Strulik, Holger

Working Paper
A Note on economic growth with subsistence consumption

Diskussionsbeitrag, No. 405

Provided in Cooperation with:
School of Economics and Management, University of Hannover

Suggested Citation: Strulik, Holger (2008) : A Note on economic growth with subsistence consumption, Diskussionsbeitrag, No. 405, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät, Hannover

This Version is available at:
http://hdl.handle.net/10419/27214

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Abstract. It is well known that the performance of simple models of economic growth improves substantially through the introduction of subsistence consumption. How to compute subsistence needs, however, is a difficult and controversially discussed issue. Here, I reconsider the linear (A_k) growth model with subsistence consumption and show that the evolution of savings rates and economic growth rates over time is independent from the size of subsistence needs. The model is thus more general and less subject to arbitrariness than it might have been thought initially. Quantitatively, it is shown that, although there is no degree of freedom to manipulate transitional dynamics, the model approximates the historical evolution of savings rates and growth rates reasonably well.

Keywords: economic growth, saving, subsistence needs.

JEL: O11, O41, D90.
1. INTRODUCTION

The historical economic development of the Western world was characterized by a slow and gradual take off out of poverty accompanied by slowly increasing savings rates and slowly increasing economic growth rates. For England, for example, GDP per capita growth was 0.0% from year 1 to 1000, 0.1% from 1000 to 1500, 0.2% from 1500 to 1700, 0.3% from 1700 to 1820, 1.3% from 1820 to 1870, 1.0% from 1870 to 1913, 1.2% from 1913 to 1960, and 2.1% from 1960 to 2000 (inferred from the Maddison, 2001 data). Thus, during the industrial revolution, i.e. at the time when there was the greatest change of growth rates, growth itself was high compared to what it had been so far but it was low from today’s perspective.

Similarly, the savings rate (investment rate) was rising from 3-6% in 1688 (Deane and Cole, 1969) to 8% for 1761-70, and 14% for 1791-1800 (Feinstein, 1981). These historical observations are consistent with the empirical literature showing that savings rates are increasing in income across individuals (e.g. Dynan et al., 2004) and across countries (Loayza et al., 2000).

Unfortunately, simple models of economic growth with endogenous savings rate have problems in getting these adjustment dynamics right. While the neoclassical growth model predicts that growth rates and savings rates are falling as an economy gets richer (for reasonable choices of parameters, see Barro and Sala-i-Martin, 2005), the linear Ak growth model predicts that growth rates and savings rates are constant over time.

The simplest cure of these shortcomings is to introduce subsistence needs \bar{c} into the utility function, i.e. to consider utility of the Stone-Geary form. In that case the elasticity of marginal utility is declining in the level of consumption, which renders the result that savings rates and economic growth rates are jointly rising with economic development. In the Ak case, both rates approach positive constants when the economy converges towards its balanced growth path. This has been shown in detail by Steger (2000).\(^1\)

The augmented Ak model provides transitional dynamics from subsistence level towards balanced growth. Calibrating the model, there is comparatively little controversy how to find

\(^1\)An alternative yet more involved way to get adjustment dynamics of the Ak growth model right is the introduction of habit formation (Carroll and Weil, 2000).
parameters that describe an economy along the balanced growth path reasonably well. But what about transitional dynamics? Will they depend crucially on the specification of subsistence needs? This could be a problem because uncertainty about the true value of \(\bar{c} \), i.e. about how to conceptualize subsistence needs renders a degree of freedom. It opens the possibility to specify \(\bar{c} \) ad libitum, which could make the model, in principle, unfalsifiable.\(^2\)

Fortunately, with respect to the model’s key variables, this is not the case. In the next section I show that transitional dynamics of the rate of economic growth and the savings rate are independent from the size of \(\bar{c} \). In fact, the specification of economic growth and savings *along the balanced growth path* is sufficient to determine how these variables evolve over time in general.

Not having the degree of freedom of designing adjustment dynamics by “appropriate choice” of \(\bar{c} \) it could be that the augmented \(Ak \) model is refuted by the empirical facts, i.e. adjustment dynamics as predicted by the model’s steady state could be too fast or too slow vis a vis the real data. With respect to the Western world this is, fortunately, not the case. In Section 3 I consider a model calibration and conclude that the augmented \(Ak \) growth model describes the historical evolution of growth and savings over time, as observed for England from year 1200 to year 2000, reasonably well.

