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Abstract

This paper discusses the existence of spurious long memory in common
nonlinear time series models, namely Markov switching and threshold
models. We describe the asymptotic behavior of the process in terms
of autocovariance and autocorrelation function and support the theo-
retical evidences by providing Monte Carlo simulation. The existence
of long memory in these nonlinear processes is induced by the nature
of the process in certain conditions. In addition, GPH estimator itself
introduces bias.
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1 Introduction

In this paper we discuss the asymptotic behavior of nonlinear processes which are
able to create spurious long memory. In the recent years econometric research
addressed the problem of finding spurious long memory when the data contains
structural breaks. A growing literature proposed models which able to capture
both phenomena, as well as developed tests to distinguish between long memory
and structural changes. Granger and Hyung (2004) notice that a linear process



with breaks can mimic long memory. For an overview about structural breaks and
long memory, see Sibbertsen (2004) or Banarjee and Urga( 2005).

However, long memory can appear in various processes. Granger and Ding (1996)
demonstrate that some processes can generate long memory as for instance pro-
cesses containing an aggregation scheme, time changing coefficient models and
possibly nonlinear time series. For the existence of long memory in aggregated
processes see also Robinson (1978). Leipus and Surgailis (2003) show that random
coefficient autoregressive models may exhibit long memory, in the sense that the
covariance function decays hyperbolically.

Breidt and Hsu (2002) consider extensively a class of nearly long memory time
series. They consider regime switching with a dynamic mean structure and show
that for special cases such as random level shift, AR(1), random walk and regime
switching the processes have similar properties than a long memory process. Mor-
ever, Leipus et al. (2005) discuss the long memory properties and large sample
behavior of partial sums in a general regime switching scheme. Parke (1999) intro-
duces an error duration representation for fractional integration. Gourieoux and
Jasiax (2001) study how processes with infrequent regime switching may generate
a long memory effect in the autocorrelation function. Another related discussions
about the relation of long memory and nonlinearity can be found in Deo et al.
(2007) and Davidson and Sibbertsen (2005).

In this paper, we consider whether Markov switching and threshold models can
exhibit long-range dependencies. These models are very popular in empirical ap-
plications and have been identified to create similar empirical characteristics as a
long memory process. We study the asymptotic behavior of these nonlinear pro-
cesses and perform a simulation study to support the theory. We describe in which
sense nonlinear time series can create a spurious long memory behavior.

This paper is organized as follows: section 2 discusses some basic characteristics
of long memory processes, section 3 discusses the estimation of the long memory
parameter and the possible sources for a bias of the GPH estimator. The existence
of spurious long memory in nonlinear processes is discussed in section 4 and section
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5 concludes.

2 Characteristic of Long Memory Processes

Long memory or long range dependence means that observations far away from
each other are still strongly correlated. The correlations of long memory processes
decay slowly that is with a hyperbolic rate.

Long memory can be defined in different ways. The definition is always related to
the asymptotic behavior of the process. In this paper we use those definitions of
long memory which are used later for our considerations.

Definition 1 Let (Xt) be a stationary process for which the following holds.
There exists a real number d ∈ (0, 1/2) and a constant Cρ > 0 such that

lim
τ→∞

ρ(τ)

τ 2d−1
= Cρ

then (Xt) is called a stationary process with long memory.

From the definition above, it is known that the correlations of a long memory
process decay with a hyperbolic rate. They are not summable. If definition 1 gives
a definition for long memory in terms of the asymptotic decay of the autocovari-
ance function, the equivalent definition below uses another characteristic of long
memory in terms of the shape of the spectral density.

Definition 2 Let (Xt) be a stationary process for which the following holds.
There exists a real number d ∈ (0, 1/2) and a constant Cf > 0 and a frequency
λ0 ∈ [0, π] such that

lim
λ→λ0

f(λ)

|λ− λ0|−2d
= Cf

then (Xt) is called a stationary process with long memory.

Both definitions are equivalent as the spectral density links to the autocovariance
function via a Fourier transformation. Another related definition is the asymptotic
behavior of the variances of partial sums:
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Definition 3 Let (Xt) be a stationary process and denote by σX(T ) the vari-
ance of the partial sums ST =

∑T
t=1Xt. If the variance σX(T ) has the following

asymptotic behavior

σX(T ) ∼ O(T 2d−1), when T →∞

with d ∈ (0, 1/2), then (Xt) is called a stationary process with long memory.

