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Abstract

In this paper we test the hypothesis that the economic tran-

sition toward a market economy increases the efficiency of firms.

We study 32 Polish electricity distribution companies between

1997-2002, by applying common benchmarking methods to the

panel: the nonparametric data envelopment analysis (DEA), the

free disposal hull (FDH), and, as a parametric approach, the

stochastic frontier analysis (SFA). We then measure and decom-

pose productivity change with Malmquist indices. We find that

the technical efficiency of the companies has indeed increased

during the transition, while allocative efficiency has deteriorated.

We also find significantly increasing returns to scale, suggesting

that the regulatory authority should allow companies to merge

into larger units.

Keywords: Efficiency analysis, electricity distribution, tran-

sition, econometric methods, Poland, DEA, SFA

JEL Classification: P31, L51, L43, C1
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1 Introduction

One of the key concerns of the literature on economic transition in Eastern

Europe is the link between economic reforms and productivity at the level

of firms, sectors, and of national economies. In general, one expects that the

move from central planning and state ownership toward market competition

and more efficient corporate governance increases the productivity at all lev-

els. Several studies confirm this hypothesis by applying productivity analysis

such as data envelopment analysis (DEA) and stochastic frontier analysis

(SFA). Thus, Halpern and Kőrösi (2001) show that in the Hungarian cor-

porate sector increasing competition has lead to a gradual improvement in

efficiency and a shift from decreasing to increasing returns to scale. Using an

unbalanced panel of firms, Funke and Rahn (2002) show that the East Ger-

man firms undergoing transition were significantly less efficient than firms

in Western Germany. Similar studies using advanced quantitative methods

include Brada, King and Ma (1997) on Czechoslovakia and Hungary; Jones,

Klinedinst and Rock (1998) on Bulgaria; Piesse (2000) on Hungary; and

Koop, Osiewalski and Steel (2000) on a comparison between the Polish and

Western economies.

However, the past fifteen years have also taught us that not all expectations

regarding the virtues of transition have materialized. This is particularly

true in the capital-intensive and highly politicized infrastructure sectors,

where reforms have sometimes been slow and painful (see EBRD, 1996,
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2004, and Hirschhausen, 2002). In the last decade energy sector reform has

been especially difficult because its mergers have often resulted in significant

downsizing of employment and plant closures (see early evidence by New-

bery, 1994 and Stern, 1994).

There have been few studies of restructuring’s impact on the electric sec-

tor’s productivity or on individual companies in the emerging internal energy

markets in Europe. Kocenda and Cabelka (1999) studied the liberalization

of the energy sector in the transition countries with respect to its effect on

transition and growth. Filippini, Hrovatin and Zoric (2004) analyzed the

efficiency of electricity distribution companies in Slovenia, using a stochas-

tic frontier analysis. They found that Slovenian distribution companies were

cost inefficient and that in a situation of increasing returns to scale most util-

ities did not achieve the minimum efficient scale. Cullmann, Apfelbeck and

Hirschhausen (2006) provide a cross-country efficiency analysis of regional

electricity distribution companies (RDCs) in four East European transition

countries (Czech Republic, Slovakia, Hungary and Poland). Based on the

cross-section data set for 2001 they find that the restructured Czech electric-

ity distribution companies regularly obtained the highest efficiency scores;

by contrast, the Polish had the lowest efficiency scores in the region, and

were also found to be very heterogeneous amongst themselves.

In this paper, we provide a dynamic efficiency analysis of Polish regional

electricity distribution companies during the transition period. Our aim is
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threefold: first, we want to validate the previous result that Polish RDCs

could benefit from merging into larger units; second, we want to quan-

tify how productivity evolves as the transition proceeds; third, we want to

contribute to the current discussion in the literature on transition and pro-

ductivity. We use a unique data set including technical data and cost and

price data for six years (1997-2002). We apply a broad range of models to

the Polish electricity distribution, such as cost efficiency models to evaluate

allocative efficiency, and panel data analysis to estimate efficiency change

over time.

This paper is structured in the following way: Section 2 describes the re-

form process of the energy sector in Poland since the beginning of economic

transition, particularly the difficulties in restructuring this politically and

socially sensitive sector. Section 3 introduces the data set, model specifica-

tions, and inputs and outputs used in the efficiency analysis. We then apply

a series of traditional and some innovative approaches in nonparametric and

parametric estimation: Section 4 presents the nonparametric approaches

including data envelopment analysis (DEA), an ex ante descriptive statis-

tical method for outlier detection, the stochastic DEA using the order-m

efficiency estimates, and the free disposal hull (FDH) estimator. Section

5 presents results of the parametric approaches: output stochastic frontier

analysis and different panel data models. We interpret and compare the re-

sults obtained. We find that overall transition did have a significant positive
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effect on technical efficiency whereas allocative efficiency decreased during

that period. Section 6 offers our conclusions and suggestions for further

research, and discusses several policy implications.

