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Abstract

Model risk as part of the operational risk is a serious problem for financial insti-

tutions. As the pricing of derivatives as well as the computation of the market

or credit risk of an institution depend on statistical models the application of a

wrong model can lead to a serious over- or underestimation of the institution’s

risk. Because the underlying data generating process is unknown in practice eval-

uating the model risk is a challenge. So far, definitions of model risk are either

application-oriented including risk induced by the statistician rather than by the

statistical model or research-oriented and too abstract to be used in practice. Es-

pecially, they are not data-driven. We introduce a data driven notion of model risk

which includes the features of the research-oriented approach by extending it by a

statistical model building procedure and therefore compromises between the two

definitions at hand. We furthermore suggest the application of robust estimates to

reduce the model risk and advocate the application of stress tests with respect to

the valuation of the portfolio.
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1 Introduction

Model risk emerged as a new risk category with the advent of elaborate and complex math-

ematical and statistical models during the late 1970s when Black, Scholes and Merton laid

the path for a new field of science - mathematical finance. It is under the focus of various

stakeholders of so-called internal models: regulators, rating agencies, investors, shareholders,

bondholders, chartered accountants and the firm’s board. Therefore model risk can hardly

be overestimated. A quote from a Sector Report of the UniCredit Group (2008), states that

some investors ”tend to apply an across-the-board discount of about 20% to the published

numbers” due to investor skepticism and lack of transparency, giving the reader the flavor of

its economic relevance.

The urge for better models stemmed from a riskier environment for financial institutions

after the break-down of the Bretton Woods system and a steadily growing dependency of the

world economy. Financial institutions were gradually exposed to higher risks and faced new

risk categories. At the same time, the huge increase in computer capacity and ability led to

better possibilities to calculate these models. An overview on the technical progress and its

implication for financial markets is given in Marshall (2000). Alexander (2003) and Padoa-

Schioppa (2004) show the rationale of regulation, especially of so-called internal models for

banks. In 1998, regulatory authorities acknowledged these models for regulatory purposes.

Since then they are wide-spread in practice.

But a model is only capable of capturing features of reality and is subject to the modeler’s

preferences and abilities. And even high sophisticated models capturing stylized-facts such as

volatility clustering or long memory are confronted with mapping errors when implemented

in practice. The role of mapping errors is depicted in figure 1 where X denotes the data set,

M is the estimator of the loss distribution, Dρ is the domain and ρ is the risk measure. The

combination ρ̂ = ρ◦M : X → R allows for the direct computation of a risk measure estimate.
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Figure 1: Risk measurement procedure (Cont et al. (2007))

The final output of an internal model is a realization xt+h associated with a forecast distri-

bution

L(πt+h | It)

and

L(πt+h | It ,Zt),

respectively, where πt+h denotes the variable of interest, typically a portfolio that is hold

over a time span h. The forecast is drawn on possibly two of different type information sets.

The first, It , comprises a history of risk factors, e. g. a time series of bond prices, say. The

second, Zt , which is typically used by insurances under Solvency II is of managerial type, e.g

management rules for splitting losses between shareholders and policyholders.

But this is only half of the output. The other is related to the valuation of πt+h:

ν(πt+h).

Figure 2, taken from Baumgartner et al. (2004), shows the interplay between the model

and the various valuations. From this representation one concludes that in the insurance in-

dustry mark-to-model valuation is a general approach for the evaluation ν(πt+h). Compared

to those methods applied in the banking industry, an additional accounting step is applied.
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Figure 2: Interplay between the model and the various valuations

Note that for both outputs, the forecast and the valuation, models and hence models risk are

involved. Have in mind that forecast and valuation are two different problems. Whereas for

the valuation the underlying probability distribution of the model is of interest in the forecast

situation a complete forecast distribution is derived.

Derman (1996) was the first one who referred to model risk in the field of financial engi-

neering by stating that models give at least a rough approximation of the reality. Given the

relevance of that topic it is surprising that the number of publications devoted to model risk is

rather small.

