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Abstract 

This paper studies the productivity impact of heterogeneous capital inputs of selected EU-15 

member countries and of the U.S. at the macroeconomic level. The stochastic possibility fron-

tiers approach of Battese and Coelli (1992) applied here is used to identify neutralities or non-

neutralities between different heterogeneous capital and labor inputs. Owing to the introducti-

on and estimation of two-stage nested translog possibility production frontiers, the otherwise 

huge parameter space for the seven input factors included in the model is reduced significant-

ly. This gives more robust estimates of the remaining parameters. Due to the detailed data, 

specific types of biased technological change in heterogeneous capital inputs can be tested. 

Furthermore, time-varying inefficiency trajectories for each country are obtainable. Annual 

data from 1980 to 2004, calculated and published by the Groningen Growth and Development 

Centre, are used in the empirical analysis. The results obtained shed new light on how fast 

technological progress in a global economy can shift comparative advantages between count-

ries. In particular the different factor specific impacts of ICT and non-ICT capital stocks give 

a more detailed picture of the structural dynamics between factor inputs than do most other 

empirical studies using more aggregate factor input data. 

 

Keywords: nested production possibility frontiers, (in-)efficiency benchmarking, technology 

adoption, convergence 
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1 Introduction 

1 Introduction 

Since the productivity upturn of the mid-1990s in the U.S. (see e.g. Jorgenson et al., 2000; 

Jorgenson, 2001, 2003), the resurgence of productivity growth has been attributed in particu-

lar to the increased production and usage of ICT capital goods. However, most econometric 

studies on capital inputs have dealt with only two types: on the one hand, information and 

communications technology (ICT) and, on the other, non-ICT capital. More detailed break-

downs of capital inputs into other heterogeneous types were missing in the majority of them. 

Whereas one reason was a lack of data, another was the problem of a rapidly increasing pa-

rameter space when translog functions are used as flexible functional forms.  

The study presented here uses data calculated by the Groningen Growth and Development 

Centre (GGDC). It distinguishes six different types of capital inputs: (1) information technol-

ogy (IT), (2) communications technology (CT) and (3) software capital inputs as components 

of ICT capital, and a breakdown of non-ICT capital into three other capital inputs, namely (4) 

non-residential structures, (5) transport equipment, and (6) non-ICT equipment capital inputs.  

Most empirical studies on the impacts of ICT on productivity and growth are based on growth 

accounting methods which use Törnqvist indices. The underlying theoretical assumptions are 

not empirically tested for their validity with respect to the dataset employed. One key assump-

tion of the theoretical models in such growth accounting calculations is that all observed fac-

tor inputs are used efficiently. In other words, there is no room for wasted inputs or underuti-

lized factors. This, however, is a very strong assumption, which requires empirical testing.  

Contrary to these types of efficient factor market allocation models, the possibility frontier 

approach used in this study allows some leeway for sticky input factor markets and, conse-

quently, the emergence of inefficiencies in factor usage in production (see e.g. Farrell, 1957; 

Kumbhakar and Knox Lovell, 2003). Since productivity is defined as a ratio of an output 

indicator and an input indicator, excessive inputs relative to constant outputs indicate ineffi-

ciencies or lower productivity, respectively. 

The remainder of this paper is organized as follows: section 2 discusses the theoretical 

framework, section 3 the models used, section 4 introduces the data, section 5 presents the 

results, and section 6 concludes. 
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2 Theoretical framework 

2 Theoretical framework 

The evolution of the theoretical framework that combines the concept of efficient factor allo-

cation, which is based on the production function approach, with the production possibility 

frontier (PPF) approach, which tries to take into account the unequal real-world capabilities of 

companies, industries or whole societies in making the best use of available production oppor-

tunities, took place in two major steps. 

In a first step, the deterministic possibility frontier approach dealt with the concept that there 

are both leaders and laggards in efficient production by introducing the concept of the “dis-

tance from an efficiency frontier”, i.e. the traditional production function, representing the 

best-practice producer as a measure for inefficiency. 

In a second step, the stochastic production possibility frontier (SPF) approach gave way to the 

idea that even the best practice producers have room for improvement and that efficiency 

depends not only on deterministic but also on stochastic influences, which makes persistent 

best practice at the frontier more or less a most unlikely event, even for the leaders in a par-

ticular business field. 

2.1 Production possibility frontiers 

Due to indivisibilities of capital goods, or volatility in output demand production in particular, 

capacities related to fixed capital stocks cannot be adjusted instantaneously according to ac-

tual market conditions. This leads to at least temporary inefficiency until the adjustment proc-

ess has worked out.  

Another source of inefficiencies emerges from the unequal ability to organize the production 

at each plant with the same degree of efficiency. Furthermore, innovations need learning-by-

doing (Arrow, 1962) and learning-by-using (Rosenberg, 1982) effects to become proficient in 

a certain technology. Entry and exit of new firms also plays an important role in the emer-

gence of changes in the efficiency ranking between firms (see e.g. Aghion and Howitt, 2005). 

Impediments at the social and institutional level of a country or region, influencing what is 

also referred to as the ‘social capability’ (see e.g. Abramovitz, 1986; Abramovitz and David, 

1996), make it impossible to obtain efficiency levels and/or efficiency growth rates equal to 

those of environments elsewhere, which are better suited to encouraging innovation. Encour-

agement of innovation is traditionally measured by the rate of technical progress and by more 
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efficient allocation mechanisms (in particular more flexible markets and other institutions), 

leading to more rapid speeds of adjustment. This has raised the issue of the competitiveness of 

economic entities at the regional or national level. As a single indicator, productivity has 

become a common standard in the economics literature for measuring overall economic per-

formance.  

