ECOMNZTOR

Make Your Publications Visible.

Sibbertsen, Philipp; Kruse, Robinson

Working Paper

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

Testing for a break in persistence under long-range

dependencies

Diskussionsbeitrag, No. 381

Provided in Cooperation with:

School of Economics and Management, University of Hannover

Suggested Citation: Sibbertsen, Philipp; Kruse, Robinson (2007) : Testing for a break in
persistence under long-range dependencies, Diskussionsbeitrag, No. 381, Leibniz Universitat
Hannover, Wirtschaftswissenschaftliche Fakultat, Hannover

This Version is available at:
https://hdl.handle.net/10419/27191

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/27191
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Testing for a break in persistence under long-range dependencies
Philipp Sibbertsehand Robinson Kruse

Institut fur Statistik, Wirtschaftswissenschaftlichakiltat,
Leibniz Universitat Hannover, D-30167 Hannover, Germany

Abstract

We show that tests for a break in the persistence of a timessarithe classical
1(0) - 1(1) framework have serious size distortions when the actual gexerat-
ing process exhibits long-range dependencies. We provettbadimiting distri-

bution of a CUSUM of squares based test depends on the true@mearameter
if the DGP exhibits long memory. We propose adjusted ctitiatues for the test
and give finite sample response curves which allow the pi@ogr to easily im-
plement the test and to compute the relevant critical vaNésfurthermore prove
consistency of the test and prove consistency for a simgakbpoint estimator
also under long memory. We show that the test has satisfyomgepproperties

when the correct critical values are used.

JEL-numbers: C12, C22.
Keywords: break in pesistence, long memory, CUSUM of squbased test.

1 Introduction

For a practitioner it is of big importance in terms of modeildhing and forecasting to know
whether a given time series has a certain kind of persistaitteer stationary(d) with 0 <
d < 1/2 or non-stationary(d) with 1/2 < d < 3/2 or whether the persistence breaks from

stationary to non - stationary persistence or vice versaef, a number of tests for a break
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in the persistence have been proposed in the clasgi@at 1(1) framework. Kim (2000),
Kim et al. (2002) and Busetti and Taylor (2004) propose tistthe null hypothesis that the
data generating processli®) throughout against the alternative of a break(th. Contrary

to these tests Banerjee et al. (1992) and Leybourne and Ne\{&@03) propose tests for the
opposite null ofl (1) throughout against the alternative of a break(®. All these tests have
problems when the data generating process does not exlitead in persistence, yet when
the nullis false as well. Therefore, Leybourne and Kim (2Q@¥éposed a CUSUM of squares
based test to overcome this problem. The Leybourne and Ki@iA2est is basically the ratio
of two CUSUM of squares statistics based on the forward averse evaluation of the time
series. Although the test is constructed for the null hypsiththat the data generating process
is 1 (1) throughout against a break in persistencé (@, Leybourne et al. show that it has
also power against the alternative of a break fig) to I (1) and that it behaves well if the
process id (0) throughout.

However, all of these tests stay in the classi¢@) - 1 (1) framework. One exception is Beran
and Terrin (1996) who consider a test for constancy of thglmemory parameter against a
change of it. Their test is based on a functional centraltlihéorem for quadratic forms. By
now it is broadly accepted that many economic variableshéixlting - range dependencies
which cannot be covered by the classical framework. Alsdhérhore flexibld (d) frame-
work, 0< d < 3/2 it is crucial to know whether the memory parameter is in tia¢ienary
region or in the non - stationary region throughout or whethere is a change in the persis-
tence. It turns out that the Leybourne and Kim (2007) testdes®us size distortions, that
means the test is conservative, if the data generating ggdtEs long memory and therefore
the test has a lack of power in this model. This indicatesribat critical values depending on
the memory parameter are necessary inltldg framework. In this paper we investigate the
asymptotic behaviour of the Leybourne and Kim (2007) testentong - range dependencies.
We derive the limiting distribution under the null that theta generating process exhibits non
- stationary long memory. We furthermore show that the lppeak estimator proposed by
Leybourne and Kim (2007) is also consistent under long mgiamugh with a slower rate of

convergence depending dnin a Monte Carlo study we show that the test has satisfyirg) si



and power properties when the adjusted critical values sed.uFinally the test is applied to
monthly US inflation data.