2 Electricity Restructuring Since Transition Be-

gan

Electricity sector-restructuring has proven to be one of the more difficult

exercises in the process of economic transition and therefore has taken more

effort and more time than initially expected. In socialist countries the

electricity sector was assigned a prominent political and ideological role,

(Lenin’s “communism is Soviet power plus electrification”). Subsequently,

reforms towards more market-oriented structures were challenging: the price

system was changed from “social tariffs” to cost-covering prices; vertically

integrated monopolies were unbundled while some portions became priva-

tized; regulatory authorities were established; environmental standards and

renewable-promotion schemes were implemented. Newbery (1994), Stern

(1994) and Stern and Davis (1998) have provided evidence on the economic,

regulatory and political challenges of restructuring the electricity sector;

many of their observations are still valid. More recent evidence by EBRD

(2004) and Hirschhausen and Zachmann (forthcoming) confirms that the

electricity sector is still one of the unresolved legacies of transition in many
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countries.

Together with high voltage transport and low voltage distribution of elec-

tricity, regional electricity distribution retains many of the characteristics

typical of a natural monopoly (subadditive cost function). This implies

that contrary to electricity production and electricity retail, there can be no

competition in electricity distribution. It also gives the electricity sector an

important role both in socialist systems and in market economies. Electric-

ity distribution is perhaps the most complicated element in restructuring,

where industrial demand has collapsed at the same time residential use is

rising.

Poland, by far the largest electricity producer and distributor among the

East European transition countries, still has problems to resolve before it

can completely reform its electricity sector. Its historical dependence on coal

– a supply source that suffers from chronic over-employment, centralized bu-

reaucratic structure, and a high degree of politicized decision-making – has

weakened modernization efforts. For example, to preserve employment in

several mines, Poland was forced to buy its own expensive coal. In social-

ist times, the electricity sector was organized by a Central Ministry which

delegated operational powers to one electricity company in each of the 33 re-

gions (voivody). The structure remained unchanged during the first decade

of transition; by international comparison, 33 distribution companies is a

large number for total sales of only about 90 TWh of electricity.
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The country’s capital stock also remained largely unchanged, and few in-

vestments occurred. To date, privatization of the distribution companies in

Poland has been dragging on slowly with only 3 of the 33 companies being

bought by (foreign) private investors. By international comparison, the Pol-

ish electricity sector has lost attractiveness vis-a-vis more active transition

countries, such as the Czech Republic and Hungary. Recently, however, the

reform process has picked up speed, with attempts to merge the existing

regional structures into seven large distribution companies and therefore

to benefit from the assumed economies of scale. This consolidation plan

also includes the creation of a few large holding companies for electricity

generation (“national champions”). In the first round of consolidation, 14

regional companies were created out of the initial 33 distributors. From an

economic perspective, such concentration is justified if the size of the units

can be shown to be too small. This is a major concern of this paper and the

following quantitative analysis.

3 Data, Variables, and Model Specifications

3.1 Data

Our analysis is based on a panel data set for 32 Polish regional distribution

companies for the period between 1997 and 2002.4 Both technical and cost
4Data for one company (Gornoslaski Zaklad Elektroenergetyczny SA) was completely

missing.
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data is available from the utilities’ annual reports from 1997 onwards; before

that year, companies were not obliged to report this data systematically. In

2003, the merger process set in, and it became more difficult to compare the

companies.

The electricity distribution companies operate under very similar technical

and institutional conditions. As natural monopolies, their tariff setting is

subject to supervision by the national Polish regulatory authority. Table 1

provides a summary of the main data of the companies. The size, in terms

of km2 distribution area, is quite similar among the 32 companies.5 On

the other hand, there are considerable differences in consumer density, in

particular between the more densely settled regions in the Center and the

South of the country and the less densely settled regions in the North and

East.

Partial productivity indicators vary somewhat among the 32 companies.

The average labor productivity has increased from 1765 Mwh per employee

in 1997 to 2152 in 2002. The firms feature different labor productivity, such

as Zamojska Korporacja Energetyczna SA (1097 MWh per employee) and

Zaklad Energetyczny Plock SA (12199 MWh per employee). This is partly

due to variations in outsourcing (for which no data is available).6

5In that respect, the Polish distribution companies are more homogeneous than for
instance in neighboring Germany. The two exceptions which are smaller than the average
are STOEN, the Warsaw distribution company, and Lodzki Zaklad Energetyczny SA.

6We reported in Table 1 for labor and labor productivity on the one hand the total
number of employees within the companies, where no large changes were detected and on
the other hand the maximum of labor productivity for the companies in a whole. From
1999 onwards the maximal labor productivity is always achieved by just one company
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Another partial performance measure, the number of customers per em-

ployee, also increased on average from 270 in 1997 to 364 in 2002. Capital

productivity is approximated by the ratio of electricity sold in Mwh divided

by network length. The average capital productivity is rather constant over

the period, ranging from 101 Mwh per km network to 106 Mwh per km of

network. This indicates that input factor adaptation largely relies on labor,

but that there is some flexibility regarding the capital input (∼ network

length) as well.