2. The Model

The description of the setup of the model can be brief since it has been discussed in great detail by Steger (2000). Here, I will solve the problem differently in order to provide the result of invariance with respect to subsistence needs. Consider a representative individual who derives intertemporal utility from consumption \(c \) whereby instantaneous utility is of the Stone-Geary form.

\[
\max_c \int_0^\infty \frac{(c - \bar{c})^{1-\theta}}{1-\theta} e^{-\rho t} dt.
\]

\(^2\)See Kraay and Raddatz (2007) for a critique of subsistence needs as a driver of poverty traps. See Sharif (1986) on conceptualization and measurement of subsistence.
The parameter \bar{c} is the level of subsistence consumption, ρ is the time preference rate, and θ is the ultimate elasticity of marginal utility, which is revealed when consumption goes to infinity.

That the elasticity of marginal utility is not constant in general but decreasing in the deviation of c from \bar{c} is the crucial feature that provides interesting adjustment dynamics. As the distance of c from \bar{c} gets larger, subsistence needs become less pressing, the effective rate of time preference decreases, and people save a larger share of their income, an effect that increases the distance of c from \bar{c} even further.

Output is produced using capital k by a linear production function with productivity A. Thus capital evolves according to (2).

$$\dot{k} = Ak - c.$$ \hspace{1cm} (2)

We assume $A > \rho$ in order to allow for positive balanced growth.

The first order conditions for a solution of (1) and (2) are $(c - \bar{c})^{-\theta}$ and $\lambda A = \lambda \rho - \dot{\lambda}$ where λ is the costate variable of the associated current-value Hamiltonian. Log-differentiating the first condition with respect to time and inserting it into the second condition eliminates λ and provides $(A - \rho)(c - \bar{c}) = \theta \dot{c}$. Noting that $\dot{c} = c'(k)\dot{k}$ and using (2) this can be written as

$$(A - \rho)(c - \bar{c}) = \theta c'(k)(Ak - c).$$

An explicit solution of this differential equation is obtained using the method of undetermined coefficients:

$$c = \frac{(A - \rho)\bar{c}}{\theta A} + \left[\frac{(\theta - 1)}{\theta} A + \frac{\rho}{\theta} \right] k.$$ \hspace{1cm} (3)

The expression in square brackets is the familiar term from the standard Ak growth model according to which it is optimal to consume a constant fraction of capital (and thus income). The first term modifies this result and introduces a kind of “Engel’s law”. With rising income per capita consumption expenditure increases, but the expenditure share of consumption decreases implying an increasing savings rate.

Dynamics of the economy can be most conveniently analyzed by introducing the consumption capital ratio $x = c/k$, which evolves according to $\dot{x} = (\dot{c}k + c\dot{k})/k^2 = \dot{k} [c'(k) - x]/k$. Insert
c'(k) obtained from (3) and \(\dot{k} \) from (2) to get the economy represented by a single differential equation in \(x \).

\[
\dot{x} = (A - x) \left[\frac{(\theta - 1)}{\theta} A + \frac{\rho}{\theta} - x \right].
\]

(4)

Inspecting (4) we get the following results.

Proposition 1. There exists a unique steady-steady-state of stagnation at \(x = A \). There exists a unique balanced growth path along which the economy grows at rate \((A - \bar{\rho})/\theta \) and where

\[
x = x^* = \frac{(\theta - 1)}{\theta} A + \frac{\rho}{\theta}.
\]

(5)

The steady-state of stagnation is unstable and the balanced growth path is locally stable.

Proof. Inspect (4) to see that the steady-state of stagnation is where the term in parenthesis equals zero, i.e. where \(x = A \) implying \(Ak = c = \bar{c} \). Observe the second steady-state \(x^* \) by setting the term in square brackets to zero. Insert \(x^* \) into \(\dot{k}/k = A - x \), as obtained from (2), to get the balanced growth rate. Compute \(\partial \dot{x}/\partial x = -[x^* - x] - (A - x) \). At the equilibrium where \(x = A \) we have \(x > x^* \) and thus the equilibrium is unstable. At the equilibrium where \(x = x^* \) we have \(x < A \) and thus the equilibrium is locally stable. Locally means that any economy starting at arbitrarily small positive distance from subsistence arrives at the balanced growth path. \(\square \)

Note that the evolution of the economic system as specified by (4) is independent from the size of subsistence consumption \(\bar{c} \). Transitional dynamics are obtained by starting the economy close to the equilibrium stagnation and solving (4). Once the path of \(x(t) \) has been found we can infer the path of income per capita growth \(g_y(t) = A - x(t) \) and the path of the savings rate \(s(t) = 1 - c(t)/y(t) = 1 - x(t)/A \). Both paths are invariant to the specification of subsistence needs \(\bar{c} \).

