  123,048  111,600  123,480 

% to pay for a 10 μg/m3 reduction per month 7.139%  --  --  --  4.624%  5.366%  3.724% 

WTP for a 10 μg/m3 reduction per year, yuan 85.57  --  --  --  76.85  131.91  138.47 

Note: The dependent variable is arcsinh(value of health spending). Other covariates and fixed effects are the same as those in column (2) of Table 3. The same IV 

strategy as in Table 3 is used. The coefficients on PM2.5 are scaled by 1000 to make them more readable. Each column reports the percentage change in the 

value of health spending per 10 μg/m3 increase in PM2.5 concentration. Willingness to pay (in yuan) for a 10 μg/m3 reduction per year were calculated for all 

significant PM2.5 effect estimates. Wild bootstrapped standard errors, clustered at the county level, are presented in parentheses. *10% significance level. **5% 

significance level. ***1% significance level. 
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Table 7 Heterogeneous effects of PM2.5 on health spending, by spending category (2SLS estimates) 
 Medication  Examination  Treatment 

 pharmacy  
healthcare 

facilities 
 

laboratory 

examination 
 

imaging 

examination 
 

non-surgical 

treatment 

 surgical 

treatment & 

anesthesia 

 (1)  (2)  (3)  (4)  (5)  (6) 

            

PM2.5 2.093***  0.985**  0.448*  -0.237  0.563  -0.113 

 (0.563)  (0.328)  (0.188)  (0.144)  (0.365)  (0.132) 

            

KP first-stage F-statistic 52.19  52.19  52.19  52.19  52.19  52.19 

Observations 1,440,324  1,440,324  1,440,324  1,440,324  1,440,324  1,440,324 

Note: The dependent variable is arcsinh(value of health spending) by category. Other covariates and fixed effects are the same as those in column (2) 

of Table 3. The same IV strategy as in Table 3 is used. The coefficients on PM2.5 are scaled by 1000 to make them more readable. Each column 

reports the percentage change in the value of health spending per 10 μg/m3 increase in PM2.5 concentration. Wild bootstrapped standard errors, 

clustered at the county level, are presented in parentheses. *10% significance level. **5% significance level. ***1% significance level. 
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Appendix A: Supplementary Figures and Tables 

Figure A1 Wuhan monthly health spending, 2013-2015 

 
Note: The figure plots the monthly mean value of health spending (million yuan) and number of 

transactions (thousand) in Wuhan during 2013-2015. 
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Figure A2 Daily mean PM2.5 (μg/m3) in Wuhan city, 2013-2015 

 
Note: PM2.5 = particulate matter with a diameter smaller than 2.5 micrometers. The WHO guidelines 

level for 24-hour mean PM2.5 is 25 μg/m3. 
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Table A1 Effects of PM2.5 on the value of health spending at the individual-daily level 
Dependent variable Baseline  Gender  Age 
log form of value of health spending OLS  IV  male  female  0-30  31-59  60+ 
 (1)  (2)  (3)  (4)  (5)  (6)  (7) 

              

Health spending mean 193.13  193.13  191.77  194.52  160.70  165.97  258.09 
              SD 1009.19  1009.19  965.10  1051.99  725.02  602.62  1555.42 
PM2.5 mean 80.52  80.52  80.71  80.33  78.95  80.60  81.26 
      SD 53.76  53.76  53.79  53.73  52.47  53.86  54.27 
              

PM2.5 0.067**  0.992***  1.371**  1.140**  2.526***  0.653*  1.587** 

 (0.023)  (0.212)  (0.459)  (0.270)  (0.434)  (0.337)  (0.451) 

              

demographic controls Yes  Yes  Yes  Yes  Yes  Yes  Yes 

weather controls Yes  Yes  Yes  Yes  Yes  Yes  Yes 

individual fixed effects Yes  Yes  Yes  Yes  Yes  Yes  Yes 

pharmacy and healthcare facilities fixed effects Yes  Yes  Yes  Yes  Yes  Yes  Yes 

county-by-year fixed effects Yes  Yes  Yes  Yes  Yes  Yes  Yes 

month and week fixed effects Yes  Yes  Yes  Yes  Yes  Yes  Yes 

KP first-stage F-statistic --  757.8  909.7  538.9  467  859.9  562.2 

Observations 1,116,669  1,116,669  562,118  554,591  188,079  588,611  340,019 

% to pay for a 10 μg/m3 reduction per day 0.067%  0.992%  1.371%  1.140%  2.526%  0.653%  1.587% 

WTP for a 10 μg/m3 reduction per year, yuan 47.23  699.29  959.65  809.40  1481.64  395.58  1495.00 