3.2 Variable definition

The available data allows for an analysis of both the technical and the cost

efficiency. There exists a wide variety of parametric and nonparametric ap-

proaches to estimate the production frontier and to derive the efficiency of

the individual firms.7 For estimating the technical efficiency, we use a tradi-

tional model which has been applied for similar sector studies (Hirschhausen

et al., forthcoming, and Cullmann, et al., 2006): labor and capital are used

as inputs, electricity distribution and the number of customers are the out-

put.8

Labor input is estimated by the number of workers. The descriptive statistics

(Zaklad Energetyczny Plock SA). This company outsourced some parts of their services
because the number of employees within this company decreased significantly from one
year to another (from 1999 onwards). That is the reason why the maximum value increased
by three times in one year whereas no large changes were detected in the number of
employees.

7For a survey, see Jamasb and Pollit (2001).
8Estache et al. (2004), include e.g. transformer capacity as a further capital input.

This was not possible for the Polish distribution companies because of data availability.
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(Table 1) show that total employment in the Polish electricity distribution

has decreased over the years. Capital input is approximated by the length of

the existing electricity cables. We differentiate between voltage levels (high,

medium, and low) by introducing a cost factor for each type of line.9

We use the amount of electricity distributed to end users (units sold) and

the total number of customers as output variables. The amount of electricity

distributed somewhat declined from 89.2 GWh (1997) to 86.7 GWh (2002);

this trend is representative for the transition period, as rising electricity

prices and increased energy efficiency dampen consumption. The number of

customers increased mainly due to the rising number of residential house-

holds. On the output side, we also include an inverse density index (settled

area in km2 per inhabitant) to account for the structural differences: this

index (IDI) favors the efficiency scores of less densely inhabited regions.

Our cost model includes total cost (Totex), capital costs, and labor costs.

Totex and labor costs are available for all companies in Polish Zloty (Plz).

The average wages and the input factor price for labor, are calculated as the

ratio of labor expenditures divided by the number of employees.10 Follow-

ing Filippini, et al. (2004), we define capital costs as the difference between

total cost and labor costs. The capital stock is approximated by network
9The factors are = 1, 1,6, and 5 for low, medium and high voltage respectively. They are

adopted from Verband Deutscher Elektrizitätswirtschaft’s (2001) estimates for Germany’s
electricity distribution.

10In Poland, almost all companies apply public sector wages bargained collectively at
the national level; thus there are no substantial regional labor cost differences. As a
result the average salary varies across companies mainly because of the age and education
structure of employees.
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length. We can thus derive the ”price” of capital as the ratio of (residual)

capital cost and the capital stock (∼ network length).

All input prices and costs were deflated by means of the price index of sold

production of industry (1995=100) available from the statistical information

center in Poland. Average costs varied significantly between the companies

with a difference of up to 50 Plz/MWh. Although there were major labor

reductions during our study period, total labor costs increased because of

rising wages. Capital costs and output prices also rose.

3.3 Model specification

Applied empirical work on efficiency and productivity measurement of in-

dividual firms is always confronted with the high sensitivity of the results

to the different approaches and the variation in firm’s input and output pa-

rameters to describe the production process of the industry (see e.g Zhu, J.,

2003). Therefore, with the aim of reflecting a significant and robust image

of the economic operations, this study discusses, applies and compares a

variety of approaches. In essence, choices must be made using the following

criteria: i) nonparametric vs. parametric approaches; ii) technical efficiency

models vs. allocative efficiency models; iii) deterministic vs. stochastic ap-

proaches (see Coelli et al., 2005, for a survey).

Based on the available data and our own modeling experience, we chose

the following models: a DEA Model 1 which uses the traditional choice of
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technical efficiency analysis: the inputs are the number of employees (labor),

and the length of the electricity grid (capital); the outputs are total sales (in

GWh) and the number of customers. In the extended version of the model

(DEA Model 2), we include a structural variable to account for structural

differences among regions: the inverse density index (IDI, measured in km2

per inhabitant). To obtain robust and reliable results, we then estimate the

extended DEA Model 2 also by the FDH-approach (free disposal hull, FDH

Model 1) and the stochastic DEA, the so-called order-m Estimator (Order-

m Model 1). For the stochastic approach to technical efficiency analysis,

the SFA Model 1 uses the basic set of two inputs and two outputs, to which

we add the structural inverse density index (IDI) in SFA Model 2. We ap-

ply two different panel data specifications, Battese and Coelli (1992), called

SFA Model 1, and Battese and Coelli (1995), called SFA Model 2, which

we discuss in Section 5.1. Table 2 summarizes the models for estimating

technical efficiency.

