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Abstract

This paper presents an optimization-based solution approach for the dy-
namic multi-level capacitated lot sizing problem (MLCLSP) with positive lead
times. The key idea is to solve a series of mixed-integer programs in an itera-
tive fix-and-optimize algorithm. Each of these programs is optimized over all
real-valued variables, but only a small subset of binary setup variables. The
remaining binary setup variables are tentatively fixed to values determined in
previous iterations. The resulting algorithm is transparent, flexible, accurate
and relatively fast. Its solution quality outperforms those of the approaches

by Tempelmeier /Derstroff and by Stadtler.

1 Introduction

This paper treats the problem to determine time-phased production quantities (lot
sizes) for multi-level production systems in which a changeover at a resource from
one product type to another requires a setup time and/or causes setup cost. The
capacity of the resources is limited. The time-phased demand is assumed to be
given and has to be satisfied. To date, this type of lot sizing problem cannot be
solved satisfactorily within computerized Material Requirements Planning (MRP)
modules of Enterprise Resource Planning (ERP) systems. The reason is that these
systems often ignore the capacity limits of the production system while computing
the lot sizes. This leads to infeasible production schedules which result in long and

unpredictable lead times and large in-process inventories.



The problem of finding capacity-feasible production quantities for a multi-stage
production system that minimize setup and holding cost has been formally stated as
the Multi-Level Capacitated Lot Sizing Problem (MLCLSP), see Billington (1983).
For capacitated production systems with non-zero setup times, the question whether
a feasible production plan (without overtime) exists has shown to be already N'P-
complete, see Maes et al. (1991). Several authors have therefore developed heuristics
for the problem. Multi-level capacitated lot sizing is hence both practically impor-
tant and scientifically challenging.

From a practical point of view, generic lot sizing approaches for ERP systems
should meet several requirements. First, they should be adaptable to specific as-
pects of a concrete production system. This favors flexible approaches based on
mathematical programming as opposed to “hard-wired” procedural heuristics that
follow a highly problem-specific logic. Second, they should enable the planer to find
feasible solutions of acceptable quality quickly and then let him decide to invest
additional computation time to improve the solution. Third, if lot sizing on the
one hand and sequencing/scheduling on the other are treated separately, it should
always be possible to disaggregate the (aggregated) lot sizes into a detailed produc-
tion schedule in continuous time. In a multi-level production system, this can only
be guaranteed if positive lead times between the production stages are considered.

Reviews of the literature on dynamic lot sizing are given by Bahl et al. (1987),
Maes and van Wassenhove (1988), Gupta and Keung (1990), Salomon et al. (1991)
and Buschkiihl et al. (2008). Kuik et al. (1994) relate lot sizing to batching and
comment on some general criticism of batching analysis. The progress with single-
item lot sizing is analyzed by Wolsey (1995) and Brahimi et al. (2006). Drexl and
Kimms (1997) discuss models that consider both lot sizing and scheduling. Karimi
et al. (2003) give a review of solution approaches for single-stage capacitated lot siz-
ing problems and Jans and Degraeve (2007) focus on metaheuristics for dynamic lot
sizing. Table 1 classifies papers on the MLCLSP by the general solution approach,
i.e., mathematical programming-based approaches, Lagrangean relaxation and de-
composition, decomposition and aggregation, local search and metaheuristics and
finally greedy heuristics. Some of these papers are discussed below in more detail.

In Tempelmeier and Helber (1994), Helber (1995) and Tempelmeier and Derstroff
(1996), early product-oriented decomposition approaches for the MLCLSP are pre-
sented. The Tempelmeier/Destroff-heuristic (TDH) is until now the fastest available
method for the MLCLSP. It is based on a Lagrangean relaxation of the MLCLSP
which then decomposes into single-product uncapacitated lot sizing problems of the
type studied by Wagner and Whitin (1958). The Langrangean relaxation leads to a
lower bound on the objective function value. A heuristic finite scheduling procedure

is used to create a feasible solution and to compute an upper bound on the optimal



Table 1: Literature on the MLCLSP

Mathematical Programming Approaches

Billington et al. (1986), Maes et al. (1991), Pochet and Wolsey (1991),
Kuik et al. (1993), Clark and Armentano (1995),

Harrison and Lewis (1996), Stadtler (1996, 1997), Katok et al. (1998),
Belvaux and Wolsey (2000, 2001), Rossi (2003), Stadtler (2003),

Siirie and Stadtler (2003)