The production possibility frontier approach, in contrast to the more traditional production 

function approach, makes it possible to disentangle the overall productivity growth (see e.g. 

Acemoğlu et al., 2003) into two components: the rate of technological progress of the frontier, 

and the movements of single entities from inefficient usage towards the efficiency frontier 

(see figure 1). 

Figure 1 
Production possibility set and frontier 

 

If, given the factor input set, the produced output level stays below the potential maximum 

level, then the respective inefficient use of resources indicates indirectly that the whole pro-

duction system or, at the micro level the single producer, faces an inability to match the best 

available practice. Farrell (1957) was the first to distinguish between technical and allocative 

efficiency. Technical efficiency reflects the ability of a firm to obtain maximal output from a 

given set of inputs. Allocative efficiency is used for the ability of a firm to use the inputs in 

optimal proportions, given their respective prices. The combination of both gives a measure 

of the total economic efficiency. 

At the outset of the literature on production possibility frontiers (see, e.g., Aigner and Chu, 

1968; Afriat, 1972), it was assumed that the leader of a sample always reached the boundary 
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of the frontier. Therefore, the term “deterministic production possibility frontier” was used. 

The best producer, therefore, could not improve his or her performance any further. This 

view, however, is at least somewhat misrepresentative, as most managers would agree that 

even being a leader always leaves ample room for further improvement. Similarly, world 

champions in a sport would never allow themselves to believe that they could not improve 

their performance, or that others would never top them.  

Another criticism relates to the sensitivity of such a frontier to the possible influence of meas-

urement errors and other noise at the frontier (see Timmer, 1971). Estimating a deterministic 

possibility frontier would therefore not give robust results under such circumstances. Fur-

thermore, excluding the best-practice firm from a random sample would lead to highly biased 

efficiency estimates. Therefore, it made sense to weaken the deterministic frontier approach 

by changing the deterministic frontier into a stochastic one (see Aigner et al., 1977). 

2.2 Stochastic production possibility frontiers 

A stochastic possibility frontier (SPF) introduces a theoretical benchmark which usually can-

not be matched by any actual producer. It is a quasi-ideal production frontier which, due to all 

kinds of impediments in the particular situations of each producer, cannot be matched com-

pletely (at least permanently). This gives sufficient incentive for even the best-practice pro-

ducer to search for further improvements. Assuming for the moment a log-linear production 

function where i firms produce their output given the technological parameter β, the stochastic 

possibility frontier is determined by two types of random errors. These are the always-positive 

new inefficiency random variable  and the usual random error term , which has the stan-

dard properties of identical, independent, normally distributed errors with mean 

iu iv

vμ , and con-

stant variance . 2
vσ

The production frontier is therefore determined by the deterministic part plus a stochastic part 

consisting of a mixture of two probability distributions: a non-negative one, , (e.g., a posi-

tive truncated normal distribution) representing stochastic inefficiencies, plus the usual nor-

mal distribution of the error term , representing stochastic measurement errors in the data. 

As a result, the estimation of a stochastic possibility frontier has to address the parameters of 

the respective production function plus those of the two probability distributions simultane-

ously. 

iu

iv

 4



Discussion Papers   720 
2 Theoretical framework 

Non-neutrality of the different heterogeneous capital and labor inputs needs functional forms 

of production functions which are flexible enough to determine the necessary non-neutrality 

by introducing parameters to measure it.  

The translog production function has become one of the most frequently applied functional 

structures to offer sufficient flexibility. In contrast, a Cobb-Douglas production function in-

cludes no appropriate parameters for modeling non-neutrality of technical change. 

By estimating the parameters of a translog-possibility production frontier, all necessary pa-

rameters for testing neutrality or non-neutrality of factor usage are available. These two 

measures of inefficiency are also generated to measure the relative distance of an entity from 

the possibility frontier. Using this kind of integrated model, it is possible to test for the spe-

cific types of biased technological change present in the general macroeconomic possibility 

frontier under the assumption that inefficiencies are present.  

Furthermore, the relative performance of different countries, the current entities, can be 

benchmarked in terms of their (in-)efficiency at a macroeconomic level.  

It is important to distinguish heterogeneous capital inputs (such as IT, communications 

equipment, software, together with other capital inputs, such as non-ICT equipment and non-

residential structures) because they contribute differently to the efficiency improvements of an 

economy and are, to a different degree, adjustable in the short- and medium-run.  

In particular, in our analysis we apply Cobb-Douglas and translog model formulations for 

both constant and variable returns to scale in a nested two-stage model structure in order to 

measure the effects of these heterogeneous capital inputs. This is in contrast to other studies, 

which distinguish only two types of capital, i.e. ICT and non-ICT. The empirical estimates 

obtained from this type of analysis contribute to a better understanding of how fast techno-

logical progress in a global economy shifts the comparative advantages between countries due 

to both the different timing of ICT adoption and to the dynamics of ICT technology diffusion. 

In efficient frontier estimation, different approaches have been used. Apart from the stochastic 

production possibility frontiers approach, SPF (e.g. Kumbhakar and Knox Lovell, 2003), data 

envelopment analysis, DEA (e.g. Cooper et al., 2004), has been applied in numerous studies. 

A more recent development has been to use the so-called generalized maximum entropy ap-

proach, GME (see e.g. Golan et al., 1996), which avoids more restrictive distributional as-

sumptions on the stochastic inefficiency term (see section 2.4 below). In our present study, we 
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have chosen to apply the SPF approach, which tends to give similar results to those of the 

GME. For a comparison of the different approaches in efficient frontier estimation see e.g. 

Campell et al. (2005). 

