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Leibniz Universität Hannover
Discussion Paper No. 398

A new unit root test against ESTAR based on a class of
modified statistics

Robinson Kruse

Abstract This paper proposes a new unit root test against a non-linear expo-
nential smooth transition autoregressive (ESTAR) model. The new test is build
upon the non-standard testing approach of Abadir and Distaso (2007) who in-
troduce a class of modified statistics for testing joint hypotheses when one of
the alternatives is one-sided. In a Monte Carlo study the popular Dickey-Fuller
type test proposed by Kapetanios et al. (2003) is compared with the new test.
The results suggest that the new test is generally superior in terms of power.
An application to a real effective exchange rate underlines its usefulness.

Keywords Unit root test · Nonlinearities · Smooth transition

1 Introduction

Nonlinear time series models like the smooth transition autoregressive (STAR)
model, see Teräsvirta (1994), have become very popular in the last years. In
this paper we are mainly concerned with the exponential STAR (ESTAR)
model and develop a new test for the unit root hypothesis against a globally
stationary ESTAR model. In particular, we focus on a prominent and widely
applied specification of this model that allows for a unit root regime and two
symmetric mean-reverting regimes. The time series process, say yt, behaves like
a random walk if yt−1 was close to some location parameter c and it is mean-
reverting if yt−1 departs from c. In the exponential smooth transition model
the degree of mean-reversion depends on the squared difference between yt−1

and c. When modeling real exchange rates for example, the economic intuition
behind this specification is that the real exchange rate is nonstationary if it was

Robinson Kruse
Königsworther Platz 1, D-30167 Hannover
Tel.: +49-511-7625636
Fax: +49-511-7623923
E-mail: kruse@statistik.uni-hannover.de



2

quite close its long run equilibrium value in the last period and that there are
driving forces like arbitrage that leads to mean-reversion if the real exchange
rate departs from its long run equilibrium. Moreover, arbitrage may not be
profitable if the departure is small. Therefore, the degree of mean-reversion is
small as well and vice versa. These facts make this ESTAR specification quite
attractive for modeling economic time series like real exchange and interest
rates, unemployment rates and log dividend yields.

There are a lot of economic theories like Purchasing Power Parity (PPP),
to name a highly debated one, that imply certain time series properties, i.e.
the stationarity of real exchange rates. Often the unit root hypothesis, which
contradicts PPP, is tested against stationarity with extant linear unit root
tests. These tests have however not the highest power when the true data
generating process exhibits nonlinearities. Therefore, many recent empirical
studies make use of nonlinear unit root tests.

Regarding the ESTAR specification from above, a popular Dickey-Fuller
type test has been proposed by Kapetanios et al. (2003). However, this test
assumes that the location parameter c in the smooth transition function is
equal to zero. On the contrary, a lot of empirical studies on real exchange
rates report significant estimates of c, cf. Michael et al. (1997), Sarantis (1999),
Taylor et al. (2001) and more recently, Rapach and Wohar (2006). When
relaxing this assumption, we are faced with a non-standard testing problem,
i.e. a joint hypothesis where one parameter is one-sided under the alternative
while all others are two-sided. Since standard inference techniques are not
appropriate in this situation, we make use of the new approach by Abadir
and Distaso (2007) who propose a class of modified test statistics in order to
tackle such non-standard testing problems. Our aim is to derive a unit root
test allowing for a nonzero location parameter c that can compete with the
extant one of Kapetanios et al. (2003) in terms of power.

After introducing the ESTAR specification in more detail and presenting
the existing test by Kapetanios et al. (2003) in section 2, the inference tech-
niques by Abadir and Distaso (2007) and the new test are discussed in section
3. The non-standard limiting distribution of the test statistic is derived and
consistency of the test is proven. Moreover, we show that the limiting dis-
tribution remains unchanged if we account for potential serial correlation in
the error terms by augmenting the test regression with lags of the dependent
variable. By means of a Monte Carlo study in section 4 we compare the small
sample properties of both tests under a variety of conditions. The new test
is correctly sized and quite often superior in terms of power. Both tests have
lower but substantial power when the true data generating process is a logistic
STAR model. However, the new test has generally higher power against logis-
tic STAR models than the extant test. Finally, we provide an application to
a monthly real effective exchange rate time series for the European Union in
section 5. The results suggest the validity of PPP if the new test is used and
the opposite if the extant test is applied. Proofs are given in the appendix.
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2 ADF-type unit root test against ESTAR

