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Testing for a break in persistence under long-range dependencies

Philipp Sibbertsen1 and Robinson Kruse

Institut für Statistik, Wirtschaftswissenschaftliche Fakultät,
Leibniz Universität Hannover, D-30167 Hannover, Germany

Abstract

We show that tests for a break in the persistence of a time series in the classical

I(0) - I(1) framework have serious size distortions when the actual data generat-

ing process exhibits long-range dependencies. We prove that the limiting distri-

bution of a CUSUM of squares based test depends on the true memory parameter

if the DGP exhibits long memory. We propose adjusted critical values for the test

and give finite sample response curves which allow the practitioner to easily im-

plement the test and to compute the relevant critical values. We furthermore prove

consistency of the test and prove consistency for a simple break point estimator

also under long memory. We show that the test has satisfying power properties

when the correct critical values are used.

JEL-numbers: C12, C22.

Keywords: break in pesistence, long memory, CUSUM of squares based test.

1 Introduction

For a practitioner it is of big importance in terms of model building and forecasting to know

whether a given time series has a certain kind of persistence, either stationaryI(d) with 0≤

d < 1/2 or non-stationaryI(d) with 1/2 < d < 3/2 or whether the persistence breaks from

stationary to non - stationary persistence or vice versa. Recently, a number of tests for a break
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in the persistence have been proposed in the classicalI(0) - I(1) framework. Kim (2000),

Kim et al. (2002) and Busetti and Taylor (2004) propose testsfor the null hypothesis that the

data generating process isI(0) throughout against the alternative of a break toI(1). Contrary

to these tests Banerjee et al. (1992) and Leybourne and Newbold (2003) propose tests for the

opposite null ofI(1) throughout against the alternative of a break toI(0). All these tests have

problems when the data generating process does not exhibit abreak in persistence, yet when

the null is false as well. Therefore, Leybourne and Kim (2007) proposed a CUSUM of squares

based test to overcome this problem. The Leybourne and Kim (2007) test is basically the ratio

of two CUSUM of squares statistics based on the forward and reverse evaluation of the time

series. Although the test is constructed for the null hypothesis that the data generating process

is I(1) throughout against a break in persistence toI(0), Leybourne et al. show that it has

also power against the alternative of a break fromI(0) to I(1) and that it behaves well if the

process isI(0) throughout.

However, all of these tests stay in the classicalI(0) - I(1) framework. One exception is Beran

and Terrin (1996) who consider a test for constancy of the long-memory parameter against a

change of it. Their test is based on a functional central limit theorem for quadratic forms. By

now it is broadly accepted that many economic variables exhibit long - range dependencies

which cannot be covered by the classical framework. Also in the more flexibleI(d) frame-

work, 0≤ d ≤ 3/2 it is crucial to know whether the memory parameter is in the stationary

region or in the non - stationary region throughout or whether there is a change in the persis-

tence. It turns out that the Leybourne and Kim (2007) test hasserious size distortions, that

means the test is conservative, if the data generating process has long memory and therefore

the test has a lack of power in this model. This indicates thatnew critical values depending on

the memory parameter are necessary in theI(d) framework. In this paper we investigate the

asymptotic behaviour of the Leybourne and Kim (2007) test under long - range dependencies.

We derive the limiting distribution under the null that the data generating process exhibits non

- stationary long memory. We furthermore show that the breakpoint estimator proposed by

Leybourne and Kim (2007) is also consistent under long memory though with a slower rate of

convergence depending ond. In a Monte Carlo study we show that the test has satisfying size
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and power properties when the adjusted critical values are used. Finally the test is applied to

monthly US inflation data.

The paper is organized at follows. After introducing the model and the test in section 2,

section 3 derives the asymptotic properties of the test. Section 4 contains an intensive Monte

Carlo study showing the finite sample properties of the test as well as the power properties

and gives response curves to easily compute critical values. Section 5 contains an empirical

application to a monthly US inflation time series and section6 concludes. All proofs are given

in the appendix.

2 Model and Test

We assume that the data generating process follows an ARFIMA(p,d,q) - process as proposed

by Granger (1980):

Φ(B)(1−B)dXt = Ψ(B)εt,

whereεt are iid random variables with mean zero and varianceσ2. The AR- and MA- poly-

nomialsΦ(B) andΨ(B) are assumed to have all roots outside the unit circle. The degree of

integration ofXt is therefore solely determined by the memory parameterd. The test against

a change in the persistence as proposed by Leybourne and Kim (2007) uses the statistic

R =
infτ∈Λ K f (τ)
infτ∈Λ Kr(τ)

, (1)

whereK f (τ) and Kr(τ) are CUSUM of squared based statistics based on the forward and

reversed residuals of the data generating process as given below. Hereτ is the relative break-

point where we assume thatτ ∈ Λ and thatΛ ⊂ (0,1) is symmetric around 0.5. For now

we assumeτ to be fixed though unknown. However, asτ is usually unknown in practice we

study the properties of a simple estimator for the breakpoint in the following section. In detail

CUSUM of squared based statistics are defined by

K f (τ) = [τT ]−2
[τT ]

∑
t=1

v̂2
t,τ
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and

Kr(τ) = (T − [τT ])−2
T−[τT ]

∑
t=1

ṽ2
t,τ.

