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Abstract 
 
How costly are droughts to individuals’ nutrition in Africa? We measure severe droughts using a 
detailed satellite-based vegetation index observed bi-monthly for 0.08° grids between 1982 and 
2015. Across 32 African countries, conditional on individual characteristics, timing relative to 
growing seasons, irrigation, climate, and country-year effects, we show that, unlike recurring 
droughts, a first-time exposure to a three-month severe drought reduces individuals’ body mass 
index by 2.5%. Droughts are worse for underweight and uneducated individuals. The uneducated 
are more likely to become unemployed during first-time droughts, whereas both labor reallocation 
across occupations and migration mitigate the effect of recurring droughts. 
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1 Introduction

Climate change is predicted to increase temperatures faster in Sub-Saharan African than

globally, even if global warming is kept below 1.5°C. With further warming, Western and

Southern Africa face the greatest risk of experiencing the strongest drying, an increase in the

number of consecutive dry days, and more extreme droughts (IPCC, 2022b). The climate

change literature has mostly focused on the hazard rate of droughts, but relatively less is

known about the magnitude of the average impact of droughts on nutritional intake, which

hampers an assessment of the socioeconomic impact of climate change and of droughts in

particular (Carleton and Hsiang, 2016).1 Most studies focus on individual countries, and

find, e.g., for India, that droughts significantly reduce the nutritional intake of households

(Carpena, 2019), and for Zimbabwe, that droughts reduce the body weight of women, but

not of men (Hoddinott, 2006). A more substantial body of research provides further evidence

that droughts during the in-utero or early childhood period can have long-lasting negative

consequences (Dinkelman, 2017; Maccini and Yang, 2009).2 The literature has in common

that droughts are typically measured using rainfall and/or temperature data, which is jus-

tified in low-income countries where agriculture tends to be rain-fed so that the connection

between climate and crop yields is very close. However, and especially in Africa, these data

rely on relatively sparse weather gauges and thus on modeled interpolation to provide bet-

ter spatial and temporal coverage. This approach limits the spatial resolution, may lead to

measurement error, aggregation bias, and increases spatial- and autocorrelation, which may

attenuate the estimated effects towards zero (Auffhammer, 2018).3

This paper contributes to our understanding of the impacts of droughts by using high-

resolution, bi-monthly satellite data that tracks the greening of plants, with the aim of

capturing drought spells more accurately, and by relating these to outcomes to georeferenced

1 The socioeconomic impact translates the change in climate and extreme events into human and economic
costs, which in turn informs the social cost of carbon and climate policies such as the optimal carbon
tax (Carleton and Greenstone, 2022).

2 Children in general suffer the most from bad agricultural conditions (Davenport et al., 2017; Grace
et al., 2015; Yamano et al., 2005; Jensen, 2000)

3 Moreover, while these indices allow one to study the implications of shocks that are caused by climatic
factors, they are unable to capture agricultural output shocks that are caused by factors less directly
related to weather, such as insects or diseases that also threaten food security and livelihoods (IPCC,
2022a; Salih et al., 2020).
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individuals across a broad sample of African countries.

We set the stage for our analysis by demonstrating an increase in the frequency and geo-

graphic spread of droughts across Africa during the past 15 years. We measure droughts using

34 years of satellite data since 1982 by identifying consecutive periods of severe anomalies

in the phenology-based ‘Normalized Difference Vegetation Index’ (NDVI), one of the most

commonly used vegetation indices for monitoring and predicting crop yields (Petersen, 2018).

Our core analysis employs the Demographic and Health Survey (DHS), which has been

collecting survey data in Africa since 1985. The survey is a sub-nationally representative

repeated cross-section with georeferenced locations. Between 1992 and 2015 we observe one

to nine intermittent survey waves for each of the 32 included African countries, totaling 4

million individuals with information on their coordinates and covering 50,000 locations. Our

main variable of interest is an adult’s body mass index (BMI), defined as an individual’s

weight in relation to their height. We also consider an individual’s occupation, educational

attainment, and migrant status.

We show that, during severe three-month droughts, adults’ BMI is reduced by 2.5%

on average, which translates to one-seventh of a standard deviation of BMI, and that the

proportion of affected individuals who are underweight increases from one in seven to one in

five. The effect is driven by unanticipated ‘first-time’ droughts—events that people are less

likely to have prepared themselves for in any way and we therefore consider to be exogenous

shocks. Instead, more regularly ‘recurring’ droughts have a much noisier effect. This finding

is robust to a broad set of control variables, including individual characteristics, timing

relative to growing seasons, aridity, irrigation, long-run time-of-year average climate, and

country-year fixed effects.

The DHS survey enables us to identify mitigating mechanisms, including labor market

adjustment, migration, and education. Educated individuals appear unaffected in terms of

occupation because they are less likely to work in agriculture directly. In contrast, uned-

ucated individuals (i.e., incomplete or no primary education) lose agricultural employment

and become unemployed in response to first-time droughts, whereas more regular droughts

lead to a smaller increase in unemployment and instead to an occupational reallocation from

agriculture towards sales. We also find that more people migrate away from rural to urban

3



areas during recurring droughts. Although we are unable to directly follow individuals over

time, we gauge the average effect on migration by comparing the probability of an individual

having a migrant status in drought-affected versus non-drought-affected areas.

Our paper contributes to several strands of the existing literature that examine the effects

of droughts. Apart from the literature that looks at households in a few countries and the

long-run effect on children, a related literature focuses on trade and infrastructure to reduce

the local impact of droughts (Costinot et al., 2016; Burgess and Donaldson, 2010). Although

we do not directly model infrastructure, we control for a nation’s ability to cope with droughts

through country-year fixed effects.

A related literature estimates the effects of climate and weather shocks on a variety of

outcomes (Dell et al., 2014), including agricultural yields (Hultgren et al., 2022), economic

growth (e.g., Dell et al., 2012; Barrios et al., 2010), migration (Marchiori et al., 2012; Feng

et al., 2010), conflict (Miguel et al., 2004), urbanization (Poelhekke, 2011; Barrios et al.,

2006), and food prices (Bellemare, 2015). While these contributions tend to measure shocks

by the variability of (annual) weather, we focus on the effects of consecutive bi-monthly

periods of drought that are not necessarily captured by summary measures such as year-to-

year changes in average temperature or the standard deviation of rainfall within a year.

We also contribute to the literature on the geophysics of droughts, which focuses on their

location, frequency, and duration (e.g., Spinoni et al., 2014; Sheffield and Wood, 2008; New

et al., 2006). Our contribution lies in the usage of NDVI data to construct a drought indicator

instead of other common indices that are based on modeled and interpolated rainfall and

temperature data, such as the Standardised Precipitation-Evapotranspiration Index (SPEI)

(Vicente-Serrano et al., 2010) and the Palmer Drought Severity Index (PDSI) (Dai, 2011;

Palmer, 1965).

Finally, a related literature has used the NDVI for early warning systems (Funk and

Brown, 2006), index-based insurance schemes (Turvey and Mclaurin, 2012; Tadesse et al.,

2014; Chantarat et al., 2013), crop monitoring (Tadesse et al., 2014; Klisch and Atzberger,

2016; Petersen, 2018), and agricultural productivity assessments during droughts (Kourouma

et al., 2021; Legesse and Suryabhagavan, 2014). To the best of our knowledge, this study is

the first to use NDVI to analyze the implications of droughts for affected households. The
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use of NDVI data has the additional advantage that, while being closely related to rainfall

and temperature, it tracks plant growth through visible greening and is thus more directly

linked to agricultural yields, so we can better understand the link between agricultural

productivity shocks and health outcomes. For example, the effect of temperature shocks

could also work through other channels, such as through elevated levels of aggression and an

increased propensity for violent behavior (Baysan et al., 2019; Ranson, 2014).

