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Abstract 
 
Environmental managers face substantial uncertainty when deciding on management actions. To 
reduce this uncertainty prior to decision-making, collecting new data may help arrive at more 
informed decisions. Whether any resulting improvement in the decision will outweigh the cost of 
collecting the data, and thus make investing in the acquisition of the information worthwhile, is 
an intricate question. The concept of the value of information (VoI) is a convenient tool to address 
this problem. We use the VoI framework to analyse a decision problem in water quality 
management. Based on real-world monitoring data, we calculate the VoI of monitoring nitrogen, 
which is used as an indicator of the ecological state of water body. We find that the VoI is 
significant in our case and we further investigate the dependency of the VoI in a similar setting 
on the management cost, the assumed value of a good state and on the level of uncertainty 
regarding the ecological state. In addition, we observe a negative relation between the relative 
management cost and the prior probability that maximises VoI. These insights may help decide 
on information acquisition in the presence of substantial uncertainties and sparse data. 
JEL-Codes: C110, C610, D810, Q250, Q570. 
Keywords: value of information, decision analysis, uncertainty, environmental management, 
monitoring. 
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1 Introduction

Eutrophication is one of the main problems in the North Sea’s coastal waters (OSPAR, 2017).
It is caused by increased enrichment of the water with nutrients and can disturb the compo-
sition of organisms and eventually reduce the overall quality of the water. Managing aquatic
systems threatened by eutrophication is challenging, since there are many inherent uncertainties
about its exact causes and effects. Consequently, environmental managers face a high degree
of uncertainty when deciding on management actions, but interventions often do not take these
uncertainties into account. They may therefore be ineffective or even counterproductive (Cook
et al., 2010; Bennett et al., 2018). To reduce anthropogenic stressors and to mitigate eutrophi-
cation, legislation, such as the European Marine Strategy Framework Directive (MSFD) and the
European Water Framework Directive (WFD), has been enacted (European Parliament, 2000,
2008; Desmit et al., 2020). The WFD requires EU member states to obtain and maintain a
“good ecological status” (GES) by 2027, based on a range of biological quality elements that
are used to classify the state of a water body as either high, good, moderate, poor or bad.
Although the GES target was initially set to be achieved by 2015, only about 40% of European
water bodies reached that goal by 2018 (Carvalho et al., 2019; European Environment Agency,
2018). For the coastal waters of the North Sea, the riverine nutrient influx is seen as a reason for
eutrophication (Desmit et al., 2020) and hence a cause for the qualities of water bodies falling
short of the GES target. These high riverine nutrient concentrations are predominantly due to
non-point sources of pollution, from agricultural and other land use activities, or derive from
uncontrolled and untreated discharge from sealed surfaces after storm events or heavy rainfall
(Carvalho et al., 2019).

In this study, we evaluate the need for monitoring or taking direct actions to manage the
water quality in the Weser River basin in Northern Germany. As most of Germany’s water bodies
still fail to reach the GES, many de-eutrophication measures focus on nitrogen reduction. For
rivers entering the North Sea, a special target for nitrogen concentrations has been established
in the limnic–marine transition zone to reduce eutrophication in coastal waters and therefore
meet the GES targets (BLMP, 2011). Although the ecological and chemical developments of
German rivers are closely monitored, few of these rivers have met the GES targets. A thorough
assessment of the ecological state is the prerequisite for any recommendation and implementation
of restoration measures. However, such an assessment requires reliable data (Koski et al., 2020).
The acquisition of a sufficient amount of information through monitoring is therefore essential
to evaluate the system’s state and to decide whether interventions are necessary or the desired
good state of the ecosystem has already been reached. Monitoring activities are at the core
of understanding the state of the system and its response to stressors (Nyg̊ard et al., 2016).
Although monitoring data do not directly solve any environmental problem, they may help
facilitate targeted management and policy interventions (Bouma et al., 2011). At the same time,
monitoring and data collection involve many resources, while conservation budgets are often
limited (Bennett et al., 2018). Additionally, postponing the decision to act may result in missed
opportunities for management (Martin et al., 2012) and could result in further degradation of
the ecosystem. WFD regulations require extensive monitoring programs, which in turn require
significant financial resources, for which governments must find cost-effective, yet qualitatively
sufficient solutions (Carvalho et al., 2019). In this context, acquiring new information is only
worthwhile if it can be expected to change the choice of the decision maker and, in this way, lead
to more effective management. It is therefore mandatory to carefully evaluate whether or not,
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and if so, to what extent, monitoring – or more broadly, an information service – will be useful for
providing valuable information. For this, we can use the Value of information (VoI) analysis. VoI
is a decision-analytic tool to determine the value of additional information for decision-making: it
computes how much a (rational) decision maker’s expected payoff would increase if uncertainty
is, at least partially, reduced before the decision is made. The uncertainty here is represented by
a probability distribution over possible states of the system (Pannell and Glenn, 2000). VoI gives
the value of an information service, i.e. the expected value of acquiring information before any
specific information or data have been received. That is, VoI represents the willingness-to-pay
of the decision maker for the acquisition of new data, while not yet knowing what this data will
look like. This implies that before the decision-making, more data will only be collected if it
is expected to be beneficial. In this way, VoI helps the decision maker enhance their decision
through means of a well-judged acquisition of information. Specifically, the expected value of
perfect information gives the payoff when uncertainty is entirely eliminated, i.e. when complete
knowledge about the true state of the world (clairvoyance) is achieved; while in contrast, the
expected value of sample (or imperfect) information gives the increase in the payoff on obtaining
some, even though imperfect, information.