In order to give a more severe understanding of the definitions above, Figure 1
shows an example of a typical path of a long memory time series and the autocor-
relation function of this long memory process with parameter d equal to 0.4 . It
can be seen that the autocorrelations are significant even after 50 lags and that
they decay slowly.
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Figure 1: Long memory process with d=0.4. (i) time series plot (ii) autocorrelation
function
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3 Modeling Long Memory and Bias of the GPH

estimator

ARFIMA models introduced by Granger and Joyeux (1980) and independently by
Hosking (1981) are a popular class of long memory processes. They allow for a
fractional degree of integration in order to generalize the class of ARIMA models.
ARFIMA Model are defined as follows:

φ(B)(1−B)dXt = ψ(B)εt

where B is the backshift operator, φ(B) and ψ(B) are the AR and MA polynomials
respectively and εt is a white noise process.
The operator (1−B)d can be written as:

(1−B)d =
∞∑

j=0

dΓ(j + d)

Γ(1 + d)Γ(j + 1)
, (1)

The spectral density of an ARFIMA process behaves like a constant Cf times |λ|−2d

near the origin. Thus the process exhibits long range dependence for 0 < d < 1/2,
where d characterizes the memory parameter (see Beran (1994) for details).

A popular semiparametric method to estimate d is the log-periodogram or GPH
estimator proposed by Geweke-Porter Hudak (1983). It is based on the first J
periodogram ordinates

Ij =
1

2πT
|

T∑
t−1

Xt exp(iλjt)|2

where λj = 2πj/T with j = 1, ..., J and J is a positive integer smaller than T .
The idea is to estimate the spectral density by the periodogram and to take the
logarithm on both sides of the equation. This gives a linear regression model in
the memory parameter which can be estimated by least squares.

The estimator is given by −1/2 times the least squares estimator of the slope
parameter in the regression of {log Ij} on a constant and the regressor variable

Yj = log |1− exp(−iλj)| =
1

2
log(2− 2 cosλj).
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By definition the GPH estimator is

d̂p =

−0.5
J∑

j=1

(Yj − Ȳ ) log Ij

J∑
j=1

(Yj − Ȳ )2

(2)

where Ȳ = 1
J

J∑
j=1

Yj. This estimator can be motivated using the model:

log Ij = logCf − 2dYj + log ξj (3)

where Yj denotes the j-th Fourier frequency and the ξj are identically distributed
error variables with −E[log ξj] = 0.577, known as Euler constant.

A short memory process is characterized by the value of d = 0. Thus, whenever
the data generating process is short memory but creates a positive estimate of the
memory parameter means that the GPH-estimator has to be biased. Next we are
interested in the possible sources of the bias. Let us consider the popular version
of GPH regression (3). The term in (2) can be arranged as follows:

dp = d̂+

∑J
j=1(Yj − Ȳ ) log Îj/Ij∑J

j=1(Yj − Ȳ )2
(4)

where d̂ is the GPH estimator and Îj is the estimated periodogram. Due to the
fact that short memory process is characterized by the memory parameter equal
to zero, thus the bias of GPH estimator is:

bias(d̂) = E(d̂)

= dp −
∑J

j=1(Yj − Ȳ )E(log Îj/Ij)∑J
j=1(Yj − Ȳ )2

From the last expression above, it is clear that there are two sources of bias. The
first term dp represents the bias induced by the short memory components and
the second arises from the fact that the log periodogram is a biased estimator of
the log spectrum (see Smith (2002) for details). To get a clear illustration about
the bias of the GPH estimator, see Agiakloglou et al. (1993) and Choi and Wohar
(1992). They provide an illustration for biases of the GPH estimator for simple
AR(1) and MA(1) process.
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4 Spurious Long Memory in Nonlinear Processes

We restrict the consideration in this paper to Markov switching and threshold
models. There are several ways to show that the properties of such short memory
processes can resemble long memory by means of the autocovariance function, the
conditional mean, the variance of partial sums and the autocorrelation function as
well as the spectral density.