There exists an even stronger invariance result. Along the balanced growth path consumption grows at rate \(g_c^* = A - x^* \) implying \(x^* = A - g_c^* \). Furthermore the savings rate along the balanced growth path is \(s^* = 1 - x^*/A \) implying \(A = g_c^*/s^* \). Using these values and (5), the dynamics of
system (4) can be rewritten as in (6).

\[\dot{x} = \left(\frac{g^*_c}{s^*} - x \right) \left[\frac{g^*_c}{s^*} \left(\frac{1}{s^*} - 1 \right) - x \right]. \]

This implies that the evolution of \(x \) over time is completely determined by the specification of the growth rate and the savings rate that we assume to hold along the balanced growth path. Once we have computed the path of \(x(t) \) we can recover the path of savings \(s(t) = 1 - x(t)/A \) and the path of growth \(g_y(t) = A - x \). In other words, while \(A \) is implied by the choice of \(g^*_c \) and \(s^* \), we can leave \(\theta \) and \(\rho \) unspecified. This is a convenient result because there exists some uncertainty about the “true” values of these parameters of the utility function as well. The following proposition summarizes the results.

Proposition 2. Adjustment dynamics for the savings rate and the rate of economic growth from stagnation to balanced growth as implied by the augmented Ak model specified in (1) and (2) are independent from the size of subsistence consumption \(\bar{c} \).

Adjustment dynamics are also independent from the size of the time preference rate \(\rho \) and the ultimate elasticity of marginal utility \(\theta \) (given that their numerical specification supports a certain growth rate and savings rate along the steady-state).

For an intuition of what causes the invariance with respect to subsistence needs note that any change of \(\bar{c} \) entails a change of the capital stock that supports the equilibrium of stagnation. From \(x = A \), at the steady-state of stagnation we have \(k = \bar{c}/A \) implying that dynamics with respect to the reference point \((\bar{c}, \bar{c}/A)\) remain unchanged. To see this clearly, consider the transformation of variables, \(\tilde{c} = c - \bar{c}, \tilde{k} = k - \bar{c}/A \). Problem (1) – (2) in the new notation reads

\[
\max_{\tilde{c}} \int_0^\infty \frac{\tilde{c}^{1-\theta}}{1-\theta} e^{-\rho t} dt \quad \text{s.t.} \quad \dot{\tilde{k}} = A\tilde{k} - \tilde{c}.
\]

This problem is isomorph to the setup of the standard Ak model (see, for example, Barro and Sala-i-Martin, 2005). From the first order conditions we get the well-known Ramsey rule and policy function \(\tilde{c}(\tilde{k}) \).

\[
\frac{\dot{\tilde{c}}}{\tilde{c}} = \frac{A - \rho}{\theta} \quad \Rightarrow \quad \tilde{c}(\tilde{k}) = \left[\frac{(\theta - 1)}{\theta} A + \frac{\rho}{\theta} \right] \tilde{k}.
\]
Note that dynamics in the \((\tilde{c}, \tilde{k})\) space are independent from the choice of \(\tilde{c}\). A change of \(\tilde{c}\) affects “only” the locus of origin of the \((\tilde{c}, \tilde{k})\) space in units of \(c\) and \(k\). As a consequence, the evolution of economic rates over time, such as the consumption capital ratio, the savings rate and the rate of economic growth, are independent from \(\tilde{c}\). The choice of \(\tilde{c}\) determines of course the evolution of levels, such as the level of consumption and income per capita. Usually in growth theory, however, we are not so much interested in absolute levels but in getting the evolution of economic rates right.