Initially formulated by economists (Raiffa and Schlaifer, 1961; Hirshleifer and Riley, 1979),
VoI has been widely applied in health economics (Yokota and Thompson, 2004; Fenwick et al.,
2020), engineering (Bratvold et al., 2009), fishery management (Clark and Kirkwood, 1986;
Costello et al., 2010; Kuikka et al., 2011) and invasive species management (Li et al., 2021;
Johnson et al., 2017; Moore and Runge, 2012). In spite of its apparent benefits, VoI has been
only sparsely applied for conservation planning (Runge et al., 2011; Williams et al., 2011; Moore
and Runge, 2012), water management (Borisova et al., 2005) or environmental monitoring
(Nyg̊ard et al., 2016; Koski et al., 2020; Venus and Sauer, 2022). The reasons for this lack of
application may include the difficulty of quantifying the value of an ecological system (Koski
et al., 2020) or the high computational costs with the increasing complexity of the decision
problem (Canessa et al., 2015; Bolam et al., 2019). Furthermore, the calculation of VoI requires
explicitly defining a decision framework: the probabilities of the states of the world, the set of
available management actions, and the consequences of each management action, all of which
may represent challenging tasks for environmental decision problems.

For our specific context, we use a VoI framework similar to the one used by Koski et al.
(2020) to solve this ecological management problem with available real-world monitoring data.
Building on this, we extend the analysis by performing a sensitivity analysis and showing the
interaction between the management cost and the probability distribution of the ecological
state. Specifically, we identify the prior probabilities for which VoI is a maximum over a range of
management costs. Lastly, transcending our concrete case study, we provide generic results on
VoI for all two-state, two-action decision problems under uncertainty with respect to two crucial
determinants of VoI: the prior probability distribution and the management costs in relation to
the good state.

The remainder of this article is structured as follows: In the next section, we provide
information regarding the data and methods used in our investigation. Section 3 provides the
results of our VoI analysis along with a detailed sensitivity analysis showing how the VoI depends
on the management cost and the prior distribution in Section 4. This is followed by a discussion
of the results in Section 5 and a conclusion in Section 6.
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2 Data and Methods

2.1 Decision problem and data

According to the WFD, the state of a water body is determined by several elements of biological
quality and supporting chemical-physical parameters. In the case of Germany, coastal waters
are prone to high riverine input of nutrients, leading to eutrophication (BLMP, 2011; Desmit
et al., 2020) and thus leading to a failure to meet the GES target (BLMP, 2011). Due to a
correlation between nitrogen and chlorophyll-a, it is frequently hypothesised that the overall
nitrogen concentration in the water body affects the biological quality element phytoplankton
(BLMP, 2011). Consequently, water quality management predominantly targets a reduction
of nitrogen concentrations to reach the GES in coastal waters. In accordance with this policy
focus, we restrict our assessment to total nitrogen because it serves as an indicator of the state
of a water body. Our goal is to assess the VoI of monitoring nitrogen data for rivers of the
Weser River basin that enter the German Wadden Sea. We use the official and open-source
monitoring data provided by Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und
Naturschutz (NLWKN)1 and of the Flussgebietsgemeinschaft Weser (FGG Weser)2.

We consider a sample of water bodies within the case study area and differentiate between
water bodies within the target state, i.e. fulfilling the criteria of the GES according to the WFD,
and those that fail to meet the target state. We consider data for the WFD assessment periods
2000–2018. Since little data is available on water bodies in a good state, we used the raw
data and disregarded temporal or spatial differentiation. We acknowledge that in this way, the
analysis is biased towards water bodies with a high frequency of measurements or with many
measurement stations; also, spatial differences, as well as different river types, cannot be taken
into account. However, this approach is still suitable for highlighting the value of monitoring
data for environmental management. To base the VoI analysis on empirical data, we assume
that total nitrogen is a proxy for the state of the water body. Since the main target of the WFD
is that water bodies either maintain or reach the GES, the threshold between the categories
GES and non-GES becomes essential; at the same time, subcategories within GES and non-GES
are inessential. Consequently, the threshold between GES and non-GES determines whether
management interventions must be taken. We, therefore, disregard the original division of the
state of a body of water into five categories and consider only two: those that meet the target
state (GES) and those that do not (non-GES). We will refer to the latter as bad state (x0)
and the former as good state (x1). Accordingly, the state X of a water body takes either of
two values: X ∈ Ω = {x0, x1}, with a prior probability pX(x) for state x being true. We
assume that for any section of a river, two management alternatives a ∈ A = {a0, a1} can be
considered: either no action is taken a = a0 (default), or a specified action is taken a = a1.
The resulting payoff then depends on both the action and the state: v : A× Ω → R, as shown
in Table 1. We next determine the value of actions, costs and prior probabilities.