We denote by[x] the biggest integer smaller thanx. Here, ˆvt,τ is the residual from the OLS

regression ofXt on a constantzt = 1∀t based on the observations up to[τT ]. This is

v̂t,τ = Xt − X̄(τ)

with X̄(τ) = [τT ]−1∑[τT ]
t=1 Xt. Similarly ṽt,τ is defined for the reversed seriesyt = XT−t+1. Thus,

it is given by

ṽt,τ = yt − ȳ(1− τ)

with ȳ(1− τ) = (T − [τT ])−1∑T−[τT ]
t=1 yt . The case ofzt = [1, t]′, which corresponds to linear

de-trending, is considered later on as well.

Remark: It should be mentioned that the quantitiesK f (τ) andKr(τ) are originally defined

by including an estimator of the long - run variance of the data generating process. As the

behaviour of the test statisticR is independent of the long - run variance we omit this here to

keep the notation and proofs simple.

3 Asymptotic properties

In this section we derive the asymptotic properties of the test statistic (1) when the data gener-

ating process isI(d). In the following we denote by⇒ weak convergence and by
P
→ conver-

gence in probability. We denote byd0 the long memory parameter under the null hypothesis

regardless of its specific value while we distinguish under the alternative hypothesis between

values characterizing stationary (0≤ d1 < 1/2) and non-stationary processes (1/2< d2 < 3/2)

, respectively.

Theorem 1. Under the null hypothesis H0 : Xt ∼ I(d0) ∀t with 1/2 < d0 < 3/2 the limiting

distribution for T → ∞ of R is given by

T−2d0R ⇒

inf
τ∈Λ

L f
d0

(τ)

inf
τ∈Λ

Lr
d0

(τ)
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with

L f
d0

(τ) =

τ
∫

0

W ∗
d0

(r,τ)2dr

Lr
d0

(τ) =

1−τ
∫

0

V ∗
d0

(r,τ)2dr

W ∗
d0

(r,τ)2 =



Wd0(r)− τ−1
τ
∫

0

Wd0(r)dr





2

V ∗
d0

(r,τ)2 =



Wd0(1− r)− (1− τ)−1
1
∫

τ

Wd0(r)dr





2

for the de-meaned case (zt = 1) and

L f
d0

(τ) =

τ
∫

0

W ∗∗
d0

(r,τ)2dr

Lr
d0

(τ) =

1−τ
∫

0

V ∗∗
d0

(r,τ)2dr

W ∗∗
d0

(r,τ) = Wd0(r)−B0(τ)− rB1(τ)

V ∗∗
d0

(r,τ) = −(Wd0(1)−Wd0(1− r))−Br
0(τ)− rBr

1(τ)

B0(τ) = 4τ−1
∫ τ

0
Wd0(r)dr−6τ−2

∫ τ

0
rWd0(r)dr

B1(τ) = 6τ−2
∫ τ

0
Wd0(r)dr +12τ−3

∫ τ

0
rWd0(r)dr

Br
0(τ) = 4(1− τ)−1

(

∫ 1

τ
Wd0(r)dr− (1− τ)Wd0(1)

)

−6(1− τ)−2
(

(1− τ)2

2
Wd0(1)−

∫ 1

τ
Wd0(r)dr

∫ 1

τ
rWd0(r)dr

)

Br
1(τ) = 6(1− τ)−2

(

∫ 1

τ
Wd0(r)dr− (1− τ)Wd0(1)

)

+12(1− τ)−3
(

(1− τ)2

2
Wd0(1)−

∫ 1

τ
Wd0(r)dr +

∫ 1

τ
rWd0(r)dr

)

for the de-trended case (zt = [1, t]′).
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Theorem 1 shows that the limiting distribution depends strongly on the memory parameter.

This behaviour of the limiting distribution leads to heavy size distortions of the original Ley-

bourne and Kim (2007) test when long - range dependencies areneglected. Therefore, we

recommend to use new critical values that are provided in section 4. However, as the critical

values vary quite substantially withd this is not very handy in practice as new critical values

have to be simulated for each value ofd. Therefore, we give also response curves for finite

sample critical values depending ond which are easy to implement and allow a fast compu-

tation of the critical values. As the variation of the critical values with sample size is minor

this is an easy possibility for practical applications. However, see section 4 for further de-

tails on this issue. After establishing the limiting distribution under the null we have to prove

consistency of the test.

Theorem 2. Let 0≤ d1 < 1/2 and 1/2 < d2 < 3/2.

1. Under the alternative of a break from stationary to non-stationary long memory, this is

from I(d1) to I(d2), we obtain

R = OP(T d1−d2).

2. Under the alternative of a break from non-stationary to stationary long memory, this is

from I(d2) to I(d1) we obtain

R = OP(T d2−d1).