The obtained invariance result is helpful because subsistence needs – while exogenous in the \(Ak\) growth context – are actually endogenous (Dalgaard and Strulik, 2007). Metabolic needs are, for example, determined by the available diet, body size and ambient temperature (West and Brown, 2005). The augmented \(Ak\) model predicts that we must not care about the country- and individual-specific subsistence needs as long as we are interested in saving rates and rates of economic growth because these aggregates evolve over time irrespective of the specification of subsistence needs.

3. THE SLOW TRANSITION TOWARDS MODERN GROWTH: A CALIBRATION STUDY

The invariance result implies that we have one parameter less to experiment with in order to fit the model to data. In fact, inspection of (6) shows that once we have decided about the parameters values that support growth and savings along the balanced growth path, we have no possibility at all to manipulate transitional dynamics. A reasonable specification of the balanced growth path may thus simultaneously imply implausible adjustment dynamics.

With respect to the shape of adjustment paths we can eliminate this concern immediately. To see this, note that (4), or (6), respectively is the generalized logistic equation. It has an explicit solution (Berck and Sydsaeter, 1991) in form of an \(S\)-shaped adjustment path for savings and thus for growth. In accordance with the historical observation (and with contrast to other simple models of economic growth) the model thus predicts irrespective of its numerical specification that economic change (i.e. the speed of change of economic rates) gets the highest momentum
(say, an industrial revolution) when savings rate and growth rate are around half of their final steady-state values.

Nevertheless the steady-state specification could fail to predict a reasonable adjustment speed. For example, if the gap between stagnation and balanced growth were closed within hours or days, nothing would be gained by augmenting the standard A_k growth model with subsistence needs. Fortunately this is not the case. Adjustment dynamics predicted by the model perform quite well, at least with respect to the long-run economic development of the Western world.

To inspect adjustment dynamics we set the balanced growth rate to 2 percent annually and the savings rate along the balanced growth path to 30 percent. This implies $A = 0.0667$. A real rate of return on capital around 7 percent accords well with the average real return on the stock market for the last century and has been used in other calibration studies (e.g. Jones and Williams, 2000). As long as we are interested in the evolution of rates, parameters of the utility function can be kept unspecified. Pairs that support the balanced growth path are, for example, $(\theta = 0.5, \rho = 0.0567)$ or $(\theta = 2, \rho = 0.0267)$.

In order to extract the path from stagnation towards balanced growth I start the economy close to the steady-state of stagnation $x = A$ and solve (4). Figure 2 shows adjustment dynamics for x and the implied savings rate and growth rate. For better comparison with the real data I have normalized time such that $t = 1800$ when $s = 0.14$ (as observed for England according to Feinstein, 1981). Against the data provided in the introduction the model performs reasonably well. The economy gets the most momentum between 1700 and 1900, i.e. during the phase that includes the industrial revolution. The take-off to modern growth is quite gradual and if anything it is somewhat “too slow”, i.e. savings rates and growth rates predicted between 1600 and 1700 are are somewhat to small.

As explained, the model predicts the same adjustment paths also for other countries than model-England, at least, if they are assumed to arrive at the same balanced growth path. The only (ad hoc) possibility to introduce cross-country differences is to assume that some countries initiated the transition earlier than others. While the subsistence-augmented A_k model works as a crude approximation for the economic development of the Western world, there are many
details of the transition that the model fails to predict, for example, England’s overtaking of France and Italy. But then, it is only a very small and crude model of which one could not expect everything.

If we are interested in how the model performs with respect to levels, we have to specify subsistence needs \bar{c}. For that purpose I take $\bar{c} = 400$, the annual GDP per capita in England in year 1200 (according to Maddison, 2001). The model then predicts a GDP in 1900 of 2800 while it was actually 4492 (according to Maddison). Note that the model allows no way to manipulate this result through alternative choices of ρ or θ (as long as we keep the steady-state specification) since the path of income is completely determined by its initial value and
its growth rate, which is independent from the values of preference parameter (as long as they support the steady-state specification). The underestimation of GDP per capita is not a real surprise since the crude model neglects other important drivers of economic development like growth of factor productivity, structural change, and the demographic transition (Galor, 2005).

The same observation, however, can also be formulated positively. Compared with its peer group, the Solow-model, the Ramsey model, and the standard Ak model, the subsistence-augmented Ak model performs astonishingly well. With respect to savings rates and growth rates this good performance is obtained irrespective of our assumption about the size of subsistence needs.
References