2 Related literature on mechanisms

How can individuals cope with droughts, and why might the effects depend on education,

labor market adjustments, and migration?

Droughts can be understood as shocks to agricultural productivity and thus to income,

which are mitigated by irrigation in more developed countries (Schlenker et al., 2005). A

large literature studies the responses of (poor) households to income shocks when formal

financial and insurance markets are underdeveloped or unavailable. These include ex-ante

measures such as precautionary savings, the diversification of income sources (e.g., Acosta

et al., 2021; Carter and Lybbert, 2012; Deaton, 1991), and informal insurance (Kazianga

and Udry, 2006); and ex-post strategies such as the sale of assets and consumption cutbacks

(Janzen and Carter, 2019) or adjustments in labor supply (Emerick, 2018). Arguably, these

strategies require a degree of sophistication and knowledge, suggesting that education may

be beneficial in mitigating income shocks. Moreover, it is also likely that better educated

individuals have higher incomes and are able to save more. While risk-sharing strategies

like informal insurance and borrowing help absorb idiosyncratic shocks, they may be less

effective when shocks are correlated over space and time—as is the case with droughts—such

that detrimental coping strategies like consumption cutbacks may be the only options. Our

empirical analysis examines the extent to which, on average, individuals manage to maintain

their consumption during a drought, as captured by their BMI, with a focus on heterogeneity

by education.

Droughts, when recurrent or more persistent, can threaten the longer-term viability of

agriculture in an affected region, potentially leading to a process of structural transforma-
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tion away from agriculture. Households facing deteriorating agricultural conditions in India

respond by reallocating labor to off-farm employment, particularly in areas with a more

developed manufacturing sector (Blakeslee et al., 2020; Emerick, 2018) or with more flexible

labor markets (Colmer, 2021). Droughts may initially lead to higher unemployment and

migration when less outside employment is available. Mostly men migrate away in response

to droughts in rural Ethiopia (Gray and Mueller, 2012), and youth are more likely to mi-

grate after droughts in Latin America (Baez et al., 2017). However, migration is costly and

potentially less affordable to those with lower incomes, such as those without education.

While labor reallocation and migration may not be feasible or attractive strategies for cop-

ing with unexpected or short droughts that are perceived as transitory shocks, they become

more likely during prolonged or recurrent droughts that indicate a permanent change in

agricultural viability.

3 Data

3.1 Measuring droughts using satellite data

We measure droughts based on vegetation conditions as captured by satellites. We use

georeferenced GIMMS3g NDVI data for the African continent over the period 1982-2015

(Pinzon and Tucker, 2014).4 The NDVI data are highly disaggregated both in terms of space

(grid cells of size 0.08×0.08 degrees, corresponding to a length of approximately 9.25km at

the equator) and time (twice per month). The index is defined as the difference in visible

versus near-infrared light that is reflected by the earth’s surface.

Healthy vegetation reflects most of the near-infrared light but strongly absorbs visible

light for use in photosynthesis (resulting in NDVI close to 1), while surfaces of sparse or no

vegetation reflect similar amounts of near-infrared and visible light (resulting in NDVI close

to 0) (Weier and Herring, 2000). The NDVI index tracks the vegetation conditions in a given

region at a given time of the year, so variations relative to the norm can be interpreted as

unusual occurrences (e.g., agricultural droughts).

4 The data is processed to correct for cloud cover and aerosoles. See the Online data Appendix for more
details.
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We first construct the ‘Vegetation Condition Index’ (VCI, see Kogan, 1995), which relates

current NDVI at time t in a location i to its maximum (max ndvii) and minimum NDVI

(min ndvii) values ever observed at that location for the same time of year:

V CIi,t =
ndvii,t −min ndvii

max ndvii −min ndvii
∗ 100

As is standard in the remote sensing literature (e.g., Liou and Mulualem, 2019; Measho

et al., 2019; Winkler et al., 2017), we define drought conditions as severe or extreme if the

VCI is below 20%.5

Finally, we define a dummy drought equal to 1 if at time t the VCI has been continuously

below 20% during the past three months. We similarly define dummies for shorter and for

longer droughts.6 In addition, we split the ‘all’ droughts dummy into ‘first-time’ droughts

(which occur for the first time in five years in location i at time t) and ‘recurring’ droughts

(which are those where one or more droughts happened in that same location before time t

during the past five years).

3.2 Household data

To study socio-economic outcomes, we use data collected through the DHS program in 32

African countries over the period from 1992-2015. The DHS program includes data sets for

men, women, and children. After merging, our final data set comprises information on about

4 million individuals over the study period and area.7 The DHS data set contains information

about the location of households at the time of the interview and a wide range of household

members’ characteristics, including health indicators (e.g., height, weight), occupation, place

5 No drought conditions prevail for VCI above 35%; VCI in the range 20-35% indicates moderate drought
and VCI below 10% indicates extreme drought.

6 See Appendix Table OA2 for summary statistics of the different drought indicators. As expected, longer
droughts are rarer than shorter droughts.

7 See Appendix Table OA3 for a full list of countries and years included in the data set.
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of residence, and educational attainment.8

To measure nutrition we define the log of BMI. The BMI is a function of an individual’s

weight in relation to their height (specified in kg/m2), so variation in BMI reflects changes in

nutritional intake and/or energy-consuming activities. While normal BMI ranges from 18.5

to 24.9, individuals are defined as underweight if their BMI is below 18.5 and as overweight

if their BMI is 25 or higher (Croft et al., 2018).

To analyze whether agricultural droughts lead to a reallocation of labor from agricultural

to non-agricultural employment, we construct a dummy indicator agri that takes on the

value 1 if the respondent is working in agriculture, and 0 otherwise. In a similar vein,

we construct indicators for unemployment or working in alternative occupations, such as

services, professional/managerial, or sales.

To analyze human mobility as a response to drought, we exploit an individual’s status as

migrant or non-migrant. The dependent dummy indicator migrant takes on the value 1 if

the respondent has a migrant status, and 0 otherwise.

Adjustments in human capital investment are captured through changes in schooling

attainment since the previous school year. We exploit the DHS’ questions on an individual’s

school attendance and define an indicator dropout that takes on the value 1 if an individual

indicates to have dropped out of school since the previous school year, and 0 otherwise.

We define standard control variables age, and dummies male, uneducated, and uneducated

head of household. Age equals an individual’s age in years; male equals 1 if an individual is

of male gender; uneducated equals 1 if an individual has incomplete primary or no education;

and uneducated head of household equals 1 if an individual’s household head has incomplete

primary or no education.