Note: The dependent variable is ln(value of health spending). The demographic controls include age and its square term. The weather controls include number of days 

falling in each temperature bin (<12 °C, 12-16 °C, 16-20 °C, 20-24 °C, 24-28 °C, >28 °C), total precipitation, mean wind speed, sunshine duration, and relative humidity 

in polynomial forms. We instrument for PM2.5 using thermal inversion strength. The coefficients on PM2.5 are scaled by 1000 to make them more readable. Each 

column reports the percentage change in the value of health spending per 10 μg/m3 increase in PM2.5 concentration. Wild bootstrapped standard errors, clustered at 

the county level, are presented in parentheses. *10% significance level. **5% significance level. ***1% significance level. 
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Table A2 Correlations between pollutants 
 PM2.5 PM10 CO NO2 O3 SO2 

PM2.5 1.000      

PM10 0.926 1.000     

CO 0.880 0.769 1.000    

NO2 0.800 0.860 0.728 1.000   

O3 -0.267 -0.223 -0.277 -0.249 1.000  

SO2 0.695 0.663 0.666 0.601 -0.270 1.000 

Note: PM2.5 = particulate matter with a diameter smaller than 2.5 micrometers. PM10 = particulate matter with a diameter smaller than 

10 micrometers. CO = carbon monoxide. NO2 = nitrogen dioxide. O3 = ozone. SO2 = sulfur dioxide. 
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Table A3 Effects of PM2.5 on the value of health spending and number of transactions at the health facility-monthly level 
Dependent variable A. Value of health spending  B. Number of transactions 
 OLS  IV  OLS  IV 
 (1)  (2)  (3)  (4) 

        

PM2.5 0.969***  4.089***  0.721***  2.138*** 

 (0.239)  (0.553)  (0.129)  (0.396) 

        

weather controls Yes  Yes  Yes  Yes 

health facility fixed effects Yes  Yes  Yes  Yes 

county-by-year and month fixed effects Yes  Yes  Yes  Yes 

KP first-stage F-statistic   43.36    43.36 

Observations 82,774  82,774  82,774  82,774 

Note: We aggregate the health spending data at the health facility-monthly level. The dependent variable is arcsinh(value of health 

spending) in Panel A and arcsinh(number of transactions) in Panel B. The weather controls include number of days falling in each 

temperature bin (<12 °C, 12-16 °C, 16-20 °C, 20-24 °C, 24-28 °C, >28 °C), total precipitation, mean wind speed, sunshine duration, 

and relative humidity in polynomial forms. We instrument for PM2.5 using thermal inversion strength. The coefficients on PM2.5 are 
scaled by 1000 to make them more readable. Each column reports the percentage change in the value of health spending (Panel A) 

and number of transactions (Panel B) per 10 μg/m3 increase in PM2.5 concentration. Wild bootstrapped standard errors, clustered at 

the county level, are presented in parentheses. *10% significance level. **5% significance level. ***1% significance level. 
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Table A4 Heterogeneous effects of PM2.5 by gender & age at the health facility-monthly level (2SLS estimates) 
A. Male 

 0-29  30-39  40-49  50-59  60+ 

 (3)  (4)  (5)  (6)  (7) 

PM2.5 3.832*  5.529**  2.008  2.456  5.643** 

 (2.080)  (2.324)  (2.006)  (1.603)  (2.097) 

          

KP first-stage F-statistic 43.36  43.36  43.36  43.36  43.36 

Observations 82,774  82,774  82,774  82,774  82,774 

B. Female 
 0-29  30-39  40-49  50-59  60+ 

 (3)  (4)  (5)  (6)  (7) 

PM2.5 0.124  3.474  5.053**  5.427**  3.918* 

 (1.879)  (1.860)  (1.547)  (1.811)  (1.658) 

          

KP first-stage F-statistic 43.36  43.36  43.36  43.36  43.36 

Observations 82,774  82,774  82,774  82,774  82,774 

Note: We aggregate the health spending data at the health facility-monthly level. The dependent variable is arcsinh(value of 

health spending). Other covariates and fixed effects are the same as those in column (2) of Table A3. The same IV strategy as 

in Table A3 is used. The coefficients on PM2.5 are scaled by 1000 to make them more readable. Each column reports the 

percentage change in the value of health spending per 10 μg/m3 increase in PM2.5 concentration. Wild bootstrapped standard 

errors, clustered at the county level, are presented in parentheses. *10% significance level. **5% significance level. ***1% 

significance level. 
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Table A5 Heterogeneous effects of PM2.5 by spending category at the health facility-monthly level (2SLS estimates) 
 Medication  Examination  Treatment 

 pharmacy  
healthcare 

facilities 
 

laboratory 

examination 
 

imaging 

examination 
 

non-surgical 

treatment 

 surgical 

treatment & 

anesthesia 

 (1)  (2)  (3)  (4)  (5)  (6) 

            

PM2.5 3.314***  4.637*  3.756*  0.622  4.603  -0.301 

 (0.771)  (2.383)  (1.712)  (1.891)  (2.794)  (1.831) 

            

KP first-stage F-statistic 40.03  88.27  88.27  88.27  88.27  88.27 

Observations 66,580  16,194  16,194  16,194  16,194  16,194 

Note: We aggregate the health spending data at the health facility-monthly level. The dependent variable is arcsinh(value of health spending) by category. 