The ESTAR specification we are concerned with is formally given by

4yt = αyt−1 + φyt−1(1− exp{−γ(yt−1 − c)2}) + εt ,

where εt ∼ iid(0, σ2). If the smoothness parameter γ approaches zero, the
ESTAR model becomes a linear AR(1) model, i.e. 4yt = αyt−1 + εt that is
stationary if −2 < α < 0. In the following, α is set equal to zero which means
that the ESTAR model becomes a random walk if γ = 0. Kapetanios et al.
(2003) show that the ESTAR model under the restriction α = 0,

4yt = φyt−1(1− exp{−γ(yt−1 − c)2}) + εt ,

is globally stationary if −2 < φ < 0 is true although it is locally non-stationary
in the sense that it contains a partial unit root when yt−1 = c holds. Addi-
tionally note that the random walk model can also be achieved when imposing
the restriction φ = 0. This means that a direct test for the unit root hypoth-
esis is infeasible since φ is not identified when testing H0 : γ = 0 and vice
versa. A popular approach to avoid the presence of nuisance parameters under
the null hypothesis is to use a Taylor approximation of the smooth transition
function G(yt−1; γ, c) = 1−exp{−γ(yt−1−c)2}) around γ = 0, see Luukkonen
et al. (1988). This approach was adopted by Kapetanios et al. (2003) and we
construct the new test on the same basis. More specifically, Kapetanios et al.
(2003) make the restriction c = 0 and consider the model

4yt = φyt−1(1− exp{−γy2
t−1}) + εt .

An application of a first-order Taylor approximation leads to the auxiliary
regression

4yt = β1y
3
t−1 + ut , (1)

with ut being a noise term depending on εt, φ and the remainder of the Taylor
expansion. Obviously, it looks very much like the famous Dickey-Fuller test
regression without deterministic terms. The cubic term y3

t−1 approximates the
ESTAR nonlinearity.

The authors suggest a t-test for the unit root hypothesis against globally
stationary ESTAR which corresponds to H0 : β1 = 0 versus H1 : β1 < 0.
Hence, the unit root test is carried out by estimating the auxiliary regression
(1) and computing a Dickey-Fuller type t-test, labeled as KSS,

KSS ≡ β̂1√
v̂ar(β̂1)

=
∑T

t=1 y3
t−14yt√

σ̂2
∑T

t=1 y6
t−1

, (2)

where σ̂2 = 1
T

∑T
t=1(4yt−β̂1y

3
t−1)

2 is the usual estimator of the error variance.
Let W (r) be the Brownian motion defined on r ∈ [0, 1] and let ⇒ denote
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convergence in distribution. The limiting distribution of the KSS statistic is
then given by

KSS ⇒
1
4W (1)4 − 3

2

∫ 1

0
W (r)2dr

(∫ 1

0
W (r)6

)1/2
,

see Theorem 1 in Kapetanios et al. (2003). Regarding deterministic terms,
they suggest to demean or detrend the data in a first step, i.e.

yt = ω′dt + vt

with dt = 1 or dt = [1 t]′ and ω is a parameter vector of suitable dimen-
sion. In a second step, the unit root test is applied to v̂t. As a consequence,
the asymptotic distribution of the KSS statistic depends on functionals of a
demeaned or detrended Brownian motion, respectively. The demeaned and
detrended Brownian motion are given by

W (r) −
∫ 1

0

W (r)dr ,

W (r) + (6r − 4)
∫ 1

0

W (r)dr + (12r − 6)
∫ 1

0

rW (r)dr ,

respectively. For details concerning this test such as proofs and critical values
see Kapetanios et al. (2003).