Rebonato (2001) defined model risk as ”...the risk of occurrence at a given point in time

(today or in the future) of a significant difference between the mark-to-model value of a com-

plex and/or illiquid instrument held on or off the balance sheet of a financial institution and

the price at which the same instrument is revealed to have traded in the market - by brokers’

quotes or reliable intelligence of third-party market transactions - after the appropriate provi-

sions have been taken into account”. This definition only refers to a financial instrument but

neglects errors made when forecasting the value of the institutions’ portfolio. Note also that

VaR models are large-scale models whereas pricing models are comparatively small.

We assume that model risk is the discrepancy between the implemented data generating

process and the data at hand which can also be gathered in the future. In the following we
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focus on a definition which comprises estimation errors and misspecification risks but we

consider implementation risk only in so far as this type of error might contaminate our data.

The quantification of the model risk is also still in its infancy. This problem is most

obvious in the context of financial risk management and portfolio valuation, especially of

derivative instruments.

This paper aims at developing a working definition of model risk and giving an overview of

the current practice of model risk quantification. Section 2 focuses on the main types the term

model risk comprises. Sections 3 and 4 review the actual practice of model risk quantification

in the market risk measurement and derivatives’ valuation context. Section 5 discusses robust

methods to avoid model risk due to biased estimates because of data contaminations and

sketches the application of stress tests. Section 6 concludes.

2 Types of model risk

Although the importance of model risk comes more and more into the focus of practitioners

as well as researchers there is so far no clear notion of how model risk should be defined.

Basically there are two different extreme notions of model risk. A more practice-oriented

viewpoint is that everything which might be one way or the other related to the used statis-

tical model is part of the model risk. This includes data contaminations as well as a wrong

implementation or a wrong choice of starting values. Even a wrong application of the statis-

tical model is seen as a source for model risk. This means that in this notion the behavior,

preferences and abilities of the statistician herself are also seen as part of the model risk. For

an overview of this notion of model risk see Crouhy et al. (1998).

Although a wrong implementation of the model is definitely a problem and a risk for the

financial institution this should in our opinion not be part of the risk. Therefore, in our set-

up these sources of risk are treated as part of the operational risk of the financial institution

though not as part of the model risk.

The other line of definition is rather research-oriented and strictly mathematical (see Kerkhof
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et al., 2002). They define a statistical model as a probability space. Although this approach

allows for a high generality it does not seem to be handy for practical purposes. The probabil-

ity space of a model uniquely defines a model and thus contains all the necessary information.

However, it is a very abstract approach not giving inside into the actual statistical modeling

procedure. This is mainly because a new parameter space is needed for every parameter con-

stellation and model specification to avoid identification problems. Therefore, the set of valid

probability spaces to be evaluated has to be massive and it is impossible to set it to sensible

limits in most practical situations. Another drawback is that it focusses on the distributional

properties whereas in the situation of forecasts the forecast distribution is not the relevant

information as we will discuss later.

In our approach model risk can occur in different levels of the statistical modeling proce-

dure. The first level is the model risk induced by the probability space which is captured by

the definition of Kerkhof et al. (2002). On a second level the modeler has to draw conclusions

which concrete econometric model specification is adequate. This is usually done by the ap-

plication of various specification tests. However, it is well known that the chosen model can

depend on the choice of tests applied to the data. Therefore, the choice of tests is a source of

model risk as well. On a third level the modeler has to estimate the model parameters. The

wrong choice of an estimator can also induce model risk.

Hence, our approach is somewhat in between these two extreme approaches. It comes

from the believe that the usual procedure of measuring risk is to fit a model to the data at

hand, either a portfolio of financial derivatives or a portfolio of credits or anything else, and

then draw conclusions about possible losses based on the dynamics of the fitted model. By

introducing a model all statistically relevant information such as a probability measure is given

through the model implicitly. Model risk describes the risk that this fitted model is wrong.