These results imply that a consistent test against the alternative of a break from non-stationary

to stationary long memory is obtained by using critical values from the upper tail of the dis-

tribution whereas using the lower tail of the distribution leads to a consistent test against the

alternative of breaking from stationary to non-stationarylong memory.

Remark: Although the break was in both cases assumed to be from stationary to non-

stationary long memory or vice versa the test has also a high power when the break is from

stationary to stationary or from non-stationary to non-stationary long memory.

So far the breakpoint was assumed to be unknown. We thereforeshow that the breakpoint

estimators given in Leybourne and Kim (2007) are also consistent in the long memory setup.
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Theorem 3. Denote by τ0 the true breakpoint. Then, for

τ̂ = inf
τ∈Λ

K f (τ)

we have

τ̂ P
→ τ0,

if the alternative is a break from stationary to non-stationary long memory. For a break from

non-stationary to stationary long memory a consistent estimator for the breakpoint τ0 is given

by

τ̂ = inf
τ∈Λ

Kr(τ).

As usual for long memory processes the convergence is slowerthan in the Leybourne and Kim

(2007) situation. However, this does not change the consistency result in general. Finally, we

have to evaluate the behaviour of the test whenXt ∼ I(d0) ∀t with 0≤ d0 < 1/2. This is the

situation where no break in persistence occurs but on the other hand our null hypothesis from

Theorem 1 is wrong as the data generating process exhibits stationary long memory. We have

Theorem 4. Let Xt ∼ I(d0) ∀t with 0≤ d0 < 1/2. Then,

R
P
→ 1.

In this situation the test has a degenerated limit distribution. As the limit theorems for non-

stationary long memory processes hold for 1/2 < d0 < 3/2, it is reasonable to integrate the

time series in this case before applying the adjusted test. For 0≤ d0 < 1/2 the memory

parameter of the integrated series is between 1 and 3/2. Thus, the results in Theorem 1 to

Theorem 3 still hold in this situation allowing us to construct a consistent and correctly sized

test. By this approach we can overcome the problem of the Leybourne and Kim (2007) test

to have a degenerated limiting distribution when the original series is stationary and therefore

obtaining a conservative test in this situation.

So far, the value ofd0 has been assumed to be known. Of course, the true value ofd0 is un-

known in practice and has to be estimated. However, our MonteCarlo results in the following

section show that the adjusted test performs well ifd0 is estimated by a consistent estimator.
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4 Monte Carlo study

In this section we evaluate the finite sample behaviour of theadjusted CUSUM of squared

type test. All simulations are computed in the open-source statistical programming language

R (2004). We consider the sample sizeT = 500 and useM = 2000 Monte Carlo repetitions

for each experiment, while simulated critical values are obtained by settingT = 10000 and

M = 20000. The memory parameterd is treated as unknown in order to achieve realistic

conditions and is therefore estimated. We use the log-periodogram regression introduced by

Geweke and Porter-Hudak (1983) with a rate of frequencies ofo(T 0.8) which is MSE-optimal.

First, we investigate the behaviour of the Leybourne and Kim(2007) test when the DGP

exhibits long-range dependencies without a break in persistence, i.e. (1−B)dXt = εt with

εt
iid
∼ N(0,1). The long memory parameterd takes the values 0.00, 0.10, 0.25, 0.40, 0.60,

0.75, 0.90 and 1.00. This means that both, the null and the alternative hypothesis of the

Leybourne and Kim (2007) test are wrong except the case ofd = 1. As the Leybourne and

Kim (2007) test is known to be conservative for a process being constantlyI(0) we would

expect a similar behaviour in our setup. As we can see from Table 1 the originally proposed

test exhibits serious size distortions in the presence of long-range dependencies resulting in a

conservative test. Unsurprisingly, the empirical size is closer to the nominal significance level

Table 1: Empirical size using unadjusted critical values

de-meaning de-trending

d 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U

0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.75 0.0 0.0 1.7 1.5 0.0 0.0 0.0 1.0 2.1 2.4 0.1 0.0

0.90 0.0 2.5 6.5 6.9 2.3 0.0 0.0 3.3 6.2 6.3 2.6 0.0

1.00 1.1 5.2 10.0 10.3 5.1 0.9 1.1 5.2 9.8 10.1 4.9 1.2

Notes: Sample size isT = 500,xL andxU denote thex-th lower and upper quantile ofR under long-range dependencies, respectively.
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Table 2: Empirical size using estimated response curves

de-meaning de-trending

d 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U

0.00 1.3 5.6 10.7 9.5 4.8 1.1 0.8 5.1 10.0 9.6 5.1 1.2

0.10 1.1 5.0 9.8 10.0 4.9 1.2 1.4 4.9 9.4 10.1 4.9 1.1

0.25 1.0 5.7 10.9 9.8 4.9 1.2 1.2 4.8 9.8 9.1 4.4 0.7

0.40 0.8 4.9 9.8 10.9 5.7 1.8 1.0 3.8 10.5 9.0 4.9 0.9

0.60 0.9 5.4 11.0 11.1 6.1 1.6 1.5 5.8 11.0 11.2 5.5 1.1

0.75 0.6 4.0 8.4 9.8 4.8 0.7 1.5 5.3 11.2 9.4 4.4 1.1

0.90 0.7 5.0 10.6 8.4 4.1 0.5 0.8 5.2 10.3 9.4 4.5 0.9

1.00 1.0 5.3 11.2 9.7 4.9 1.0 0.6 5.2 10.0 9.5 5.0 1.4

Notes: Sample size isT = 500,xL andxU denote thex-th lower and upper quantile ofR under long-range dependencies, respectively.

asd approaches one. The test is correctly sized ifd = 1. However, even for non-stationary

DGPs the size distortions are not negligible. This results underline the need for adjusted

critical values taking the long-range dependencies into account.