The paper is organized at follows. After introducing the mloand the test in section 2,
section 3 derives the asymptotic properties of the testti®ed contains an intensive Monte
Carlo study showing the finite sample properties of the tesv@l as the power properties
and gives response curves to easily compute critical valBestion 5 contains an empirical
application to a monthly US inflation time series and sedfi@oncludes. All proofs are given

in the appendix.

2 Moded and Test

We assume that the data generating process follows an ARFpMIAG) - process as proposed
by Granger (1980):
®(B)(1-B)% = W(B)e,

whereg; are iid random variables with mean zero and variameeThe AR- and MA- poly-
nomials®(B) andW(B) are assumed to have all roots outside the unit circle. Theedenf
integration ofX; is therefore solely determined by the memory parametdrhe test against
a change in the persistence as proposed by Leybourne anc2Rbi) uses the statistic

_infreaK (1)

R= ‘N> )
infren K'(T)

(1)

whereK (1) and K" (1) are CUSUM of squared based statistics based on the forward an
reversed residuals of the data generating process as gil@n.tHeret is the relative break-
point where we assume thate A and thatA C (0,1) is symmetric around .6. For now

we assume to be fixed though unknown. However, as usually unknown in practice we
study the properties of a simple estimator for the breakpnithe following section. In detail

CUSUM of squared based statistics are defined by

[TT]

K' (1) = [T] 2 Zf/ﬁr



and
—[tT]

K'(1) = (T —[tT])~ Z 7

We denote byjx| the biggest integer smaller than Here,\; ; is the residual from the OLS

regression okK; on a constant; = 1Vt based on the observations ugtd]. This is

U =X —X(1)
with X (1) = [tT]~ thT] X:. Similarly % ¢ is defined for the reversed serigs= X7 1. Thus,
itis given by
Vir=y—-Yy(1-1)
withy(1—1) = (T —[1T])~ zt 1TT]yt. The case of = [1, t]’, which corresponds to linear

de-trending, is considered later on as well.

Remark: It should be mentioned that the quantitie§ 1) andK' (1) are originally defined
by including an estimator of the long - run variance of theadg¢nerating process. As the
behaviour of the test statistiRis independent of the long - run variance we omit this here to

keep the notation and proofs simple.

3 Asymptotic properties

In this section we derive the asymptotic properties of tiegstatistic (1) when the data gener-
ating process i$(d). In the following we denote by weak convergence and b@ conver-
gence in probability. We denote lgg the long memory parameter under the null hypothesis
regardless of its specific value while we distinguish unteralternative hypothesis between
values characterizing stationary€Qd; < 1/2) and non-stationary processegZk d, < 3/2)

, respectively.

Theorem 1. Under the null hypothesis Hp : X ~ | (dp) Vvt with 1/2 < dg < 3/2 the limiting
distributionfor T — o of Risgiven by

infL, (T
s &0
inf Ly, (T)

Ten
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with

T
L@ = /wgo(r,r)zdr
L (1) = / Vi (r,70)2dr
0

T 2
Wi (nD2 = | We(r) tl/WdO(r)dr)

l 2
Vg (r1)? = Wdo(l—r)—(l—T)1/Wd0(r)dr)
T
for the de-meaned case (z = 1) and

T
L = / Wi (r,T)2dr
0

1-1
Ly, () = [ Vi (r,o%dr
/
Wi, (1) = Weo(r) —Bo(T) —rBa(T)
Vi (1) = —(Wep (1) —Wego(1— 1)) — Bp(T) — 1By (1)
Bo(t) = 4t‘1/oTWdO(r)dr—GT‘Z/OT Wy, (r)dr