Thus, it does not draw any conclusions from the fitted model but measures the difference

between the dynamics of the actual data and the fitted model. This understanding of model

risk comes from the econometric modeling approach discussed for example in Clements and

Hendry (1996).
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We first give a rather broad definition of model risk which is in line with the definition of

Crouhy et al. (1998):

Definition 1. Every risk induced by the application of a statistical model is called model risk.

It should be mentioned that under the notion ”statistical model” we subsume statistical,

stochastic as well as econometric models.

A more specific approach following a data-driven econometric modeling idea is:

Definition 2. Every risk induced by the choice, specification and estimation of a statistical

model is called model risk in the strict sense.

We thus see model risk to be possibly introduced in one of three modeling steps.

Remark: This definition excludes every risk from ”human failure”. However, it still includes

the risk induced by data contamination as this might lead to the use of robust procedures.

We assume a model based on a vector of observations xt based on all variables in period t.

Given Xt = (xt−1, . . . ,x1) the joint probability of xt can be stated as

∏L(xt |Xt−1;Θ).

This is in line with Kerkhof et al. (2002) who specify the model by a probability space.

The concrete specification of the model contains of four steps including the estimation and

specification steps from definition 2:

1. Marginalization of the data generating process;

2. Model specification with respect to the choice of variables;

3. Model specification with respect to the functional form;

4. Estimation of the parameters.
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For further details see Cuthbertson et al. (1992). Errors can therefore occur for one of the

following reasons:

• parameter change;

• model misspecification;

• estimation uncertainty;

• variable mismeasurement;

• initial condition uncertainty;

• non-modeled variable uncertainty;

• incorrect categorization of some variables as exogenous;

• lack of invariance to policy changes in exogenous variables;

• error accumulation.

This approach bridges the gap between the abstract notion of Kerkhof et al. (2002) and

our more practical statistical modeling approach.
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Component of Model Risk Categories Procedure step #

model errors and • errors in the analytical solution 3

misspecification • misspecification of the underlying stochastic process 1

• missing risk factors 2

• missing considerations 2

• misclassifying or misidentifying the underlying asset 2,3

• changing market conditions 1,2,3

• length of sampling period 1

• errors in variables 2

model estimation • competing statistical estimation techniques 4

• estimation errors 4

• outlier problems 2,4

• estimation intervals 4

• calibration and revision of estimated parameters 4

Table 1: This table summarizes main components of model risk. We would like to emphasize

that our approach follows classical statistical reasoning. Others, e. g. Crouhy et al. (1998)

consider the whole process in a more cybernating fashion by allowing the interaction of the

statistician and the statistical model. Given the complexity of a VaR model we see no good

way for a valid modeling. This might only be sensible for pricing models.

As outlined in Table 1 our data-driven modeling emphasizes two central tasks: choosing

the functional form, and using the data to estimate the parameters. Model mismatch errors

mirror the model’s inability to represent the data. Estimation errors end up in incorrect pa-

rameter values. The well-known bias-variance tradeoff hinders to reduce both errors from

underfitting and overfitting simultaneously. Therefore, we assume that the principle of a par-

simonious modeling is implicitly fulfilled. Note that overfitting will decrease the in-sample

error, however the out-of-sample error will in general start to increase. The latter type of er-

ror is of particular importance for forecast distributions. Considering a forecast problem the

model error is of minor importance, because forecast quality is judged by a function of the
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forecast distribution and the realization:

T (L(Xt+h|It),ν(πt+h)).

Of course, model errors might detoriate forecast quality. Note, that in Kerkhof et al. (2002)

the model error is measured by a metric that compares different forecast distributions. We

follow approaches summarized in Corradi and Swanson (2006).

Similar to other approaches our approach is not free of problems, too. To measure the risk

induced by a model it has to be compared to an alternative model. To correctly specify the

model risk you have to know an accurate model. However, accurate models are often hard

to find. As we cannot always find an accurate model we need a benchmark model giving a

close approximation to our data. The problem is how to choose this benchmark model. If

we knew the model closest to our data we could easily use this model for risk measurement

and model risk would no longer be a problem. Thus, finding a suitable benchmark model

is a serious problem. However, it will hardly be possible to overcome this problem when

discussing model risk.