With regard to estimating allocative efficiency, we estimated nonparametric

approaches and parametric cost functions (see Table 3): DEA Model 3 uses

total cost as a dependent variable, whereas DEA Model 4 uses the physical

output ”electricity sold” (in MWh) and the number of customers. DEA

Model 5 uses total costs as input, and the amount of electricity sold and

the number of customers as output. SFA Model 3 defines the total costs

as the dependent variable and both outputs (electricity sold and number of

13



customers) and the input factor prices as regressors. In addition we apply

fixed and random effects panel models developed by Greene (2005). In SFA

Model 4 and 5 we define the input as the sum of the monetized input factors,

the total costs, and the aggregated output index as the dependent variable.

4 Nonparametric Approaches and Results

4.1 Basic DEA, FDH, and stochastic DEA

We apply common nonparametric estimators for efficiency measurement

such as the data envelopment analysis (DEA) and the free disposal hull

(FDH) estimator, proposed by Deprins et al. (1984). In addition we also

apply recently developed approaches, such as the stochastic DEA, the so-

called order-m estimator, proposed by Cazals, Florens and Simar (2002).

The idea of estimating production efficiency scores in a deterministic non-

parametric framework was originally proposed by Farrell (1957) who defines

a measure of firm efficiency relative to a given technology (the production

frontier) which can be estimated by envelopment techniques, such as DEA

and FDH. DEA involves the use of linear programming methods to con-

struct a piecewise linear surface or frontier over the data and measures the

efficiency for a given unit relative to the boundary of the convex hull of

X = {(xi, yi), i = 1...n}, where xi defines the input vector and yi the output

vector of the ith out of n firms.
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θ̂k = min{θ|yk ≤
n∑

i=1

γi yi; θ xk ≥
n∑

i=1

γi xi; θ > 0; γi ≥ 0, i = 1, ...n} (1)

Following Simar and Wilson (1998), θ̂k measures the radial distance between

the observation xk, yk and the point on the frontier characterized by the level

of inputs that should be reached to be efficient. A value of θk = 1 indicates

that a firm is fully efficient and thus is located on the efficiency frontier. γi

are the weights attached to different firms’ inputs and outputs.

Efficiency scores can be obtained either within a constant returns to

scale (CRS) approach or a less restrictive variable returns to scale (VRS)

approach. The VRS approach compares companies only within similar sam-

ple sizes; this approach is appropriate if the utilities are not free to choose or

adapt their size. With respect to the DEA analysis we emphasize the con-

stant returns to scale approach (CRS), because we expect the Polish RDCs

to adapt towards an optimal firm size. Calculations can be done using an

input-orientation or an output-orientation. Traditionally, efficiency analysis

in the electricity sector assumes the output fixed in a market with the legal

duty to serve all customers in a predefined service territory.

The DEA estimates may depend heavily on the assumption that the

production frontier is convex. The FDH estimator, in contrast, relaxes the

assumption of convexity. Cazals et al. (2002) propose the nonparametric

order-m estimator as an alternative, which is based on the expected mini-
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mum input frontier. This type of estimator is more robust since it permits

noise in input measures, and consequently individual observations including

extreme outliers have much less influence on the efficiency frontier.11

4.2 Empirical results: technical efficiency

In DEA Model 1 the Polish companies achieve an average technical efficiency

of 0.59 under a CRS assumption.12 When applying the less constraining

VRS approach, the Polish RDCs considerably gain in efficiency, reaching an

average efficiency level of 0.75. Figure 1 shows the differences of DEA Model

1 under a CRS assumption and DEA Model 1 under a VRS assumption.13

In comparison to other Central European new EU member states, Poland

is relatively large but it has got overproportionally many distribution com-

panies. The low technical CRS efficiency scores combined with a notable

difference in the VRS scores indicate that the Polish electricity distribution

companies are ”too small to be efficient”.14 We postulate that their ineffi-

ciency chiefly originates in their size.

Including the inverse density index in DEA Model 2 changes the rank of the

individual firms. Companies which operate in a less favourable environment,

particularly the smaller companies, significantly gain efficiency in all years.
11For details see Cazals et al. (2002) and Wheelock and Wilson (2003).
12The correlation analysis of the individual efficiency estimates for each year ranges

around 0.9, implying that there is no significant change between the different years at the
company level.

13In the following graphs the firms are ordered by size, defined in our analysis by elec-
tricity sold in Mwh, beginning with the largest company in each year at the left.

14In all years, 50 per cent of the larger companies are on average more efficient than the
smaller ones, which also indicate that there are increasing returns to scale.
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The average efficiency increases to 0.72 under CRS and 0.79 under VRS.

In both models we observe that the average efficiency increases slightly

over the years.15 Our result can be confirmed by Malmquist indices which

measure the change of total factor productivity for a particular firm between

two periods.16 The empirical results indicate a technical change of 1.026 on

average during the observation period. This implies that the technical effi-

ciency increase found in our DEA Model 1 and DEA Model 2 results from

technical progress.

In addition, we note the sensitivity of the results from a different set

of production assumptions by estimating the technical efficiencies using the

FDH Model 1. Only 13 enterprises out of our sample are not classified as

fully efficient. We also note that in every period the same utilities are classi-

fied as inefficient. All of the firms classified as inefficient are medium-sized or

smaller when size is defined as the annual amount of electricity sold. Thus,

the inefficiency of these companies can be seen as robust.