T T
Bi(1) = 61‘2/ Wdo(r)dr+12t‘3/ Wy, (r)dr
0 0

B = 410 ( [ Wear (1D )

—6(1—1)2 ((1_2T>2Wd0(1) —/ledo(r)dr/TlrWdo(r)dr>

B0 = 610 2( [ Welar - (1))
-1

+12(l—r)3< Wdo(l)—/ledo(r)dr-l—/TlrWdo(r)dr)

for the de-trended case (z = [1, t]').



Theorem 1 shows that the limiting distribution dependsrgilp on the memory parameter.
This behaviour of the limiting distribution leads to heavgesdistortions of the original Ley-
bourne and Kim (2007) test when long - range dependenciesesyiected. Therefore, we
recommend to use new critical values that are provided iticsed. However, as the critical
values vary quite substantially withthis is not very handy in practice as new critical values
have to be simulated for each valuedf Therefore, we give also response curves for finite
sample critical values depending drwhich are easy to implement and allow a fast compu-
tation of the critical values. As the variation of the crdiwalues with sample size is minor
this is an easy possibility for practical applications. Hwer, see section 4 for further de-
tails on this issue. After establishing the limiting dibtriion under the null we have to prove

consistency of the test.
Theorem 2. Let0<d; <1/2and1/2 < dy < 3/2.

1. Under the alternative of a break from stationary to non-stationary long memory, thisis
from1(d) to I (dy), we obtain

R= Op(TH~ %),

2. Under the alternative of a break from non-stationary to stationary long memory, thisis
from1(dy) to I (d1) we obtain
R= Op(T% %),

These results imply that a consistent test against thenatiee of a break from non-stationary
to stationary long memory is obtained by using critical ealdrom the upper tail of the dis-
tribution whereas using the lower tail of the distributi@adls to a consistent test against the
alternative of breaking from stationary to non-statiorlaryg memory.

Remark: Although the break was in both cases assumed to be from rsiagi®o non-
stationary long memory or vice versa the test has also a loglepwhen the break is from
stationary to stationary or from non-stationary to noristeary long memory.

So far the breakpoint was assumed to be unknown. We thersfane that the breakpoint

estimators given in Leybourne and Kim (2007) are also coerstisn the long memory setup.



Theorem 3. Denote by tg the true breakpoint. Then, for

t=infKf
=K

we have

-~ P

T — To,
if the alternative is a break from stationary to non-stationary long memory. For a break from
non-stationary to stationary long memory a consistent estimator for the breakpoint 1o isgiven

by
T=infK'(1).

Ten
As usual for long memory processes the convergence is stbaeiin the Leybourne and Kim
(2007) situation. However, this does not change the carsigtresult in general. Finally, we
have to evaluate the behaviour of the test wKen | (dp) vt with 0 < dp < 1/2. This is the
situation where no break in persistence occurs but on thex bind our null hypothesis from

Theorem 1 is wrong as the data generating process exhiditsrery long memory. We have

Theorem 4. Let X ~ 1 (dp) vt with 0 < dp < 1/2. Then,

RO 1.

In this situation the test has a degenerated limit distidioutAs the limit theorems for non-
stationary long memory processes hold fgR Xk dy < 3/2, it is reasonable to integrate the
time series in this case before applying the adjusted test. 0K dp < 1/2 the memory
parameter of the integrated series is between 1 d&d Fhus, the results in Theorem 1 to
Theorem 3 still hold in this situation allowing us to constra consistent and correctly sized
test. By this approach we can overcome the problem of the duayle and Kim (2007) test
to have a degenerated limiting distribution when the oaggeries is stationary and therefore
obtaining a conservative test in this situation.

So far, the value ofly has been assumed to be known. Of course, the true valdgisun-
known in practice and has to be estimated. However, our MGat results in the following

section show that the adjusted test performs wel} ils estimated by a consistent estimator.