In this respect the problem of quantifying model risk is closely connected to concepts of

robust statistics where the influence of wrong data on an estimator or test is considered. These

concepts are directly applicable in our set-up in the second and especially in the third step of

the modeling procedure. If the data is contaminated the use of a robust estimator might be

preferable as is discussed in section 5.

Statistical models in finance are basically used for two major applications: firstly they

are used for the pricing of derivatives and secondly they are used to measure the market

or credit risk of a financial institution. These two applications lead to different problems

when measuring the model risk. Whereas in the first case the model has to be evaluated and

thus slight departures of the model can lead to huge errors in the second case the model is

used for forecasting. It should be mentioned that forecasts can be quite robust against model

misspecifications. For a detailed discussion and an example see Hamerle and Rösch (2005).
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3 Model risk when measuring risk

The development of sophisticated credit risk models is still a challenge to the risk manage-

ment industry. Especially the issue of non-linear dependency of credit risks poses big prob-

lems. When using two different copulae or different correlations profit-/loss-distributions can

deviate widely. The inherent model risk can hardly be quantified. The same problem holds for

operational risks. Models for the quantification of market risk, however, are much more de-

veloped. Therefore, we concentrate on the model risk measurement for market risks. Portfolio

risk can then be decomposed into market risk, estimation risk and misspecification risk.

Currently, the Basle Committee sets a multiplication factor of 3 in order to take model risk

into account, see Stahl (1997). This approach was well-justified as the performance of VaR

models through the 2001 crisis has shown, see Jaschke et al. (2007).

According to the coherence theory of Artzner et al. (1999) the calculated model risk

measure should be added to the market risk measure to make a risky position acceptable.

There are two models which are used in the context of measuring the model risk inherent

in market risk models: the Bayesian approach and the worst-case approach.

The Bayesian approach

Suppose that K comprises all candidate models to measure market risk. Then the following

prior beliefs are necessary: the priors on the model parameters θ and the prior beliefs of the

probability P for all models K that this model is the true model. Then the Bayesian approach

calculates the expected risk measure by taking the average over all candidate models K . In

the context of a model risk measure for market risk this means calculating VaR with different

models, e. g. historical simulation, stochastic simulation and variance-covariance-approach

and then calculating the average of the resulting VaR.

The strengths of this approach lie in its predictive ability and the stability of the resulting

estimates. The main shortcomings of this approach consist in the difficulties to measure the

priors and the probability of each model. ¤
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The Worst-Case Approach

Let a model m be given and M is a class of models. A financial assets’ risk on a model m

is denoted by πm. K is the tolerance set of all models that describe the alternative dynamics

including the nominal model m. Model risk as for the worst-case approach is defined as the

difference between the market risk measure of a nominal model and the market risk measure

under the worst-case model, formally

ρ(π,m,K ) = supk∈K RMk(πk)−RMm(πm)

(see Kerkhof et al., 2002) where supk∈K RMk(πk) is the worst-case risk measure. Suppose

model risk is the sum of estimation risk and misspecification risk as defined in section 2. Es-

timation risk is the risk of choosing a wrong element m(θ̂) out of a model class M (θ) even

if the actual dynamics belong to it. One typically proceeds by defining a confidence region

around the estimator θ̂. The risk of wrong estimation is also defined as model risk restricted

to the model class whereas misspecification risk is unrestricted to M (θ). The alternative dy-

namics can then be distinguished by a restricted tolerance set Kr and an unrestricted tolerance

set Ku.