Commonly used production functions or possibility frontiers restrict the number of input 

factors to a small set, e.g. to two or three. The Solow model (1957), for instance, just distin-

guishes two primary input factors, labor, L, and capital, K, plus a time trend t to represent 

autonomous Harrod-neutral technical change. This model fitted empirical data for most coun-

tries quite well when a Cobb-Douglas production function was used as a specification, i.e. 

 , (1) ααγ −⋅ ⋅⋅⋅== 1),,( tt
t

ttt KLeAtKLfY

where Y denotes output, A is a scaling parameter, γ the rate of technical progress, α the partial 

output to labor elasticity, and t denotes time (a proxy for autonomous technical change).  

Usually, constant returns to scale (CRS) are assumed in macroeconomic production function 

specifications, which implies that the partial output elasticity to capital is equal to α−1 . This 

assumption has been used with some success in a number of empirical studies (Heal, 1986; 

Mankiw et al., 1992; Hansen and Knowles, 1998; McCombie and Mark, 2007).  

Taking logarithms of equation (1), we obtain the following linear form in the transformed 

variables and parameters: 

 tKLAY ttt ⋅+⋅−+⋅+= γαα ln)1(lnlnln . (2) 

Adding the usual two random variables for a stochastic possibility frontier, with 

 denoting the error term, plus the inefficiency random variable );0(~ 2
vt Niidv σ

),1(~ 2
u

u
t Niidu σ

θ
+ , a term which exhibits a left-truncated normal distribution, and assum-

ing that  are distributed independently of each other and of the regressors (e.g. 

Kumbhakar and Knox Lovell, 2003, p.74), we obtain the stochastic Cobb-Douglas production 

frontier 

 and tv tu

 ttttt uvtKLAY −+⋅+⋅−+⋅+= γαα ln)1(lnlnln . (3) 

One shortcoming of extending the Cobb-Douglas function by including more than two factors 

is that the implicit substitution elasticity between all factors is always restricted to unity. In 
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order to avoid this highly restrictive assumption, the constant elasticity of substitution (CES) 

function, which was suggested as a useful alternative specification by Arrow et al. (1961), has 

an elasticity of substitution that is constant but not necessarily equal to one. This implies that 

the elasticity (or complementarity) between input factors becomes measurable. 

However, extending this model to a multi-factor approach with n > 2, where n denotes the 

number of input factors, again causes the problem of all factors having a common constant 

elasticity of substitution. To avoid this situation, the flexible transcendental logarithmic 

(‘translog’) functional form introduced by Christensen et al. (1973), which uses a logarithmic 

Taylor-expansion up to the second order term in the input and output factors of an otherwise 

unknown function, gives sufficient flexibility to obtain a production function where the sub-

stitution elasticities may be different between all input factors:  

  (4) 
2

ln ln ln ln ln ln ln ln

ln ln ln ln
t t t LL t t LK t

Lt t Kt t KK t tt

Y A L K t L L L K

t L t K K K t

α β γ β β

β β β β

= + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅ ⋅ +

⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅
t

                                                                         

This degree of generality, however, comes at a price. The parameter space of such translog 

production functions increases over-linearly and, thus, very often makes this flexible func-

tional form ‘too flexible’ in empirical applications if the number of input factors increases 

beyond n > 3. In other words, the risk is high that a maximum-likelihood (ML) or least-

squares (LS) estimation would fit the data with n > 3 too well. The flatness of the estimation 

function in some dimensions of the parameter space – similarly to the multicollinearity prob-

lem – yields parameter estimates that may be way off the true parameters. This is so because 

of the trade-off between some parameters. These are linked to each other in such a way that 

any combination of them changes the value of the ML or LS estimation very slightly, and 

hence the estimation function becomes indifferent inside a huge solution space.  

To get rid of this problem, a more parsimonious modeling approach might be more helpful, 

even if some rather restrictive assumptions have to be imposed. Specifically, since in our 

investigation we want to investigate heterogeneous capital stocks with six different types of 

capital, we have to reduce the parameter space of an unrestricted translog production function 

with six different capital inputs plus labor and time from 44 parameters (i.e. n = 7 + 1 plus 

) sufficiently in order to avoid these difficulties.2/)1( +⋅ nn 1  

 

1 By including time as a variable for measuring technological change, the number of input factors increases from 
six to seven. Adding a constant term already gives eight parameters. Since the parameters of the quadratic-terms 
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2.3 Nested stochastic production possibility frontiers (NSPF) 

The notion of nesting production functions was already emerging in the 1960s (Sato, 1967) in 

a quest for more flexible forms of multiple factor production functions. The general idea be-

hind it was that there exists an aggregator function, g, which appropriately aggregates some 

individual factor inputs to an aggregate factor input (Berndt and Christensen, 1973). The 

overall capital stock is formed by m sub-aggregates, i.e. 

 ) . (5) ,...,( 1 mt KKgK =

By substituting the aggregator function into the original multi-factor production function, we 

obtain a mapping from the higher dimensional space (n + 1) into a lower dimensional space (n 

– m + 2). If the aggregator function is sufficiently accurate, i.e. such that the input factors are 

weakly separable (e.g. Leontief, 1947; Blackorby et al., 1978), a perfect aggregator function 

would have to fulfill the weak separability condition, which can be tested empirically (Berndt 

and Christensen, 1974). Substituting the aggregator function into the original production pos-

sibility frontier, we obtain 

 )),,...,(,(),,( 1 tKKgLftKLfY mtttttt == . (6) 

The next step we propose here is to substitute, instead of using an exact (i.e. deterministic) 

aggregator function, a stochastic aggregator function including a simple error term. Moreover, 

instead of adding the usual random error term, we include an inefficiency random variable 

again, as we did in the non-nested SPF above, and thus obtain  

 , (7) ttmt zwKKgK −+= ),...,( 1

with  denoting the error term, );0(~ 2
wt Niidw σ ),1(~ 2

z
z

t Niidz σ
θ

+  the inefficiency ran-

dom variable exhibiting a left-truncated normal distribution, and the independence assump-

tion between both of these terms and the regressors included in the aggregator function. 