The behavior of the periodogram as an estimator of the spectral density is one
characteristic which might look similar for different processes in finite samples.
Figure 2 and 3 present the spectral density and periodogram of a long memory,
SETAR and Markov-Switching process respectively. Note that the long term be-
havior of a process is specified by the small frequencies of the periodogram. For
long memory processes the spectral density has a pole at the origin.
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Figure 2: Plot spectrum of long memory, threshold and Markov switching process
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Figure 3: Plot periodogram of (i) long memory process (ii) Markov switching
process (iii) Threshold process

From the figures it is clear that the periodogram as well as the spectrum of the
processes are hardly to distinguish. They are identical and flat near the origin.

The following subsections discuss the asymptotic behavior of the processes as well
as the simulation results giving evidence of long memory in the considered non-
linear processes. Firstly, a simulation study applies the GPH estimator with the
original bandwidth frequency proposed by GPH, which is J ∼ o(T 0.5).

4.1 Markov Switching Models

In this paper we consider a simple two-state Markov switching model. The param-
eters of the process are time varying and are governed by an unobservable random
variable st. Lets define the following first order Markov switching model with an
AR(1) process in each regime (Hamilton(1989)):

Xt =

{
µ1 + φ1Xt−1 + σ1εt if st = 1

µ2 + φ2Xt−1 + σ2εt if st = 2
(5)
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The model above can be written as:

Xt = µst + φstXt−1 + σstεt (6)

where µst , φst and σst are parameters under corresponding states st for st = 1, 2.
The states represent different situation in a time series for instance expansion and
recession, congestion and non-congestion, and so forth. The process st is a Markov
chain, characterized by a transition probability P given by the following matrix:

P =

(
p11 1− p11

1− p22 p22

)
(7)

The properties of Markov switching models have been widely considered in recent
papers. Yao and Attali (2000) give a sufficient condition for geometric ergodic-
ity of Markov switching autoregressive models. Geometric ergodicity ensures the
existence of stationary distribution, meaning that if X0 is drawn from any station-
ary distribution, then Xt is also stationary and geometrically β-mixing. Higher
moments of Markov switching process can be found in Timmermann (2000).

By assuming that the chain is irreducible and recurrent, and that there exists a
stationary probability for the chain as matrix P, Liu (2000) demonstrated the
inability of the Markov switching model to generate long memory behavior. The
following theorem formalizes the result:

Theorem 4 . If the Markov chain is stationary, then the Markov chain regime
switching model is in the class of short memory models.

Proof: see Liu (2000)

The result is based on the behavior of the covariance which indicates that the
process is short memory. The asymptotic behavior of the process is always used
identify long memory. Guégan and Rioublanc (2003) derived the autocovariance
function for model (5). They employ the following assumptions:
(1): The process (εt)t is a strong white noise and all its moments exist
(2): (st)t is an irreducible, aperiodic and stationary Markov chain

9



(3): The process (εt)t is independent of (st)t

(4): ‖ ΦP ‖< 1, with Φ = diag(φ1, φ2)

(5): There are an integer h ≥ 1 and a nonempty subset K1 = {k1, ..., kt1} of the
state space K = {1, 2} such that

min
i∈K,j∈K1

q
(h)
ij = θ > 0

where q(h)
ij is the (i, j)th element of the matrix (Ph)′, where P is defined in (7).

Assumption (1)−(3) are needed to develop the unique strict stationarity condition
and assumption (4) and (5) imply that the stable unconditional probabilities πi =

P[st = i], i = 1, 2 exist and can be expressed as πi = limh→∞ q
(h)
ij , i = 1, 2. Then,

it can be shown that the convergence speed of the autocovariance function for the
process Xt follows the theorem below:

Theorem 5 Let Xt be the process defined in (5), by assuming that the assumption
(1) − (5) hold, then the autocovariance function γ(τ) of the process Xt converges
to 0 with the rate O(τvτ ), when τ →∞, with 0 < v < 1.

Proof : see Guégan and Rioublanc (2003).

The theorem gives the rate of decay of the autocovariance function and confirms
that the process defined in (5) asymptotically behaves as a short memory process
in terms of the autocovariance function.