8 In surveys of the DHS program, the original coordinates of interviewed households are ‘geomasked’
to conceal their precise locations. The process displaces urban clusters a distance up to 2 kilometers
and rural clusters a distance up to 5 kilometers. A further, randomly-selected 1% of rural clusters was
displaced a distance up to 10 kilometers (Burgert et al., 2013). However, our NDVI grids are about
9.25×9.25km, so households are not necessarily matched to grids other than their true grid, and spatial
correlation in droughts ensures that neighboring grids are similar. This random process introduces
measurement error and attenuation bias, but does not invalidate our estimates: its impact is negligible
in practice (Michler et al., 2022). Some households are matched to grids with missing NDVI values,
such as on top of water bodies. We drop these from the sample.
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3.3 Other data

We control for a number of potentially relevant factors. Data on vegetation zones in

Africa are based on White (1983) and taken from the African Marine Atlas. To control for

an area’s aridity, we exploit the ‘Global Aridity Index’ (Global-AI) of the Global Aridity

Index and Potential Evapo-Transpiration Database (Zomer and Trabucco, 2022) to define

the variable aridity index. The irrigation potential of a given location is taken from the

FAO’s Global Information System on Water and Agriculture, AQUASTAT (Siebert et al.,

2013), which captures the percentage of the area that is suitable for irrigation, irrigation %.9

Given that the effect of drought likely depends on whether it occurs inside or outside a

growing season, we define growing seasons following the variable threshold method described

in Vrieling et al. (2013). This method determines per year and per grid the maximum and

minimum NDVI values and takes the average of both as the threshold. In each location, the

first NDVI value in a year that crosses the threshold in an upward direction is marked as the

start of growing season (SOS), and the last NDVI value in a year that crosses the threshold

in a downward direction is marked as the end of growing season (EOS).10

Based on SOS and EOS, we then construct a dummy indicator surveyed during growing

season that equals 1 if the interview takes place during a growing season, and 0 otherwise.

Moreover, we use the variable threshold method to define whether there are one or two

growing seasons per year.

We further construct the long-run time-of-year average NDVI observed at each location

and time of the year across the full 1982-2015 period. Finally, we calculate the number of

past drought periods that occurred in the same location during the past 5 years (measured as

the total of half-month periods with severe drought, and excluding the current three-month

drought spell).

We merge all control variables through household geographic coordinates. Summary

statistics are provided in the Online Appendix Table OA1.

9 See the Global Map of Irrigation, version 5, layer ‘gmia v5 aei pct cellarea’.
10 An application of this method to our data is shown in the Online Data Appendix.
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4 Empirical Strategy

4.1 Baseline specification

The DHS program collects household data by choosing a random sample of individuals

at each successive survey wave over time that is representative at the subnational level.

Consequently, the DHS data set represents a repeated (pooled) cross-section. We therefore

start with a basic cross-sectional regression setup:

Outcomei,t = α + βDroughti,t +Xγ + δc,y + ϵi,t (1)

in which t is the day of interview, Outcomei,t is one of the dependent variables of individual

i at time t, and Droughti,t is one of the dummy indicators of agricultural droughts. X

is a vector of control variables, and ϵi,t represents the idiosyncratic error term. δc,y are

country-by-year-of-interview (c and y) dummies that capture a country’s institutions, level

of development, and overall state of the economy, and thus its ability to cope with droughts

in a given year.

To study heterogeneity in the impact of agricultural droughts, we interact the drought

indicator with an individual’s educational attainment:

Outcomei,t = α + β0Droughti,t + β1Droughti,t ∗ Uneducatedi,t

+ β2Uneducatedi,t +Xγ + δc,y + ϵi,t (2)

For the analysis of migration, we also interact Drought with an indicator of the location’s

remoteness. Using a location’s urbanity as a proxy of expected job opportunities, we add

an interaction of our drought indicator with a dummy indicator rural, which equals 1 if

the DHS program categorizes the area as rural. If anything, we expect drought to lead to

migration from places with poor labor opportunities (i.e., rural areas) to places with better

labor opportunities (i.e., urban areas).

We cluster standard errors at the level of country-vegetation-zone-year to account for

10



heteroskedasticity and spatially correlated errors within vegetation zones (White, 1983),

since agriculture is more similar within than across vegetation zones.11

In the BMI analysis, we estimate models (1) and (2) as pooled OLS. We also perform so-

called ‘unconditional’ quantile regressions of (2) following the method of Firpo et al. (2009).12

In the analysis of labor reallocation and migration, we estimate models (1) and (2) as linear

probability models.

4.2 Identifying assumptions

Our identification rests on the unexpected nature of droughts. We focus on severe or

extreme droughts, so we abstract from weather fluctuations that are a relatively predictable

component of a location’s climate and annual cycle between wet and dry seasons. Moreover,

our definition of drought requires that the VCI is below 20% for a prolonged consecutive

period of time (3 months in our baseline), within which agriculture is not able to recover,

which would be partially possible between shorter dry spells. However, some regions may

be more drought-prone than others, even within this restricted definition.13 Therefore, we

distinguish between droughts that occur for the first time in a five-year period preceding

the interview, and recurring droughts that were preceded by at least one other drought in

the past five years. We assume that first-time droughts are unexpected and could not have

been anticipated. For example, anticipation could lead to more investment in irrigation or

stockpiling of food, which would reduce the effect of droughts, even if their timing would be

hard to predict.14 We further include the following grid-level variables to control for the local

climate: number of past drought periods, growing seasons per year, surveyed during growing

season, irrigation %, aridity index, and the long-run time-of-year average NDVI.

One limitation of the DHS data for our purposes is that individuals are not followed

over time, making it impossible to control for unobserved time-invariant characteristics at

11 Results are robust to clustering by country-year instead.
12 See also Rios-Avila (2020).
13 Human activities, such as land management practices and land conversion, can contribute to variation

in vegetation cover and associated NDVI values. Given the generally high correlation between NDVI
and climatic variables (Kourouma et al., 2021; Vrieling et al., 2011), we do not consider this a major
threat to causal estimation.

14 Results are robust to choosing four, six, or ten years, see Online Appendix OA2.
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the individual level. We may thus observe only those who have not been able to migrate.

However, unexpected first-time droughts are less likely to cause immediate migration because

people do not account for how long the drought will last. Individuals in our sample may also

be survivors of severe droughts and the DHS surveys may not have taken place in areas hit

by the most severe droughts, leading to potential underestimation of the effect. However,

as shown in the Online Data Appendix, the frequency pattern of both three-month and six-

month severe droughts is very similar for all 225,110 grids that cover Sub-Saharan Africa,

compared to the 20,021 grids covered by the DHS. Furthermore, the probability that an

individual is surveyed during a three-month drought is 0.38%, while the probability that a

three-month drought occurs in any grid and any time period is 0.42%, which is very similar.

All specifications include covariates that are potentially correlated with our independent

and dependent variables. We include the respondent’s age and gender to control for the fact

that adults generally have a higher body weight than teenagers, and that females have a

higher average BMI than males. We also control for education of the respondent and the ed-

ucation of the respondent’s household head. An individual’s level of educational attainment

is plausibly predetermined and unlikely to be influenced by the current drought.

5 Results

5.1 Droughts over time and space

We start by tracking the occurrence of droughts over time and space. The top panel of

Figure 1 shows the distribution of the coefficient of variation (annual standard deviation

divided by the annual mean) of the VCI over time for a balanced panel of 20,021 grids, in

which at least one household was ever sampled by the DHS, and a simple quadratic fit. It

suggests that, from year to year, the coefficient of variation of the VCI had been decreasing

until the mid-1990s, when it began to increase.15 In other words, during the years 2000-2015

Africa became dryer on average, and the spatial variation in dryness increased. This has

15 Figure OA1 (Online Appendix) shows that the pattern is both due to an increase and then decrease
in the annual mean VCI, and due to a decrease and then increase in the annual standard deviation of
VCI. In the Online Data Appendix we show that the pattern is very similar for all 225,110 grids that
cover all of Sub-Saharan Africa.
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translated into an increasing number of droughts spread across more locations, as shown in

the bottom panel of Figure 1. By 2015, 7.2% of grids experienced at least one three-month

drought, up from 0.8% in 2000. This drying pattern is also spatially visible in Figure 2, which

illustrates how the mean decadal NDVI values during the 1990s (left), 2000s (middle) and

2010s (right) have changed compared to the 1980s. The maps suggest an increase in ‘wetness’

during the 1990s compared to the 1980s for many parts of Africa, most likely reflecting the

recovery from a continent-wide shift to more arid conditions that occurred during the 1980s

(Nicholson et al., 2018; Vrieling et al., 2011). However, more and more areas were drying

during the 2000s and the 2010s compared to the 1980s. This observation is consistent with

one of the strongest observed El Niño events hitting large parts of Southern and Eastern

Africa in 2015, leading to an intense drought (Blamey et al., 2018; IPCC, 2022a).