But what are the advantages of extending the approach towards nesting an aggregator SPF 

instead of a standard production function into our model framework? The key comparative 

advantage relates to the fact that we decompose the overall inefficiency term  into two tu

                                                                          

of a translog function for all seven explanatory variables can be written in a 7 x 7 triangular matrix form, it is easy 
to see that they can be calculated by the formula given above.  
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separate inefficiency components, tz zz + , where the first measures the inefficiencies be-

tween the input factors included in the aggregator function, and tz  the inefficiencies between 

the input factors of the first level production function and those of the input factor included in 

the aggregator function. This decomposition, however, is based on an appropriately chosen 

aggregator function which fulfils the weak separability conditions mentioned above. Such 

nesting of possibility frontiers in order to obtain decomposition of inefficiencies by different 

input factor groupings seems to be an original contribution to the existing literature. 

Furthermore, if we do not impose assumptions concerning the independence of the respective 

error terms and inefficiency terms we can check ex post whether the estimates obtained ex-

hibit large covariances between the respective random variables. Because the whole model 

structure is strictly recursive in the model variables, we do not have to worry about simulta-

neous equation biases resulting from interdependencies.  

Summing up, the nested production possibility frontier approach, outlined above, offers sev-

eral interesting new features compared to other approaches that try to derive a decomposition 

of inefficiency terms by single factors using a dual function of a cost or restricted profit func-

tion (see Kumbhakar and Knox Lovell, 2003, p.170 ff.). However, this particular approach 

will not even be theoretically equivalent to such simultaneous factor demand equation ap-

proaches. This is due to the lack of self-duality2 of this general flexible functional form, and 

of NSPFs in particular. 

2.4 Decomposition of inefficiencies in NSPFs 

Taking a two-level NSPF model as described in section 2.2, we can write for the first stage a 

translog specification of the form 

 ttttt uvtKLAY −+⋅+⋅−+⋅+= γαα ln)1(lnlnln  (8) 

and for the second level 

 ttmt zwKKgK −+= )ln,...,(lnln 1 . (9) 

                                                                          

2 Self-duality is a term used for functional relations where the functional form, e.g. Cobb-Douglas, prevails in the 
quantity as well as in the price space. Cobb-Douglas or CES functional forms are self-dual when applied as 

production or minimum cost functions, e.g. YrweACKLeAY tt ⋅⋅⋅⋅=⇔⋅⋅⋅= −⋅−⋅ ααγααγ ~1~~1 ~
. The vari-

ables w and r denote the respective factor prices for labour and capital.  
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By substituting the second level NSPF into the first-level NSPF, we obtain 

 tttttttt uvtzwKKLAY −+⋅+++⋅+⋅⋅−+⋅+= γββαα )lnln()1(lnlnln ,22,11  (10) 

and by reparameterization 

 .  (11) 1 1, 2 2,ln ln ln ln ln (1 )
          (1 )

t t t t

t t t

Y A L K K t w
z v u

α β β γ α
α

= + ⋅ + ⋅ + ⋅ + ⋅ + − ⋅

− ⋅ + −

% %
t +

For reasons of expositional simplicity, we have omitted the quadratic terms for the factor 

inputs and the technical progress term t, but these can, of course, be added later with no diffi-

culty. 

Since the random variables  and  are normally distributed, the sum of both will add up to 

another normally distributed random variable x

tw tv

t, ttt vwx +⋅−= )1( α , with an expectation 

 ( ) ( ) vwttt vEwExE μμαα +⋅−=+⋅−= )1()()1(  (12) 

and a variance  

 
( ) ( ) ( ) ( )

.)1(2)1(

,)1(2)1(

,
222

2

vwvw

ttttt vwCOVvVARwVARxVAR

σασσα

αα

⋅−⋅++⋅−=

⋅−⋅++⋅−=
 (13) 

Similarly, the half-normally distributed random variables,  and , sum up to a random 

variable y

tz tu

t, ttt uzy +⋅−= )1( α , which is again a half-normally distributed random variable 

with the expectation 

 ( ) ( )
uz

ttt uEzEyE
θθ

αα 11)()1( +
−

=+⋅−= , (14) 

where zθ  and uθ are the respective integration constants limited to the domain [ )∞∈ ,0; tt zu  

of the univariate truncated normal distribution variance (see e.g. del Castillo, 1994). The vari-

ance of this random variable turns out to be 

 ( ) ( ) ( ) ( )ttttt uzCOVuVARzVARyVAR ,)1(2)1( 2 ⋅−⋅++⋅−= αα ,  

 uz
uz

,

2

)1(2
2

)2(
2

)2()1( σα
θ

π
θ
πα

⋅−⋅+
⋅
−

+
⋅

−⋅−
= . (15) 
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Since the expectation of the inefficiency random variable  is equal to the sum of the expec-

tation of the first-level SPF plus the expectation of the second-level SPF, we have obtained a 

decomposition of the overall inefficiency term into the inefficiency attributable to the first-

level SPF factor allocation, and the inefficiency attributable to the second-level SPF factor 

allocation. Note that this result can easily be extended to more sophisticated NSPFs (i.e. those 

with more than two stages), or multiple aggregator functions at a particular level for different 

subsets. Thus, the introduction of an NSPF has a reasonable economic interpretation, since it 

provides a decomposition of the overall inefficiency into partial inefficiency components 

attributable to the different levels of the NSPF.  

ty

3 Models used 

In our analysis, we applied several different models that are based on the translog functional 

approach. Since the macroeconomic dataset employed covers seven different input factors, 

and separates different types of capital inputs besides the labor input variable, we used a 

Cobb-Douglas specification for all seven input factors as a first-stage NSPF. In a second step, 

we separated the seven factors into three subsets. The first consists of the labor input variable, 

the total ICT capital stock, and the non-ICT capital stock as aggregates of the two subsets 

used in the second-stage stochastic frontier. For the second stage, we used two subsets of 

three separate capital stock variables in each of them. The first includes IT capital, communi-

cations technology capital, and software capital. The second contains non-ICT capital, trans-

port equipment, and non-residential structures in each single economy (see figure 2).  