Below we present simulation results to confirm whether Markov switching processes
as defined in (5) can be detected as long memory process or not. For all of our
simulation settings, we use 1000 replications with sample size equal to T = 200

and T = 600 and parameter σ1 = σ2 are set to be one. For the first simulation in
Table 1 we generate a data set following model (5) with the parameters µ1 = 0.5

and µ2 = −0.5 and p11 = p22 = 0.1. Different sample sizes are considered to assess
the consistency of the estimator.
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Table 1: GPH estimator for Markov switching process(5) with p11 = p22 = 0.1

T = 200 T = 600
φ1 = −φ2 d t− stat d t− stat

0.1 -0.064 -8.419 -0.0347 -6.755
0.2 -0.066 -8.569 -0.0457 -8.324
0.3 -0.069 -8.815 -0.0416 -7.910
0.4 -0.067 -8.793 -0.0319 -6.102
0.5 -0.079 -10.089 -0.0383 -6.865
0.6 -0.082 -10.559 -0.0416 -7.770
0.7 -0.070 -10.039 -0.0394 -7.439
0.8 -0.084 -10.940 -0.0346 -6.459
0.9 -0.083 -11.003 -0.0496 -9.512

From the table above, it can be seen that for all cases the GPH estimator is
indicating that the considered Markov process is a short memory process. This
is also supported by the value of the t-statistic indicating that the estimator is
not significantly different from zero. However, note that the results in Table 1 are
obtained by setting the value of the transition probability p11 = p22 = 0.1.

Since the transition probabilities are a key element for Markov processes which are
considered as "persistence" parameter, it is necessary to do further investigations
by using other values. The higher the value of the transition probability pii the
longer the process is expected to remain in state i and the process becomes more
persistent.

Let us consider the following table, which contains the results when the same
parameters of data generating process are used as above but now with p11 = p22 =

0.9. We expect that the GPH estimator will be biased towards long memory since
these parameters leads to a higher persistence of the Markov switching process
and long memory itself is also a persistent process.
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Table 2: GPH estimator for the Markov switching process(5) with p11 = p22 = 0.9

T = 200 T = 600
φ1 = −φ2 d t− stat d t− stat

0.1 0.1194 15.691* 0.0527 9.722*
0.2 0.1158 15.968* 0.0553 10.902*
0.3 0.1178 16.119* 0.0531 10.233*
0.4 0.1219 16.727* 0.0598 11.311*
0.5 0.1292 16.821* 0.0541 9.933*
0.6 0.1468 19.313* 0.0639 11.772*
0.7 0.1765 22.311* 0.0763 14.830*
0.8 0.2272 28.447* 0.0928 16.970*
0.9 0.3358 39.529* 0.1367 23.436*

Note: The asterisk indicates significance at 5% level

Now, a value of the transition probability leads to a positively biased GPH estima-
tor. Table 2 shows that all values are in the range of stationary long memory, for
T = 200 and T = 600. The t-statistic indicates that the estimator d is significantly
greater than zero. This means that in certain cases, Markov switching process can
exhibit long memory depending on the value of the transition probability. This
result shows that instead of the autocovariances there should be other asymptotic
properties of Markov switching processes (5) which resemble long memory and
depend on the transition probability parameter.

To assess the behavior of the GPH estimator against sample size, we see that the
value of d decreases with increasing sample size. This permits easy assessment of
the extent to which the problem of bias diminishes with increasing sample size.
This finding is consistent with the result of Agiakloglou et al. (1993).

Model (5) is a general Markov switching model and it contains several special
cases. Therefore, we now discuss whether some of these representations do behave
asymptotically like a long memory process. One of the processes which attract
many considerations in the literatures is regime switching in the mean defined as
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follows, ∀t:

Xt =

{
µ1 + εt if st = 1

µ2 + εt if st = 2
(8)

Thus, the the ij-th element of P gives the probability of moving from state i (at
time t− 1) to state j at time t. The process (8) is called as mean switching model
where Xt switches from µ1 to µ2 and εt is Gaussian white noise with variance one,
independent of the Markov chain st.

Model (8) is a candidate for a Markov switching process which is able to create
a spurious long memory. Andel (1993) showed that the autocovariance function
of a two state model such as (8) is similar to the autocovariance function of an
ARMA(1,1) process. It is well known that ARMA processes are short memory
with geometrically decaying autocorrelation functions. However, certain ARMA
processes have autocorrelation functions which decay slowly enough to resemble
long memory. The following lemma provides the autocorrelation function of the
process (Guegan and Rioublanc (2005)):

Lemma 6 The autocorrelation function ρ(τ) of the process Xt defined by (8)
is equal to

ρ(τ) =
(µ1 − µ2)

2(1− p11)(1− p22)r
τ

(2− p11 − p22)2[π1µ2
1 + π2µ2

2 + 1− (π1µ1 + π2µ2)2]
(9)

where r = −1+p11 +p22, π1 = 1−p22

2−p11−p22
and π2 = 1−p11

2−p11−p22
are the non conditional

probabilities.