5.2 Droughts and malnutrition

Our main outcome of interest is the log of BMI. While the average BMI in our sample is

22.3, 13.6% of people have a BMI of below 18.5, which is considered underweight. Overall,

the uneducated, the young, and males have lower BMIs.

The estimation results, presented in Table 1, provide strong evidence that three-month

droughts negatively affect BMI. A drought during the time of interview is associated with a

2.3% reduction in BMI, relative to households unaffected at the time of interview, suggesting

that coping mechanisms are imperfect in mitigating the effects of droughts (see Panel A,

column 1).

Evaluated at the mean of 22.3, this average effect corresponds to one-seventh of a standard

deviation (of 4.2) reduction in BMI. This translates to 1.3kg weight loss given that the

average weight of affected individuals is 55.7kg. This matters most for those at risk of

malnutrition: the proportion of affected individuals who are underweight is 18.2% (about

one in five people), and would have been 14.6% without the drought (about one in seven

people).

We always control for country-year fixed effects, individual controls (uneducated, unedu-

cated head of household, age, and male), and grid-level controls (aridity index, irrigation %,

number of past drought periods, growing seasons per year, surveyed during growing season,
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and the long-run time-of-year average NDVI ).16

Splitting all droughts into recurring and first-time droughts shows that the negative effect

of droughts is driven by grids where a drought occurs for the first time in five years (column

3), while recurring droughts have a much noisier effect on average (column 2). This suggests

that at least some people are better able to cope with drought if they live in areas where

droughts are more common.

Columns 1 and 2 control for the number of months that the household’s location has

experienced severe droughts during the past five years, so the drought dummy captures the

marginal effect of an additional drought taking place during the time of interview. How-

ever, these past droughts may have lingering effects: to capture these, we do not control

for the number of past drought months in grids with current droughts in columns 4 and 5.

The drought dummy then captures the combined effect of a current drought and any past

droughts. Column 5 shows that recurring droughts indeed have a greater effect, but the co-

efficient is still not significant at standard confidence levels: the average effect of all droughts

(column 4) is again driven by first-time droughts (column 6, which effectively repeats column

3).17

In Panel B, we estimate equation (2) to test for heterogeneity in the effect of droughts by

adding to the regressions of columns 4-6 an interaction of drought with an indicator whether

a person is uneducated. Although the uneducated have a lower baseline BMI, they do not

appear to be significantly more affected by droughts on average. However, it may well be

that those who were already among the most vulnerable groups are also the most affected

by shocks. We investigate this issue by re-estimating the regressions where we evaluate

the effect of droughts at the first decile of the (unconditional) distribution, following the

quantile regression method of Firpo et al. (2009).18 The first decile of the distribution of BMI

16 These control variables are not reported in Table 1 for brevity, but we list all in Online Appendix OA2
(Table OA4). We find that successively including these controls does not affect the main variable of
interest. In Table OA5 we show that the effect is driven by three-month droughts. Shorter droughts
appear much less harmful. Longer droughts are also estimated to have little effect, but these are very
rare in the sample (see also bottom panel of Figure 1 and Table OA2) such that the test suffers from
low power.

17 Because droughts are rare events that are irregularly spaced with respect to the time of interview and
of various duration, we do not separately control for each past drought in Table 1.

18 Online Appendix OA2.4 lists other deciles.
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corresponds to a BMI of 18.1, which are those that are borderline underweight. Columns 10-

12 show the results from these regressions: we now find evidence that uneducated individuals

are more affected by first-time droughts. In the bottom row we report the marginal effects of

a drought for the uneducated. Compared to the marginal effect for the educated in the first

row of Panel B, the uneducated are much worse off during droughts, which is again driven

by first-time droughts.

5.3 Mitigating mechanisms

Why are first-time droughts worse than recurring droughts? Households may update

expectations and seek ways to at least partially alleviate the impact of future droughts in

areas where they appear to be recurring. But this process takes time and is likely not possible

during first-time droughts. Households may try to adapt via the labor market, both in terms

of shifting employment away from agriculture and shifting employment to other locations.

Therefore, we change the dependent variable to indicators of employment status, occupation,

and migrant status.

5.3.1 Labor reallocation

We measure the labor market status of individuals who are three months into a severe

drought spell, and estimate specification (2) with indicators of the current occupation and

employment status as dependent variables. The results are shown in Table 2. We again dif-

ferentiate between all, recurring, and first-time droughts in Panels A, B, and C, respectively.

Panel A, columns 1-3, shows the effect of all three-month droughts, with the marginal

effects for the uneducated reported in the bottom row of each panel. Droughts are followed

by a sizable and statistically significant exodus of uneducated people from agriculture and

an almost equally large increase in unemployment. Unemployment typically leads to a

sharp drop in income which, apart from the direct impact on agricultural yields and food

availability, is an additional reason why droughts are associated with a significant decrease

in BMI. Apart from a small decline in sales employment, the educated appear not to be

affected in terms of occupation and employment status.

15



The picture changes when we distinguish between recurring droughts in Panel B and

first-time droughts in Panel C. In the case of recurring droughts, uneducated individuals

still leave agriculture (column 4), but appear able to find new jobs in sales (column 6) rather

than becoming unemployed (column 5).19

Panel C shows that this does not happen during first-time droughts. Instead, uneducated

workers become unemployed, explaining the worse effect of first-time droughts on BMI rel-

ative to recurring droughts. The effect is large: during a first-time drought the uneducated

are 7% less likely to work in agriculture and 8.2% more likely to be unemployed.

In Online Appendix OA3, we show that the likelihood of working in occupations other

than agriculture and sales does not change during droughts. Domestic work, unskilled and

skilled manual jobs, professional/technical jobs, and jobs in services are unaffected. First,

uneducated workers with an agricultural background may not have the necessary experience

for these other jobs: they are generally less likely to work in these occupations (except

‘domestic’) than educated individuals. Second, sales may be the only other viable option

when no other economic growth takes place locally to absorb labor (Blakeslee et al., 2020).

Workers may also have migrated and found work elsewhere, which we look at next.

5.3.2 Migration

Labor reallocation may not be feasible locally if the place of residence is remote and offers

only few alternative job opportunities. One option is then to migrate to find work elsewhere.

We test this channel’s importance in Table 3, which reports the results of estimating spec-

ification (2) with migrant as dependent variable. In addition, we include an interaction

between drought and rural: if migration occurs from rural areas with few job opportunities

to urban areas with better job opportunities, we expect a negative interaction effect. The

drought dummy then captures the effect of a local drought on the probability than an urban

and educated individual is a migrant.