Next, we simulate the asymptotic distribution of theR statistic dependening ond in the fol-

lowing 99 cases:d = 0.51, ...,1.49. Due to the fact that adjusted critical values depend ond

they have to be tabulated for a wide range of possible values of d. As this is rather burden-

some we fit polynomial functions ind to the sequence of critical values depending ond. This

response curve is given by

qα(d) =
s

∑
i=0

βid
i , (2)

whereqα denotes theα-quantile of the asymptotic distribution ofR and takes values on the

grid 0.51,...,1.49 consisting of 99 equally spaced points.The polynomial orders is set equal

to nine. Additionally, we tried other settings, buts = 9 appeared to be a satisfying choice. Pa-

rametersβi are estimated via OLS. Following the general-to-specific approach, we eliminate

in each step the most insignificant power ofd and re-estimate the function by OLS until no

further non-rejection of the hypothesesH0 : βi = 0 occur at the five percent level of signifi-

cance. The final estimates are reported in Appendix B. In Figure 1 we display the simulated

quantiles (y-axis) depending ond = 0.51, ...,1.49 (x-axis) and the fit of the response curves

(solid line) for the 5% and 95% level of significance for de-meaned and de-trended data.
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5 percent upper quantile

0.51 1.00 1.49

2

6

10

14

18

5 percent upper quantile

0.51 1.00 1.49

1.5

2.5

3.5

4.5

5.5

5 percent lower quantile

0.51 1.00 1.49

0.10

0.25

0.40

0.55

0.70

5 percent lower quantile

0.51 1.00 1.49

0.20

0.35

0.50

0.65

0.80

Figure 1: Simulated quantiles of theR statistic under long memory with fitted response curves

for de-meaned (left) and de-trended data (right).

Using the fitted response curves we can approximate criticalvalues easily. Beside the sim-

plicity of this approach it is reasonable in our opinion as the variation of critical values is with

the memory parameter and not with the sample size. The results in Table 2 that we discuss in

a moment underline this argument.

Using adjusted critical values obtained from the fitted response curves we now revisit the

empirical size of the test. The results are reported in Table2. Note that time series with

d̂0 < 1/2 are integrated in order to avoid a degenerated limit distribution under the null hy-

pothesis. Henceforth, we actually consider a range of values fromd = 0.60 to 1.40. The test

has satisfying properties even though there are some minor distortions for values ofd in the
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neighborhood of 1/2. It might happen that the estimated value of d is less (greater) then 1/2

underH0 when the true value is greater (less) than 1/2, which means that we wrongly integrate

(not integrate) the time series and obtain therefore a biased test result. However, the results in

Table 2 suggest that this is not really a serious problem.

Next we consider the power of the test based on adjusted critical values. As the test can be seen

as correctly sized, there is no need for size-adjusted critical values. For all power experiments

we consider three different locations of the breakpoint, atthe beginning(τ = 0.3), the middle

(τ = 0.5) and the end(τ = 0.7) of the sample period. The long memory parameter takes

the same values as before. The simulation results are given in Table 3 and 4 for de-meaned

and de-trended data, respectively. We consider breaks fromstationary to non-stationary long

memory (upper left part of Tables 3 and 4) and vice versa (upper right part of Tables 3 and 4).

The consistency results in Theorem 2 suggest that the test isconsistent in both cases.

Furthermore, we consider in the lower part of Tables 3 and 4 breaks inside of the stationary

(0≤ d < 1/2) (lower left part of Tables 3 and 4) and non-stationary region(1/2 < d < 3/2)

(lower right part of Tables 3 and 4). Note that the latter experiments are not covered by any of

our theorems but that they might be relevant in empirical applications.

Overall, the power results of the adjusted test using de-meaned data (Table 3) is good and

confirms the consistency result. For quite extreme breaks, e.g. 0.00 to 0.90, the power is

almost hundred percent. Unsurprisingly, the power decreases for less extreme breaks, e.g.

0.00 to 0.60. For a given value ofd2, the power decreases with increasingd1 (left part). For a

given value ofd2, the power decreases with decreasingd1 (right part). At first sight, it might

be not intuitive that the power for breaks of equal distance,e.g. 0.25 to 0.75 and 0.40 to 0.90,

is not the same. This is an artefact of the adjusted test introduced by integrating the time

series if the estimated value ofd is located in the stationary region. In addition, the fact that

the breakpoint influences the estimate ofd underH0 further complicates the interpretation.