From the lemma above, the autocorrelation function ρ(τ) can be written as ρ(τ) =

Aµi,pii
rh, with Aµi,pii

is defined as the following:

Aµi,pii
=

(µ1 − µ2)
2(1− p11)(1− p22)

(2− p11 − p22)2[π1µ2
1 + π2µ2

2 + 1− (π1µ1 + π2µ2)2]
, i = 1, 2.

The levels µi and the transition probabilities pii determine the decay of the auto-
correlation function with the rate of convergence is rτ = (−1 + p11 + p22)

τ .

Having r as defined above implies that for any value of transition probabilities
pii will yield on r in the range of -1 and 1. r will close to 1 if the transition
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probabilities are high and therefore the autocorrelation function decreases slowly.
In other words, if jumps are rare relative to sample size, then the process has a
behavior similar to that of a long memory process. Otherwise, when r is close to
0 (the case of p11 + p22 close to 1), the autocorrelation function will decay faster
and shows the characteristic of a short memory process.

Consistent to the Lemma above another behavior of such Markov switching process
is examined in Diebold and Inoue (2001). They point out that the variance of
partial sums of the Markov switching process (8) matches those of long memory
processes under certain conditions. The following proposition holds:

Proposition 4.1 Assume that (a) µ1 6= µ2 and that (b) p11 = 1− C1T
−δ1 and

p22 = 1 − C2T
−δ2, with δ1, δ2 > 0 and 0 < C1, C2 < 1, then the variances of the

partial sums of Xt grow at a rate corresponding to I((1/2) max(min(δ1, δ2)− |δ1−
δ2|, 0)).

Proof: see Diebold and Inoue (2001).

By introducing those assumptions, they use the sample size to normalize the dis-
tance between the parameters p11 and p22 and the non-ergodic values. From this,
Diebold and Ineue (2001) determine that the variance of the partial sums of Xt

has the same order as the variance of the partial sums of fractionally integrated
process for any value of δ1, δ2 > 0.

The tables below provide simulation results for the presence of long memory in
the regime switching in mean process. The data generating process is based on
different values for the mean and different settings of the transition probabilities
following the lemma above. We consider mean value of µ1 = 0.5 and µ2 = −0.5

for the first, and µ1 = 5 and µ2 = −5 for the second simulation.
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Table 3: GPH estimator for Markov switching process(8) with µ1 = 0.5 and µ2 =

−0.5

T = 200 T = 600
p11 = p22 d t− stat d t− stat

0.1 -0.0465 -6.321 -0.0389 -7.131
0.2 -0.0521 -6.992 -0.0346 -6.597
0.3 -0.0570 -7.850 -0.0283 -5.511
0.4 -0.0618 -8.499 -0.0325 -6.148
0.5 -0.0551 -7.674 -0.0295 -5.620
0.6 -0.0418 -5.591 -0.0303 -5.687
0.7 -0.0461 -6.134 -0.0291 -5.267
0.8 -0.0015 -0.199 -0.0172 -3.249
0.9 0.1093 14.701* 0.0522 10.211*

In line with the result of the previous simulations long memory appears in the case
of high transition probabilities. The Table below presents the simulation result by
setting µ1 = 5 and µ2 = −5 to asses the behavior against µ.

Table 4: GPH estimator for Markov switching process(8) with µ1 = 5 and µ2 = −5

T = 200 T = 600
p11 = p22 d t− stat d t− stat

0.1 -0.0509 -7.212 -0.0373 -7.030
0.2 -0.0639 -8.507 -0.0404 -7.584
0.3 -0.0515 -6.596 -0.0299 -5.588
0.4 -0.0592 -7.780 -0.0353 -6.544
0.5 -0.0678 -8.348 -0.0256 -4.804
0.6 -0.0396 -5.293 -0.0291 -5.512
0.7 -0.0212 -2.880 -0.0315 -5.839
0.8 0.0537 6.976* -0.0133 -2.481
0.9 0.2442 31.549* 0.1137 20.892*

The results suggest that a higher distance of the means leads to a higher possibility
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that long memory appears. For instance, if the value for p11 = p22 = 0.8 than for
a higher µ the GPH estimator is biased towards long memory. Changing the
transition probabilities yields to a consistent result with the previous experiment
where a higher pii results in a higher probability that the GPH estimator is biased
towards long memory.