The estimated cost of action a1 is retrieved from reports by LAWA (2020) and Flussgebi-
etsgemeinschaft Weser (FGG) (2021) (section “cost for management of pollution from diffuse
sources”) and is set to EUR 90 million per year. The cost of action a0 is set to zero. The
value of a water body in good state is estimated from a report by the European Commission

1Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency.
2River Basin District Weser.
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Table 1: Payoff matrix for the river management problem.

action a prior belief
ecological state X a0 a1 pX
X = x0: bad state v(a0, x0) v(a1, x0) pX(x0)
X = x1: good state v(a0, x1) v(a1, x1) pX(x1)

(2019). The cost of not reaching GES for Germany, i.e. the benefit forgone, is estimated to
range between EUR 820–3304 million per year. Scaled down to the area of the Weser River
basin area, this results in a value within the range of roughly EUR 115–450 million per year. We
set the value at EUR 200 million per year for our initial analysis. Therefore, the value of a river
in good state (x1), without management cost, is set to EUR 200 million per year.

The payoff for each action is then calculated by subtracting the management cost – c0 =
c(a0) = 0 in case of action a0, and c1 = c(a1) = 90 in case of action a1 – from the value of
the water body after the action became effective, which is either 0 or 200. Therefore, the value
of the ecological state after management, which we refer to as the payoff, is given by

v(a, x) =


0 if (a, x) = (a0, x0)

200 if (a, x) = (a0, x1)

200− c(a1) if (a, x) = (a1, x0)

200− c(a1) if (a, x) = (a1, x1)

for c(a1) = 90 we obtain

v(a, x) =


0 if (a, x) = (a0, x0)

200 if (a, x) = (a0, x1)

110 else

We assume that after performing the action a1, the water body will be in a good state; intuitively,
a1 serves as a perfect hedge against a possible bad state of the water body.

The prior probabilities for each state are derived from a recent report, highlighting that
less than 10% of German water bodies are currently in a good state (Bundesministerium für
Umwelt, Naturschutz und nukleare Sicherheit, 2017). Hence, we set the prior belief for a water
body’s being in a good state at pX(x1) = 0.1 and for a water body being’s in a bad state at
pX(x0) = 0.9. The four possible situations are summarised in Table 2 (costs are given in million
Euros per year).

2.2 Concept of the value of information

In this section, we outline the theory behind the VoI at a more abstract level, to present the
general idea behind our approach. As we mentioned already, VoI is used in the case of revisiting
a decision via determining whether it is worth investing in more information to reduce the
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Table 2: The value of the ecological state after action a0 or a1 without additional infor-
mation.

payoff v(a, x)
actions cost of actions x0 x1

a0 c0 = 0 0 200
a1 c1 = 90 110 110

prior belief pX(x) 0.9 0.1

uncertainty or whether the decision should be based on the current information. This uncertainty
about the true state of the system is modelled by the random variable X : Ω → R+, with Ω
being the state space, which we assume to be discrete, and corresponding probability measures
pX on Ω. The decision maker can choose any action a ∈ A. The payoff (profit or utility) of
the decision maker resulting from state x ∈ Ω and action a ∈ A is denoted by v : A×Ω → R :
(a, x) 7→ v(a, x).

One of the key measurements of VoI, the value of perfect information or the value of
clairvoyance about the true state of the world, is calculated by

V ◦ := PoV ◦ − PV ,

where the prior value (PV ) describes the maximum expected outcome under current information;
i.e. the expected utility resulting from adopting the action which produces the highest expected
utility:

PV = max
a∈A

E [v(a, x)] = max
a∈A

[∑
x∈Ω

v(a, x)pX(x)

]
,

where the expectation is taken with respect to X. In our case, we explicitly calculate the PV by

PV = max
a∈A

[v(a, x0)(1− p) + v(a, x1)p]

= max [v(a0, x0)(1− p) + v(a0, x1)p, v(a1, x0)(1− p) + v(a1, x1)p]

= max(200p, 200− c(a1))

PV =

{
200− c(a1) if p < 200−c(a1)