This term can be non-negative. To overcome this weakness, the restricted tolerance set

has to be nested within the unrestricted tolerance set, for example by forming convex com-

binations of models or by using a family of unrestricted tolerance sets which have been

parametrized by a confidence level. Let α and Kr be given. Then Ku = Ku(β) with β =

min(α,supγ ∈ (0,1) : Kr ∈Ku(γ)) (see Kerkhof et al., 2002). This approach fails in accu-

rately quantifying the risk that stems from using a wrong model because the actual dynamics

are still unknown. The approach equates the worst-case scenario risk measure with the risk

under the worst case. ¤
These considerations refer only to the first step of our modeling procedure. Kerkhof et

al. (2002) focus on the comparison of forecast distributions when measuring model risk.

Following the model building steps two to four in the previous section can reduce the model

risk significantly by correctly specifying and estimating the model. Although each of these
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steps can induce an error itself this modeling procedure will result in a model which is as

adequate as possible in the sense that it gives a reliable forecast. Thus, our model building

approach focusses on the comparison of forecast realization of the underlying data generating

process or an adequate approximation of it and the specified model and therefore, goes beyond

the Kerkhof approach.

4 Model risk when pricing derivatives

An important component of a financial institutions’ model risk results from the valuation of

derivative instruments. In the context of option pricing, the importance of this topic becomes

obvious when acknowledging for the fact that banks usually step into the (riskier) writer side

of the option. The liability of the buyer is limited to the premium paid for obtaining the right

to execute the option so that private investors prefer this side of the contract (see Green and

Figlewski, 1999).

A huge number of pricing models have been proposed in the aftermath of the Black-

Scholes and Merton model that account for stochastic volatility and the empirically-secured

fact that the returns of the underlying asset exhibit excess kurtosis, i.e. extreme events are

more likely than under the assumption of log-normal returns. Nonetheless, the Black-Scholes

model is the most widely-applied model for valuing options (see Bakshi et al., 1997). Besides

misspecifying the pricing rule, another crucial model risk source is related to the estimation

of the required input parameters to value a derivative, especially the volatility which has to

be forecasted. The modeler can choose between estimating the volatility from historical data,

adopting conditional volatility models from the (G)ARCH-family or using the model-implied

volatility.

A firm could limit its derivative risk by adopting coping strategies such as diversification,

cash-flow matching or delta hedging (see Green and Figlewski, 1999) whereat the latter is the

most common method.

To quantify the model risk induced by derivatives valuation the afore-described approaches
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can be applied. The first method involves averaging over the option prices obtained from ap-

plying different pricing methods in the Bayesian framework. Another possibility would be to

differentiate between market and model risk within the worst-case approach.

Let S be the underlying of the option, (Hi)i∈I be its payoff and (C∗i )i∈I is the current price

observed in the market which ranges within a span C∗i ∈ [Cbid
i −Cask

i ]. Denote model risk by

a mapping µ : C 7→ [0,∞[ and by Q a pricing rule whose function is to relate the price of the

underlying asset to the price of the derivative instrument under the assumption of no-arbitrage,

i.e. the martingale representation should be fulfilled. λ stands for the fraction of the spread

attributable to model risk. Denote by

C = {H ∈ FT ,supQ∈QEQ[|Hi|] < ∞}

a contingent claim for each modelQ. Arbitrage freedom is secured by the martingale Gt(ϕ) =
∫ t

0 ϕudSt , where (ϕt)t∈[0,t] is a predictable process. Cont (2004) assumes that the price of

a liquid plain-vanilla option forms itself within the interaction of supply and demand and

contains no model risk. Hence, model uncertainty in the derivatives context is only a problem

for over-the-counter (OTC) instruments whose price cannot be determined easily. Instead, a

pricing rule needs to be applied to value an OTC-instrument.

The upper price bound of the contingent claim of the firm is defined as

π̄ = supQ∈Q EQ[X ]

and the lower price bound as

π = in fQ∈Q EQ[X ].

The result of applying a pricing rule will be a risk measure within the range spanned by

the lower and upper bound. A model risk measure fulfilling the axioms above is then defined

by

µQ(X) = π̄(X)−π(X).
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Hence, there would be no risk if the payoff is not influenced by model uncertainty,

π̄(X) = π(X)

From these considerations it becomes clear that the model risk in the context of option

pricing is measured by the comparison of distributions. This is in contrast to the type of model

risk used for risk measurement. Have in mind that the distributions compared are specified by

the model resulting from our model specification procedure given in section 2. Therefore, our

framework covers this type of model risk as well.