The discussion about the bias of the GPH estimator leads to the question whether
it is possible to reduce it and how the bandwidth frequency J has to be chosen.
For the mean switching process Smith (2002) extends the results above to derive
the limiting value of the GPH estimator dp for a particular value of δ and shows
that the choice of J will influence the GPH estimator.

Theorem 7 Consider the Markov switching process in (6), let p11 = 1 − C1T
−δ

and p22 = 1− C2T
−δ, and J = θT γ, where δ = 1− γ, then

lim
T→∞

dp = 1− 0.25
∞∑

m=0

(−1)m(
2πθ

(C1 + C2)
)2m(0.5 +m)−2.

Proof: see Smith (2002)

The theorem implies that d has the limiting value which lies in (0, 1) and therefore
supp11+p22∈(0,1) dp does not converge to zero as T →∞. Note that the function

∞∑
m=0

(−1)m(
2πθ

(C1 + C2)
)2m(0.5 +m)−2

is special function called as the Lerch transcendent function evaluated at (−((2πθ)/(C1+

C2))
2, 2, 0.5). This function generalizes the zeta function.

The fraction (C1+C2)
2θ

can be written in terms of J as

(C1 + C2)

2θ
= (T (1− p11) + T (1− p22))/2J.

Thus, by setting different values of J will yield on the values of d in the range
between zero and one, which characterize long memory. To see the behavior of
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the bias depending on the bandwidth selection, the Table below presents the GPH
estimator by allowing for several choices of J dependent on γ.

Table 5: GPH estimator for Markov switching processes with different γ

T = 200 T = 600
γ d t− stat d t− stat

0.2 -0.2248 -5.832 -0.1702 -6.709
0.3 -0.0942 -4.870 -0.0798 -5.565
0.4 0.0273 2.447* -0.0282 -3.501
0.5 0.1146 15.349* 0.0517 9.761*
0.6 0.1612 31.313* 0.1241 34.135*
0.7 0.1591 41.960* 0.1652 67.397*
0.8 0.1443 54.140* 0.1564 96.904*
0.9 0.1277 57.340* 0.1294 109.160*

The estimation cannot be carried out for γ = 0.1 as the bandwidth is too short.
The results in Table 5 clearly show that the estimated value of d changes with
a changing value of γ. In this case γ = 0.5 and γ = 0.8 correspond to the
value suggested by Geweke and Porter Hudak (1983) and Hurvich et al. (1998),
respectively. Hurvich et al.(1998) show that J = T 0.8 results in a minimal mean
squared error(MSE). The Table below presents the value of the GPH estimator
with the same parameter setting as in Table 3 and 4, but using γ = 0.8.
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Table 6: GPH estimator for Markov switching processes (8) with µ1 = 0.5,µ2 =

−0.5 and γ = 0.8

T = 200 T = 600
p11 = p22 d t− stat d t− stat

0.1 -0.0231 -8.213 -0.0095 -5.580
0.2 -0.0289 -10.468 -0.0133 -7.626
0.3 -0.0310 -11.340 -0.0170 -9.853
0.4 -0.0264 -9.390 -0.0162 -9.331
0.5 -0.0130 -4.841 -0.0049 -2.808
0.6 0.0150 5.470* 0.0119 6.742*
0.7 0.0464 16.272* 0.0408 23.532*
0.8 0.0905 32.745* 0.0880 52.817*
0.9 0.14601 56.887* 0.1577 98.305*

Table 7: GPH estimator for Markov switching processes (8) with µ1 = 5,µ2 = −5

and γ = 0.8

T = 200 T = 600
p11 = p22 d t− stat d t− stat

0.1 -0.1609 -58.384 -0.0864 -51.630
0.2 -0.1636 -58.137 -0.0903 -53.559
0.3 -0.1425 -51.357 -0.0806 -45.587
0.4 -0.0923 -31.657 -0.0588 -35.777
0.5 -0.0110 -3.841 -0.0072 -4.043
0.6 0.0900 32.191* 0.0685 39.630*
0.7 0.2217 78.366* 0.1761 108.502*
0.8 0.3932 142.849* 0.3297 187.361*
0.9 0.6002 217.947* 0.5523 314.112*