3 Modified Wald Type test

In order to allow for a nonzero location parameter c in the exponential tran-
sition function we consider the nonlinear time series model

4yt = φyt−1(1− exp{−γ(yt−1 − c)2}) + εt . (3)

Following Kapetanios et al. (2003), we apply a first-order Taylor approximation
to G(yt−1; γ, c) = (1 − exp{−γ(yt−1 − c)2}) around γ = 0 and proceed with
the test regression

4yt = β1y
3
t−1 + β2y

2
t−1 + β3yt−1 + ut .

Following Kapetanios et al. (2003) we impose β3 = 0 to improve the power of
the test, see Kapetanios et al. (2003), footnote 5. Henceforth, we proceed with

4yt = β1y
3
t−1 + β2y

2
t−1 + ut . (4)

where β1 = γφ and β2 = −2cγφ. We are interested in the pair of hypotheses
given by H0 : γ = 0 against H1 : γ > 0. In the test regression (4), this pair
of hypothesis is equivalent to H0 : β1 = β2 = 0 against H1 : β1 < 0, β2 6= 0.
Note that the two-sidedness of β2 under H1 stems from the fact that c is
allowed to take real values. This testing problem is non-standard in the sense
that one parameter is one-sided under H1 while the other one is two-sided.
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A standard Wald test would be inappropriate and we therefore apply the
methods of Abadir and Distaso (2007) to derive a suitable test. In a nutshell,
the one-sided parameter is orthogonalized with respect to the two-sided one.
The modified Wald test builds upon the one-sided parameter (β1) and the
transformed two-sided parameter, say β⊥2 , that are stochastically independent
by definition.

Let the parameter vector of the regression model (4) be θ = [β1 β2]′.
Following the notation of Abadir and Distaso (2007), the null hypothesis of a
unit root is rewritten as

H0 : h(θ) ≡ [h1(θ) h2(θ)]
′ = [β1 β2]

′ = [0 0]′ .

The alternative hypothesis of a globally stationary ESTAR model is given by

H1 : h1(θ) < 0 or h2(θ) 6= 0 ,

which includes the subset hypothesis H∩
1 : h1(θ) < 0 and h2(θ) 6= 0. Theorem 6

in Abadir and Distaso (2007) states that the modified Wald test is consistent
against H1 as well as H∩

1 . The standard Wald test statistic based on the
Hessian matrix H is

WH = h(θ̂)′V −1h(θ̂)

where V ≡
[

∂h(θ)
∂θ′

∣∣
θ=θ̂

(−H)−1 ∂h(θ)′

∂θ

∣∣
θ=θ̂

]
with elements vij . In general, the

modified Wald test statistic of Abadir and Distaso (2007) is given by

τ =
(

∂h2·1(θ)
∂θ′

∣∣∣
θ=θ̂

(−H)−1 ∂h2·1(θ)′

∂θ

∣∣∣
θ=θ̂

)−1

ĥ2·1(θ̂)2

+ 1(h1(θ̂) < 0)
(

∂h1(θ)
∂θ′

∣∣∣
θ=θ̂

(−H)−1 ∂h1(θ)′

∂θ

∣∣∣
θ=θ̂

)−1

ĥ1(θ̂)2 ,

with h2·1(θ) being

h2·1(θ) = h2(θ)− h1(θ)v21

v11
.

The estimator of h2·1(θ) is simply given by ĥ2·1(θ̂) = h2(θ̂) − h1(θ̂)v̂21
v̂11

. Based
on these results, straightforward calculations lead us to

τ =
(

v̂22 − v̂2
21

v̂11

)−1 (
β̂2 − β̂1

v̂21

v̂11

)2

+ 1(β̂1 < 0)
β̂2

1

v̂11
,

which is the new test statistic for the unit root hypothesis against globally
stationary ESTAR. A simpler and more intuitive way to formulate this statistic
is

τ = t2β⊥2 =0 + 1(β̂1 < 0)t2β1=0 .

The two summands appearing in the test statistic τ can be interpreted as
follows: the first term is a squared t-statistic for the hypothesis β⊥2 ≡ β2 −
β1v21/v11 = 0 with β⊥2 being orthogonal to β1. Additionally, the second term
is a squared t-statistic for the hypothesis β1 = 0, the one-sidedness under H1
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Table 1 Critical values of the τ statistic

dt = 0 dt = 1 dt = [1 t]′

1% 13.15 13.75 17.10
5% 9.53 10.17 12.82

10% 7.85 8.60 11.10

is achieved by the multiplied indicator function. In the next step, the limiting
distribution of τ is derived.