However, the test is able to detect switches of the long memory parameter within the stationary

and non-stationary region. The main conclusions are not changing when looking at the results

for de-trended data.

After evaluating the power we consider the small sample performance of the simple breakpoint

11



Table 3: Power Experiment with de-meaned data

d τ d τ

0.3 0.5 0.7 0.3 0.5 0.7

0.00→ 0.60 81.9 84.1 78.3 1.00→ 0.00 98.7 100.0 100.0

0.00→ 0.75 99.2 97.8 87.9 1.00→ 0.10 99.1 100.0 100.0

0.00→ 0.90 100.0 100.0 97.0 1.00→ 0.25 99.5 100.0 99.1

0.00→ 1.00 100.0 100.0 99.6 1.00→ 0.40 99.3 99.7 95.8

0.10→ 0.60 69.0 78.4 64.3 0.90→ 0.00 93.4 99.9 100.0

0.10→ 0.75 96.7 97.2 82.7 0.90→ 0.10 95.4 99.8 99.7

0.10→ 0.90 99.9 100.0 97.2 0.90→ 0.25 96.1 100.0 98.1

0.10→ 1.00 100.0 100.0 99.8 0.90→ 0.40 96.6 98.5 89.6

0.25→ 0.60 42.1 70.6 50.7 0.75→ 0.00 65.5 94.5 99.0

0.25→ 0.75 86.5 97.5 83.2 0.75→ 0.10 69.9 95.7 97.0

0.25→ 0.90 98.2 100.0 98.0 0.75→ 0.25 80.9 96.7 85.8

0.25→ 1.00 99.5 100.0 99.6 0.75→ 0.40 84.8 88.0 59.6

0.40→ 0.60 20.8 50.0 51.2 0.60→ 0.00 20.2 48.6 67.1

0.40→ 0.75 54.7 88.7 86.4 0.60→ 0.10 25.4 55.1 61.3

0.40→ 0.90 87.4 98.9 98.0 0.60→ 0.25 37.5 64.3 40.9

0.40→ 1.00 95.8 99.9 99.6 0.60→ 0.40 49.4 47.8 19.2

0.00→ 0.10 82.7 84.8 82.5 1.00→ 0.60 81.9 86.4 68.5

0.00→ 0.25 77.4 82.0 81.0 1.00→ 0.75 45.1 45.1 36.8

0.00→ 0.40 64.6 79.6 77.0 1.00→ 0.90 13.9 14.5 12.4

0.10→ 0.25 59.5 68.1 67.3 0.90→ 0.60 68.5 65.9 46.3

0.10→ 0.40 48.5 62.9 61.9 0.90→ 0.75 24.7 25.0 15.8

0.25→ 0.40 21.7 33.1 32.3 0.75→ 0.60 36.4 31.4 16.2
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Table 4: Power Experiment with de-trended data

d τ d τ

0.3 0.5 0.7 0.3 0.5 0.7

0.00→ 0.60 45.1 84.7 94.2 1.00→ 0.00 100.0 99.9 97.2

0.00→ 0.75 64.1 95.8 99.5 1.00→ 0.10 100.0 99.9 96.6

0.00→ 0.90 88.6 99.7 99.9 1.00→ 0.25 99.9 99.6 95.2

0.00→ 1.00 96.5 99.9 100.0 1.00→ 0.40 99.0 98.8 89.3

0.10→ 0.60 40.8 76.6 87.1 0.90→ 0.00 99.9 99.7 90.8

0.10→ 0.75 61.1 93.7 97.6 0.90→ 0.10 99.6 99.8 90.0

0.10→ 0.90 89.3 99.6 99.7 0.90→ 0.25 98.5 98.6 85.4

0.10→ 1.00 97.1 99.9 99.9 0.90→ 0.40 97.1 95.6 73.7

0.25→ 0.60 33.6 57.4 64.9 0.75→ 0.00 99.1 96.1 64.8

0.25→ 0.75 53.7 87.4 92.0 0.75→ 0.10 96.5 94.6 63.1

0.25→ 0.90 85.5 98.4 99.0 0.75→ 0.25 91.0 88.6 57.2

0.25→ 1.00 95.0 99.7 99.8 0.75→ 0.40 80.3 71.3 42.8

0.40→ 0.60 19.6 33.1 41.7 0.60→ 0.00 94.1 84.3 46.3

0.40→ 0.75 39.1 71.7 77.9 0.60→ 0.10 85.9 75.9 42.6

0.40→ 0.90 72.5 94.4 96.4 0.60→ 0.25 65.4 58.7 32.7

0.40→ 1.00 89.3 98.5 99.5 0.60→ 0.40 42.1 34.5 19.0

0.00→ 0.10 7.3 13.5 21.8 1.00→ 0.60 85.0 85.3 63.6

0.00→ 0.25 27.5 39.4 49.5 1.00→ 0.75 48.0 47.1 34.4

0.00→ 0.40 52.4 69.3 75.8 1.00→ 0.90 14.5 15.7 12.3

0.10→ 0.25 12.8 20.5 26.0 0.90→ 0.60 65.5 64.7 39.8

0.10→ 0.40 33.6 46.6 53.5 0.90→ 0.75 23.4 24.0 17.6

0.25→ 0.40 13.4 16.3 25.7 0.75→ 0.60 29.3 26.6 16.6
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Table 5: Small sample performance of breakpoint estimator