4 Monte Carlo study

In this section we evaluate the finite sample behaviour ofatljasted CUSUM of squared
type test. All simulations are computed in the open-soutatstical programming language
R (2004). We consider the sample size= 500 and usé&1 = 2000 Monte Carlo repetitions
for each experiment, while simulated critical values artamied by settingdr = 10000 and

M = 20000. The memory parametdris treated as unknown in order to achieve realistic
conditions and is therefore estimated. We use the log-gegiam regression introduced by
Geweke and Porter-Hudak (1983) with a rate of frequencie§#®) which is MSE-optimal.
First, we investigate the behaviour of the Leybourne and K2®07) test when the DGP
exhibits long-range dependencies without a break in gersig, i.e. (1— B)9% = & with

&t nd N(0,1). The long memory parametertakes the values 0.00, 0.10, 0.25, 0.40, 0.60,
0.75, 0.90 and 1.00. This means that both, the null and tkeenaliive hypothesis of the
Leybourne and Kim (2007) test are wrong except the cask-ofl.. As the Leybourne and
Kim (2007) test is known to be conservative for a processdeonstantlyl (0) we would
expect a similar behaviour in our setup. As we can see froneTakhe originally proposed
test exhibits serious size distortions in the presencerg-lange dependencies resulting in a

conservative test. Unsurprisingly, the empirical sizdoeser to the nominal significance level

Table 1: Empirical size using unadjusted critical values

de-meaning de-trending
d 10L 50L 100L 100U 5.0U 1.0y 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U
0.00| 0.0 0.0 0.0 0.0 0.0 0.0} 00 0.0 0.0 0.0 0.0 0.0
0.10| 0.0 0.0 0.0 0.0 0.0 0.0} 00 0.0 0.0 0.0 0.0 0.0
0.25| 0.0 0.0 0.0 0.0 0.0 0.0|| 0.0 0.0 0.0 0.0 0.0 0.0
0.40| 0.0 0.0 0.0 0.0 0.0 0.0|| 0.0 0.0 0.0 0.0 0.0 0.0
0.60| 0.0 0.0 0.0 0.0 0.0 0.0} 00 0.0 0.0 0.0 0.0 0.0
0.75| 0.0 0.0 1.7 1.5 0.0 0.0} 00 1.0 21 24 0.1 0.0
0.90| 0.0 2.5 6.5 6.9 2.3 0.0|| 0.0 3.3 6.2 6.3 2.6 0.0
100 1.1 52 100 103 51 09| 11 52 0.8 101 49 1.2

Notes: Sample size i = 500,xL andxU denote thec-th lower and upper quantile & under long-range dependencies, respectively.




Table 2: Empirical size using estimated response curves

de-meaning de-trending
d 1.0L 5.0L 10.0L 10.0U 50U 10U 1.0L 5.0L 10.0L 10.0U 5.0U 1.0U
0.00| 1.3 56 107 9.5 4.8 1.1 0.8 51 10.0 9.6 5.1 1.2
0.10| 1.1 5.0 9.8 100 4.9 12| 1.4 49 94 10.1 4.9 1.1
0.25| 1.0 57 109 9.8 4.9 12| 1.2 48 9.8 9.1 44 07
0.40| 0.8 4.9 9.8 109 57 18| 1.0 3.8 105 9.0 49 09
060 09 54 110 111 6.1 16/ 15 58 11.0 112 55 11
0.75| 0.6 4.0 8.4 9.8 48 07| 15 53 112 94 4.4 1.1
0.90| 0.7 5.0 10.6 8.4 41 05| 08 52 103 94 45 0.9
1.00| 1.0 53 11.2 9.7 4.9 1.0/ 06 52 10.0 9.5 5.0 14

Notes: Sample size i§ = 500,xL andxU denote thec-th lower and upper quantile & under long-range dependencies, respectively.

asd approaches one. The test is correctly sizedl4# 1. However, even for non-stationary
DGPs the size distortions are not negligible. This resufideuline the need for adjusted
critical values taking the long-range dependencies into@ict.