We find no significant differences in migration status between uneducated and educated

individuals. In contrast, all specifications yield negative and statistically significant coeffi-

19 Altough the interaction in column 5 is still significant, the marginal effect in the bottom row indicates
that a recurring drought no longer significantly increases unemployment among uneducated.
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cients on the interaction terms between between drought and rural. The bottom row shows

the marginal effect of a drought in rural areas.

In rural areas, individuals are 13% less likely to be a migrant when hit by a recurring

drought, while the marginal effect is not significant when hit by a first-time drought20 As

indicated by the negative coefficient on rural, individuals living in rural areas are generally

significantly less likely to be migrants, providing further evidence that migration goes from

the countryside to cities.

5.4 Extension: School dropouts

It is possible that investment in human capital is also affected by droughts. Loss of income

or rising food prices reduce the affordability of school fees and related costs while increasing

the incentive for parents to let their children work and generate income, leading to lower

enrollment and an increase in school dropouts. However, if droughts reduce labor demand in

agriculture, then the lower short-run opportunity costs of going to school may increase school

attendance. For example, Shah and Steinberg (2017) find that positive rainfall shocks lead

to more school dropouts in India, and Hyland and Russ (2019) and Alderman et al. (2006)

find that children exposed to drought in infancy receive fewer years of formal education.

Furthermore, structural transformation away from agriculture and towards other occupations

may require investment in human capital (Blakeslee et al., 2020).

Given the importance of education in mitigating the effect of droughts, we assess the

relationship between agricultural droughts and human capital formation, as measured by

individuals’ school attendance. Theoretically, the relationship is ambiguous: droughts may

put individuals into financial distress and force them to reduce the investment into their own

or their children’s education. If this case, we expect a positive relationship between droughts

and school dropout rates. On the other hand, poor farming conditions and low income

streams from agricultural activities reduce the opportunity cost of schooling, incentivizing

households to increase their human capital investment. In this case, a negative relationship

between drought and school dropout rates is expected. We test whether droughts lead to a

20 The pattern is very similar when including a (insignificant) triple interaction (and all constituent terms)
between drought, rural, and uneducated.
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decrease or increase in school dropouts by estimating specification (2) with dropout as the

dependent variable.21 The dummy indicator dropout captures if an individual has dropped

out of school since the previous school year. However, we interact with the educational

attainment of the household head.

The results for all, recurring, and first-time droughts are shown in Table 4 and indicate a

strong bifurcation in the effect of drought on school dropout: While the uninteracted coeffi-

cient on drought remains negative and statistically significant throughout all specifications,

the coefficient on drought interacted with uneducated head of household is positive and statis-

tically significant for all and for first-time droughts. Nevertheless, the marginal effects in the

bottom row show that first-time droughts reduce the probability of dropout if the household

head is uneducated (-0.7%). The effect for educated head of households is however much

stronger (-2.3%). The results imply that human capital investment increases in response

to a drought, but mostly for individuals from more-educated families, whereas they hardly

change for individuals from less educated families. This pattern is consistent with droughts

reducing labor demand in agriculture, lowering the short-run opportunity costs of going to

school. Educated heads of household may have more financial means to pay for schooling

during droughts, further deepening inequality.

6 Concluding remarks

Seeking to gain a better understanding of the impact of droughts on individuals’ nutri-

tion, and thus indirectly of the potential consequences of climate change, this paper measures

drought spells using a detailed satellite-based index that does not rely on modeled imputa-

tion, and combines it with a large georeferenced household survey data set for 32 Sub-Saharan

African countries covering the period 1992-2015.

We find that the frequency and geographic spread of severe three-month droughts spells

has increased since the early 2000s and that a drought spell reduces individuals’ BMI by

2.5%. However, the effect is driven by first-time droughts, whereas recurring droughts have

21 As the educational level is a direct consequence of school dropout, we refrain from including educational
attainment as a regressor in the specifications.

18



much less impact. Furthermore, individuals with little or no education appear to be impacted

the most.

These results are consistent with two important mitigating mechanisms that reduce the

impact of recurring droughts: labor reallocation and migration. First, educated individuals

are affected less because they are less likely to work in agriculture directly. In contrast,

uneducated individuals lose agricultural employment and become unemployed in response

to first-time droughts, while recurring droughts lead to a smaller increase in unemployment

and instead to an occupational reallocation from agriculture towards sales that limits the

loss in income. Second, more people migrate away from rural to urban areas during recurring

droughts.

Our findings have implications for policy choices. While investment in irrigation and

water conservation would limit the impact of droughts most directly, stimulating a process

of structural transformation away from agriculture in increasingly drought-prone areas would

also limit the human impact of droughts.
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Tables and Figures

Figure 1: Vegetation index and droughts
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Notes: Sample includes 20,021 distinct NDVI grids (of 0.08 × 0.08 degrees) in Africa within which at least
one household was ever sampled in the DHS survey.
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Figure 2: Mean NDVI values during 1990s, 2000s, 2010s compared to the 1980s

Notes: Sample includes 20,021 distinct NDVI grids (of 0.08 × 0.08 degrees) in Africa within which at least
one household was ever sampled in the DHS survey.
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Table 1: The effect of droughts on BMI

Dependent variable → log BMI

Panel A: average effect

Droughts → all recurring first all recurring first

[1] [2] [3] [4] [5] [6]

Drought dummy -0.023** -0.022 -0.023** -0.025*** -0.033 -0.023**
(0.009) (0.020) (0.011) (0.009) (0.020) (0.011)

Country × year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Individual and grid controls ✓ ✓ ✓ ✓ ✓ ✓
Control for past drought peri-
ods in treated grids

✓ ✓ – ✗ ✗ –

Observations 479,447 478,405 479,134 479,447 478,405 479,134
R-squared 0.195 0.195 0.195 0.195 0.195 0.195
Clusters 433 432 433 433 432 433
Grids (NDVI, 0.08°×0.08°) 15,629 15,596 15,615 15,629 15,596 15,615

Panel B: heterogeneous effects

Droughts → all recurring first all recurring first

Method → OLS QR, 1st decile

[7] [8] [9] [10] [11] [12]

Drought dummy -0.023** -0.032 -0.021 -0.002 0.029 -0.009
(0.011) (0.024) (0.014) (0.009) (0.022) (0.010)

Drought dummy * uneducated -0.004 -0.002 -0.004 -0.051∗∗ -0.108∗ -0.034∗∗

(0.013) (0.032) (0.014) (0.023) (0.066) (0.017)
Uneducated -0.037*** -0.037*** -0.037*** -0.018*** -0.018*** -0.018***

(0.002) (0.002) (0.002) (0.001) (0.002) (0.001)

Country × year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Individual and grid controls ✓ ✓ ✓ ✓ ✓ ✓
Observations 479,447 478,405 479,134 479,447 478,405 479,134
R-squared 0.195 0.195 0.195

Marg. effect of drought -0.027** -0.034 -0.025** -0.053** -0.079 -0.044***
if uneducated (0.012) (0.026) (0.011) (0.021) (0.056) (0.016)

Notes: ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level. Standard errors are
clustered on the country-vegetation-zone-year level and shown in parentheses (by means of bootstrapping in
[10]-[12]). Drought equals 1 if the individual is interviewed during a 3-month consecutive drought period.
All is the union of recurring and first-time droughts, where recurring droughts equal 1 if other droughts
occurred before in the same grid during the past five years, while first-time droughts equal 1 if no droughts
occurred during the past five years in the same grid. Columns [1] and [2] control for the number of past
drought periods in treated grids during the previous 5 years, so the drought dummy captures the effect of
an additional drought. Columns [4] and [5] (and also [7], [8], [10], and [11]) thus measure the average effect
of droughts including any cumulative effects of past drought periods. Uneducated equals 1 if a person has
incomplete primary or no education. QR is the ‘unconditional’ quantile regression method by Firpo et al.
(2009).
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Table 2: The effect of droughts on labor reallocation