de-meaning de-trending

d τ 0.3 0.5 0.7 0.3 0.5 0.7

U [0,0.4]→U [0.6,1] τ̂ f 0.378 0.546 0.725 0.442 0.557 0.730

se(τ̂ f ) 0.139 0.076 0.035 0.183 0.087 0.038

U [0.6,1]→U [0,0.4] τ̂r 0.275 0.453 0.610 0.271 0.440 0.568

se(τ̂r) 0.034 0.075 0.148 0.036 0.087 0.178

U [0,0.2]→U [0.8,1] τ̂ f 0.327 0.521 0.717 0.340 0.524 0.717

se(τ̂ f ) 0.058 0.037 0.026 0.078 0.043 0.026

U [0.8,1]→U [0,0.2] τ̂r 0.281 0.477 0.672 0.279 0.473 0.660

se(τ̂r) 0.025 0.039 0.055 0.027 0.044 0.076

Notes: Sample size isT = 500,U [i, j] denotes the uniform distribution with lower and upper boundi and

j, respectively;̂τ f andτ̂r denote the break point estimator based on the forward( f ) and reversed series(r),

respectively; se(·) is the standard error.

estimator, see Theorem 3. We use the same three different break points as before, i.e.τ =

0.3,0.5,0.7. The memory parameter switches from the stationary to the non-stationary region

and vice versa. For both regions we draw the memory parameterfrom a uniform distribution

in order to cover a wide range of possible values in a small number of experiments. The upper

and lower bounds are set equal to[0,0.4] and[0.6,1] for the stationary and the non-stationary

region, respectively. In a more restrictive setting we set them equal to[0,0.2] and [0.8,1].

Results for a sample size of five hundred observations are reported in Table 5. The overall

impression of the breakpoint estimator’s performance is satisfying. Noteworthy, we observe

that the breakpoint estimator performs worse in the case of de-trended data which is due to

an additional nuisance parameter that has to be estimated, c.f. Leybourne and Kim (2007).

We further note that̂τ f andτ̂r perform better in the more restrictive setting because the break

point becomes easier to detect.

5 Empirical Illustration

In this section we consider an empirical application of the adjusted test to study whether there

is any change in persistence in US inflation. Hassler (1995) reported that such time series
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Figure 2: Time series plot of US inflation.

exhibits long-range dependencies. In addition, there is a small but growing literature dealing

with the persistence of US inflation. Main questions in this literature are the measurement of

persistence and potential structural breaks in it. In a recent article, Pivetta (2007) come to the

conclusion that persistence of US inflation is approximately constant over time. The authors

argue that their conclusion is in line with Stock and Watson (2003) as well as O’Reilly (2005).

However, Kim et al. (2002) provide evidence for a decline in persistence at the very end of

the seventies. Nonetheless, to the best of our knowledge, previous studies are not concerned

with long-range dependencies and there is no previous studydealing with a structural break

in the long memory parameter regarding inflation time series. Therefore, we try to add some

new evidence by applying our long - memory adjusted test.

We use the quarterly CPI data from Lanne (2006) and transformit to annualized inflation by

computingyt = 400ln(CPIt/CPIt−1). The CPI data spans from 1953:1 to 2004:4 implying

207 observations. The time series plot is depicted in Figure2. The graph suggests a decline

of persistence in the second half of the sample which might bea result of Volcker’s policy to

pull inflation down from its high level in the seventies. The vertical line at 1982:1 shows the
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estimated break point of our test which will be discussed below.

Under the null hypothesis we obtain an estimated value ofd0 via the GPH approach with

MSE-optimal rate of frequencies that equals 0.617 indicating non-stationary long-memory.

We apply the adjusted test without integrating the time series under consideration since the

asymptotic distribution of the test statistic is not degenerated as long asd0 > 1/2 holds. Fur-

thermore, we de-mean the data in a first step, since a clear linear trend is not obvious. Testing

the null hypothesis of constant memory against decreasing memory gives a test statistic of

1.801 which is significant at the ten and five percent level of significance. Note that we make

use of our estimated response curves to approximate the relevant critical values. The test result

suggests that there is a decline in the persistence of US inflation. Interestingly, the estimated

break point is 1982:1 which is nine quarters after the begin of Volcker’s chairmanship at the

Federal Reserve. When estimating the long memory parameterd before and after this break-

point we get 0.862 and 0.246 which can be viewed as a sharp decline in persistence. Finally,

we tested the null hypothesis of constant memory for the timeperiod after 1982:1. Note that

we have to integrate the time series once, since the asymptotic distribution is degenerated for

0≤ d0 < 1/2. The test statistic is now 1.667 and insignificant at conventional levels. Although

this result is based only on 91 observations, it suggests that there is no additional break after

1982:1.