200

200p if p ≥ 200−c(a1)
200

Note that PV is not differentiable at the point p = 200−c(a1)
200 . This lack of differentiability in

the function will impact the behavior of the variable of interest, which will be introduced later,
and can be visually observed in Figure 4 and Figure 7.
On the other hand, the posterior value (PoV ) represents the expected utility after being informed
about the realisation of X; it gives the expected utility when taking the optimal action for each
state of the world x ∈ Ω (Yokota and Thompson, 2004):

PoV ◦ = E
[
max
a∈A

v(a, x)

]
=

∑
x∈Ω

pX(x)max
a∈A

v(a, x).
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Here, PoV ◦ represents the probability-weighted sum of the utilities of the optimal actions.
Then, the difference between the expected utility under perfect information and under current
information gives the value of perfect information (Yokota and Thompson, 2004). If perfect
information can be obtained, and the value of the perfect information exceeds the cost of
acquiring it, then it is worthwhile to acquire this information prior to making a decision.

Calculating the expected value of perfect information is useful for exploring the upper
bound of the value of eliminating uncertainty. However, in real-world problems, obtaining perfect
information about the state of the world (here, the state of the water body) is almost always
impossible (Canessa et al., 2015). Therefore, instead of obtaining perfect information on the
realisation of X, the decision maker can reduce, but not entirely eliminate, uncertainty by
observing some information (or message) y, which may thus be viewed as specific information
about the probability distribution of X. Since the information being received is not known
in advance, it represents a realisation of a (continuous) random variable Y with probability
distribution pY . In this way, any realisation of Y provides some specific indication of the
probability distribution of X; we denote this conditional probability distribution of X by pX|Y ,

and specifically, write pX|Y (·|y) if Y = y. Intuitively, we may interpret the probability distribution
of the possible message pY as an information service, which induces the conditional information
pX|Y on the distribution of X. It is the acquisition of this information service about which the
decision maker has to decide before deciding on the action itself.

The VoI concept can be adapted to this situation as well: Yokota and Thompson (2004)
define the value of information, more precisely the value of an information service, as the
difference between the expected payoff under current information and the expected payoff when
new information is obtained. Specifically, the expected value of imperfect information is the
difference between the expected value of the best action based on the posterior probability
distribution on X induced by the, ex-ante unknown, information Y , and the PV :

V := PoV − PV .

Here, a realisation of the random variable Y and the associated probability density pY represents
some, yet imperfect, information about the state pX|Y . This information might be obtained, for
example, by means of monitoring or buying monitoring data. Given the probability density pY ,
PoV can be written as

PoV =

∫
max
a∈A

E [v(a, x)|y] pY (y) dy =

∫
max
a∈A

(∑
x∈Ω

v(a, x)pX|Y (x|y)
)
pY (y) dy,

where the expected value of the best outcome is taken over all possible messages (or monitoring
results) y weighted by their probabilities of observing pY (y).

Since any received message (or information) y provides information on the distribution of
X, the probabilities for realisations of X need to be updated accordingly. Bayesian updating
reflects the belief-updating process of the probability of X for all possible sample information,
y:

pX|Y (x|y) =
pX(x) pY |X(y|x)

pY (y)
,
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with pY |X(y|x) representing the likelihood function of observing y when the state of the world

is x, and pY (y) representing the marginal density of y:

pY (y) =
∑
x∈Ω

pX(x)pY |X(y|x).

3 VoI analysis for the Weser River basin

We now continue with the VoI analysis for our management problem described in Section 2 where
we consider two states of a water body X ∈ Ω = {x0, x1} and two actions a ∈ A = {a0, a1}.
For this simplified case, the (prior) probability distribution pX can be represented by a single
probability p := pX(x1) = 1 − pX(x0). Our initial analysis exemplifies the value of monitoring
information based on the prior p and the management cost c.

3.1 Computing conditional and posterior distributions

VoI analysis depends on Bayesian updating, therefore one key aspect is to determine the likeli-
hood of the data. In our case, we fit distributions to the empirical data to simulate monitoring
activity by randomly sampling values from these distributions. To choose the best fit for the data,
we first compute the descriptive parameters of the empirical data. We use the Cullen and Frey
plot – a skewness-kurtosis plot – for a visualisation of the possible best distribution. We then
choose from the proposed theoretical distribution consistent with the skewness and kurtosis of
the empirical data and conduct a goodness-of-fit analysis. We choose the best fit by comparing
the maximum likelihood estimators (MLE), log-likelihood, Bayesian Information Criterion (BIC)
and Akaike Information Criterion (AIC). For the bad state data, the Cullen and Frey graph, in
addition to the MLE, suggests a gamma distribution as the best fitting distribution, while the
best fit for good state data based on the same criteria is a beta distribution. However, for the
fitting process, the data has to be re-scaled to the support of a beta distribution, i.e. rescaled to
[0, 1|. This is problematic, as there is no way to “scale back” after conducting the VoI analysis.
We avoid the need to scale the data by choosing a four-parameter beta distribution, a highly
flexible bounded distribution, where the lower and upper limits can be set based on the data.
Fitting the best possible distribution to the data is an important part of our VoI analysis as it
requires sampling from the distribution and refitting the sampled values.