Next, we simulate the asymptotic distribution of tRestatistic dependening ahin the fol-
lowing 99 casesd = 0.51,...,1.49. Due to the fact that adjusted critical values depend on
they have to be tabulated for a wide range of possible valfids és this is rather burden-
some we fit polynomial functions it to the sequence of critical values dependingloiihis

response curve is given by
S .
Gu(d) =Y Bid', (2)
[0} i; |

whereqq denotes the-quantile of the asymptotic distribution & and takes values on the
grid 0.51,...,1.49 consisting of 99 equally spaced poifte polynomial ordesis set equal

to nine. Additionally, we tried other settings, it 9 appeared to be a satisfying choice. Pa-
rameterd3; are estimated via OLS. Following the general-to-specifigragch, we eliminate

in each step the most insignificant powerdoédnd re-estimate the function by OLS until no
further non-rejection of the hypothess : 3i = 0 occur at the five percent level of signifi-
cance. The final estimates are reported in Appendix B. Inréiguve display the simulated
guantiles y-axis) depending od = 0.51,...,1.49 (x-axis) and the fit of the response curves

(solid line) for the 5% and 95% level of significance for deamed and de-trended data.

9
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5 percent lower quantile 5 percent lower quantile

Figure 1: Simulated quantiles of tiestatistic under long memory with fitted response curves

for de-meaned (left) and de-trended data (right).

Using the fitted response curves we can approximate critadaes easily. Beside the sim-
plicity of this approach it is reasonable in our opinion asvhriation of critical values is with

the memory parameter and not with the sample size. The saaulable 2 that we discuss in
a moment underline this argument.

Using adjusted critical values obtained from the fitted oes@ curves we now revisit the
empirical size of the test. The results are reported in Ta@bldNote that time series with
do < 1/2 are integrated in order to avoid a degenerated limit thstion under the null hy-

pothesis. Henceforth, we actually consider a range of gdiwend = 0.60 to 1.40. The test

has satisfying properties even though there are some misiartions for values ofl in the

10



neighborhood of 1/2. It might happen that the estimatedevafd is less (greater) then 1/2
underHp when the true value is greater (less) than 1/2, which measwiwrongly integrate
(not integrate) the time series and obtain therefore a Oitest result. However, the results in
Table 2 suggest that this is not really a serious problem.

Next we consider the power of the test based on adjustedaintilues. As the test can be seen
as correctly sized, there is no need for size-adjusteaaliwalues. For all power experiments
we consider three different locations of the breakpointhatbeginningt = 0.3), the middle

(1t =0.5) and the endt = 0.7) of the sample period. The long memory parameter takes
the same values as before. The simulation results are giv&alle 3 and 4 for de-meaned
and de-trended data, respectively. We consider breaksdtationary to non-stationary long
memory (upper left part of Tables 3 and 4) and vice versa (upglet part of Tables 3 and 4).
The consistency results in Theorem 2 suggest that the tesh&@stent in both cases.
Furthermore, we consider in the lower part of Tables 3 andedlts inside of the stationary
(0<d < 1/2) (lower left part of Tables 3 and 4) and non-stationary redibf? < d < 3/2)
(lower right part of Tables 3 and 4). Note that the latter expents are not covered by any of
our theorems but that they might be relevant in empiricaliegfions.

Overall, the power results of the adjusted test using denetbaata (Table 3) is good and
confirms the consistency result. For quite extreme breaks, @00 to 0.90, the power is
almost hundred percent. Unsurprisingly, the power deee&s less extreme breaks, e.g.
0.00to 0.60. For a given value df, the power decreases with increasihdleft part). For a
given value ofd,, the power decreases with decreasiagright part). At first sight, it might
be not intuitive that the power for breaks of equal distaeag, 0.25 to 0.75 and 0.40 to 0.90,
is not the same. This is an artefact of the adjusted testdated by integrating the time
series if the estimated value dfis located in the stationary region. In addition, the faeitth
the breakpoint influences the estimatedofinderHy further complicates the interpretation.
However, the testis able to detect switches of the long mgmemameter within the stationary
and non-stationary region. The main conclusions are natgihg when looking at the results
for de-trended data.