Assumption 1 yt is a random walk, i.e. yt = yt−1 + εt with y0 = 0 and ut

being iid(0, σ2) and E|ut|δ < ∞ for δ ≥ 6.

In Theorem 1 we derive the asymptotic distribution of τ under the null
hypothesis H0 : γ = 0.

Theorem 1 Under assumption 1 the τ statistic has the following asymptotic
distribution which is free of nuisance parameters:

τ ⇒ A(W (r)) + B(W (r)) ,

where A and B are functions of the Brownian motion W (r) that are given in
the proof. Under the alternative hypothesis H1 : γ > 0 the τ statistic diverges
with rate T .

Proof See Appendix.

We follow the approach of Kapetanios et al. (2003) and demean or detrend
the data in a first step when allowing for deterministic terms. This means
that the Brownian motion W (r) appearing in the limiting distribution of the
τ statistic has to be replaced by a demeaned or detrended Brownian motion,
respectively.

Next, we consider the case of serially correlated errors. We allow for sta-
tionary linear innovations that are generated by a short-memory process vt.

Assumption 1 vt = ψ(L)ut =
∑∞

j=0 ψjut−j, where
∑∞

j=0 j|ψj | < ∞ and
ut ∼ iid(0, σ2).

In Theorem 2 we show that the asymptotic distribution of the τ statistic
does not change when adding a sum of lagged differences on the right hand
side of the test regression, i.e.

4yt = β1y
3
t−1 + β2y

2
t−1 +

p∑

i=1

ρi4yt−i + ut . (5)

Theorem 2 The asymptotic distribution of the τ statistic does not change
when the test regression in (5) is used instead of (4).
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Proof See Appendix.

Alternatively, one could consider more general error processes and derive a
Phillips-Perron type test for the unit root hypothesis, see Rothe and Sibbertsen
(2006) and Sandberg (2008). However, we focus on the augmented Dickey-
Fuller version in this paper and leave the other for future research.

4 Monte Carlo study

This section covers the Monte Carlo study that compares the small sample
performance of the new unit root test and the existing test by Kapetanios et
al. (2003). Throughout this section we set the number of observations T equal
to 300 which is a reasonable sample size for many macroeconomic and financial
time series like unemployment rates and interest rates. Furthermore, 500 initial
observations are deleted to reduce the effect of initial conditions. Asymptotic
critical values for the modified Wald-type test τ are provided in Table 1. They
are based on 20,000 replications and T = 1000. We report critical values for
raw (dt = 0), demeaned (dt = 1) and detrended data (dt = [1 t]′) for nominal
significance levels of one, five and ten percent, respectively.

We investigate the size of both tests under the following data generating
processes

yt = yt−1 + εt with εt = ut (6)
yt = yt−1 + εt with εt = ρεt−1 + ut (7)
yt = yt−1 + εt with εt = ut − θut−1 , (8)

where ut is drawn from the standard normal distribution. The errors εt follow
an iid process, an AR(1) or MA(1) process. We adopt the approach of Phillips
and Sul (2003) and sample parameters from uniform distributions in order
to cover a wide range of values in a relatively small number of experiments.
Hence, the autoregressive and moving average parameters ρ and θ are drawn
from uniform distributions:

ρ ∼ U
[
ρ, ρ̄

]
and θ ∼ U

[
θ, θ̄

]
.

We specify ρ = θ = 0 and ρ̄ = θ̄ = 0.4. The size experiments are based on 5,000
replications, results can be found in Table 2. Most rejection rates under the
null hypothesis are quite close to the nominal ones which suggests that both
tests are correctly sized. We observe that both tests are a little bit oversized
in the presence of errors that follow a first-order moving average process.