For the econometric estimation with a 16-country balanced panel dataset plus the EU-15 ag-

gregate, we organized the data separately for each subset of the NSPF (see section 4 and ap-

pendix A for a more detailed data description). For the estimation of the stochastic possibility 

frontiers, we used the software package Frontier (Coelli, 1996).3 Apart from the seven input 

factors, a time trend was included to account for Harrod-neutral technical change in each 

stochastic frontier equation.  

 

                                                                          

3 For the empirical estimations we used both Frontier 4.1 and EViews 4. EViews was applied to check the results 
obtained by Frontier for determining the initial values from an OLS estimation of an ordinary production function. 
For reasons of convenience, in ‘general-to-specific’ modeling (by successively eliminating insignificant parame-
ters) for the translog model specification, EViews was more helpful in this kind of specification search. 
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Figure 2 
Nested structure of the SPF model 

 

LWH 

2nd stage model

1st stage model KS, KC, KIT KNICT, KTEQ, KNRS

Y = f(K,L)

KS KC KIT KNICT KTEQ KNRS 
 

Notation: Y … Output, K … Capital, L … Labor, WH … Work hours, S … Software, C … Communication, IT … 
Information technologies, NICT … Non-ICT (non-information & communications technologies), TEQ … Transport 
equipment, NRS … Non-residential structures.  

 

In order to obtain time-varying inefficiencies or efficiencies for each single country, we esti-

mated the model by using the frontier error component model introduced by Battese and 

Coelli (1992). From previous studies with macroeconomic multi-country panel data on an 

industry level (cf. Erber, 2005), we know that inefficiencies can vary considerably over time. 

Estimating a simple static inefficiency model – and in doing so, just determining an average 

degree of inefficiency over the whole sample period – might be grossly misleading with re-

spect to the inefficiency dynamics inherent in the data. Additionally, for estimating the Cobb-

Douglas possibility frontier, the frontier error component model does not only have to esti-

mate the parameter of the respective half-normal distribution (e.g. ) for the first stage fron-

tier but, additionally, has to estimate an adjustment parameter, 

2
uσ

uη , that is related to the ad-

justment process of inefficiency for the respective country panel. Note that the different inef-

ficiency trajectories obtained for each single country are formed by the general adjustment 

parameter, which is inherent to the production possibility frontier, and by the respective factor 

inputs for each single country, which jointly determine the inefficiency trajectories (see ap-

pendix B for a selection of these inefficiency time series obtained). Analogously, the two 

stochastic aggregator possibility frontiers were estimated separately. For the estimation, we 

did not impose constant returns to scale (CRS), but we estimated all models by imposing this 

restriction as well.  

 12



Discussion Papers   720 
4 Data 

Additionally, in a further step, we extended the Cobb-Douglas frontier model to a full translog 

stochastic possibility frontier model for each single stage. Since in a multi-factor production 

function the substitution elasticities should not be restricted to unity, as is the case when using 

a Cobb-Douglas function, we expected to get more consistent results from the perspective of 

economic theory. However, the estimates for the inefficiencies turned out to be problematic 

because the models fitted the data without an inefficiency term so well that there was very 

little leeway left for inefficiency modeling. While this problem requires further investigation, 

an explanation and a solution are beyond the scope of the present paper. 

4 Data 

In our empirical estimations, we use a balanced 16-country panel dataset for the years 1980-

2004, extracted from a database provided by the Groningen Growth and Development Centre 

(Timmer et al., 2005). Countries included in the panel data are the fifteen EU member states 

before the Eastern enlargement, i.e. Austria, Belgium, Denmark, Finland, France, Germany, 

Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the U.K. 

As another potential benchmark country, the U.S. was included as well.  

Instead of using growth rates, we calculated from these cumulative indices for all output and 

input variables. Absolute level data are unavailable in the GGDC dataset. Even if they would 

have been supplied the problem of making the different time series for each country compara-

ble as level data would have made it necessary to use purchasing power parities (PPPs) in 

order to shift the data to joint absolute levels of common PPPs for each input and output vari-

able. The methodological problems to be solved for making this kind of analysis feasible are 

discussed in greater detail by Caves et al. (1982) (see also Conrad, 1985; Erber, 1993; Ber-

nard and Jones, 1996; and Soerensen, 2001). As a reference system for a multilateral com-

parison, multilateral invariant PPPs are necessary instead of bilateral PPPs. Due to these still 

unsolved problems, the present analysis is less ambitious, but also faces less measurement 

problems. Therefore, our analysis studies the production possibilities of the different countries 

over time, but cannot calibrate these changes to a joint absolute level.  

The data comprise the ICT capital stock, non-ICT capital stock, total factor productivity 

(TFP), labor input, and the change in the quality of labor input by indices with 1970 as the 

base year (see Appendix A for a more detailed data description). Growth in economic output 
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is measured in terms of the gross domestic product, or GDP (in 2000 prices). However, the 

output is, again, an index series calculated in the same fashion as the input series. 