In order to estimate the posterior value of imperfect information from the available data,
that is from sampling values for Y , we estimate pY |X (yi|x) from the distributions fitted to the

empirical data using a Monte Carlo approach. Random samples (n = 10000) are drawn from
the fitted distribution and the distributions are refitted to the random samples. Then, using the
estimator p̂Y |X (yi|x), we calculate

P̂ oV =
1

n

n∑
i=1

max
a∈A

E [v (x, a) |yi] =
1

n

n∑
i=1

max
a∈A

(∑
x∈Ω

v(x, a)p̂X|Y (x|yi)
)
,

with n being the number of observations. The corresponding confidence intervals (CI) for P̂oV
are estimated using a Monte Carlo bootstrapping approach, for which the procedure is repeated
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Figure 1: Histograms of the empirical data (total nitrogen in mg/l = TN) with fitted
four-parameter-beta and gamma distributions. The empirical data is divided into two
categories for the ecological state: good ecological status and bad ecological status

1000 times and the confidence intervals are obtained by subtracting the value of PV from the
calculated PoV in each step.

3.2 Value of perfect and imperfect information

We conduct the initial VoI analysis with the estimated prior probabilities and monetary values
as given in Table 2. We consider the prior belief p := pX(x1) = 0.1 (see subsection 2.1) for the
water body being in a good state, meaning that, a priori, the decision maker is fairly certain that
the water body is not meeting the desired state X = x1. In view of the prevailing uncertainty
and without additional information, the strategy with the highest expected benefit would be to
choose the specified action a1 for the water body. Under current information, this action would
result in a maximum expected payoff of 110 million EUR/year. In contrast, the value of perfect
information yields a maximum expected value of 119 million EUR/year. If the decision maker
could obtain perfect information, it would be worthwhile to pay up to 9 million EUR/year and
postpone the decision-making until after additional information is acquired. Lastly, the value of
imperfect information, meaning that new information may reduce but not eliminate completely
the uncertainty, is 112.21 million EUR/year. In this case, the decision maker is willing to pay
up to 2.21 million EUR/year (with a 95% CI [2.06, 2.84]) for acquiring information through
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Table 3: Value of perfect and imperfect information for the case of the Weser River
Prior pX(x) Prior value Perfect information Imperfect information
x1 x0 PV PoV ◦ V ◦ PoV V
0.1 0.9 110 119 9 112.21 2.21

CI(2.06, 2.84)

monitoring in order to be more certain about the true state of the water body, see Table 3.

4 Dependence on costs and prior probabilities

In real-world applications, the monetary values, management costs and prior probabilities are
estimates and are thus themselves subject to uncertainty. A careful sensitivity analysis may help
to reduce the uncertainty incorporated in these parameters and to examine the robustness of the
VoI analysis with respect to these data. In this section, we, therefore, compute V for different
management costs c and prior probabilities (for the good state) p := pX(x1), and explore the
sensitivity of V to these two crucial parameters. Naturally, the management costs are assumed
to be non-negative and to not exceed the value of the water body’s being in the good state,
i.e.c ∈ [0, v], while p ∈ [0, 1]. Formally

V : [0, 1]× [0, v] → R : (p, c) 7→ V (p, c).

Among other things, this formalisation helps us to find the priors for which V is maximised in
relation to management costs. Since in the course of our analysis, we vary (p, c) over its domain,
we will provide qualitatively generic results for all two-state, two-action decision problems under
uncertainty.

Before we present and discuss the properties of V for its full parameter range, we begin
with computing V for specific values of the management cost. Fig. 2 displays the values of
perfect and imperfect information for low (c = 50), medium (c = 100), and high (c = 150)
management costs (all in million EUR/year), along with 95% CI. If the action has a medium
cost, V reaches its maximum when uncertainty is highest, i.e. at a prior probability of p = 0.5,
see Fig. 2b. In this case, the value of perfect information reaches up to 50 million EUR/year,
and the value of imperfect information is up to 30 million EUR/year. In contrast, in the absence
of uncertainty, i.e. for either p = 0 or p = 1, the values of perfect and imperfect information are
both zero, as the decision maker already has full knowledge about the true state of the water
body.