Lagrangean Relaxation and Decomposition
Tempelmeier and Derstroff (1993), Tempelmeier and Derstroff (1996),
Ozdamar and Barbarosoglu (1999, 2000), Moorkanat (2000), Chen and Chu (2003)

Decomposition and Aggregation
Tempelmeier and Helber (1994), Helber (1994), Quadt (2004),
Quadt and Kuhn (2005), Boctor and Poulin (2005)

Local Search and Metaheuristics

Salomon et al. (1993), Kuik et al. (1993), Salomon et al. (1993),

Helber (1994, 1995), Barbarosoglu and Ozdamar (2000), Hung and Chien (2000),
Ozdamar and Barbarosoglu (2000), Ozdamar and Bozyel (2000),

Gutierrez et al. (2001), Xie and Dong (2002), Berretta and Rodrigues (2004),
Berretta et al. (2005), Pitakaso et al. (2006)

Greedy Heuristics
Clark and Armentano (1995), Franga et al. (1997)

objective function value. While the algorithm is fast, it is difficult to describe and
implement as well as inflexible with respect to modifications of the underlying prob-
lem. The solution quality especially for large problem instances offers opportunities
for improvement. Katok et al. (1998) present a linear-programming (LP)-based ap-
proach that works with a heuristic modification of the coefficients of the production
quantities in both the objective function and the constraints. Tempelmeier (2006, p.
342) shows that this concept is very vulnerable when setup times occur and capacity
limits are tight. In these situations existing feasible solutions (without overtime) are
not found.

Stadtler (2003) proposes a mixed-integer programming-based heuristic that solves
a series of subproblems through internally rolling schedules with time windows. For
the periods within the time window of a particular subproblem, the simple plant
location variant of the lot sizing problem is used to speed up the optimization pro-
cess. Stadtler’s approach delivers high-quality solutions for problems with zero lead
times, but cannot deal with positive lead times (Stadtler 2003, p. 501). This makes

a consistent disaggregation into a detailed production schedule in continuous time



impossible. In addition, solution times for his approach increase substantially as the
problem size (number of binary setup variables) increases. A variant of Stadtler’s
general approach of internally rolling schedules for the Capacitated Lot Sizing Prob-
lem with Linked Lot Sizes (Haase 1994, 1998) is presented by Stirie and Stadtler
(2003). It is based on an extended model formulation and valid inequalities to yield
a tight formulation that speeds up the branch&bound process. Belvaux and Wolsey
(2001) show how to develop tight formulations for several special problem features
occurring in practice. Rossi (2003) develops a time-oriented decomposition similar
to the one by Stadtler where some of the setup variables are initially relaxed while
others are iteratively fixed. Unfortunately, the author provides no direct compar-
ison to the procedures by Stadtler and by Tempelmeier and Derstroff. Pitakaso
et al. (2006) present a decomposition algorithm for the MLCLSP based on a lim-
ited subset of products and periods. Each problem in the decomposition is solved
to optimality and a capacity reservation mechanism is used to reflect products and
periods “outside” of the current problem. The decomposition itself is controlled by
an “ant colony optimization” algorithm. The computation times that are necessary
to find better results than with Stadtler’s method appear to be quite high (20 to
30 minutes) and then the average improvement is small. Berretta and Rodrigues
(2004) describe a memetic algorithm which is also population-based. However, they
compare their results to those presented by Tempelmeier and Derstroff only for tiny
problems with 40 binary variables. The picture is similar for a similar algorithm
by Berretta et al. (2005): Relatively large deviations from optimal solutions occur
already for problems with only 60 binary variables.

In this paper we present a mathematical programming-based algorithm for the
MLCLSP that is flexible and transparent, that allows to trade in solution time for
solution quality and that can deal with positive lead times. In an iterative fix-
and-optimize approach (Pochet and Wolsey 2006, p. 113, call this “Exchange”), a
sequence of mixed-integer programs (MIPs) is solved over all real-valued decision
variables and a subset of the binary setup variables. The solution with respect to
the binary variables is a fixed parameter for the next MIPs that optimize other
binary variables. The optimization of the algebraic decision model is done within
the MIP solver and therefore the approach is flexible. The user can trade in solution
time for solution quality by deciding about the number of binary variables to be
treated within a single MIP and about the number of iterations in which these are
optimized and fixed again. Even large problem instances from the literature can
be solved with a high solution quality within seconds or few minutes. We study
both the cases of zero and of positive lead times and compare our results to those
for the approaches by Tempelmeier and Derstroff (1996) and Stadtler (2003) in an
extensive numerical study. While the method by Tempelmeier and Derstroff (1996)