5 Empirical results 

Due to the large size of the parameter estimates obtained and the inefficiency trajectories for 

the whole multi-country panel, we only present the most relevant results (more detailed re-

sults can be obtained from the authors upon request). Because the most interesting aspects of 

the dataset from our perspective are attributable to the heterogeneity of the different types of 

capital stocks, we focus on the results from the second-stage NSPFs. Table 1 depicts the esti-

mation results for the first- and second-stage NSPF model (Cobb-Douglas error component 

specification). 

Looking at the outcomes of the first- and second-stage estimates of the SPF using a Cobb-

Douglas functional form, we notice that all parameters of the factor inputs have positive out-

put elasticities (as expected by theory) that lie between zero and unity (see table 1). Adding 

up the three parameter estimates 321 ,, βββ , we obtain the point estimate for the scale elastic-

ity r  for the first stage.4 A value of 1.16 indicates significant increasing returns to scale with 

a likelihood-ratio (LR) test statistic of 0.998. However, the parameter of the Harrod-neutral 

technical change term turns out to be statistically insignificant and close to zero. This might 

be attributable to the static specification of our model which cannot properly disentangle 

short-run from long-run effects (see e.g. Meijers, 2007, Erber, 2005). As is well known from 

the literature, in general it is difficult to disentangle scale economies from the rate of Harrod-

neutral technical progress. The model of the first stage could be modified by imposing con-

stant returns to scale. Additionally, the parameter ( )2 2 2/u v uγ σ σ σ= + , which is calculated 

instead of an explicit estimate for , shows that there is a problem with the separation in the 

two stochastic variables u and v. A sufficient lack of variation in the data might cause prob-

lems when disentangling the different statistical effects as desired. 

2
uσ

                                                                          

4 For a Cobb-Douglas production function, the scale elasticity r is determined by equation 

( ) ( ) ( ) 321321321 βββββββββ λλλλλ NICTICT
tg

NICTICT
tgr KKWHeAKKWHeAY ⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=⋅ ++⋅⋅ . 
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Table 1 
Parameter estimates of the first- and second-stage Cobb-Douglas NSPF error component 
model, ICT and non-ICT capital services, 1980 - 2004 
1st Stage  2nd Stage, ICTS  2nd Stage, NICTTN  

Constant: β0 1.70 Constant: β0 2.03 Constant: β0 2.10 

 (4.1)  (22.1)  (24.0) 

WH: β1j 0.67 IT Capital: β1j 0.32 NICT Capital: β1j 0.34 

 (14.1)  (15.7)  (18.7) 

ICTS Capital: β2j 0.13 C Capital: β2j 0.49 TEQ Capital: β2j 0.47 

 (8.2)  (30.1)  (31.8) 

NICTTN Capital: β3j 0.36 S Capital: β3j 0.16 NRS Capital: β3j 0.17 

 (8.7)  (10.2)  (11.1) 

Time: β4j 0.003 Time: β4j -0.025 Time: β4j -0.029 

 (1.8)  (-7.1)  (-10.8) 

      

 σ2 1.95  σ2 0.029  σ2 0.033 

 (3.8)  (3.8)  (3.7) 

 γ 0.999  γ 0.596  γ 0.648 

 (5.5)  (5.5)  (6.6) 

 η -0.0020  η 0.0497  η 0.0498 

 (9.8)  (9.8)  (11.3) 

Log likelihood 576.3   308.7  308.3 

No. of iterations 56   23  26 

Notes: t-values in parentheses. ICTS denotes ICT capital services (information and communications technology 
plus software capital), NICTTN the category non-ICT capital services (i.e. non-IT equipment plus trans-
port equipment and non-residential structures). 

 

A look at the results for the second-stage possibility frontiers shows that the results are much 

more promising. The returns to scale obtained from the summation of the estimated betas are 

0.97 for the ICT capital stock SPF, and 0.98 for the non-ICT capital stock SPF. Again, it 

would be justified to estimate the model by imposing constant returns to scale. 

Next, we present the parameter estimates for the translog stochastic production frontier of the 

ICT capital stock. Table 2 shows the estimation results for the second-stage translog frontier 

of the ICT capital stock. As can be seen from the parameter estimates obtained, the returns to 

scale estimate is now 0.99, taking the first-order terms as a benchmark. However, because of 

the positive second-order terms on the quadratic approximation, this will tend to increase with 

increasing overall factor inputs. 
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The cross-product terms of the translog function show that some complementarity exists be-

tween the IT and the communication capital stocks. In contrast, both of them have a substitu-

tion elasticity with software that indicates a certain degree of substitutability between the IT 

capital and communication capital stocks on the one hand, and software capital on the other 

hand. This is a plausible outcome because, as is well known from anecdotic evidence at the 

micro level, it is common practice to substitute software and hardware solutions in IT and 

communication solutions. We will calculate the average substitution elasticities for the re-

spective factor inputs in order to get a better understanding of the model structure and its 

economic implications. Note that, due to the unfavorable ratio between the number of pa-

rameters to be estimated (44) and the number of observations (425), we refrained from testing 

for weak separability. 

Table 2 
Parameter estimates of the second stage translog function for the ICT capital services 
stock, 1980 - 2004 

2nd order terms  1st order  
terms IT Capital: βi1  C Capital: βi2 S Capital: βi3 Time: βi4

Constant: β0 1.01     

 44.2     

IT Capital: β1,j 0.20 0.0455 0.0148 -0.0011 -0.0348 

 (18.0) (21.9) (26.5) (-3.1) (-10.7) 

C Capital: β2,j 0.44   0.0723 -0.0134 -0.0548 

 (34.4)  (39.9) (-24.5) (-29.4) 

S Capital: β3,j 0.35    0.0724 -0.1011 

 50.4   (65.1) (-60.3) 

Time: β4,j -0.0071    -0.0002 

 (-5.6)    (-5.3) 

  2σ 0.000167     

Log likelihood 1,252.8     

Notes: t-values in parentheses. IT … information and communications technology, C … communication equip-
ment, S … software equipment 

 

Figures 3 and 4 show the technical efficiency estimates for the (selected) EU-15 countries 

plus the U.S. The efficiency frontiers are represented as averages over the time period 1980-

2004. As can be seen from figure 3, the EU-15 as a whole and the U.S. exhibit an almost 
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equal average efficiency score. Within the EU-15, Denmark, France, Ireland, Portugal, Spain, 

Sweden, and the U.K. feature above-average efficiencies.  