For low management costs (50 million EUR/year), see Fig. 2a, V is highest when the
ecological state is believed to be likely to meet the target (p = 0.75), and the decision maker is
therefore relatively confident that there is no need for any action. Intuitively, if the management
cost is low, the decision maker is willing to undertake the action a1 even if the water body is
quite likely to be in a good state; only if this probability is sufficiently high does the decision
maker omit taking action. It follows that there is a (relatively high) level of this probability at
which the decision maker is indifferent between undertaking the action (because its cost is low)
and omitting it (because it is seemingly not necessary). But V reaches its maximum exactly at
the level of p where the decision maker is indifferent between actions a0 and a1, because any
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Figure 2: The value of perfect and imperfect information (with 95 % confidence intervals)
for c = 50, 100, 150 and p ∈ [0, 1].

additional piece of information may flip the decision to either side. Specifically, for c = 50, V
is maximised at p = 0.75 with perfect information attaining a value of more than 40 million
EUR/year and imperfect information more than 20 million EUR/year. In this case, it is worth
getting more information to either confirm or reject the hypothesis that the water body is in
good state so that an action can either be justifiably disregarded or undertaken. In this way,
the decision maker avoids the risk that either an unnecessary action will be performed, or a
beneficial and relatively cheap action will be omitted.

The reverse line of argument holds if the cost of the action is high (here 150 million
EUR/year). Then, the action will not be undertaken unless the probability of the water body’s
being in good state is quite low. The value of p at which the decision maker is indifferent between
actions a0 and a1 is therefore relatively low – and it is here that V reaches its maximum, for any
additional indication of the water body’s being in the good or in the bad state means changing
the decision to one side or the other. Specifically, for c = 150, V reaches its maximum at
p = 0.25, see Fig. 2c.

Moreover, we infer from Fig. 2 that V is strictly quasi-concave in p. While V depends on
p and c, it is true, by the construction of the VoI concept, that the value of perfect information
exceeds the value of imperfect information, irrespective of p and c. Yet, for any fixed level of
c the location of the maximum, i.e. the prior probability for which V is maximum, is the same
for both perfect and imperfect information, again see Fig. 2. More formally, let us define

p∗(c) := argmax
p

V (p, c).

Then, for any value of c, V has a maximum at p∗(c) with the value of V amounting to
V ∗(c) := V (p∗(c), c).

We now construct the image of V ∗ step by step. In Fig. 2, we display V (·, 50), V (·, 100)
and V (·, 150), identifying the corresponding maximisers p∗(50), p∗(100) and p∗(150), and their
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Figure 3: (a) Plot of maximum prior probability for which V has a maximum, i.e. p∗(c)
versus the management cost c; (b) Maximum V ∗(c) versus the management cost c; (c)
Parametric plot of V ∗(c) and p∗(c).

respective values of V : V (p∗(50), 50), V (p∗(100), 100) and V (p∗(150), 150). Proceeding in a
similar way, we calculate p∗(c) and V ∗(c) for all c ∈ [0, v]. The maximiser p∗(·) is shown in
Fig. 3a., while the maximised function V ∗(·) is shown in Fig. 3b. Finally, we display the graph
of the mapping c 7→ (p∗(c),V (p∗(c), c)), i.e. a parametric plot of c, in Fig. 3c. Fig. 3a shows
that p∗(·) decreases linearly, with p∗(0) = 1 and p∗(200) = p∗(v) = 0, while Fig. 3b shows that
V ∗(·) is strictly concave, with V ∗(0) = 0 = V ∗(v). Lastly, along the path c 7→ (p∗(c),V ∗(c)),
V ∗ is maximum for (p∗(c), c) = (0.5, 100), which can be seen from Fig. 3b and 3c. Intuitively,
if management can be performed at zero cost, the decision maker will undertake the action in
any case and is only indifferent between a0 and a1 if the water body will be in good state with
probability 1. In contrast, if the management cost is equal to the value of the water body in
the good state, which happens at c = v = 200, the action will never be undertaken, and the
decision maker is indifferent between a0 and a1 only if the probability of the water body’s being
in the good state is 0, i.e. the water body is in a bad state almost surely. Reversely, the value of
reducing uncertainty as to which is the best decision, a0 or a1, is highest when the monitoring
costs are neither negligible nor excessive, and a prior uncertainty regarding the state of the water
body is high (i.e. p = 0.5). In such a situation, any additional data that may give an indication
as to what to do best is very valuable.

To summarise our findings, which are valid generically for all two-state, two-actions decision
problems under uncertainty: When the cost of management is high, the decision maker does
not undertake the action unless the prior probability is quite low (i.e. when the bad state is
likely to hold). Therefore, when the cost and the probability of good state are both high, the
arrival of new information is unlikely to reverse the decision maker’s decision. Yet, when the
prior probability is low, there is a significant risk that the actual state is bad, and thus the
decision needs to be revised. Hence, given a high cost for management, V is largest when
the prior probability is low, and therefore the prior probability for which V is maximised, p∗, is
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Figure 4: Contour plot of the value of imperfect (monitoring) information V as a function
of the prior probability p and the management cost c.

small. Conversely, when the management cost is low, the decision maker is likely to undertake
the protective action. This is especially the case when the prior probability is low, i.e. when the
water body is likely to be in a bad state. When the prior probability is high, implying that good
state is the probable result, undertaking a costly action, even if relatively cheap, may represent a
waste of resources. Given a low value for the management cost, a high probability of good state
tends to make the decision to undertake action needless. Consequently, for low management
cost, V is the largest when the prior probability is high. This explains why there is a negative
relation between c and p∗.