Dependent variable → Working in Agriculture Unemployed Working in Sales

Panel A: All droughts

[1] [2] [3]

Drought dummy 0.048 -0.039 -0.022**
(0.031) (0.031) (0.011)

Drought dummy * uneducated -0.133*** 0.112*** 0.044*
(0.037) (0.037) (0.026)

Uneducated 0.171*** -0.057*** 0.002
(0.008) (0.008) (0.003)

Observations 1,082,493 891,923 891,923
R-squared 0.234 0.176 0.083

Marg. effect of drought if uneducated -0.085** 0.073*** 0.022
(0.036) (0.027) (0.023)

Panel B: Recurring droughts

[4] [5] [6]

Drought dummy 0.074* -0.036 -0.044***
(0.041) (0.026) (0.014)

Drought dummy * uneducated -0.183*** 0.094** 0.109***
(0.055) (0.044) (0.035)

Uneducated 0.171*** -0.057*** 0.002
(0.008) (0.008) (0.003)

Observations 1,079,929 889,693 889,693
R-squared 0.234 0.176 0.083

Marg. effect of drought if uneducated -0.109** 0.058 0.065**
(0.052) (0.040) (0.030)

Panel C: First-time droughts

[7] [8] [9]

Drought dummy 0.033 -0.040 -0.011
(0.033) (0.045) (0.014)

Drought dummy * uneducated -0.103*** 0.122*** 0.006
(0.039) (0.045) (0.022)

Uneducated 0.171*** -0.057*** 0.002
(0.008) (0.008) (0.003)

Observations 1,080,986 890,667 890,667
R-squared 0.234 0.176 0.083

Marg. effect of drought if uneducated -0.070* 0.082** -0.005
(0.036) (0.033) (0.020)

Notes: ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level. Standard errors
are clustered on the country-vegetation-zone-year level and shown in parentheses. All specifications
include country×year fixed effects, additional individual controls, and grid-level controls. Panel A
covers 17,248 grids and 526 clusters; Panel B covers 17,210 grids and 524 clusters; Panel C covers
17,225 grids and 526 clusters. See notes to Table 1 for variable definitions.
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Table 3: The effect of droughts on migration

Dependent variable → Migrant status

Droughts → all recurring first-time

[1] [2] [3]

Drought dummy 0.098** 0.085 0.104*
(0.044) (0.061) (0.061)

Drought dummy * uneducated 0.002 0.031 -0.011
(0.035) (0.037) (0.041)

Drought dummy * rural -0.156*** -0.215*** -0.130*
(0.055) (0.083) (0.072)

Uneducated 0.000 0.000 0.000
(0.009) (0.009) (0.009)

Rural -0.153*** -0.153*** -0.153***
(0.011) (0.011) (0.011)

Country × year fixed effects ✓ ✓ ✓
Individual and grid-level controls ✓ ✓ ✓
Observations 543,779 542,437 542,880
R-squared 0.112 0.111 0.111
Clusters 342 340 342
Grids (NDVI, 0.08°×0.08°) 11979 11953 11960

Marg. effect of drought if rural -0.059** -0.131** -0.026
(0.028) (0.052) (0.025)

Notes: ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at
10% level. Standard errors are clustered on the country-vegetation-zone-
year level and shown in parentheses. Rural equals 1 for individuals located
in rural areas. See notes to Table 1 for other variable definitions.
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Table 4: The effect of droughts on school dropout

Dependent variable → Dropout

Droughts → all recurring first-time

[1] [2] [3]

Drought dummy -0.016*** -0.010** -0.023***
(0.004) (0.004) (0.006)

Drought dummy * uneducated head of household 0.014** 0.015 0.016**
(0.006) (0.011) (0.007)

Uneducated head of household -0.004*** -0.004*** -0.004***
(0.001) (0.001) (0.001)

Country × year fixed effects ✓ ✓ ✓
Individual and grid-level controls ✓ ✓ ✓
Observations 624,908 623,303 623,488
R-squared 0.024 0.024 0.024
Clusters 232 230 232
Grids 9263 9246 9249

Marg. effect of drought if uneducated head of household -0.002 0.005 -0.007**
(0.006) (0.011) (0.003)

Notes: ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level. Standard
errors are clustered on the country-vegetation-zone-year level and shown in parentheses. Unedu-
cated head of household equals 1 if an individual’s head of household has incomplete primary or
no education. See notes to Table 1 for other variable definitions.
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OA1 Descriptive Statistics

OA1.1 Summary Statistics (Figure 2; Tables OA1, OA2, OA3)

Table OA1: Summary statistics

Variable Description Mean Sdev Min Max

Panel A. Dependent variables
lnBMI log of BMI 3.09 0.17 2.49 4.09
BMI body-mass index (weight/height2) 22.23 4.18 12.02 59.90
Agri = 1 if occupation is agriculture 0.37 0.48 0 1
Unemployed = 1 if unemployed 0.30 0.46 0 1
Sales = 1 if occupation is sales 0.14 0.34 0 1
Dropout = 1 if school dropout 0.03 0.16 0 1
Domestic = 1 if occupation is work at home 0.02 0.13 0 1
Unskilled manual = 1 if occupation is unskilled manual 0.04 0.20 0 1
Skilled manual = 1 if occupation is skilled manual 0.07 0.25 0 1
Professional = 1 if occupation is profes-

sional/technical
0.04 0.20 0 1

Services = 1 if occupation is in services 0.04 0.20 0 1

Panel B. Individual controls
Uneducated Dummy that equals 1 if an individual

has incomplete primary or no education
0.60 0.49 0 1

Uneducated head of household Dummy that equals 1 if an individual’s
head of household has incomplete pri-
mary or no education

0.56 0.50 0 1

Age Individual’s age in completed years 22.13 19.09 0 97
Male Dummy that equals 1 if an individual is

male
0.49 0.50 0 1

Panel C. Grid-level controls
Number of past half-months
where 3-month droughts=1, last
5 years

Number of past half-months where
3-month droughts=1, duration the
last five years, excluding the current
drought

0.25 1.57 0 66

Surveyed during growing season Timing of the interview during or out-
side of an NDVI growing season

0.59 0.49 0 1

Aridity index Inverse hyperbolic sine of the area’s
aridity index

0.60 0.33 0 1.83

Irrigation % Inverse hyperbolic sine of the area’s per-
centage equipped for irrigation

0.30 0.77 0 4.97

NDVI growing seasons per year Number of NDVI growing seasons per
year

1.25 0.43 1 2

Long-run time-of-year average
NDVI

Long-run average NDVI during that
time of the year

0.50 0.18 0.04 0.91

Notes: This table provides summary statistics. All grid-level control variables are observed for the total
number of 4,080,169 DHS individuals.Number of past 3-month droughts (in half-months), last 5 years: this
variables takes the value 6 if only one 3-month drought happened during the past five years.
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Table OA2: Summary statistics of the drought indicators

Drought indicator D Observations if D = 1 Observations Percent

Panel A. All droughts
Drought dummy, 1 month 92,552 4,080,169 2.27
Drought dummy, 2 months 29,183 4,080,169 0.72
Drought dummy, 3 months 15,392 4,080,169 0.38
Drought dummy, 6 months 1,738 4,080,169 0.04