Figure 3 
Technical efficiency estimates for the EU-15 Member States and the U.S., 1980 - 2004  
(average values)  
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Source: GGDC data, own calculations 

Note: Estimates based on model parameters of second-stage SPFs 

 

Accordingly, the SPF approach can therefore be used for benchmarking a country’s efficiency 

in the use of factor inputs, and thus for obtaining a ranking by country.  

In figure 4 we compare the average efficiency difference between selected countries, in par-

ticular between the ‘Big Four’ in Europe (France, Germany, Italy, and the U.K.) with the U.S. 

in the two second-stage SPFs. An interesting result is that the efficiency levels of the ICT 

capital stocks are always higher than those of the non-ICT capital stocks. This seems to be a 

reasonable outcome because the factor allocation between non-ICT capital, transport equip-

ment and non-residential structures is obviously much harder to accomplish than between the 

three ICT capital stock inputs. 

 17



Discussion Papers   720 
6 Conclusions 

Figure 4 
Technical efficiency estimates for selected EU-15 Member States and the U.S., ICT vs. non-
ICT capital services, 1980 - 2004 (average values) 
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Source: GGDC data, own calculations 

Note: Estimates based on model parameters of second-stage SPFs 

 

The results already look promising, in that the nested stochastic possibility frontier approach 

does indeed provide economically meaningful insights into the factor allocation process of an 

economy at the aggregate level. 

6 Conclusions 

The aim of this paper was to extend the stochastic possibility frontiers approach in the direc-

tion of breaking down a large set of factor inputs into several nested subsets. This would seem 

to be necessary in many situations where the number of input factors exceeds three, and 

where the application of a flexible functional form, such as the translog production function, 

is deemed desirable. Due to the large number of parameters the ability to estimate all these 

parameters in an economically meaningful way was not fruitful in most empirical applications 

in the past. In the case of an insufficient number of observations, alternative strategies have to 

be searched for. The nesting of production functions aimed at reducing the number of parame-

ters to be estimated at each stage has been common practice in a number of applications. A 

reasonable theoretical foundation can be provided by the separability literature, as outlined in 

section 2 of this paper. We extend the stochastic possibility frontier approach in a similar 
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fashion by introducing the nested stochastic possibility frontiers (NSPFs) as an alternative 

method. Apart from the ability to reduce the parameter space, the NSPF approach offers new 

insights into the factor allocation problem, since the overall inefficiency in a production proc-

ess can be decomposed into partial inefficiencies related to the allocation of particular factor 

input bundles.  

One interesting finding of our analysis is that inefficiencies differ between the factor alloca-

tion of ICT capital inputs and of non-ICT capital inputs. Therefore, a shift of capital invest-

ment from non-ICT capital towards ICT capital will most likely tend to be efficiency-

increasing overall. Thus, reducing inefficiencies in the overall capital stock allocation might 

contribute to faster productivity growth. This is in line with microeconomic studies, which 

found that ICT capital is significantly efficiency-enhancing at the firm level (Brynjolfsson and 

Hitt, 2003). Up to now, stochastic possibility frontiers have been used much more often in a 

microeconomic environment, and much less so for the analysis of subsectoral, industry, or 

even macroeconomic data. The results obtained from our analysis show that this new area of 

application can, in principle, produce meaningful results and could contribute to the empirical 

literature on (in-)efficiency benchmarking of national economies.  

One first insight from the econometric analysis is that stochastic frontier estimations, and the 

inefficiency measures derived in particular, depend heavily on the quality of the parameter 

estimates of the underlying production function. If there is an over-fitting of the production 

function, as it often occurs with flexible functional forms, then the inefficiency estimates 

become highly sensitive to those parameter estimates determining the production frontier. In 

an extreme case the quadratic terms of the translog function are sufficient for explaining al-

most the entire variance contained in the data. This happened even in the case of the large 

GGDC data sample used in our investigation (425 observations). Why this happens will need 

further analysis, and might, in fact, be attributable to the consistent aggregation of all factor 

input variables by Tornqvist indices. As is well known from the literature, the Tornqvist index 

is an alternative representation of the translog production function (cf. Diewert, 1976, 1978), 

which might restrict the usability of the translog function in econometric analysis employing 

data constructed with the help of Tornqvist indices.  

However, as other studies using the same dataset show (e.g. Venturini, 2006), it remains a 

difficult undertaking to obtain a suitable model for multi-country panel datasets because of 

possible weaknesses in the database as well as limitations regarding the size of the data sam-
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ple. Venturini’s findings suggest that trend-stationarity and short- and long-term substitution 

elasticities do not differ much, a result that underlines the suitability of our NSPF modeling 

approach, which essentially ignores dynamics. Therefore, our results seem to be robust over 

different model specifications and applications. In future research, we will aim at establishing 

a fully fledged translog nested possibility frontier (TNPF) model. The availability of a new 

dataset from the EU project KLEMS (www.euklems.net), where both the sample size and the 

number of countries included have increased, might help to get more efficient and consistent 

estimates from TNPF model approaches.  
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Appendix A – Data description 

The database maintained by the Groningen Growth and Development Centre (GGDC) com-

prises the following variables (for the period 1980-2004): 

A) Basic Data for Growth Accounting 

• Growth in labor input (total hours (in millions), annual hours per worker, total no. of work-

ers) (in thousands);5 

• Growth in output, measured by the gross domestic product (GDP), in 2000 prices (in mil-

lions €)6; 

• Share of labor, IT capital, and non-IT capital in GDP; 

• Growth in ICT capital service (computers, communication equipment and software); 

• Growth in non-ICT capital services (non-IT equipment, non-residential structures, trans-

port equipment); 

• Growth of total factor productivity (TFP) (in %)7. 