This negative relation between c and p∗ is also shown in the contour plot in Fig. 4, displaying
the iso-level curves of V for p ∈ [0, 1] and c ∈ [0, v] = [0, 200]. When the decision maker is
a priori quite certain about the state of the water body, i.e. p is either close to 0 or to 1, the
value of additional information is relatively low. Even more pronounced is the case when both p
and c are simultaneously either low or high. In both of these cases, V is low, because of a low
[high] probability of the good state, i.e. a high [low] probability of the bad state, together with
low [high] management cost makes the decision maker perform [abandon] the action – and the
arrival of new information is very unlikely to reverse this decision. In both of these polar cases,
it is pretty evident that the action should be performed immediately (when both p and c are
small), respectively that the action can be dispensed with (when both p and c are high), so that
the arrival of new information is very unlikely to reverse this decision – and thus the value of

12



information is low. On the contrary, V is high when the management decision is close, which
happens when the state of the water body is very unclear and management costs are moderate.
Specifically, V is maximised when uncertainty is highest (p = 0.5) and when at the same time
the action costs are half of the gain in the value of the good over the bad state of the water
body (c = v/2 = 100).

5 Discussion and general insights

Acquiring more information through monitoring can have substantial value, as additional data
may improve environmental decision-making. VoI analysis makes this economic benefit of data
collection and monitoring activities explicit (Bouma et al., 2009). Decision makers may thereby
improve the allocation of resources in monitoring and management and thus enhance returns
on investments. Here, VoI represents the decision maker’s willingness to pay for additional
information. Our study aimed at demonstrating how to support an environmental decision
problem by means of a VoI analysis. We applied the VoI framework using real-world monitoring
data to a simple decision problem with two states of a water body and two decision options,
using one variable (total nitrogen concentrations) as an indicator for the state of the water
body. We calculated the value of additional monitoring data (or information) for a decision
maker deciding on an environmental management action. Improved information, even when
imperfect, yields a positive value and may lead to a higher payoff for the decision maker. VoI
analysis can be a valuable tool in the light of monitoring being frequently criticised for being too
expensive. The fact that these monitoring data may enhance decision making, and may thus
have an additional value, is often ignored (Caughlan and Oakley, 2001; Lovett et al., 2007). VoI
analysis focuses on this kind of extra value that data may have for environmental management,
where investment decisions may be conditional on the collected data.

With our analyses, we obtained interesting methodological and general insights. From
a methodological point of view, we see that it is especially difficult to calculate the value of
imperfect information when the sample space is continuous. We showed that a Monte Carlo
approach used in conjunction with Bayesian decision theory appears to be suitable for calculating
an approximate value for imperfect information. To account for uncertainty incorporated in the
estimated prior probabilities and the monetary values, we performed a sensitivity analysis. This
method is also beneficial for providing further guidance to decision makers and environmental
managers on the value of information for a range of combinations of prior probabilities and
management costs. Moreover, this gives insight into the behaviour of VoI in relation to prior
probabilities and management costs and highlights the importance of a sensitivity analysis.

Irrespective of the fact that the exact values that result from a VoI analysis are essentially
case-specific, there are still some general findings that are worth emphasizing: Since V crucially
depends on the prior probability p and the monitoring cost c, we investigate for which combi-
nations of p and c V is maximum. To answer this, we calculate, for any value of c, the level of
p for which V is maximal. Denoting this maximising prior by p∗ = p∗(c), we show that p∗ is a
decreasing function of c; moreover, V is, at least in our decision context, quasi-concave, which
is illustrated in Fig. 4. We recognise the inherent uncertainties with regard to estimating prior
probabilities, management costs, and the value of the state of the ecosystem. Improving these
estimates leads to more confident estimates of the VoI. Intuitively, more informed priors, i.e. p
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Figure 5: Effect of changing management cost on the maximum value of information V .
The values of both the management cost and the V have been normalised with respect
to the value of the good state (v).

close to either 0 or 1, results in a smaller VoI. The more certain the decision maker is about the
state prior to making their choice, the lower the effect of additional information on their choice.
However, the highest uncertainty (a prior probability p equal or close to 0.5) does not necessarily
imply that V is maximal (Canessa et al., 2015). This is because p∗ depends negatively on the
management cost c.

To complement our analysis and to obtain more generic results, Fig. 5 shows V ∗ as a
function of the ratio of the management cost c and the value of the good state v, i.e. on the
relative management cost c/v; it shows that V ∗ is maximal when c = v/2. This generalisation
provides us with some interesting and somewhat counter-intuitive insights: Let us assume that
both c and p are fixed. If we now vary the value of the good state of the ecosystem, it turns out
that increasing the value of the good state may lead to a decrease in the value of information.
Intuitively, one might assume that the more relative value the ecosystem has, the more one
would be willing to invest in monitoring. Yet, the analysis shows that a higher value leads to
the fact that it is more useful to directly invest in actions instead of risking spending resources
on monitoring and missing opportunities to act. Hence, the value of the information is relatively
low.