6 Conclusion

In this paper we present a modification of a test proposed by Leybourne and Kim (2007) that

allows for long memory dynamics. In particular, the test is constructed for the null hypothesis

that there is no change in the long-memory parameterd against the alternative that it breaks

from a stationary value(0≤ d < 1/2) to a non-stationary one(1/2 < d < 3/2) or vice versa.

We derive several asymptotic properties of the test statistic under long-range dependent DGPs

and show that the asymptotic distribution depends ond. Therefore, we propose response

curves based on estimates ford to obtain the relevant critical value easily and show by means

of a Monte Carlo study that this approach works well. Furthermore, the power of the test is
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good and a simple breakpoint estimator has satisfying properties. Finally, we apply the test to

US inflation data and find a break from non-stationary to stationary long-memory in the early

eighties.

Appendix A

Proof of Theorem 1: For the proof of the theorem let us consider the de-meaned case first.

The test statistic was defined by

R =
infτ∈Λ K f (τ)
infτ∈Λ Kr(τ)

,

with

K f (τ) = [τT ]−2
[τT ]

∑
t=1

v̂2
t,τ

and

Kr(τ) = (T − [τT ])−2
T−[τT ]

∑
t=1

ṽ2
t,τ.

For the nominator we have

T−d0−
1
2 v̂t,τ = T−d0−

1
2 xt −T−d0−

1
2 x̄(τ).

We have

T−d0−
1
2 x[rt] ⇒Wd0(r)

with Wd0 denoting fractional Brownian motion with parameterd0. Furthermore we have

T−d0−
1
2 x̄(τ) = T−d0−

1
2 [τT ]−1

[τT ]

∑
t=1

xt

= T−d0−
3
2 τ−1

[τT ]

∑
t=1

xt

⇒ τ−1
∫ τ

0
Wd0(r)dr.

Application of the continuous mapping theorem gives

T−d0−
1
2 v̂[rt] ⇒ Wd0(r)− τ−1

∫ τ

0
Wd0(r)dr

=: W ∗
d0

(r,τ)
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and thus for the nominator

T−2d0K f (τ) = τ−2
∫ τ

0
(T−d0−

1
2 v̂[rT ])

2dr

⇒ τ−2
∫ τ

0
W ∗

d0
(r,τ)2dr.

Similarly we obtain for the denominator

T−d0−
1
2 ṽ[rT ] ⇒ Wd0(1)−Wd0(1− r)+(1− τ)−1

∫ 1−τ

0
(Wd0(1)−Wd0(1− r)dr)

= Wd0(1− r)− (1− τ)−1
∫ 1

τ
Wd0(r)dr

=: V ∗
d0

(r,τ).

Again using the continuous mapping theorem we obtain for thedenominator

T−2d0Kr(τ) = (1− τ)−2
∫ 1−τ

0
(T−d0−

1
2 ṽ[rT ])

2dr

⇒ (1− τ)−2
∫ 1−τ

0
V ∗

d0
(r,τ)2dr.

Combining the result for the nominator and the denominator gives the result.

The result for the de-meaned and de-trended case is obtainedby applying standard results

for linear regression with long-memory errors. We considerthe forward statistic

K f (τ) = [τT ]−2
[τT ]

∑
t=1

v̂2
t ,

where ˆvt = xt − α̂− β̂t are the residuals from the OLS regression ofxt on the vectorzt = [1, t]′,

t = 1, . . . , [τT ]. It is well known thatT−d0−1/2(α̂−α)⇒ B0(τ) andT−d0−1/2(β̂−β) ⇒ B1(τ)

andB0(τ) andB1(τ) given as in the Theorem. Therefore, we obtain

T−d0−1/2v̂[τT ] = T−d0−1/2v[τT ]−T−d0−1/2(α̂−α)− rT−d0−1/2(β̂−β)

⇒ Wd0(r)−B0(τ)− rB1(τ)

≡ W ∗∗
d0

(r,τ).

As the forward statistic is a continuous functional ofT−d0−1/2v̂[τT ] we obtain using the CMT

T−2d0K f (τ) = τ−2
∫ τ

0
(T−d0−1/2v̂[τT ])

2dr

⇒ τ−2
∫ τ

0
W ∗∗

d0
(r,τ)2dr

≡ L f (τ).
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The proof for the reverse statistic is analogous and therefore omitted. For the remainder of

the Appendix we omit proofs for the de-meaned and the de-trended case for the brevity of

notation as they are straightforward.♦

Proof of Theorem 2: First we prove the first part of the theorem. This is we assume a

breakpoint that the DGP breaks from a stationary to a non-stationary long-memory process.

Let us first consider the situation ofτ ≤ τ0, whereτ0 denotes the true breakpoint. This means

thatXt ∼ I(d1) with 0≤ d1 < 1/2. Have in mind that the standardization of the test statistic

is obtained fromH0 : Xt ∼ I(d0) with d1 6= d0. In the stationary part we haved0 ≥ d1. In this

situation we obtain:

T−2d0+1K f
d0

(τ) = τ−1T−2d0[τT ]−1
[τT ]

∑
t=1

v2
t

P
→ τ−1O(T d1−d0).