Table 2: Notation for the MLCLSP

Sets:
k,i € K  products
teT periods

jeJ resources

KC; set of products requiring resource j

N, set of immediate successors of product k

Parameters:

i number of units of product k required to produce one unit of product ¢
b; available capacity of resource j in period ¢

B big number

et external demand of product k in period ¢

h holding cost of product k per unit and period

0Cjt overtime cost per unit of overtime at resource j in period ¢
Sk setup cost of product £

tpg production time per unit of product &

tsy setup time of product k

2k planned lead time of product &

Decision variables:

O; overtime at resource j in period ¢

Qe production quantity (lot size) of product k in period ¢
Yt planned end-of-period inventory of product k in period ¢
Vit binary setup variable of product k in period ¢

is extremely fast (and much faster than ours), our method yields a substantially
higher solution quality. It outperforms the one presented by Stadtler (2003) with
respect to both solution quality and computation time.

The remainder of this paper is organized as follows: In Section 2 we give a formal
definition of the MLCLSP. The algorithm to solve the problem is presented in Sec-
tion 3. Numerical results comparing our method to those developed by Tempelmeier
and Derstroff and by Stadtler are reported in Section 4. The paper ends with some

conclusions and suggestions for further research (Section 5).

2 Problem Statement and Model Formulation

The objective of the MLCLSP is to determine production quantities Q;; and
end-of-period inventory levels Yj; of product k in period t so that the sum of setup,
holding and overtime cost is minimized. The demand dj; per product and period
at each production stage is given and has to be satisfied. Whenever a product is

produced during a period, a setup is required during this period which results in



both setup cost and setup time. The setup state v, € {0, 1} for product k in period
t is assumed to be lost at the end of this period. The regular capacity b;; of a
resource j in a period ¢ can be extended by using overtime Oj;. We now formally
state the MLCLSP using the notation in Table 2, see Billington et al. (1983) and
also Stadtler (2003).

Model MLCLSP

Minimize Z = Z Z(Sk Yt + P Yie) + Z Z ocj - Oj (1)

KeK teT jeT teT
subject to:
Yieot + Quaeze — 3 i+ Qit — Yy = iy Vkt (2)
€Ny

> (tpr - Qre +tsi - yre) < by + Ojy Vit (3)
keK;

Qi — B v <0 Vk,t (4)
Qrt, Yre > 0 Vik,t (5)
Oy >0 Vit (6)
vre € {0, 1} Vk,t (7)
Yio=Yir =0 vk (8)

The objective function (1) states that the sum of the setup, holding and overtime
cost has to be minimized. The inventory balance equations (2) reflect the multi-level
production structure. Note that due to the lead time z;, a production quantity of
product £ in period t — z;, is available in period t to satisfy the external demand dj;
or to be used in the production of a succeeding product i. If we set 2z, = 1,Vk, any
feasible lot sizing decision can be transformed into a feasible schedule. Inequalities
(3) state that production quantities and setups must meet the capacity constraints
for all the resources. Inequalities (4) ensure that a machine is set up for product
k in period t, if the product is produced in this period. Production quantities
and inventory levels (5) as well as planned overtime (6) cannot be negative. Setup
variables are binary (7) and there are neither initial nor ending inventories (8). Note
that this version of the MLCLSP is always formally feasible as there is no limit on
overtime. The undesired use of overtime, however, is priced out of the solution by

the algorithm presented in the next section.



3 An Iterative Optimization-Based Heuristic

3.1 Basic idea of the Fix-and-Optimize heuristic

The standard formulation of the MLCLSP based on production and inventory quan-
tities as stated in Section 2 typically leads for all but tiny problem instances to
solution times of a MIP solver that are prohibitively large. The number of binary
setup variables (|K|-|7|) determines most of the numerical effort, while the number
of real-valued variables is of secondary importance. The basic idea of our proposal
is therefore to solve in an iterative fashion a series of subproblems that are derived
from the MLCLSP. In each iteration, most of the binary setup variables ~v;; are
set to a fixed value 7%’” This reduces the number of “free” binary variables in
the subproblem of the current iteration. The resulting subproblems are then solved
by a MIP solver to optimality. As the number of “free” binary variables of the
subproblem is much smaller than in the original MLCLSP, the solution time for
a subproblem is very small. This yields a new temporary solution for the setup
variables of the current subproblem. At least some of them are fixed in the next
iteration when a different subset of binary variables is optimized. In each subprob-
lem the complete set of real-valued decision variables over all products, periods and
machines is considered. Thus, it is not necessary to freeze parts of the plan nor to
deal with end-of-horizon effects like those encountered by Stadtler in his internally
rolling schedules with lot sizing windows.