So far, our discussion mostly focused on how the value of information is influenced by the
key parameters c, v and p. Let us remember that from a decision-making perspective, whether
or not the acquisition of additional data is actually worthwhile before a management decision is
made, depends on the difference between the VoI and the cost of collecting the data (information
acquisition). If the former exceeds the latter, new data should be collected before a decision is
made. This is illustrated in Fig. 6. It shows the results of a VoI analysis for a case with two
states of the world and two actions, similar to our previous example. The vertical axis gives the
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Figure 6: Value of information V in comparison to monitoring cost K. The black dotted
line shows the maximising function p∗(c/v). Example points A and B for parameter
combinations where V is smaller than K (point A) and V is higher than K (point B).
The decision maker would decide based on the results of the VoI analysis and the cost for
monitoring if investing in additional information is worthwhile (V > K) or not (V < K).

ratio between the management cost c and the value v of the system. The horizontal axis is the
prior probability p of the targeted state of the system. V is calculated over the full parameter
range ([0, 1]) and a fixed cost for monitoring (or information acquisition) K is given. This
simple figure exemplifies under which conditions it is worthwhile for the decision maker to invest
in monitoring. For a given constellation of parameters, such as in point A, the decision maker
would decide against investing in information, as V is less than the cost K for monitoring. For
another combination of values of the parameters, as in point B, V is larger than K and therefore
the results suggest that investing in monitoring is welfare enhancing. This figure gives guidance
to decision makers under which circumstances information acquisition is valuable. Further, it
provides us with a certain amount of sensitivity information: As an example, since point B is
relatively far in the interior of the green area, minor variations of parameter values c, v and p
do not immediately change the decision to collect additional data.

Finally, we would like to emphasise that the generic results and insights from this discussion
regarding the relation between the VoI and the management costs, the value of the good state
and the prior probability are not restricted to our case study but apply to decision problems
with the same structure. It should be noted, however, that the shape of the ellipse displayed in
Figs. 4 and 6 not only depends on the parameters mentioned before but also on the posterior
probability distributions which have to be fitted to the data of the specific decision problem
under consideration (see Fig. 7 for an example).
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6 Conclusion

In our study, we demonstrated how value of information (VoI) analysis can serve as a valuable tool
to enhance decision-making in environmental management as it may help to arrive at more well-
judged decisions. We apply the VoI concept to a decision problem in water quality management
in northern Germany. Our case study highlights that the VoI reaches substantial positive values.
Even though acquiring data through monitoring may be costly, it may nevertheless be cost
efficient to do so if the VoI outweighs the cost of monitoring. As the values and prior probabilities
in our case study are estimates and are thus subject to uncertainty – which is the case for
most decision problems – a careful and thorough sensitivity analysis is recommendable if not
indispensable. Calculating the VoI for a suitable range of costs and prior probabilities enables the
decision maker to place the results of the VoI analysis in the specific context and to highlight the
specific conditions under which the collection of more data is, in fact, worthwhile. Our approach
helps to expand the applications of VoI analysis to environmental management decision problems,
especially to the value of imperfect information and monitoring. Even though the numerical
results of the VoI analysis are case-specific, important general insights can still be obtained:
The VoI has a maximum when the decision maker is indifferent between two alternative policies.
In this case, a piece of new information may induce the optimal decision to switch from one
action to another; the decision is sensitive to new information, so the VoI is high. Moreover,
with a prior for which the maximum VoI is decreasing in the monitoring cost, the maximum
VoI is reached when both the prior and the monitoring cost have moderate values. With our
analysis, we arrive at qualitatively generic insights that are valid for all management decision
problems under uncertainty with two states of the world and two actions.
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7 Appendix

In our analysis we arrive at qualitatively generic results for all two-state and two-action decision
problems. However, the shape of the ellipse (Fig. 4) not only depends on the management
cost c and the prior probability p but also depends on the posterior probability. We obtain the
posterior probability by sampling random values from distributions fitted to the empirical data.
To display this change in shape, we calculate V using different distributions. We can see that
the shape of the ellipse varies and becomes rounder or narrower depending on the posterior
probability (see Fig. 7). The maximising function p∗ and the structural components remain the
same for all decision contexts with two states and two actions. Further, the results displayed in
Fig. 7 can be interpreted the same way as explained in Section 4.
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Figure 7: Results of two VoI analyses with different distributions of the data. The shape of
the ellipse differs depending on the posterior probabilities which is obtained from sampled
values from the fitted distributions. Qualitatively, the results of the analyses are generic.
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