Next, we study the power of both tests by considering different settings in
the globally stationary nonlinear ESTAR process for the parameters c and γ.
The data generating process we consider under the nonlinear ESTAR alterna-
tive is

4yt = φyt−1(1− exp{−γ(yt−1 − c)2}) + εt (9)
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Table 2 Size experiments

dt Test iid AR(1) MA(1)

1.0 5.0 10.0 1.0 5.0 10.0 1.0 5.0 10.0

0 KSS 0.9 5.1 9.9 1.0 5.0 10.0 1.2 4.7 10.1
τ 1.1 5.2 10.9 1.0 5.0 10.0 1.7 5.2 11.9

1 KSS 1.1 5.1 9.9 1.1 4.8 9.7 1.3 6.0 11.8
τ 1.1 4.9 9.8 0.9 4.6 9.5 1.2 5.6 11.8

[1 t]′ KSS 1.1 4.9 10.2 0.8 5.2 9.6 1.4 6.5 10.9
τ 1.0 5.2 10.1 0.9 5.4 10.3 1.5 6.6 11.2

Notes: Reported values are rejection rates of KSS and τ test under the
validity of H0.

with φ = −1. This restriction is often imposed in empirical studies, see for
example Taylor et al. (2001). The location parameter c is set either equal to
zero or it is drawn from a uniform distribution with lower and upper bound,
c and c, respectively. Analogously, the smoothness parameter γ is drawn from
a uniform distribution with lower and upper bound γ and γ, respectively:

c ∼ U [ c, c̄ ] and γ ∼ U
[
γ, γ̄

]
.

Results of these power experiments are reported in the upper panel of Table
3. In the first experiment we specify a zero location parameter (c0 ≡ c = 0)
and slow transition between regimes (γl ≡ γ ∼ U [0.001, 0.01]). In the second
and third experiments a non-zero location parameter is allowed by drawing
it from a uniform distribution with lower and upper bound of -5 (-10) and
5 (10), respectively. The fourth and fifth settings restrict the upper bound c̄
to zero in order to have a non-zero mean of c. Please note that we do not
report results for experiments where to the lower bound c is restricted to zero
because there is no qualitative difference because of symmetry. The last two
experiments are like the two previous ones but with fast transition between
regimes, i.e. γh ≡ γ ∼ U [0.01, 0.1].

When interpreting the simulated rejection probabilities against ESTAR
we observe that the new test is generally superior to the Kapetanios et al.
(2003) test in terms of power. Only in some cases where the unit root tests are
applied to raw data (dt = 0), the KSS test performs somewhat better than the
modified Wald test. Most applications of unit root tests in economics involve
deterministic terms. When data is demeaned or detrended, power gains up to
15 percent can be achieved by applying the new test.

In addition, we study the power of both tests against globally stationary
logistic STAR (LSTAR) models. As noted by Kapetanios et al. (2003) an
alternative nonlinear adjustment scheme to the exponential one is a logistic
smooth transition function. We use the second-order logistic function

G(yt−1; γ, c1, c2) = 2/[1 + exp(−γ(yt−1 − c1)(yt−1 − c2))]− 1

that has two location parameters, namely c1 and c2. Like the exponential
smooth transition function it becomes constant if γ → 0, which means that
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Table 3 Power experiments

dt Test c0, γl c±5, γl c±10, γl c−5, γl c−10, γl c−5, γh c−10, γh

Exponential STAR

0 KSS 99.6 92.4 73.0 92.0 74.4 97.0 97.2
τ 95.3 88.1 72.6 88.5 74.5 98.2 97.9

1 KSS 91.1 87.6 77.8 88.4 79.7 98.1 97.5
τ 92.9 92.3 93.3 91.8 93.9 100 100

[1 t]′ KSS 77.5 74.2 64.1 73.4 65.9 97.7 96.3
τ 81.6 78.9 78.4 79.6 78.7 100 100

Logistic STAR

0 KSS 97.8 95.4 87.8 94.9 89.2 99.9 99.9
τ 83.2 82.5 82.7 80.3 83.3 99.9 100

1 KSS 75.6 72.4 63.7 71.4 64.6 99.0 94.4
τ 79.0 77.5 78.3 77.9 80.0 100 100

[1 t]′ KSS 53.3 50.4 46.5 50.8 48.5 97.5 92.3
τ 58.6 54.9 57.7 55.4 59.4 99.5 99.8