In a Relax-and-Fix heuristic (Pochet and Wolsey 2006, pp. 109) like the one
proposed by Stadtler (2003), the binary setup variables of the original MLCLSP
are divided into three groups for each subproblem: The first group contains those
that are fixed, the second those that are optimized and the third contains those
for which the integrality constraints are relaxed. Our Fix-and-Optimize heuristic,

however, operates only with the first two groups.

3.2 Model formulation for the subproblem

With the additional notation in Table 3, the subproblem for a given set K7/ C KT

of fixed setup variables can be stated as follows:



Table 3: Additional notation for the MLCLSP-SUB

Sets:

(k,t) € KT  set of product-period combinations

KT C KT set of product-period combinations for which binary variables 7,
are optimized in the current subproblem

KT'™ C KT set of product-period combinations for which binary variables v
are fixed in the current subproblem

Parameters:

Vot exogenous value of the fixed setup variables vy, in the current sub-
problem

Model MLCLSP-SUB

Minimize objective function (1) subject to constraints (2)-(8) and the additional

constraints

Vit = Vht v (k,t) € KT (9)

These additional constraints suffice to limit the optimization of the binary setup
variables to the set KT = KT \ KT/™. (It is possible to state the problem
mathematically in a more compact form, but modern solvers detect and resolve the

redundancies of the current formulation automatically.)

3.3 Definition of subsets of binary setup variables

KT ort|
KT

MLCLSP-SUB is, the more time-consuming is the solution of the resulting MIP and
the higher is the quality of the solution that can be found. The different product-

The bigger the relative number of free binary variables in each subproblem

period combinations X7 °P* over which the setup pattern is optimized must be closely
related in order to offer trade-offs to be used within the optimization. During the
development of our algorithm, we experimented with several different ways to define
subsets K7 %" of binary variables for ordered sets s € S of subproblems, out of which

three turned out to be particularly useful:

e Product-oriented decomposition: Each subproblem s corresponds to a
(single) product k. In each subproblem, all periods t are treated. That is,
setup decisions are optimized for single products over the complete planning

horizon.

¢ Resource-oriented decomposition: Each subproblem s corresponds to a

(single) resource j and a subset of periods ¢. The subset of periods contains



four successive periods. Two successive subproblems s related to the same
resource j have an overlap of two periods, e.g. periods 1 to 4 for the first
subset, periods 3 to 6 for the second etc. In each such subproblem, all products

k € K; requiring resource j are considered.

e Process-oriented decomposition: Each subproblem s corresponds to a
subset of periods t and a direct predecessor-successor-relationship between
a product & and one of its immediate successors i € Nj. For each direct
predecessor-successor-relationship two subproblems s are defined. The first

one covers the first half of the planning horizon and the other one the second
half.

Each of these decompositions reflects a particular perspective on the problem.

We combine these perspectives in the following four variants of our algorithm.

e Variant 1: Product-oriented decomposition only

e Variant 2: Product-oriented decomposition first, then resource-oriented de-

composition

e Variant 3: Product-oriented decomposition first, then process-oriented de-

composition

e Variant 4: Product-oriented decomposition first, then resource-oriented de-

composition, finally process-oriented decomposition

Each variant can either be treated just once or repeated until a local optimum
is reached.

In each of the four variants we start with a product-oriented decomposition. We
observed that the sequence in which different products are treated during the early
steps of the algorithm is important. For this reason, we try to start with those
products that “cause” most of the cost. If multiple product types are produced on
a machine in a period in which overtime cost occur, it is not possible to allocate
the overtime cost to the product types based on an unambiguous cause-and-effect
reasoning. We therefore allocate overtime cost proportional to the time consumption
of the product types. In spite of this problem, we attempt to estimate product-
specific cost Zj from the solution of the LP-relaxation of problem MLCLSP (1) to
(8). This LP-relaxation yields an objective function value Z"¢. From the solution

of this LP-relaxation we determined cost values Z;, with

7 =>"7, (10)

kel

for each product type as follows



_ rel > over ok - Que + tsi - Vil ) (3 et 0650405 t)
Zy = Z(Sk Yt P Vi) + -
teT chelcj(k.) > et (tpy - Qpy + tsj, - Vit )

(11)

based on the LP-relaxation 7/¢ of the binary setup variables 4. Here, the cost

of overtime is charged to the products proportionally to the capacity usage of the
respective resource. In the product-oriented decomposition, products are ordered
according to decreasing cost Z; to determine the ordered set S of subproblems. (We
also tested other sequences (i.e. other ordered sets of subproblems), but in general
the cost-based sequence performed best.)