Comparing Table (3) with (6) and Table (4) with (7) leads to the conclusion that
the choice of the bandwidth frequency is important in order to determine the bias.
Using γ = 0.8, the GPH estimator will frequently be biased towards long memory.
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Using γ = 0.5 results in a lower bias but it is considered as inefficient as it is
not MSE optimal. In addition, if we see the nature of the process the closer the
process is to ergodicity the higher is the persistence and the process will resemble
long memory. We can say that the choice of γ = 0.8 gives a better explanation of
the nature of the process in terms of persistency.

4.2 Threshold Models

Threshold models differ from Markov switching models on the way to create jumps
from one state to another. Threshold models assume that the shifts between
the regimes are observable and not exogenous. There are two different types of
threshold models, namely SETAR and STAR models. The difference between
them is that the regime switching in a SETAR model is based on a discontinuous
function, whereas in STAR models it is based on continuous function. Threshold
models especially the TAR model have a close relationship to the Markov switching
process in a certain case (see Carrasco (2002) and Gourieroux (1997)). However,
In case of the delay parameter equal to one, threshold models are not Markov
switching because the Markov chain (indicator) function is not exogenous.

In this part we describe the existence of spurious long memory generated by thresh-
old models. Point of departure is the following SETAR representation:

Xt = F1(Xt−1,Φ)(1− I(Xt−l > c) + F2(Xt−1,Φ)(I(Xt−l > c)) + εt, (10)

where the functions F1 and F2 are autoregressive processes depending on the past
values of Xt and εt. The process εt is white noise and I an indicator function. The
model (10) becomes a STAR model and the regime changes smoothly by setting
the indicator function to a continuous function, G(Xt−l, γ, c). If the function F1

and F2 are short memory, then the process in (10) is short memory.

In the case that one state has long memory, the process is long memory. Investi-
gations on the existence of long memory in the processes is done by examining the
stationarity conditions of the processes. Let us consider the SETAR (2,1) process,
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a simple SETAR with two regimes and autoregressive order one in each regime as
described below:

Xt =

{
φ0,1 + φ1,1Xt−1 + εt if Xt−1 ≤ c

φ0,2 + φ1,2Xt−1 + εt if Xt−1 > c
(11)

The delay parameter in the model above is set to be one. Chan (1993) and Dĳk,
et al. (2002) define the stationary conditions of (11) as follows:

1. A sufficient condition for stationarity : max |φ1,1|, |φ1,2| < 1.

2. Necessary and sufficient conditions for stationarity:
- φ1,1 < 1, φ1,2 < 1, φ1,1φ1,2 < 1,
- φ1,1 = 1, φ1,2 < 1, φ0,1 > 0

- φ1,1 < 1, φ1,2 = 1, φ0,2 > 0

- φ1,1 = 1, φ1,2 = 1, φ0,2 < 0 < φ0,1

- φ1,1φ1,2 < 0, φ0,2 + φ1,2φ0,1 > 0

From the conditions above, stationarity depends on the setting of the autoregres-
sive parameters. A non-stationary behavior can appear in one regime whereas the
process is still globally stationary, which can lead to a confusion with long memory.

The following tables present simulation results on spurious long memory in thresh-
old models. Let us consider the case where the necessary and sufficient conditions
for the stationarity above are fulfilled. Under the first condition the results are
given in Kuswanto and Sibbertsen (2007) showing that the GPH estimator is biased
towards long memory. To investigate the second condition, we set the parameters
for the data generating process in Table 8 as φ1,1 = 1, φ1,2 = 0.1 and c is set to be
zero.
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Table 8: GPH estimator for TAR processes with φ1,1 = 1 and φ1,2 = 0.1

T = 200 T = 600
φ0,1 d t− stat d t− stat

0.1 0.8249 207.604* 0.8441 307.957*
0.2 0.7678 162.380* 0.7121 231.900*
0.3 0.5928 125.017* 0.5913 183.095*
0.4 0.4956 106.163* 0.4812 147.967*
0.5 0.4069 94.433* 0.3885 129.739*
0.6 0.3306 76.876* 0.3094 105.290*
0.7 0.2723 65.739* 0.2421 88.749*
0.8 0.2157 53.311* 0.1889 74.089*
0.9 0.1723 45.949* 0.1459 60.820*

From the table, we can see that the mixing parameter in case of global stationarity
can generate a long memory behavior. To know how this behavior depends on the
choice of the autoregressive parameter φ1,2, we do simulation by setting φ1,2 = 0.9.
This shows that the more persistent the autoregressive part of the process is (a
higher value of φ close to unity), the higher is the possibility that long memory
will appear. This can be seen from the table below.