Notes: Reported values are rejection rates of KSS test (upper entries) and τ test (lower
entries). Nominal significance level is five percent.

the nonlinear logistic smooth transition model becomes linear. Without loss
of generality, we set c1 = 0 and draw c2 from the uniform distribution as done
before in the case of an exponential smooth transition. The data generating
process is now given by

4yt = yt−1(1− 2/[1 + exp(−γ(yt−1 − c1)(yt−1 − c2))]) + εt . (10)

Empirical rejection frequencies are reported in the lower panel of Table 3.
Both tests have higher power against ESTAR than LSTAR models which is not
surprising since both have the former one as specific alternative. Nonetheless,
one might expect that both tests have substantial power against logistic STAR
models because the Taylor approximation of a logistic STAR model is quite
similar. Thus, a rejection of the null hypothesis does not necessarily contain
information about the specific type of nonlinear adjustment. When comparing
both unit root tests, we come to the same conclusions as before. In addition
we observe that the power is lower for detrended data than for demeaned
data which is due to an additional parameter that has to be estimated when
detrending the data.

In sum, the new test shows good overall performance and is quite often
more powerful than the existing test by Kapetanios et al. (2003), especially
when the test is applied to demeaned or detrended data, which are the most
important cases in practice.

5 Empirical application

Unit root tests have become a very popular tool in the literature that is
concerned with testing validity of the Purchasing Power Parity (PPP) which
counts to one of the most important parities in international macroeconomics.
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Fig. 1 Logarithm of real effective exchange rate (January, 1993 to December, 2007).

One can state that PPP holds if and only if the real exchange rate is stationary.
Henceforth, testing the unit root hypothesis means testing the non-validity of
the PPP theory. Since linear unit root tests like the ones of Dickey-Fuller
(1979) and Phillips and Perron (1988) often fail to reject the null hypothesis
of non-stationarity when being applied to real exchange rate data, researchers
tend to use nonlinear unit root tests where the specific model that is true
under the alternative is congruent with economic models of financial markets.
For example, STAR models for the real exchange rate can be interpreted in
the context of transaction costs and arbitrage, see Dumas (1992), Sercu et
al. (1995) and Michael et al. (1997). However, rejecting the null hypothesis in
favor of a nonlinear alternative while a linear Dickey-Fuller test does not reject
in favor of a linear alternative might hint at nonlinearities. Nonetheless, one
should be careful with the conclusion that nonlinearity is of ESTAR-type be-
cause the test regression approximates a lot of nonlinear models and such tests



11

can have substantial power against other nonlinear mean-reverting processes,
see section 4.

We apply both unit root tests against nonlinear alternatives and two fa-
mous tests against linear alternatives to the monthly real effective exchange
rate time series for the European Union. Our data is taken from Datastream
(code: EMXTW..RF) and spans from 1993:01 to 2007:12 implying 180 obser-
vations. The logged time series is depicted in Figure 1. No linear trend can
be seen in the data but the mean appears to be highly significant. Hence,
we demean the data in a first step. In a second step we estimate the test
regressions with a lag length chosen accordingly to the Schwarz information
criterion (p̂ = 1). We obtain KSS = −2.21 which is not significant at the ten
percent level suggesting that PPP does not hold. On the contrary, using the
new test one has to reject the null hypothesis since τ = 9.19 is significant at the
ten percent level which indicates that PPP holds true. Furthermore, the unit
root tests against linear alternatives by Dickey and Fuller (1979) (DF) and
Phillips and Perron (1988) (PP) do not provide any evidence against the null
hypothesis. The test statistics are DF = −1.76 and PP = −1.60, respectively.
We conclude that nonlinearities, potentially of exponential STAR-type with
non-zero location, are present in the data but that they are not detected by
applying existing tests. The modified Wald unit root test yields new evidence
on the stationarity of the EU real effective exchange rate which suggests the
validity of PPP.