Other covariates and fixed effects are the same as those in column (2) of Table A3. The same IV strategy as in Table A3 is used. The coefficients on PM2.5 
are scaled by 1000 to make them more readable. Each column reports the percentage change in the value of health spending per 10 μg/m3 increase in 

PM2.5 concentration. Wild bootstrapped standard errors, clustered at the county level, are presented in parentheses. *10% significance level. **5% 

significance level. ***1% significance level. 
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Table A6 Summary of WTP from literature 
Paper Dose, additional Estimate 
Deschenes et al. (2007) 10 percentage points NOX 0.06 percentage point increase in pharmaceutical expenditures 

Barwick et al. (2021) 10 μg/m3 PM2.5 over the past 90 days 2.65% increase in the number of healthcare transactions 

  1.5% increase in the out-of-pocket expenses 

Deryugina et al. (2019) 1 μg/m3 PM2.5 $16.4 thousand per million beneficiaries more in ER inpatient spending 

Williams and Phaneuf (2019) 1 SD PM2.5 (3.84 μg/m3) 12.7% more spending on asthma and COPD 

Smith and Huang (1995) 1 μg/m3 TSP WTP: $98.52 in housing price (in constant 1982-84 dollars) 

Chay and Greenstone (2005) 1 μg/m3 TSP WTP: $81-$213 in housing price (in constant 1982-84 dollars) 

Bayer et al. (2009) 1 μg/m3 PM10 WTP: $149-$185 in housing price (in constant 1982-84 dollars) 

Ito and Zhang (2016) 1 μg/m3 PM10 WTP: $1.34 per household per year 

Welsch (2006) 1 SD NO2 (8.238 μg/m3) WTP: $949.50 per capita per year 

 1 SD Lead (0.168 μg/m3) WTP: $1089.72 per capita per year 

Levinson (2013) 1 μg/m3 PM10 WTP: $891 per capita per year 

Zhang, Zhang and Chen (2017) 1 μg/m3 PM2.5 WTP: 539 CNY per capita per year 

Wang et al. (2015) smog mitigation WTP: 428 CNY per year 

Sun et al. (2016) smog mitigation WTP: 1590 CNY per year 

Zhang and Mu (2018) 100-point AQI 54.5% increase in mask purchases 

  70.6% increase in anti-PM2.5 mask purchases 

Our estimation 10 μg/m3 PM2.5 2.36% increase in value of health spending 

  
0.79% increase in number of transactions in pharmacies and healthcare 

facilities 

  WTP: 43.87 CNY ($7.09) per capita per year* 

Note: * 43.87 CNY corresponds to $7.09 using the average 2013-2015 exchange rate 1 USD = 6.1880 CNY.
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Table A7 OLS estimates for Table 5 

 Baseline 

 Placebo test  

Non-
linearity 

 Weighted 
average 
PM2.5 

 ln(value of 
health 

spending+1) 

 Adding 
holiday-

month-by-
year FEs 

 
PM2.5 the same 

month next year 
 

 

 

 

 (1)  (2)  (3)  (4)  (5)  (6) 

            

PM2.5 0.664**      0.955***  0.611**  0.435* 

 (0.239)      (0.259)  (0.218)  (0.182) 

PM2.5 the same month next year   -0.422         

   (0.228)         

Non-linearity            

Indicator (PM2.5≤70 μg/m3) 

(reference group)     --     
  

              

Indicator (70<PM2.5≤ 100 μg/m3)     0.029***       

       (0.007)       

Indicator (PM2.5>100 μg/m3)     0.064***       

       (0.020)       

            

Observations 1,440,324  1,440,249  1,440,324  1,440,324  1,440,324  1,440,324 

Note: The dependent variable is arcsinh(value of health spending) in columns (1)-(4) and (6). The dependent variable is ln(value of health spending+1) in 

column (5). Other covariates and fixed effects are the same as those in column (1) of Table 3. The coefficients on PM2.5 and PM2.5 the same month next 
year are scaled by 1000 to make them more readable. Wild bootstrapped standard errors, clustered at the county level, are presented in parentheses. *10% 

significance level. **5% significance level. ***1% significance level. 
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Appendix B: Theoretical Model 

In this part wo provide a theoretical model to illustrate the relationship between 

the estimated impact of PM2.5 on health spending and people’s WTP for cleaner air. 