After evaluating the power we consider the small sampleoperénce of the simple breakpoint

11



Table 3: Power Experiment with de-meaned data

d T d T
0.3 0.5 0.7 0.3 0.5 0.7
0.00—060 819 84.1 78.3 1.00—0.00 98.7 100.0 100.0
0.00—0.75 99.2 97.8 87.9/ 1.00—0.10 99.1 100.0 100.0
0.00—0.90 100.0 100.0 97.¢f 1.00—~0.25 99.5 100.0 99.1
0.00—1.00 100.0 100.0 99.6 1.00—0.40 99.3 99.7 95.8
0.10—-060 69.0 784 64.3 090—0.00 93.4 99.9 100.0
0.10—0.75 96.7 97.2 827 090—0.10 954 99.8 99.7
0.10—-0.90 99.9 100.0 97.2 0.90—0.25 96.1 100.0 98.1
0.10—1.00 100.0 100.0 99.8 0.90—0.40 96.6 985 89.6
0.25— 060 421 706 50.7 0.75—0.00 655 945 99.0
0.25—0.75 86.5 975 83.2/075—010 699 957 97.0
0.25—0.90 98.2 100.0 98.0f 0.75—0.25 809 96.7 85.8
0.25—1.00 99.5 100.0 99.6 0.75—0.40 84.8 88.0 59.6
0.40—060 20.8 50.0 51.Z7 0.60—0.00 20.2 486 67.1
0.40—0.75 54.7 887 86.4/ 060—010 254 551 613
0.40—090 87.4 989 98.0 0.60—025 375 643 409
0.40—1.00 958 99.9 99.4 0.60—0.40 494 478 19.2
0.00—0.10 82.7 848 8245 100—~060 819 864 685
0.00—025 774 820 81.0/ 1.00—0.75 451 451 36.8
0.00—040 646 79.6 77.0 1.00—~090 139 145 124
0.10—-025 595 681 67.3 090—~060 685 659 46.3
0.10—-040 485 629 61.9/090—-075 247 250 158
0.25—040 21.7 33.1 323 075—-060 364 314 16.2

12



Table 4: Power Experiment with de-trended data

d T d T
03 05 0.7 0.3 05 07
0.00— 060 451 84.7 94.2| 1.00—~0.00 100.0 99.9 97.2
0.00— 075 64.1 958 995/ 1.00—0.10 100.0 99.9 96.6
0.00—090 886 99.7 99.9| 1.00—~0.25 99.9 99.6 952
0.00—1.00 96.5 99.9 100.0 1.00—0.40 99.0 98.8 89.3
0.10—-060 40.8 76.6 87.1]| 0.90—0.00 99.9 99.7 90.8
0.10—-075 61.1 93.7 97.6/ 0.90—0.10 99.6 99.8 90.0
0.10—-090 89.3 99.6 99.7| 0.90—0.25 985 98.6 854
0.10—-1.00 97.1 99.9 99.9| 090—040 971 956 73.7
0.25— 060 336 574 64.9|075—000 99.1 96.1 64.8
0.25—0.75 53.7 874 920 0.75—0.10 965 946 63.1
0.25— 090 855 98.4 99.0| 0.75—0.25 91.0 886 57.2
0.25—1.00 950 99.7 99.8/ 0.75—0.40 80.3 713 4238
040— 060 196 33.1 41.7| 060—0.00 941 84.3 46.3
040—075 39.1 717 77.9]| 060—0.10 859 759 426
040—090 725 944 96.4| 0.60—0.25 654 587 32.7
040—1.00 89.3 985 995/ 060—040 421 345 19.0
0.00—010 7.3 135 21.8/100—~060 850 853 63.6
0.00— 025 275 39.4 495 1.00—~075 48.0 47.1 344
0.00—040 524 69.3 758 100—~090 145 157 123
0.10—-025 128 205 26.0| 0.90—060 655 64.7 39.8
0.10—-040 33.6 46.6 535/ 090—075 234 240 17.6
0.25— 040 134 16.3 25.7| 075—060 29.3 26.6 16.6
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Table 5: Small sample performance of breakpoint estimator