6 Conclusions

This paper contributes to the literature on nonlinear unit root tests by gener-
alizing the existing test by Kapetanios et al. (2003) with respect to a nonzero
location parameter. The resulting non-standard testing problem is tackled by
deriving a modified Wald test that builds up on the inference techniques by
Abadir and Distaso (2007). The non-standard limiting distribution of the test
statistic has been derived under standard assumptions. The Monte Carlo study
shows that the new test is in most situations superior to the extant test. An
empirical application to the EU real effective exchange rate underpins its use-
fulness.

Appendix

Proof (of Theorem 1) In order to simplify the notation, we write
∫

instead of∫ 1

0
in the following. The proof makes use of the following convergence results,

see Hansen (1992) and Hamilton (1994). We have

1
T (i+2)/2

T∑
t=1

yi
t−1 ⇒ σi

∫
W (r)idr for i = 4, 5, 6
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1
T 3/2

T∑
t=1

y2
t−14yt ⇒ σ3

(
1
3
W (1)3 −

∫
W (r)dr

)

1
T 2

T∑
t=1

y3
t−14yt ⇒ σ4

(
1
4
W (1)4 − 3

2

∫
W (r)2dr

)
.

We first note that the second summand of τ is given by 1(β̂1 < 0)t2β1=0 and
that the OLS estimator for β1 in (4) is given by

β̂1 =
∑T

t=1 y4
t−1

∑T
t=1 y3

t−14yt −
∑T

t=1 y2
t−14yt

∑T
t=1 y5

t−1

∑T
t=1 y4

t−1

∑T
t=1 y6

t−1 −
(∑T

t=1 y5
t−1

)2 .

Under the assumptions of Theorem 1 and by using the convergence results
from above we obtain β̂1

P→ β1 and β̂1 = OP (T−2). Furthermore,

tβ1=0 =
∑T

t=1 y4
t−1

∑T
t=1 y3

t−14yt −
∑T

t=1 y2
t−14yt

∑T
t=1 y5

t−1√
σ̂2

((∑T
t=1 y4

t−1

)2 ∑T
t=1 y6

t−1 −
∑T

t=1 y4
t−1

(∑T
t=1 y5

t−1

)2
) .

Again, by using the convergence results it follows that

tβ1=0 ⇒
(∫

W (r)4dr
) (

1
4W (1)4 − 3

2

∫
W (r)2dr

)− (
1
3W (1)3 − ∫

W (r)dr
) (∫

W (r)5dr
)

√(∫
W (r)4dr

)2 (∫
W (r)6dr

)− (∫
W (r)4dr

) (∫
W (r)5dr

)2
,

and by applying the CMT it follows directly that t2β1=0 converges to the square
of the previous function which gives an expression for B(W (r)). Regarding the
first summand of τ , we have for the nominator of tβ⊥2 =0

β̂2−β̂1
v̂21

v̂11
=

∑T
t=1 y4

t−1

∑T
t=1 y6

t−1

∑T
t=1 y2

t−14yt −
∑T

t=1 y2
t−14yt

(∑T
t=1 y5

t−1

)2

(∑T
t=1 y4

t−1

)2 ∑T
t=1 y6

t−1 −
∑T

t=1 y4
t−1

(∑T
t=1 y5

t−1

)2 .

For the denominator of tβ⊥2 =0 we have after simple calculations

√
v̂22 − v̂2

21

v̂11
=

√
σ̂2

∑T
t=1 y4

t−1

.

Therefore

tβ⊥2 =0 =

∑T
t=1 y2

t−14yt

((∑T
t=1 y4

t−1

)3/2 ∑T
t=1 y6

t−1 −
(∑T

t=1 y4
t−1

)1/2 (∑T
t=1 y5

t−1

)2
)

σ̂

((∑T
t=1 y4

t−1

)2 ∑T
t=1 y6

t−1 −
∑T

t=1 y4
t−1

(∑T
t=1 y5

t−1

)2
)
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Using the convergence results stated above it follows that

tβ⊥2 =0 ⇒
(

1
3W (1)3 − ∫

W (r)dr
) ((∫

W (r)4dr
)3/2 (∫

W (r)6dr
)− (∫

W (r)4dr
)1/2 (∫

W (r)5dr
)2

)