Panel B. Recurring droughts
Drought dummy, 1 month 70,718 4,058,335 1.74
Drought dummy, 2 months 16,492 4,067,478 0.41
Drought dummy, 3 months 6,158 4,070,935 0.15
Drought dummy, 6 months 248 4,078,679 0.01

Panel C. First-time droughts
Drought dummy, 1 month 21,834 4,009,702 0.54
Drought dummy, 2 months 12,691 4,063,516 0.31
Drought dummy, 3 months 9,234 4,073,850 0.23
Drought dummy, 6 months 1,490 4,079,760 0.04

Notes: This table summarizes how often DHS individuals are affected by a
general drought, recurring drought, and/or first-time drought, differentiated by
drought duration.
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Table OA3: Summary statistics of the countries included in the analysis

Country Observations Percent Survey years

Angola 88,895 2.18 2006-07, 2010-11, 2015
Burkina Faso 242,547 5.94 1992-93, 1998-99, 2003, 2010-11, 2014-15
Benin 145,828 3.57 1996, 2001, 2011-12
Burundi 42,201 1.03 2010-11
Congo Dem. Rep. 133,686 3.28 2007, 2013-14
Central African Rep. 28,050 0.69 1994-95
Cote d’Ivoire 87,687 2.15 1994, 2011-12
Cameroon 124,063 3.04 2004, 2011
Ethiopia 281,640 6.9 1992, 1997-98, 2003, 2008
Gabon 40,251 0.99 2012
Ghana 131,355 3.22 1993-94, 1998-99, 2008, 2014
Guinea 114,304 2.80 1999, 2005, 2012
Kenya 226,993 5.56 2003, 2008-09, 2014
Comoros 20,830 0.51 2012-13
Liberia 52,354 1.28 2006-07, 2011-12
Lesotho 122,489 3.00 2004-05, 2009-10, 2014
Madagascar 156,198 3.83 1997-98, 2008-09, 2011
Mali 122,345 3.00 2006, 2010, 2015
Malawi 191,832 4.70 2000, 2010, 2014
Mozambique 117,148 2.87 2009, 2011, 2015
Nigeria 259,475 6.36 2003, 2008, 2010, 2015
Namibia 114,616 2.81 2000, 2006-07, 2013
Rwanda 158,370 3.88 2005, 2010-11, 2014-15
Sierra Leone 116,441 2.85 2008, 2013
Senegal 222,222 5.45 1992-93, 1997, 2006-07, 2010-12, 2015
Swaziland 21,734 0.53 2006-07
Chad 99,620 2.44 2014-15
Togo 45,519 1.12 2013-14
Tanzania 154,418 3.78 1999, 2007-2010, 2015
Uganda 145,356 3.56 2000-01, 2006, 2011, 2014-15
Zambia 117,257 2.87 2007, 2013-14
Zimbabwe 154,445 3.79 1999, 2005-06, 2010-11, 2015

Total 4,080,169 100.00

Notes: This table summarizes how often the countries are included in the DHS survey waves.
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OA1.2 Additional figures (Figures OA1, OA2)

Figure OA1: Mean and s.d. of the vegetation index
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Notes: Sample includes 20,021 distinct NDVI grids (of 0.08 × 0.08 degrees) in Africa within which at least
one household was ever sampled in the DHS survey.
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Figure OA2: Construction of growing season
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Notes: Dashed black lines track the current NDVI. Solid gray lines are the average time-of-year NDVI
across 1992-2015 for that location. Bullets and squares show the start and end dates of the current growing
season(s), following the algorithm of Vrieling et al. (2013). The top panel shows a location with one season
per year, and the bottom panel a location with two seasons per year. The annual maximum for a grid is the
point where it has a) the highest value in a window ranging from three values before and three values after,
and b) is higher than the average value of absolute maximum and minimum for that grid.
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OA2 Robustness

OA2.1 Adding control variables sequentially (Table OA4)

Control variables are successively added in Table OA4. Column 5 in Table OA4 corre-

sponds to column 4 in Table 1, and the full set of control variables is always included in all

of the other tables. The table looks very similar when we change the dependent variables to

first-time droughts. However, when changing the dependent variable to recurring droughts,

we find that they are only significant (with 90% confidence) in specifications 1-3 of Table

OA4 and not in specification 4-6 (not shown for reasons of brevity).
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Table OA4: Adding control variables sequentially and alternative clustering

Dependent variable → log BMI

Clustered by country × year × vegetation-zone Clustered
by country
× year

[1] [2] [3] [4] [5] [6]

Drought dummy (all, 3 months) -0.028*** -0.023*** -0.026*** -0.021** -0.025*** -0.025***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Individual controls:

Uneducated -0.042*** -0.042*** -0.039*** -0.037*** -0.037***
(0.002) (0.002) (0.002) (0.002) (0.002)

Uneducated head of household -0.041*** -0.041*** -0.039*** -0.038*** -0.038***
(0.002) (0.002) (0.001) (0.001) (0.002)

Age 0.004*** 0.004*** 0.004*** 0.004*** 0.004***
(0.000) (0.000) (0.000) (0.000) (0.000)

Male -0.093*** -0.093*** -0.094*** -0.093*** -0.093***
(0.006) (0.006) (0.006) (0.006) (0.009)

Grid-level controls:

Number of past drought periods -0.002*** -0.001* -0.002*** -0.002**
(0.001) (0.001) (0.001) (0.001)

Surveyed during growing season -0.006** -0.006*** 0.001 0.001
(0.002) (0.002) (0.002) (0.002)

Aridity index 0.046*** 0.068*** 0.068***
(0.006) (0.008) (0.009)

Irrigation % 0.010*** 0.009*** 0.009***
(0.001) (0.001) (0.001)

NDVI growing seasons per year 0.010*** 0.010***
(0.002) (0.002)

Long-run time-of-year average NDVI -0.079*** -0.079***
(0.011) (0.012)

Country × year fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Observations 585,703 479,455 479,447 479,447 479,447 479,447
R-squared 0.089 0.188 0.188 0.192 0.195 0.195
Clusters 433 433 433 433 433 94
Grids (NDVI, 0.08×0.08 degrees) 15640 15630 15629 15629 15629 15629

Notes : ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level. Droughts are severe droughts
lasting at least three consecutive months. Standard errors in parentheses and clustered as indicated. Sample:
individuals aged 15 to 64.
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OA2.2 Droughts of various length (Table OA5)

Table OA5: The effect of drought on BMI, by drought duration

Dependent variable → log BMI

Droughts → all, 1 month all, 2 months all, 3 months all, 6 months

[1] [2] [3] [4]

Drought dummy -0.004 -0.015** -0.025*** 0.005
(0.004) (0.008) (0.009) (0.005)

Uneducated -0.037*** -0.037*** -0.037*** -0.037***
(0.002) (0.002) (0.002) (0.002)

Uneducated head of household -0.038*** -0.038*** -0.038*** -0.038***
(0.001) (0.001) (0.001) (0.001)

Age 0.004*** 0.004*** 0.004*** 0.004***
(0.000) (0.000) (0.000) (0.000)

Male -0.093*** -0.093*** -0.093*** -0.093***
(0.006) (0.006) (0.006) (0.006)

Country × year fixed effects ✓ ✓ ✓ ✓
Grid-level controls ✓ ✓ ✓ ✓
Observations 479,402 479,402 479,447 479,447
R-squared 0.195 0.195 0.195 0.195