To tighten the “Big-B” constraints (4) in this LP-relaxation, we computed the

time-phased echelon demand Dy, recursively

Dyt = dispz, + Y i Digisy (12)
=

to determine a parameter My,

My = > D (13)

TET , 7>t
which describes the maximum quantity that can possibly be produced of product
k in period t, if there is no backlog in the production plan. This parameter My, is

used to substitute the parameter B in constraint (4)

Qre — My - <0 Vk,t. (14)

This leads to larger values 7/¢ and hence a tighter LP-relaxation than one would

get for an arbitrarily large value of the parameter B.

3.4 Iterative algorithm

The basic structure of our algorithm is outlined in Algorithm 1. Initially, a setup
is planned for each product in each period and the cost of this solution is deter-
mined. (We found out that from this starting point the algorithm can price out
economically unattractive setup decisions most quickly.) We then go through the
ordered set of subproblems of the respective variant of our algorithm (1 to 4, see
above) either once (I"* = 1) or until we reach a local optimum (I"** = c0). In
our algorithm, each solution to a subproblem s yields an objective function value
Z that is at least as good as the currently best value Z°?. In each iteration [ a

new solution is only accepted if it yields lower cost that the current plan. As in the
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approach proposed by Stadtler (2003, p. 495) a capacity infeasible solution (with
overtime) is never considered as a candidate for a best solution, if there is already a
known capacity feasible solution. The boolean variable C'apF'eas indicates whether

a capacity feasible solution has already been found.

Algorithm 1 Two-phase algorithm
Y = L,V(k,t) € KT
KT'" — KT
solve MLCLSP-SUB and determine objective function value Z
zm =7
if > .72 e Oje = 0 then
CapFeas= yes
else
CapFeas= no
end if
1=0
repeat
=141
Zold — pgnew
for each decomposition S in the current variant of the algorithm do
for each subproblem s € S do
determine KT and KT/ = KT\KT" for subproblem s
solve MLCLSP-SUB and determine objective function value Z

if Zjej ZtGT O]t =0 then

new

CapFeas™"= yes
else
CapFeas™™= no
end if
if 7 < Z°4 and (CapFeas™" or (not(CapFeas™") and not(CapFeas))
then
Vit = Vit V(k, 1) € ]CTZpt
Znew — Z

if CapFeas™" then
CapFeas= yes
end if
end if
end for
end for
until [ = [m%@ or Znew >= zold

Our algorithm was implemented in Delphi and we used the CPLEX 10.2 callable
library to solve the MIPs on a 2.13 GHz Intel Pentium Core2 machine with 4 GB
of RAM.

11



4 Numerical Results

4.1 Test sets and reference values

In order to evaluate the performance of our approach, we used and extended test in-
stances without lead times that were developed and documented in detail by Stadtler
and Siirie (2000) and used in Stadtler (2003). Out of their test sets, we used test
sets AT, BT, C, D and E as described in Table 4. These test sets cover different
product structures with 10 to 100 items and between 16 and 24 periods.

Table 4: Selected test sets

Products Demand periods Resources Setup times | Test instances
Class A* 10 24 3 no 120/108/116
Class BT 10 24 3 yes 312/312/312
Class C 40 16 6 no 180/132/153
Class D 40 16 6 yes 80/72/74
Class E 100 16 10 no 150/150/150