When enlarging our analysis to the stochastic nonparametric approach,

the order-m estimation. We find that technical efficiency also increases dur-
15In DEA Model 1 from 0.56 to 0.59 under CRS, and 0.71 to 0.75 under VRS, and in

DEA Model 2 from 69.7 to 73.1 under CRS and from 77.3 to 80.2 under VRS.
16The index is constructed by measuring the radial distance of the observed output and

input vectors in periods s and t relative to the reference technologies Ss and St. By means
of the Malmquist indices one can decompose efficiency change into technical, efficiency
and total factor productivity components (for more details see Coelli, 2005, p. 67).
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ing the observation period from 0.93 to 0.97. Thus the results from the DEA

Models 1 and 2 can be confirmed.

4.3 Empirical results: allocative efficiency

We now provide an overall economic efficiency measure, the allocative effi-

ciency of the firms. In DEA Model 3 we estimated the relative cost efficiency

of the firms by relating the inputs to the respective factor prices. We find

that while the technical efficiency increases, from 0.76 in 1997 to 0.81 in

2002, the allocative efficiency decreases moderately, from 0.87 in 1997 to

0.84 in 2002. This implies that the cost efficiency or the overall efficiency

of the firms, calculated as the product of technical and allocative efficiency,

remains at a similar level. Thus we observe two trends: first, over the years,

the utilities learned to improve the technical aspect of the production pro-

cess; second, they were unable allocate the inputs more efficiently. This

result can be confirmed by using DEA Model 5, where we include the total

costs as input instead of the physical input factors. Again we note that the

companies failed to utilize the input factors more cost effectively.

Looking at individual firms we note that across all model specifications,

STOEN was the most efficient. This can be explained by its customer struc-

ture, both with regard to density and to specific electricity consumption

patterns; there is a high degree of industrial demand, for example. The
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results remain valid when we compensate other regions for their structural

disadvantage, by using the inverse density index. Other metropolitan dis-

tributors, like Lodz, Krakow, or Wroclaw do not achieve the same technical

efficiency, but their efficiency scores remain above average.

5 Parametric Approaches and Results

5.1 Stochastic frontier model and panel data models

The stochastic frontier approaches17 provide a parametrization of the input-

output relationship. Contrary to the ordinary least squares (OLS), the

stochastic frontier model decomposes the residuals into a symmetric com-

ponent νi representing statistical noise, and an asymmetric component rep-

resenting inefficiency ui.18 Referring to the translog functional form yields

the stochastic frontier production function in the following form

ln yi = β0 +
N∑

n=1

βn lnxni +
1
2

N∑
n=1

N∑
m=1

βnmi lnxni lnxmi + νi − ui (2)

where i is the index for firm i.

17The theory of stochastic frontier production functions was originally proposed by
Aigner, Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977).

18See also Coelli (2005, p. 243). For the noise components νi it is assumed that they are
independently and identically distributed normal random variables with zero mean and
variance σ2

v νi ∼ iidN(0, σ2
v). Alternatives for the distributional specifications of the uis

as well as the likelihood functions for the different models are summarized in Kumbhakar
and Lovell (2000). The above measures of technical efficiency rely on the value of the
unobservable ui being predicted (see Coelli, 2005, p. 8).
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We apply two types of panel analysis: the first is based on Battese and

Coelli (1992, 1995) and the second based on Greene (2005), respectively.

Battese and Coelli (1992) proposed a random effects model with a varying

technical inefficiency over time as follows.

uit = f(t) · ui (3)

where

f(t) = exp[η(t− T )] (4)

η is an unknown parameters to be estimated.

The Battese and Coelli (1995) specification accounts explicitly for environ-

mental non-stochastic factors such as the inverse density. The inefficiency

effects ui are expressed as an explicit function of a vector of firm specific

variables and a random error (see Coelli, 1996, p. 5)

ui ∼ N+(z′
itγ, σ2

u) (5)

where zit is a vector of environmental variables which may influence the

inefficiency effects ui, and γ is a vector of parameters to be estimated. The

other variables are defined as above.

The major shortcoming of the above specified and estimated panel data

models is that any unobserved time-invariant, firm-specific heterogeneity is
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considered as inefficiency. To overcome this problem, we estimated in a

second step the fixed and random effects models derived by Greene (2005),

who extended the stochastic frontier model in its original form to panel data

models by adding a fixed or random effect in the model.19 The true fixed

effects model can be expressed by

yit = αi + x′
itβ + vit − uit (6)