(∫
W (r)4dr

)2 (∫
W (r)6dr

)− (∫
W (r)4dr

) (∫
W (r)5dr

)2

Again, by CMT it follows that t2
β⊥2 =0

converges in distribution to the square
of the previous function which gives an expression for A(W (r)). It is easy
to show that σ̂2 p→ σ2, see Kapetanios et al. (2003). Under the alternative
hypothesis, 4yt, y2

t−1 and y3
t−1 are I(0) processes and it is easy to show that

the terms appearing in the test statistic are OP (T ). Then, t2
β⊥2 =0

= OP (T ) and

t2β1=0 = OP (T ), therefore τ = OP (T ). The τ statistic is therefore diverging
with rate T .

Proof (of Theorem 2) The proof is very similar to the one of Kapetanios et
al. (2003) as it uses the same arguments. Let Z = [4y−1,4y−2, . . . ,4y−p]
with 4y−i = [4y−i+1,4y−i+2, . . . ,4yT−i] and MT = IT −Z(Z ′Z)−1Z. Note
that, σ̂2 = 1

T ε′MT ε = 1
T ε′ε + op(1)

p→ σ2 with ε = [ε1, ε2, . . . , εT ]′. Moreover,
we have

1
T (i+2)/2

y
i/2′

−1 MT y
i/2
−1 =

1
T (i+2)/2

y
i/2′

−1 y
i/2
−1 + op(1) ⇒ λi

∫
W (r)idr for i = 4, 6

1
T 7/2

y
5/2′

−1 MT y
5/2
−1 =

1
T 7/2

y
5/2′

−1 y
5/2
−1 + op(1) ⇒ λ5

∫
W (r)5dr ,

and additionally,

1
T 3/2

y2′
−1MT ε =

1
T 3/2

y2′
−1ε + op(1) ⇒ 1

3
λ3W (1)3 − λσ2

∫
W (r)dr

1
T 2

y3′
−1MT ε =

1
T 2

y3′
−1ε + op(1) ⇒ 1

4
λ4W (1)4 − 3

2
σ2λ2

∫
W (r)2dr ,

where λ2 is the long-run variance of 4yt under the null hypothesis. Based on
these results we have

tβ1=0 =

(
y2′
−1MT y2

−1

)(
y3′
−1MT ε

)
−

(
y2′
−1MT ε

)(
y
5/2′

−1 MT y
5/2
−1

)
√

σ̂2

((
y2′
−1MT y2

−1

)2 (
y3′
−1MT y3

−1

)− (
y2′
−1MT y2

−1

) (
y
5/2′
−1 MT y

5/2
−1

)2
)

=

(
y2′
−1y

2
−1

)(
y3′
−1ε

)
−

(
y2′
−1ε

)(
y
5/2′

−1 y
5/2
−1

)
√

σ̂2

((
y2′
−1y

2
−1

)2 (
y3′
−1y

3
−1

)− (
y2′
−1y

2
−1

) (
y
5/2′

−1 y
5/2
−1

)2
) + op(1) .

Furthermore,

tβ⊥2 =0 =
y2′
−1MT ε

((
y2′
−1MT y2

−1

)3/2 (
y3′
−1MT y3

−1

)
−

(
y2′
−1MT y2

−1

)1/2 (
y
5/2′

−1 MT y
5/2
−1

)2
)

σ̂

((
y2′
−1MT y2

−1

)2 (
y3′
−1MT y3

−1

)− (
y2′
−1MT y2

−1

) (
y
5/2′

−1 MT y
5/2
−1

)2
)
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=
y2′
−1ε

((
y2′
−1y

2
−1

)3/2 (
y3′
−1y

3
−1

)
−

(
y2′
−1y

2
−1

)1/2 (
y
5/2′

−1 y
5/2
−1

)2
)

σ̂

((
y2′
−1y

2
−1

)2 (
y3′
−1y

3
−1

)− (
y2′
−1y

2
−1

) (
y
5/2′

−1 y
5/2
−1

)2
) + op(1) ,

which, as we have shown before, has the asymptotic distribution given in
Theorem 1. Finally, among similar lines in the foregoing proof, it is easily seen
that the τ test is consistent under the alternative.
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