Cont (2004) assumed that liquid options do not include model risk. This assumption

is quite heroic as market maker assess a derivative price by using a valuation formula and

thereby include model risk when calculating the option price.

5 Model risk induced by contaminated data

As described in section two there are different levels where model risk might occur. One im-

portant problem is a reliable parameter estimation. One common reason for wrong parameter

estimates is contaminated data. This can be due to human failure or also simply because it is

impossible to obtain uncontaminated data such as data including forward projections. What-

ever is the reason it is well known that data contamination can lead to serious biases in the

most commonly used estimators and therefore influence the model risk. The following exam-

ple sheds some light on this phenomenon.

Example 1. Estimation of corporate ratings

In the following we consider a logistic model underpinning an internal rating system. The

input data B0 consists of balance sheet data of some thousand corporates over multiple years,

which were coded such that:

xi j ∈ [0,100]≡ I, (1)

where higher values correspond to higher risk. The associated variables to the realizations in

15



B0 are denoted by

D,X1, · · · ,X6.

The probability π that a firm with characteristics x(t) defaults over time period t to t + 1,

i.e.

π = P(D(t +1) = 1|X(t) = x(t))

is estimated via a logistic regression with parameter w (d is the response variable and x∗ are

the regressors)

π = P(x,w) =
e(w·x∗T)

1+ e(w·x∗T)
, (2)

where

x∗ = (1,x1, . . . ,x6), w = (w0,w1, . . . ,w6)

and T denotes the transpose as usual.

Miskeyed values are one of the problems a modeler faces. According to (1) the range of

values of the characteristics xi j is a fixed interval. For the dataset at hand, however 1,5 % of

the observations violate the condition imposed by (1) and approximately 4.5 % out of them

are defaulted, i.e. di = 1. Note that our analyses focus on those observations which are a priori

known to be erroneous. Some additional uncertainty might be introduced by those erroneous

observations remaining undetected initially.

In the following we consider three modifications of B0 – denoted by B1,B2,B3 – that fulfill

(1).

B1 = {x|x ∈ B0 : xi j ∈ I},
B2 = {x̃|x ∈ B0 : x̃i j = xi j ·1I(xi j)+100 ·1{xi j>100}(xi j)+0 ·1{xi j<0}(xi j)},
B3 = {x̃|x ∈ B0 : x̃i j = xi j ·1I(xi j)+ xm j ·1I(xi j)},

where 1 denotes the indicator function and xm j denotes the median of characteristic x j. Note

B1 ⊂ B0, so the deletion approach loses some information. The mapping of outliers on the
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interval bounds in B2 is the modification that was actually chosen by the bank. Approach B3

is motivated by simple imputation techniques. It substitutes false values by the median.

Figure 3: For the data set B1 the effect of one additional non-defaulted observation with

extreme values in one of the characteristics is shown. The six graphics correspond to the six

characteristics of the rating model. Each graphic shows the effect of an extreme outlier in the

respective characteristic on obligor migration taking B1 as a point of reference. The value of

the outlier ranges from 100 to 1000. The interpolation of these points yields the graph.

As shown in Stahl et al. (2008) the impact of the different imputation techniques on the

estimated ŵ is statistically not significant. However, their impact on the parameter of interest,

the rating of the corporate, might be of practical relevance, as the following Table shows:
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B0 B1 B3 Stress

µ̂(k) 0.35 0.39 0.42 0.9985

σ̂(k) 0.51 0.51 0.64 0.04

Percentage of movers 33 38 38 99.85

Maximum move length 6 4 5 1

Table 2: This table contains summary statistics of rating movements induced by choices of

B(·). The mean of the first row indicates an average move size of 0.39 rating grades with the

third row showing that a fraction of 36% of movers are to be expected. The second row yields

a standard deviation of slightly more than a half rating notch. Comparing the first row with the

third shows that a move of more than one notch is rare. The extremes are given in the last row.