Notes: ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level. Standard
errors are clustered on the country-vegetation-zone-year level and shown in parentheses.
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OA2.3 Changing the years within-which any previous drought occurred (Table

OA6)

Table OA6: First-time droughts: Changing the years within-which any previous drought
occurred

Dependent variable → log BMI

Drought is the first in... → 4 years 5 years 6 years 10 years

[1] [2] [3] [4]

Drought dummy (first-time) -0.0230** -0.0230** -0.0228** -0.0202*
(0.0105) (0.0105) (0.0106) (0.0121)

Country × year fixed effects ✓ ✓ ✓ ✓
Individual and grid-level controls ✓ ✓ ✓ ✓
Observations 479,134 479,134 479,071 478,941
R-squared 0.1947 0.1947 0.1947 0.1948
Clusters 433 433 433 433
Grids (NDVI, 0.08×0.08 degrees) 15,615 15,615 15,610 15,606

Notes : ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10%
level. Droughts are severe droughts lasting at least three consecutive months.
Standard errors in parentheses and clustered by country-vegetation-zone-year.
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OA2.4 Other quantiles of BMI (Table OA7)

This section extends Columns 10-12 of Table 1 (Panel B) to other quantiles. Table

OA7 reports so-called ‘unconditional’ quantile regressions following the method by Firpo

et al. (2009) (and implemented in Stata by Rios-Avila (2020)). Unconditional quantile

regressions estimate the marginal effect of droughts (for the educated or the uneducated) at

specific points of the distribution of log BMI. In contrast, conditional quantile regressions

would capture the effect of droughts for levels of education across a distribution of BMI

within a group of individuals with otherwise similar characteristics (other than drought and

education). Unreported conditional quantile regressions, using the method by Machado and

Santos Silva (2019), show similar marginal interaction effects except that they are of about

half the magnitude.

Standard controls and fixed effects are always included. Coefficients highlighted in bold

are significant marginal effects of significant interactions terms.

The table shows that individuals with above median BMI but different education are

affected equally by droughts. Only for the first and second decile do we find that the

uneducated are affected significantly more than the educated. These results are driven by

first-time droughts.
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OA3 Droughts and other occupations (Table OA8)
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Table OA8: The effect of drought on working in other sectors

Dependent variable → Domestic Unskilled
manual

Skilled
manual

Professional,
technical

Services

Panel A: All droughts

[1] [2] [3] [4] [5]

Drought dummy 0.002 0.002 0.018 0.004 -0.006
(0.005) (0.005) (0.026) (0.009) (0.010)

Drought dummy * uneducated -0.001 0.000 -0.019 -0.012 0.003
(0.007) (0.007) (0.028) (0.013) (0.007)

Uneducated 0.006*** 0.001 -0.013*** -0.071*** -0.017***
(0.002) (0.002) (0.002) (0.002) (0.002)

Observations 891,923 891,923 891,923 891,923 891,923
R-squared 0.060 0.081 0.046 0.084 0.057

Panel B: Recurring droughts

[1] [2] [3] [4] [5]

Drought dummy 0.006 0.007 -0.011 -0.001 0.023
(0.011) (0.008) (0.009) (0.016) (0.015)

Drought dummy * uneducated -0.004 0.002 0.004 -0.016 -0.021*
(0.014) (0.008) (0.017) (0.019) (0.011)

Uneducated 0.006*** 0.001 -0.013*** -0.071*** -0.017***
(0.002) (0.002) (0.002) (0.002) (0.002)

Observations 889,693 889,693 889,693 889,693 889,693
R-squared 0.060 0.081 0.046 0.084 0.057

Panel C: First-time droughts

[1] [2] [3] [4] [5]

Drought dummy 0.001 -0.001 0.031 0.007 -0.020*
(0.005) (0.005) (0.037) (0.010) (0.011)

Drought dummy * uneducated 0.000 -0.002 -0.030 -0.010 0.014
(0.007) (0.009) (0.038) (0.013) (0.009)

Uneducated 0.006*** 0.002 -0.013*** -0.071*** -0.017***
(0.002) (0.002) (0.002) (0.002) (0.002)

Observations 890,667 890,667 890,667 890,667 890,667
R-squared 0.060 0.081 0.046 0.084 0.057

Notes: ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level. Standard errors
are clustered on the country-vegetation-zone-year level and shown in parentheses. Country × year
fixed effects and individual and grid-level controls are always included.
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OA4 Data appendix

OA4.1 NDVI (Figure OA3)

The original NDVI data was created by the National Aeronautics and Space Administra-

tion (NASA) using Advanced Very High Resolution Radiometer (AVHRR) instruments on

board of Landsat satellites (Vermote et al., 2016; Masek et al., 2006).1

We specifically use the Global Inventory Modeling and Mapping Studies (GIMMS) 3g

version by Pinzon and Tucker (2014), which is based on the AVHRR/2 and AVHRR/3

instruments onboard NOAA-7 through NOAA-19 satellites.2 Pinzon and Tucker (2014)

process the raw data to correct for navigation errors, calibrate to oceans and deserts, and,

using composite images, correct for atmospheric water vapor, non-volcanic aerosols, and

cloud-cover. By using composite images, the raw data’s daily frequency is reduced to a

bi-monthly frequency.

The NDVI data is highly disaggregated both in terms of space (cells of size 0.08 × 0.08

degrees, corresponding to a length of approximately 9.25 km at the equator) and time (twice

per month). The index is defined as the difference in wavelengths of light that is reflected

by the earth’s surface.

The index is defined as the difference in wavelengths of light that is reflected by the earth’s

surface:

NDV I =
NIR−RED

NIR +RED

where NIR is near-infrared light (0.7-1.1 µm) and RED is visible light (0.4-0.7 µm).

Figure OA3 compares NDVI values resulting from dense and/or health vegetation (left)

versus sparse or unhealthy vegetation (right). In general, if vegetation is healthy, the reflec-

tion in near-infrared wavelengths greatly exceeds the reflection in visible wavelengths and

the NDVI takes on a value close to +1. If, on the other hand, vegetation is sparse and

reflects the prevalence of grassland, tundra, or desert, the difference between the reflection

is small and NDVI takes on values close to zero (Weier and Herring, 2000). Negative values

1 See also https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index.
2 Currently available for download from http://poles.tpdc.ac.cn/en/data/

9775f2b4-7370-4e5e-a537-3482c9a83d88/.
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of NDVI correspond to surfaces covered by water, such as lakes, rivers, or the ocean.

Figure OA3: Reflected radiation by different types of vegetation (following Weier and Her-
ring, 2000)
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OA4.2 Frequency of droughts in Africa below the 14°N parallel (Figures OA4,

OA5)

This subsection presents illustrations of the frequency of droughts over time in Sub-

Saharan Africa (similar to Figures 1 and OA1). Rather than defining the region by using

country borders, which would include countries such as Mali that also extend into the Sahara,

we present results for all 225,110 NDVI grids that fall below the 14°N parallel. Of all surveyed

DHS individuals, 95% are located below this parallel. The subsequent figures are very similar

when choosing the 13°N or 15°N parallels.
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Figure OA4: Vegetation index and droughts: Africa below 14°N
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Figure OA5: Mean and s.d. of the vegetation index: Africa below 14°N
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Notes: Sample includes 225,110 distinct NDVI grids (of 0.08× 0.08 degrees) in Africa below 14°N latitude.
95% of individuals surveyed in the DHS live below this latitude.
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OA4.3 Country coverage of DHS survey (Figure OA6)

Figure OA6: Location of DHS survey households
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