In the original test sets by Stadtler and Siirie (2000), lead times are not con-
sidered. However, as modeling lead times is a practical necessity in multi-level
production systems, we tested our approach for problems with and without lead
times. In the latter case, we assumed a lead time of one period for each product
except for end products. This increases the number of necessary periods by u — 1
periods for product structures with u production stages to allow for all production
steps at all intermediate production stages. We therefore added the necessary num-
ber of periods and shifted the demand data by the number of additional periods into
the future. (The product structures in Problem Class AT, for example, have v = 3
production stages and 24 demand periods. To consider lead times, we therefore
work with 24 4+ (u — 1) = 24 4+ 2 = 26 periods such that the time-shifted demand
occurs in periods 3 to 26.) The last column of Table 4 presents triple values in the
form “a/b/c”. The first entry “a” indicates the total number of instances in this
problem class, whereas entries “b” and “c¢” give the number of instances in this class
for which a capacity-feasible solution (without overtime) is known for cases with
zero lead times and lead times of one period, respectively. For cases with zero lead
times, Stadtler and Siirie (2000) report lower bounds on the objective function value
(computed via the simple plant location (SPL) formulation of the MLCLSP) and
upper bounds on the best solutions known to them. For cases with lead times of one
period, we computed the respective bounds ourselves. To this end, end we also used
the SPL formulation of the MLCLSP (Stadtler 2003) in a truncated branch&bound
approach of the CPLEX MIP solver. For each problem instance of Problem Classes
AT and BT, we allowed for a maximum computation time of 1.5 hours of CPU

time. The respective limit was 3 hours for Problem Classes C and D and 6 hours for

12



Problem Class E. In our numerical study, we only tested the different algorithms on
those subsets of the test instances for which solutions without overtime are known.

We compare our results to those obtained by the Lagrangean decomposition
method developed by Tempelmeier and Derstroff (1996) and the time decomposition
approach by Stadtler (2003). Both authors provided us with an implementation of
their respective method to allow for a fair comparison. For problem instances with-
out lead times, we were able to compare our results to both competing approaches.
For the instances with lead times, our approach can only be compared to the one by
Tempelmeier and Derstroff (1996) as Stadtler’s time decomposition cannot deal with
lead times. It should also be noted that the implementation of the Tempelmeier-
Derstroff-Heuristic (TDH) (courtesy of Tempelmeier’s group) occasionally led to
solutions with some (very small) overtime use. For this reason, we decided to take
the setup pattern from the TDH solution and to re-compute the production plan by
solving the remaining linear program with real-valued decision variables, given this
setup pattern. We found that this additional step led to production quantities that
were indeed capacity feasible (without overtime) and report the objective function
values for these slightly better solutions of a “polished version” of the TDH.

We found that the method proposed by Stadtler is quite time-consuming. The
implementation of the algorithm (courtesy of Stadtler’s group) in XPRESSMP (rel.
17) has an option to impose a limit on the computation time. However, this limit
takes effect only if a first feasible solution has been found. For each problem class
we determined the maximum computation time of each combination of problem
instance and algorithmic variant of our method. We imposed this maximum value
as a time limit for Stadtler’s method. In several cases Stadtler’s method required
more than this time limit to find a first feasible solution. Stadtler’s method operates
with moving time windows. Based on the parameter settings that he reported to be
quite powerful, we used his algorithm with a time window of four successive periods
(none of them with a relaxed integrality constraint). In the next iteration, we moved
this time window one period into the future. In Stadtler’s terms, we worked with a
“4/0/1” parameter setting.

Depending on the variant of our algorithm as described in Section 3, in each

instance of Problem Classes AT and BT, we optimized over 3% to 10% of the bi-

KToPt
KT

MLCLSP-SUB. For the larger problem instances with more products, this fraction

nary setup variables, i.e. 0.03 < | | < 0.1 in any one instance of Problem

of optimized binary variables was smaller. When dealing with Problem Classes C
and D, only 1% to 7.5% of the binary variables were optimized in a single instance
of Problem MLCLSP-SUB. For Problem Class E, this range was 0.5% to 4% of the

setup variables.
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4.2 Results for problem instances without lead times

The results for problem instances without lead times are presented in Tables 5
to 7. We report for the approach by Tempelmeier and Derstroff (TDH), by Stadtler
(StaH) and the four variants of our algorithm the following values: “ADUB” denotes
the average relative deviation of the solution from the best known upper bound as
reported by Stadtler and Siirie. “ADLB” denotes the average relative deviation of
the respective heuristic solution from the lower bound as reported by Stadtler and
Siirie. “Feas” is the fraction of problem instances that could be solved without the
use of overtime (which is extremely costly in all the instances) and “Time” is the
computation time.