The last column shows the summaries for a stress test which grades all obligors down by one

notch except those already belonging to the worst non-default rating grade and the defaulted

obligors.

The detailed analysis in Stahl et al. (2008) raised the question which impact an outlier

might have on the misclassification of corporates. It is based on a sub-sample of size 999

from B1 – where all wrong values were deleted – and one additional outlier was added, taking

the values 200, 300, ...,1000. Then the whole estimation process was repeated for every

covariate. The following Figure shows that the covariates differ in respect to the sensitivity of

the outlier. In any case the impact is highly relevant. ¤
One way of overcoming this problem is the use of robust methods. In this section we give

a brief review of the most common robustness concepts and estimators which are suitable to

overcome model risk induced by data contaminations.

There are basically two different approaches to measure robustness, local and global ro-

bustness. Local robustness measures the effect of an infinitesimal deviation from the underly-

ing distribution at any point to the applied estimator. Global robustness on the other hand says

how many data points in the sample can be contaminated for the estimator not to break down.

Local robustness is measured in terms of the influence function of an estimator. In order
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to define the influence function let F denote a parametric family of distributions depending on

the parameter θ to be estimated. Let T (x1, . . . ,xn) denote an estimator depending on a sample

x1, . . .xn. Furthermore, denote by ∆x the one-point mass at x. The influence function of T at

the point x is defined by

IF(x;T ;F) = lim
t↓0

T ((1− t)F + t∆x)−T (F)
t

.

Thus, the influence function measures the sensitivity of the estimator to infinitesimal de-

viations from the true distribution. A related robustness concept using the influence function

is B-robustness where the B stands for bias. A measure for B-robustness is the gross-error

sensitivity defined by

γ∗ = sup
x
|IF(x;T,F)|.

By the gross-error sensitivity the worst possible effect which a small contamination of a

fixed size can have on the estimator is measured. It is thus an upper bound of the asymptotic

bias of the estimator where the name of the measure comes from. For a more detailed overview

over the influence function and related robustness concepts see Hampel et al. (1986).

When considering local robustness it is also of interest to consider global robustness.

Global robustness is measured by the breakdown point which gives the fraction of observa-

tions which can be contaminated without effecting the estimator. Obviously, an optimal value

to be achieved by a robust estimator is a breakdown point of 1/2. For the formal definition of

the breakdown point let again T be an estimator at the sample (x1, . . . ,xn). It is defined by

ε∗(T,x1, . . . ,xn) =
1
n

max{m; max
i1,...,im

sup
y1,...,ym

|T (z1, . . . ,zn)|< ∞},

where the sample (z1, . . . ,zn) is obtained by replacing the m data points xi1 , . . .xim by the

arbitrary values y1, . . . ,ym. The above version of the breakdown point is often also called

finite-sample breakdown point to distinguish it from an asymptotic version which is not con-

sidered here.
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Have in mind that this definition of the breakdown point covers only ”explosion” of the

estimator which might not be the only problem for an estimator. When estimating the variance

also ”implosion” to zero can be a problem. This can easily be covered by including the min-

imum and infimum in the definition as well. We will omit this here for the sake of notational

simplicity. Thus, the above given version is especially designed for location estimators.

As model risk can be induced by local as well as by global robustness it is desirable to

have an estimator which covers both problems. One possibility is the use of M-estimators.

M-estimators are defined by satisfying the equality

n

∑
i=1

ψ(Xi,T ) = 0,

where ψ is any suitably chosen function. In order to guarantee robustness in any sense

the function should be chosen to be redescending. A possible choice of ψ guaranteeing B-

robustness and a breakdown point of 1/2 is Tukey’s biweight:

ψ(x) = x(r2− x2)21[−r,r](x)

for some value of r.