In fact, one can interpret the model as if a full set of firm dummy variables

were added to the stochastic frontier model capturing the unmeasured het-

erogeneity directly in the production function, (Greene, 2005). The true

random effects frontier model can be expressed by

yit = (α + wi) + x′
itβ + vit − uit (7)

where wi, a random (across firms) constant term, represents the cross section

heterogeneity.
19The two are called the true fixed effects model and the true random effects model,

respectively. The two sets of maximum likelihood estimates as well as the inefficiency
predictions were obtained using LIMDEP (Greene, 2002).
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5.2 Empirical results: structural variable, technical change

and cost efficiency

The lower parts of Tables 2 and 3, respectively, provide the concrete spec-

ification of the parametric models that we use. For the SFA models the

outputs were aggregated20 to create a joint index for total sales and the

number of customers. We calculated the predicted technical efficiency ac-

cording to Coelli (1996), assuming a truncated normal distribution for the

technical inefficiencies. In a first step, in order to compare the SFA results

to the pooled DEA, we ran SFA Models 1 and 2 without and with technical

change. Therefore in the first model specifications the results indicate the

average technical efficiency of the firms across the observation period. The

results of this approach lead to the same trend observed in the nonpara-

metric DEA Model 1: the average efficiency score of the 50 per cent largest

enterprises is 0.74, whereas it is only 0.56 for the lower half of the sample.

The SFA Model 2, including the structural variable, indicates that the in-

verse density index has a significant influence that the larger utilities are

on average more efficient. In both stochastic frontier specifications we find

evidence that STOEN is relatively more efficient than the other companies.

We conduct model variation for both SFA Model 1 and SFA Model 2,

first assuming a constant trend, and then extending the analysis by allowing
20For the SFA run the outputs were logged and weighted fifty percent each.
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the technological change to increase or decrease with time. The estimates

of the technical change parameters indicate a technological progress which

decreases over the sample period since the sign of the squared time trend

is negative. More precisely, we estimate that output increased at a ratio of

approximately 2.4 per cent per annum due to technological change. We can

summarize that the SFA results are similar to the DEA results. We observe

some technological change in the electricity distribution industry.

The stochastic cost frontier specification (SFA Model 3) identifies the

minimum costs at a given output level, the input factor prices, and the

existing production technology. The specification of the cost frontier is sim-

ilar to Farsi and Filippini (2004).21 Linear homogeneity in input prices is

imposed by dividing the monetized values by the price of the capital. We

observe an increase in the annual average cost inefficiency over the years

from 30 per cent in 1997 to 41 per cent in 2002. From 1997-2002 50 per cent

of the largest companies operated on the same cost efficiency level as the

smaller utilities. This changed in the last two years of our observation panel

when the small utilities become slightly more inefficient than the larger ones.
21A Cobb Douglas functional form has been adapted, because we want to avoid the risk

of multicollinearity among second order terms due to the large number of parameters in a
translog model, and the strong correlation between output characteristics, (see Filippini
2004 p.13).
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5.3 Distinguishing firm specific heterogeneity from inefficiency

We now turn to the estimation results of SFA Models 4 and 5 where we

define total costs as regressor, so as an approximate for labor and capital

input. In both models the average efficiency decreases from 1997-2002 (see

Figure 3). This effect is stronger in the last two years. In 2002 the average

efficiency dropped almost 3 per cent in the fixed effects specification and 4

per cent in the random effects specification, respectively. The overall trend

exhibited in the other models remains valid: there is an increase in the cost

inefficient use of the input factors in the Polish distributors. Factors that

may account for the inefficiency include a decreasing amount of electricity

sold to end users in the last two years combined with higher costs induced

by new customers and new interconnections on the grid.

In comparison to the previous SFA Models 1-3 the inefficiency estimates

obtained from the fixed effects and the random parameter specification are

30 per cent lower on average. This result is consistent with the theory, since

the models now distinguish heterogeneity from inefficiency, and thus allocate

less of the error term to the inefficiency term. We thus confirm recent

studies such as Farsi et al. (2006), suggesting that the inefficiency estimates

are sensitive to the specification of unobserved firm specific heterogeneity.

The inefficiency scores obtained from the traditional specifications (including

unobserved environmental factors) most likely overstate the inefficiency of

the Polish companies.
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5.4 Consistency of results

Bauer et al. (1998) propose a set of consistency conditions for frontier effi-

ciency measures that we apply. They point out that the efficiency estimates

should be consistent in their efficiency levels, rankings and identification of

best and worst firms, consistent over time and with competitive conditions

in the market and consistent with nonfrontier measures of performance.

To analyze the consistency of our different models we apply two different

conditions outlined in Bauer et al. (1998): 1) we compare the efficiency

distributions with each other, and 2) we look at the rank order correlations

of the efficiency distributions.