In the case ofd1 = d0 the upper expression converges toτ−1γ0 with γ0 denoting the variance

of Xt. For d1 < d0, wich is the relevant case in practise, this expression tends to zero with a

rate depending on the difference of the trued0 before the break and the hypothetic memory

parameter.

We next consider the situation ofτ > τ0 where we splitK f
d (τ) up in its stationary and its

non-stationary part. Have in mind that the true DGP is of order 1/2< d2 < 3/2 after the break

with d2 > d0 in the non-stationary part.

T−2d0K f
d0

(τ) = τ−2T 2−2d0

[τT ]

∑
t=1

x2
t − τ−3

(

T 3/2−d0

[τT ]

∑
t=1

yt

)2

= τ−2

(

T 2−2d0

[τ0T ]

∑
t=1

x2
t +T 2−2d0

[τT ]

∑
t=[τ0T ]+1

x2
t

)

−τ−3

(

T 3/2−d0

[τ0T ]

∑
t=1

yt +T 3/2−d0

[τT ]

∑
t=[τ0T ]+1

yt

)2

= τ−2T 2−2d0

[τT ]

∑
t=[τ0T ]+1

x2
t − τ−3

(

T 3/2−d0

[τT ]

∑
t=[τ0T ]+1

yt

)2

+oP(1)

P
→ OP(T d2−d0).
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From these considerations we see that the limit ofT−2d0+1K f
d0

(τ) is given byτ−1OP(T d1−d0)+

∞1(τ>τ0) which is obviously minimized byτ0. Thus, we have

T−2d0+1 inf
τ∈Λ

K f
d0

(τ) P
→ OP(T d1−d0).

For the reversed series we obtain by similar arguments forτ ≤ τ0:

T−2d0Kr
d0

(τ) P
→ OP(T d2−d0).

This gives us

inf
τ∈Λ

Kr
d0

(τ) = OP(T d2+d0−1)

which gives us the first result of the theorem. The result in (2) is obtained by similar arguments

as above.♦

Proof of Theorem 3: Let us assume a break from stationary long memory to non-stationary

long memory, that is 0≤ d1 < 1/2 and 1/2< d2 < 3/2. The hypothetical memory parameter is

denoted byd0 with d1 ≤ d0 ≤ d2. From Theorem 2 we know that the limit ofT−2d0+1K f
d0

(τ)

is given byOP(T d1−d0)1(τ≤τ0) + ∞1(τ>τ0) which is obviously minimized byτ0. The result

follows now by similar arguments as in Leybourne and Kim (2007).

The proof for the second part of the theorem, that is the breakfrom non-stationary to

stationary long memory, is analogous and therefore omittedhere.♦

Proof of Theorem 4: Because of the symmetry ofΛ around 0.5 we have

inf
τ∈Λ

T−2d0K f
d0

(τ) P
→ inf

τ∈Λ
τ−1γ0

= λ−1
u γ0

inf
τ∈Λ

T−2d0Kr
d0

(τ) P
→ inf

τ∈Λ
(1− τ−1)γ0

= (1−λ−1
l )γ0

= λ−1
u γ0,

whereλu andλl denote the upper and the lower bound of the intervalΛ respectively. This

proves the theorem.♦
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Appendix B

Table 6: Estimated response curves for de-meaned data

Quantile β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

1.0L 1.063 0 0 0 -41.002 133.627 -183.98 131.206 -47.89 7.102

5.0L 1.601 0 -7.486 9.449 0 0 -17.596 25.299 -13.724 2.688

10.0L -221.524 2316.11 -10522.512 27414.943 -45191.318 48907.541 -34769.527 15666.998 -4062.561 462.173

10.0U 5145.518 -54469.126 252323.451 -671384.183 1131196.84 -1252080.53 910897.739 -420239.255 111628.329 -13015.697

5.0U 10493.76 -110784.01 511682.48 -1357262 2279365.93 -2514370.73 1822761.11 -837851.29 221721.78 -25752.77

1.0U -1174.527 0 58540.259 -312952.617 792898.52 -1170633.31 1062803.45 -586254.848 180679.152 -23898.266

Notes: xL andxU denote thex-th lower and upper quantile ofR. OLS estimates forβi (i = 0,1, ...,9) in (2) are reported in columns;βi = 0 means that the parameter is set equal to zero.

Table 7: Estimated response curves for de-trended data

Quantile β0 β1 β2 β3 β4 β5 β6 β7 β8 β9

1.0L 1.051 0 0 -4.815 0 18.496 -25.406 13.556 -2.63 0

5.0L 1.151 0 0 -9.281 21.702 -21.366 9.999 -1.824 0 0

10.0L -0.455 0 53.424 -234.177 459.766 -499.311 310.551 -103.80914.485 0

10.0U 1.054 0 0 0 3.328 -3.117 0.868 0 0 0

5.0U 1.008 0 0 0 8.274 -13.18 8.509 -1.971 0 0

1.0U 1.187 0 0 0 6.272 -5.03 1.557 0 0 0

Notes: See Table 6.
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