This model is a simplified version of Barwick et al. (2018). 

A consumer maximizes utility by choosing health spending, non-health spending 

and savings subject to a budget constraint and the evolving path of health stock, taking 

air pollution level, consumer’s income and initial level of health stock as given: 

[ ]
{ , , }

max , , , ( , )
m c s

U h c s e a m c+  

. .  s t y m c s= + +  

where 
0

( , )h h m e a m c= + − + ，given 
0

h  

where m is the value of health spending，c is the value of non-health spending，and s 

is the value of savings. Pollution exposure e(a, m+c) is a function of air pollution level 

denoted by a and the total spending denoted by m+c. y represents the consumer’s 

income. The evolving path of health stock is 
0

( , )h h m e a m c= + − + , taking the initial 

level of health stock h0 as given. Consumer utility is presented as a function of health 

stock (h), consumption (c), savings (s) and pollution exposure (e). 

The Lagrangian can be written as: 

[ ] [ ], , , ( , )L U h c s e a m c y m c sλ= + + − − −   (1) 

The first-order conditions are: 

*

2 2
(1 ) 0h e

L U e U e
m

λ∂
= − + ⋅ − =

∂
  (2) 

*

2 2
( ) 0h c e

L U e U U e
c

λ∂
= − + + ⋅ − =

∂
  (3) 
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*

0s
L U
s

λ∂
= − =

∂
  (4) 

*

0
L y m c s
λ

∂
= − − − =

∂
 (5) 

Denoting V(a, h0, y) as the indirect utility function and the marginal WTP for 

reduction in air pollution can be obtained as: 

*

*

V L
a aMWTP V L
y y

∂ ∂
∂ ∂= − = −
∂ ∂
∂ ∂

  (6) 

By the Envelope Theorem, 

*

1 1 1
( ) ( )h e e h

L U e U e e U U
a

∂
= − + ⋅ = −

∂
  (7) 

*L
y

λ∂
=

∂
  (8) 

Differentiation of the equation 
0

( , )h h m e a m c= + − +  with respect to a yields, 

* * * *

1 2
( )

h m m ce e
a a a a

∂ ∂ ∂ ∂
= − − +

∂ ∂ ∂ ∂
, re-arranging 

* * *

1 2 2
(1 )

m c he e e
a a a

∂ ∂ ∂
= − − −

∂ ∂ ∂
  (9) 

Plugging (9) into (7), and plugging (7) and (8) into (6), 

* * *

2 2
(1 )( ) ( )h e h e h ee U U e U U U Um c hMWTP

a a aλ λ λ
− − − −∂ ∂ ∂

= − −
∂ ∂ ∂

  (10) 

From the first FOC, 

2
(1 )( )h e ee U U Uλ− − = −   (11) 
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Plugging (11) into (10) and re-arranging: 

* * * * *

2

1
( ) ( )h e

h e
U Um h h m cMWTP e U U

a a a a aλ λ λ
∂ ∂ ∂ ∂ ∂

= − + − − −
∂ ∂ ∂ ∂ ∂

  (12) 

From the second FOC, 

2
( )h e cU U e U λ− = −   (13) 

From the third FOC, 

sU λ=   (14) 

Plugging (13), (14) and 

* * *h m e
a a a

∂ ∂ ∂
− = −

∂ ∂ ∂
 into (12), 

* * * *

h e c sU U U Um h e cMWTP
a a a aλ λ λ

−∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂
  (15) 

Equation (15) illustrates the relationship between WTP for better air quality and 

the marginal impact of air pollution on health spending, i.e., 

*m
a

∂
∂

. The second item in 

equation (15), 

*

hU h
aλ

∂
−

∂
, captures the disutility from reduced health stock. It is positive 

as 0hU >  and 

*

0
h
a

∂
<

∂
. The third item 

*

eU e
aλ

∂
−

∂
 denotes the loss in utility resulting 

from increased pollution exposure since 0eU < . 

* * *

1 2 2

e m ce e e
a a a

∂ ∂ ∂
= + +

∂ ∂ ∂
, where the 

first two terms are positive, and the last term is negative. Therefore, the third item is 

positive when non-health spending is relatively inelastic to pollution. The last item 

*

c sU Uc
a λ

−∂
−
∂

 represents the loss in utility due to the sub-optimal level of consumption 
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distorted by pollution exposure. Intuitively, 0c sU U− > 1, and 

*

0
c
a

∂
<

∂
. 

The last three items in equation (15) are positive, and thus 

*mMWTP
a

∂
>

∂
 . 

Therefore, we show that the marginal effect of exposure to air pollution on health 

spending provides a lower bound of people’s WTP for improved air quality. 
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1 This is the participation constraint for consumption. 
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