The distributional characteristics of the efficiency scores across our different

model specifications are reported in Table 4. The nonparametric models fea-

ture a mean of 0.718 and the parametric models a mean of 0.705, thus very

similar values within the different frontier concepts. We notice that the av-

erage standard deviation from the parametric models (0.089) is significantly

lower than for the nonparametric models (0.141). The mean correlation

across all specification is about 0.42. This indicates that the estimates of

the levels of technical and cost efficiency of the parametric and nonpara-

metric frontier methods, as outlined in Bauer et al. (1998) feature some

differences. That is the reason why we focused more on general trends and

their consistency across specification and time rather than on the interpre-

tation of individual efficiency scores.
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We now turn to the rank order correlation of the efficiency distributions to

look whether different methods will generate similar rankings of the distri-

bution utilities. As Bauer et al. (1998) pointed out identifying the rough

ordering of which utilities are more efficient than others is important for

regulatory policy decisions. If different frontier approaches lead to different

rankings, then policy conclusions may be fragile and depend highly on the

choice of the method. Table 5 shows the Spearman rank-order correlation

coefficients for selected models.22 The average rank correlation among the

nonparametric models was 0.52, whereas the correlation among the selected

parametric models was only about 0.2. Thus the data suggests that the

parametric techniques with the different specifications and distributional

assumptions give only weakly consistent rankings with each other. When

we compare the selected nonparametric with the parametric ones, we ob-

tain an average Spearman rank-order correlation coefficient of 0.25. Thus

we conclude that when looking at the firm level, the different approaches do

not lead to rank the utilities in the same order. Therefore, as outlined above,

the interpretation of the results should be limited to the general trends with

regard to the size of the companies and the changes within time, rather to

conclude detailed regulatory policy conclusion at the firm level. More de-

tailed and sophisticated models would need to be applied in order to conduct

an extensive firm level analysis.
22We based the rank of the firms for each approach on the average efficiency value over

the entire observation period of six years.
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6 Conclusions and Outlook

In this paper we have analyzed the efficiency of electricity distribution com-

panies in Poland - one of the more advanced transition countries that has

recently joined the EU. We have observed that the reform process in this

sector is heavily influenced by the legacy of socialist energy policies and by

attempts to modernize the sector in the wake of EU-accession. We take as

the point of inception the results from Cullmann et al. (2006) of a rather

low efficiency of Polish companies, and a large dispersion within the sample.

The extensive dataset assembled for the current study contains technical,

cost and price data for 1997-2002, thus allowing for a range of model spec-

ifications and simulation analyses. We also conducted a dynamic analysis

to reveal the efficiency change throughout the time period and verified if

transition enhances technical and allocative efficiency.

We discovered that while technical efficiency increased during the transition

period for the distribution companies, allocative efficiency did not. This

indicates that the companies were able to adapt their physical ratio of out-

puts to inputs, i.e. to deliver the same level of services using less inputs.

On the other hand, the price developments during the transition were not

properly accounted for. We also found that input factors were not allocated

in a cost-efficient way.

We demonstrated that there were marked differences between the efficiency

scores of larger companies in comparison to the smaller ones (size being de-
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fined by the amount of electricity sold). The results indicate that the smaller

utilities are on average less efficient, largely due to scale inefficiency. This

effect is neutralized when we introduce the inverse density index. The lack of

scale efficiency does not change over our observation period. It can be con-

cluded that the process of merging 33 distribution utilities into a handful of

larger groups is an appropriate policy. The distribution company STOEN,

which serves Warsaw, regularly achieves the highest efficiency scores; this

can be explained by the favorable structural condition that the company

focus.

From a methodological perspective, we find that the results derived by non-

parametric and parametric analysis are consistent and largely robust with

respect to the model specification. Correlation matrices generally yield rel-

atively high values, whereas rank-order correlations are less robust.

Further research should focus on the effects of the merger effort that be-

gan in 2003 and the implications for the efficiency scores. It seems worth

while to conduct a dynamic comparative analysis with neighboring transi-

tion countries, such as the Czech Republic, Slovakia and Hungary and with

traditional West European countries such as Germany or France.
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Table 1: Descriptive Statistics

Year Network Labor Customers Electricity Inverse Labor Capital Customers/
Length Density Productivity Productivity Employee
in km Sold Index (MWh/) (MwH/km)

in MWh sqkm/inha. employees)

1997 sum 946736 49782 13850514 89255000
av 29585 1555 432828 2789218 0,0092 1764,7 106,3 270,4
med 24174 1646 418780 2686500 0,0090 1638,8 90,3 264,5
min 13179 779 156503 794000 0,0003 947,5 39,0 186,8
max 57675 2749 854928 5979000 0,0177 3338,4 320,2 453,8
std 14169 500 190873 1293245 0,0046 560,7 61,6 58,4

1998 sum 946736 48178 13950957 88622872
av 29585 1505 435967 2769464 0,0092 1816,9 105,4 282,7
med 24174 1616 421229 2716665 0,0090 1657,9 91,7 275,2
min 13179 784 158040 801810 0,0003 987,5 39,1 194,6
max 57675 2725 862110 5643915 0,0177 3267,1 302,2 492,8
std 14169 504 193014 1268507 0,0046 561,0 60,0 63,9

1999 sum 956034 46468 14051383 86210740
av 29876 1452 439105 2694085 0,0092 2072,1 102,1 339,3
med 24174 1601 423678 2551200 0,0090 1636,2 87,8 281,8
min 12860 177 159577 809620 0,0003 849,4 39,2 202,0
max 64602 2701 869291 5308830 0,0177 10527,3 285,4 1915,5
std 14888 539 195183 1283574 0,0046 1661,8 60,9 295,5