B) Gross Fixed Capital Formation, in constant 2000 prices and current prices (in millions €) 

• IT equipment (KIT), communication equipment (KC), non-ICT equipment (KNICT), trans-

port equipment (KTEQ), non-residential structures (KNRS), software (KS), total. 

C) Gross Fixed Capital Stock, midyear, in constant 2000 prices (in millions €) 

• IT equipment, communication equipment, non-ICT equipment, transport equipment, non-

residential structures, software, total. 

D) Factor input compensation shares. 

Of the data listed, we have made use of the six capital stock variables listed under heading B, 

work hours, and GDP as index time series normalized to 100 for the first year of the observa-

tion period. 

                                                                          

5 Labor input measures are based on total persons engaged, including own-account and family workers alongside 
employees. 
6 In contrast to GDP at current prices, GDP at constant prices excludes imputed rents and rents paid. 
7 All growth rates are exponential growth rates. 
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Table B.1 
Technical efficiency estimates1 in ICT capital stocks in the U.S. and selected EU member 
countries, 1980 - 2004 

  USA Germany UK France Italy EU15 

1980 0.759 0.783 0.629 0.818 0.831 0.784 

1981 0.769 0.792 0.643 0.826 0.839 0.793 

1982 0.779 0.801 0.657 0.833 0.846 0.802 

1983 0.788 0.810 0.671 0.841 0.853 0.811 

1984 0.798 0.818 0.684 0.848 0.859 0.819 

1985 0.806 0.826 0.696 0.855 0.866 0.827 

1986 0.815 0.834 0.709 0.861 0.872 0.835 

1987 0.823 0.841 0.721 0.867 0.877 0.842 

1988 0.831 0.848 0.732 0.873 0.883 0.849 

1989 0.838 0.855 0.743 0.879 0.888 0.856 

1990 0.845 0.861 0.754 0.885 0.893 0.862 

1991 0.852 0.868 0.764 0.890 0.898 0.868 

1992 0.859 0.874 0.774 0.895 0.903 0.874 

1993 0.865 0.879 0.784 0.900 0.907 0.880 

1994 0.871 0.885 0.793 0.904 0.912 0.886 

1995 0.877 0.890 0.802 0.909 0.916 0.891 

1996 0.883 0.895 0.811 0.913 0.920 0.896 

1997 0.888 0.900 0.819 0.917 0.923 0.901 

1998 0.893 0.904 0.827 0.921 0.927 0.905 

1999 0.898 0.909 0.835 0.925 0.930 0.909 

2000 0.903 0.913 0.842 0.928 0.934 0.914 

2001 0.907 0.917 0.849 0.931 0.937 0.918 

2002 0.912 0.921 0.856 0.935 0.940 0.921 

2003 0.916 0.925 0.862 0.938 0.943 0.925 

2004 0.920 0.928 0.869 0.941 0.945 0.929 

1980 - 2004 0.852 0.867 0.765 0.889 0.898 0.868 
1 Estimates based on model parameters of second-stage SPFs. 
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Table B.2 
Technical efficiency estimates1 in non-ICT capital stocks in the U.S. and selected EU mem-
ber countries, 1980 - 2004 

  USA Germany UK France Italy EU15 

1980 0.710 0.746 0.589 0.790 0.803 0.738 

1981 0.721 0.756 0.605 0.799 0.811 0.749 

1982 0.733 0.767 0.619 0.808 0.820 0.759 

1983 0.744 0.777 0.634 0.816 0.828 0.769 

1984 0.755 0.786 0.648 0.824 0.835 0.779 

1985 0.765 0.795 0.662 0.832 0.843 0.789 

1986 0.775 0.804 0.675 0.839 0.850 0.798 

1987 0.785 0.813 0.688 0.847 0.856 0.807 

1988 0.794 0.821 0.701 0.853 0.863 0.815 

1989 0.803 0.829 0.713 0.860 0.869 0.823 

1990 0.812 0.837 0.725 0.866 0.875 0.831 

1991 0.820 0.844 0.736 0.872 0.881 0.839 

1992 0.828 0.851 0.747 0.878 0.886 0.846 

1993 0.836 0.857 0.758 0.884 0.891 0.853 

1994 0.843 0.864 0.768 0.889 0.896 0.859 

1995 0.850 0.870 0.778 0.894 0.901 0.866 

1996 0.857 0.876 0.788 0.899 0.906 0.872 

1997 0.863 0.882 0.797 0.904 0.910 0.878 

1998 0.869 0.887 0.806 0.908 0.914 0.883 

1999 0.875 0.892 0.814 0.912 0.918 0.888 

2000 0.881 0.897 0.822 0.916 0.922 0.894 

2001 0.886 0.902 0.830 0.920 0.926 0.899 

2002 0.892 0.906 0.838 0.924 0.929 0.903 

2003 0.897 0.911 0.845 0.928 0.932 0.908 

2004 0.901 0.915 0.852 0.931 0.936 0.912 

1980 - 2004 0.820 0.843 0.738 0.872 0.880 0.838 
1 Estimates based on model parameters of second-stage SPFs. 
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