Table 9: GPH estimator for TAR processes with φ1,1 = 1 and φ1,2 = 0.9

T = 200 T = 600
φ0,1 d t− stat d t− stat

0.1 0.8165 237.264* 0.7954 309.919*
0.2 0.8040 258.839* 0.7696 347.590*
0.3 0.7979 260.175* 0.7633 366.930*
0.4 0.7911 262.086* 0.7518 396.365*
0.5 0.7869 266.074* 0.7433 419.715*
0.6 0.7848 283.256* 0.7436 402.063*
0.7 0.7842 266.810* 0.7383 426.123*
0.8 0.7799 280.985* 0.7360 427.559*
0.9 0.7811 275.666* 0.7340 428.562*
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All GPH estimators are biased towards long memory. This result is also consistent
under condition (3). Below you find the result under condition (4), where φ1,1 =

1, φ1,2 = 1 with various values of φ0,1 and φ0,2.

Table 10: GPH estimator for TAR processes with φ1,1 = 1, φ1,2 = 1

T = 200 T = 600
φ0,1 = −φ0,1 d t− stat d t− stat

0.1 0.9208 299.877* 0.9364 487.486*
0.2 0.8590 251.864* 0.8479 376.124*
0.3 0.7759 205.877* 0.7429 300.329*
0.4 0.6733 172.456* 0.6406 244.489*
0.5 0.5805 148.509* 0.5377 199.488*
0.6 0.4871 129.712* 0.4448 169.450*
0.7 0.4034 106.050* 0.3629 144.674*
0.8 0.3330 91.155* 0.2915 121.350*
0.9 0.2728 73.922* 0.2317 98.254*

Again, all GPH estimators are biased towards long memory, either stationary or
non-stationary. The results above are obtained under the bandwidth J ∼ o(T 0.8).
Using J ∼ o(T 0.5) might give different result. However, we examine only J ∼
o(T 0.8) due to reasons mentioned in the previous subsection.

Now consider a special case of SETAR models given in Dufrenot et al. (2005) as
follow:

Xt =

{
(1−B)−dε

(1)
t if Xt−1 ≤ c

ε
(2)
t if Xt−1 > c

(12)

The similar model was considered by Guégan (2004). This model has the specific
characteristic that one regime has long memory dynamics and the other has weak
dependencies. The switching in the regimes determines the autocovariance func-
tion and the spectral density of the process. The autocovariance function of (12)
can be expressed as

γ(τ) ∼ Γ(1− 2d)

Γ(d)Γ(1− d)
τ 2d−1, as τ → +∞ (13)
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which is not summable and the spectrum has the following representation

f(λ) ∼ Cλ−2d+, as λ→ 0 (14)

where C is a positive constant. We see that at zero frequency the spectrum f

goes to infinite. This indicates that long memory dominates asymptotically. The
existence of long memory is induced by the switching behavior across the two
regimes. If regime 1 is more frequently visited by the observations than regime 2,
then the autocorrelations will decay slowly and the spectral density at frequencies
near zero will have high values. The opposite condition results to the short memory
process.

5 Conclusion

This paper has been written to give the reader a clear description in a structural
way about the existence of spurious long memory in some nonlinear processes
which are most interesting in practice. The paper makes the following contribu-
tions. First, general Markov switching model as well as mean shift process can
mimic long memory. This mimicking phenomena emerges under certain settings of
the parameters. Long memory processes more likely emerge in case of transition
probabilities close to unity, indicating that the process is becoming more persis-
tent. Second, threshold models are clearly able to generate spurious long memory
under locally or globally stationarity conditions especially if the process is highly
persistent. Third, the GPH estimator itself introduces a bias and the choice of the
bandwidth frequency plays an important role in generating spurious long memory.
The bias decreases with an increasing sample size.
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