2000 sum 958212 45776 14050988 89470372
av 29944 1430 439093 2795949 0,0092 2226,1 106,7 352,1
med 24174 1589 423728 2680172 0,0090 1740,7 90,6 288,6
min 10146 163 159577 838043 0,0003 1098,0 38,5 195,1
max 65104 2711 869291 5603370 0,0177 12199,6 300,4 2080,0
std 15108 560 195197 1316623 0,0046 1908,7 62,9 322,7

2001 sum 962620 45894 14276360 87912990
av 30081 1434 446136 2747280 0,0092 2119,5 104,4 354,1
med 24481 1587 428286 2523575 0,0090 1638,1 90,4 290,2
min 10180 163 163576 818240 0,0003 1056,7 37,4 200,9
max 66134 2718 885631 5627910 0,0177 10179,3 305,7 2108,8
std 15240 549 200772 1327812 0,0046 1582,8 62,3 327,5

2002 sum 966510 45602 14369829 86639108
av 30203 1425 449057 2707472 0,0092 2152,3 101,4 364,5
med 24511 1570 428826 2545220 0,0090 1620,3 90,9 293,9
min 10191 149 164489 820248 0,0003 1024,8 36,3 200,7
max 66794 2763 890650 5677214 0,0177 11780,0 305,7 2314,9
std 15278 550 203237 1296262 0,0046 1847,1 57,6 362,8
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Table 2: Model Specification - Technical Efficiency

Model Input Output

Employees Network Electricity Customers Inverse
Length sold Density Index

I) Nonparametric
Deterministic

DEA Model 1 • • • •

DEA Model 2 • • • • •

FDH Model 1 • • • • •

Stochastic

Order-m Model 1 • • • • •

II) Parametric
Stochastic

SFA Model 1 (BC 1992) • • • •

SFA Model 2 (BC 1995) • • • • •
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Table 3: Model Specification - Allocative Efficiency

Model Input Input Factor Output Input/
Prices Output

Employees Network Labor Capital Electricity Customers IDI Total
Length Price Price sold Costs

I) Nonparametric
Deterministic

DEA Model 3 • • • • •

DEA Model 4 • • • • • •

DEA Model 5 • • •

II) Parametric
Stochastic

SFA Model 3 (BC 1992) • • • • • •

SFA Model 4
(Fixed Effects) • • •

SFA Model 5
(Random Coefficient) • • •
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Table 4: Distributional Characteristics of the Efficiency Scores

DEA DEA DEA DEA DEA DEA DEA DEA
Model 1 Model 1 Model 2 Model 2 Model 3 Model 3 Model 3 Model 4
CRS VRS CRS VRS TE AE CE TE

mean 0.585 0.745 0.722 0.811 0.681 0.766 0.532 0.751
med 0.544 0.717 0.691 0.779 0.658 0.749 0.511 0.725
min 0.406 0.503 0.518 0.623 0.407 0.547 0.25 0.508
max 0.96 0.978 1.000 1.000 0.976 0.999 0.907 0.983

std dev. 0.146 0.156 0.149 0.12 0.173 0.129 0.198 0.152

DEA DEA SFA SFA SFA SFA SFA
Model 4 Model 4 Model 1 Model 2 Model 3 Model 4 Model 5
AE CE (BC 1992) (BC 1995) (BC 1992) FE RE

mean 0.764 0.587 0.597 0.472 0.757 0.908 0.88
med 0.747 0.574 0.581 0.454 0.723 0.909 0.881
min 0.527 0.307 0.419 0.278 0.529 0.893 0.813
max 0.998 0.98 0.973 0.942 0.976 0.912 0.95

std dev. 0.139 0.208 0.119 0.126 0.123 0.004 0.035
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Table 5: Spearman Rank-order Correlation Coefficients for Selected Models

DEA DEA DEA DEA SFA SFA SFA SFA SFA
Model 1 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 4 Model 5
CRS VRS CRS TE (BC 1992) (BC 1995) (BC 1992) FE RE

DEA Model 1 CRS 1.000 0.329 0.211 0.1 0.748 0.753 0.183 -0.165 -0.187
DEA Model 1 VRS 1.000 0.88 0.858 0.159 0.361 0.49 -0.086 0.262
DEA Model 2 CRS 1.000 0.732 0.006 0.137 0.446 0.107 0.307
DEA Model 3 TE 1.000 0.048 0.344 0.544 -0.097 0.247

SFA Model 1 (BC 1992) 1.000 0.899 0.262 -0.195 -0.143
SFA Model 2 (BC 1995) 1.000 0.467 -0.236 -0.051
SFA Model 3 (BC 1992) 1.000 -0.005 0.301

SFA Model 4 FE 1.000 -0.027
SFA Model 5 RC 1.000

37



Figure 1: Difference Results DEA Model 1 (VRS - CRS)
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Figure 2: Average Annual Efficiency - Fixed and Random Effects Model
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