The results show the following: The heuristic by Tempelmeier and Derstroff
is so fast (compared to all other approaches) that its computation time can in
fact be neglected. For problems without lead times, however, it yields the worst
solution quality if compared to the approach by Stadtler and to most variants of
our method. If one allows for multiple iterations of Variants 2 to 4 of our method,
it outperforms Stadtler’s method both with respect to the computation time and to
the quality of the solution, even though the improvement of the solution quality is
limited. It is also interesting to note that on average a single iteration of Variant 4
of our algorithm yields better solutions than multiple iterations of Variant 1 of the
method. This indicates that changing the perspective in the process of optimizing
the setup pattern is a worthwhile undertaking. The results also indicate that it is in
general useful to go through multiple iterations of any variant of the algorithm until
a local optimum is found. The percentage increase of the solution time appears
to be no more than about 50% of the time for a single iteration. Note that for
Problem Classes C and E, the average time required for Stadtler’s method to find a
capacity feasible solution (without overtime) extended the time limit derived from

the maximum solution time of our method as explained in Section 4.1.

4.3 Results for problem instances with lead times

In Tables 8, 9 and the right hand part of Table 7 we present the results for lead
times of one period. (Remember that for these instances Stadtler’s method cannot
be applied.) The results look very similar to those for problem instances without
lead times. If one has to deal with lead times, our method is the one that currently

delivers the highest solution quality.
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Table 5: Results for Class AT and Class Bt without leadtimes

Problem Class A" Problem Class Bt
ADUB ADLB Feas Time ADUB ADLB Feas Time
(%] %] (%] [sec] (%] %] (%] [sec]

TDH 13.19 37.95 100.00 0.08 12.52 37.28  100.00 0.08
Sta 4.14 26.31 99.07  13.49¢ 4.11 2418  84.62  13.50°

Single iteration (I"** =1)

Var1  4.09 26.50  100.00 1.16 3.82 26.42  100.00 1.56
Var 2 1.80 23.79 100.00 2.72 1.52 23.55 100.00 3.32
Var 3 2.13 24.20  100.00 3.03 1.96 24.13  100.00 3.39
Var 4 1.31 23.21  100.00 4.27 0.99 2291 100.00 6.18

Multiple iterations (I"™** = c0)

Var1 2,51 24.66  100.00 1.71 2.20 24.40  100.00 2.08
Var 2 1.03 22.87 100.00 4.42 0.62 22.43 100.00 5.24
Var 3 1.67 23.65 100.00 3.75 1.30 23.31 100.00 5.13
Var 4  0.78 22.58 100.00 6.38 0.41 22.20 100.00 8.40

“Maximum allowed solution time: 14 sec
bMaximum allowed solution time: 22 sec

Table 6: Results for Class C and Class D without leadtimes

Problem Class C Problem Class D
ADUB ADLB Feas Time ADUB ADLB Feas Time
%] %] %] [sec] %] %] %] [sec]

TDH  6.76 23.07  100.00 0.43 5.68 14.80  100.00 0.28
Sta 2.14 18.33  99.24 279.21°¢ 6.99 14.96  88.89  76.73°

Single iteration (I"™** = 1)

Var 1 8.32 25.66 100.00 3.83 10.34 19.78  100.00 3.59
Var 2 3.80 20.44 100.00  13.80 4.96 13.89  100.00 7.48
Var 3 4.81 21.65 100.00  16.72 5.33 14.33  100.00  11.45
Var 4 2.71 19.21 100.00  28.82 3.82 12.66 100.00  17.23

lmax

Multiple iterations ( = 0)

Var1 5.14 22.03  100.00 7.29 5.28 14.27  100.00 6.20
Var 2 1.57 17.85 100.00  26.40 2.72 11.45 100.00  10.96
Var 3 3.71 20.40 100.00  33.88 4.36 13.26  100.00  19.72
Var4 1.16 17.40 100.00  40.90 2.17 10.87 100.00  34.40

“Maximum allowed solution time: 263 sec
bMaximum allowed solution time: 81 sec

5 Conclusions and Outlook

We have presented an mathematical-programming-based approach to solve the ML-

CLSP with lead times. Modeling lead times is necessary, if one wants to be able
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Table 7: Results for Class E