M-estimators have the undesirable property to be not scale-invariant. Therefore, Rousseeuw

and Yohai (1984) introduced S-estimators based on minimization of a scale statistic rather than

a location statistic. To define S-estimators define the scale statistic s(r1, . . . ,rn) by

1
n

n

∑
i=1

ρ(
ri

s
) = K,

with some constant K and the function ρ to be chosen for instance so that its derivative

is Tukey’s biweight. Then, the S-estimator of location θ̂ is defined by minimizing s(x1 −
θ, . . . ,xn−θ) over all θ̂. This gives simultaneously the scale estimate

σ̂ = s(x1− θ̂, . . . ,xn− θ̂).
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The influence function of an S-estimator is equal to that of the location M-estimator and

its breakdown point is 1/2 as well. S-estimators were especially constructed for regression

models and multivariate situations where they have good robustness properties. They are also

well-understood in many other situations of practical interest. Sibbertsen (2001) derived for

instance the properties of S-estimators under long-range dependencies and trends and showed

their applicability in these situations.

As these are situations which are used in many econometric models for measuring risk

these estimators seem to be a suitable choice to avoid model risk due to data contaminations

in any respect.

Our exposition showed that a robust model merits consideration. Robust methods are

useful when some outliers contaminate the data but the overall model assumptions can still be

assumed to be valid. In times of crises this is not always the case as events are too extreme

for any model to hold and the assumed model breaks down at all. Therefore, the modern risk

management processes do not and cannot stop with the implementation of models devoted to

measure risks. In order to capture these aspects of model risk so-called stress tests are run in

practice. These are integral part of the risk management processes especially for such adverse

developments where economic capital – the most important parameter derived from a VaR

model – is of no help. The current liquidity crisis is a good example for that. Typically, stress

tests are scenario-based calculations, where the scenarios represent extreme situations. Our

robust framework is to a large extent immune against these extremes. Therefore, we propose

to apply stress tests not for the determination of the forecast distribution, L(Xt+h | It), but for

the evaluation of the portfolio at hand.

One approach that would fit smoothly with our robust framework is the application of the

configural sampling approach introduced by Morgenthaler and Tukey (1991). These authors

suggest e. g. mixtures of Cauchy distributions and other extremes in the set of distribution

functions in order to challenge estimators. This approach generalizes scenario-based stress

tests to distribution-based ones. However this approach misses one of the major challenges in

deriving stress tests: the requirement that they refer to extreme, however, still plausible situa-
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tions. To that end recent contributions from Balkema and Embrechts (2007) seem promising.

They define high risk scenarios by:

Definition 3. Given a random vector Z in Rd , for any closed halfspace H in Rd with P(Z ∈
H) > 0 the high risk scenario ZH is defined as the vector Z conditioned to lie in the half space

H. If Z has distribution µ then ZH has the high risk distribution µH , where

dµH(z) = 1H(z) dµ(z)/µ(H).

It is shown that the multivariate Generalized Pareto distribution is the limit distribution for

high risk distributions. In Bonti et al. (2007) a conditional approach that is in line with the

spirit of this definition was implemented, however, further practical experiences have to be

gathered in order to implement this new approach outlined in Definition 3.

6 Conclusion

Because of the more and more frequent use of sophisticated statistical models for measuring

risk or pricing derivatives in financial institutions the problem of measuring the risk induced

by the usage of a wrong model becomes more important. Even though practitioners as well

as researches are aware of this increasing problem there is hardly any literature concerning

this problem leave alone a unified approach and notion on what model risk actually is. In this

paper we therefore aim to review the existing rather extreme approaches and develop a com-

promising notion of model risk which is driven by a data-oriented model building procedure.

Our approach covers model risk when measuring the risk of a financial institution as well as

model risk when pricing derivatives. In this respect our approach even extends the previous

notions as they cannot distinguish between these two types of model risk and lack practical

applicability when it comes to forecasting. In order to minimize the risk induced by our model
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building strategy we furthermore propose the use of robust estimates when the data might be

contaminated.
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