Without leadtimes With leadtimes

ADUB ADLB Feas Time ADUB ADLB Feas Time
%] (%] [%] [sec] [%] (%] (%] [sec]
TDH 6.13 17.60 100.00 0.69 7.12 16.26  100.00 1.13
Sta 4.66 15.84 100.00 420.95¢ - - - -
Single iteration (I™* = 1)
Var1 11.01 23.14  100.00 17.68 9.38 18.64 100.00 21.17
Var 2 7.27 18.97 100.00 36.15 5.36 14.27 100.00 42.88
Var 3  6.76 18.45 100.00 49.79 4.65 13.54 100.00  60.83
Var 4 5.21 16.65 100.00 66.39 3.57 12.33 100.00 &81.33
Multiple iterations (I"** = o0)
Var 1 6.71 18.41 100.00 24.48 4.28 13.13 100.00 31.39
Var 2 3.93 15.09 100.00 49.51 3.27 11.95 100.00 62.04
Var 3  4.81 16.24  100.00 68.30 2.99 11.70  100.00  83.45
Var 4 3.06 14.11  100.00 98.44 2.28 10.86 100.00 122.63
“Maximum allowed solution time: 397 sec
Table 8: Results for Class A" and Class B* with leadtimes
Problem Class A™ Problem Class BT
ADUB ADLB Feas Time ADUB ADLB Feas Time
(%] (%] (%] [sec] (%] (%] %] [sec]
TDH 12.92 34.71 100.00 0.10 11.38 30.82  100.00 0.09
Single iteration (I"** =1)
Var 1 3.94 23.66  100.00 1.38 4.16 22.11  100.00 1.78
Var 2 1.66 20.99 100.00 2.81 1.50 18.98  100.00 3.67
Var 3 2.09 21.51 100.00 2.95 1.71 19.25 100.00 3.65
Var 4 1.16 20.40 100.00 3.97 0.80 18.16  100.00 6.59
Multiple iterations (I"™** = c0)
Var 1 2.44 21.93 100.00 1.80 2.11 19.71  100.00 2.69
Var 2 0.87 20.06  100.00 4.65 0.42 17.70  100.00 4.66
Var 3 1.52 20.86  100.00 3.56 1.08 18.50 100.00 5.07
Var 4 0.46 19.56  100.00 5.92 0.13 17.36  100.00 9.77

to disaggregate the time-phased lot sizes into a detailed production schedule in

continuous time. Our method is based on an iterative optimization of a series of

subproblems. Each of them includes all the real-valued decision variables, but only

a specific limited set of “free” binary variables. The approach is easy to describe and

to implement and delivers high-quality solutions. In our view, the most important

aspect of our method is its flexibility: It is straightforward to change or add con-
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Table 9: Results for Class C and Class D with leadtimes

Problem Class C Problem Class D
ADUB ADLB Feas Time ADUB ADLB Feas Time
[%] (%] (%] [sec] [%] (%] [%] [sec]

TDH  9.00 24.20  100.00 0.50 7.30 15.64  100.00 0.30
Single iteration (I™* = 1)

Var 1 855 23.65 100.00 3.97 10.04 18.53 97.30 3.65
Var 2 3.63 18.09  100.00  10.48 4.97 13.04 97.30 7.82
Var 3 4.63 19.29  100.00  12.20 5.07 13.17 97.30  10.74
Var4  2.76 17.11  100.00  16.89 3.80 11.79 97.30 14.71

Multiple iterations (I™** = c0)

Var 1  4.64 19.30  100.00 5.97 4.97 13.06 97.30 2.01
Var 2  1.54 15.68 100.00  17.23 2.74 10.63 97.30  11.63
Var 3 3.58 18.09  100.00  21.21 4.11 12.13 97.30  15.61
Var4 1.02 15.09  100.00  26.16 2.12 9.97 97.30  24.45

straints such as maximum inventory levels, minimum lot sizes, parallel machines etc.
to the standard formulation of the MLCLSP. These changes of the model would re-
quire a substantial re-design of the complex decomposition method by Tempelmeier
and Derstroff (1996), the only other method so far that can efficiently solve larger
instances of the MLCLSP with positive lead times. In addition, our method is quite
easy to modify by defining different subsets and sequences of subproblems to be
treated in the different phases of the algorithm. By defining larger subproblems
(with a larger number of binary variables), one can trade in solution time to get
more solution quality and vice versa. However, the results show that it may be suf-
ficient to treat less than 10% of the binary setup variables in any one instance of the
problem MLCLSP-SUB and still find high quality solutions, similar to two-opt and
three-opt approaches for the Traveling Salesman Problem. We consider the flexibil-
ity with respect to both the lot sizing model and the algorithm to be an important
aspect of our work. Further research should address other dynamic multi-level lot
sizing problems like those with linked lot sizes where the setup state of a resource

can be carried over to a subsequent period.
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