de-meaning de-trending
d 1 0.3 0.5 0.7 0.3 0.5 0.7
U[0,0.4] — UJ[0.6,1] tf 0.378 0.546 0.725 0.442 0.557 0.730
sgif) 0.139 0.076 0.035 0.183 0.087 0.038
U[0.6,1] — U[0,0.4] T 0.275 0.453 0.610 0.271 0.440 0.568
sgi’) 0.034 0.075 0.148 0.036 0.087 0.178
U[0,0.2] — U[0.8,1] tf 0.327 0.521 0.717 0.340 0.524 0.717
s¢tf) 0.058 0.037 0.026 0.078 0.043 0.026
u|[0.8,1] — U[0,0.2] T 0.281 0.477 0.672 0.279 0.473 0.660
sgi’) 0.025 0.039 0.055 0.027 0.044 0.076

Notes: Sample size iF =500, U]i, j|] denotes the uniform distribution with lower and upper bouadd

j, respectivelyi’ andt” denote the break point estimator based on the forwiyend reversed serigs),

respectively; se) is the standard error.

estimator, see Theorem 3. We use the same three differeatt poents as before, i.et =
0.3,0.5,0.7. The memory parameter switches from the stationary todhestationary region
and vice versa. For both regions we draw the memory pararftetara uniform distribution
in order to cover a wide range of possible values in a smallberrof experiments. The upper
and lower bounds are set equal®0.4] and[0.6, 1] for the stationary and the non-stationary
region, respectively. In a more restrictive setting we ketrt equal td0,0.2] and [0.8,1].
Results for a sample size of five hundred observations a@tegpin Table 5. The overall
impression of the breakpoint estimator’'s performance tisfyang. Noteworthy, we observe
that the breakpoint estimator performs worse in the caseedfehded data which is due to
an additional nuisance parameter that has to be estimated,aybourne and Kim (2007).
We further note thatf and?’ perform better in the more restrictive setting because taakb

point becomes easier to detect.

5 Empirical Illustration

In this section we consider an empirical application of thgisted test to study whether there

is any change in persistence in US inflation. Hassler (198ppnted that such time series
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Figure 2: Time series plot of US inflation.

exhibits long-range dependencies. In addition, there maldut growing literature dealing
with the persistence of US inflation. Main questions in titexyature are the measurement of
persistence and potential structural breaks in it. In aneasicle, Pivetta (2007) come to the
conclusion that persistence of US inflation is approxinyatehstant over time. The authors
argue that their conclusion is in line with Stock and Wats2903) as well as O’Reilly (2005).
However, Kim et al. (2002) provide evidence for a decline engstence at the very end of
the seventies. Nonetheless, to the best of our knowledgeious studies are not concerned
with long-range dependencies and there is no previous stedyng with a structural break
in the long memory parameter regarding inflation time seflé®refore, we try to add some
new evidence by applying our long - memory adjusted test.

We use the quarterly CPI data from Lanne (2006) and transiioiarannualized inflation by
computingy; = 400In(CPk/CPk_1). The CPI data spans from 1953:1 to 2004:4 implying
207 observations. The time series plot is depicted in Figuréhe graph suggests a decline
of persistence in the second half of the sample which miglat kesult of Volcker’s policy to

pull inflation down from its high level in the seventies. Thartical line at 1982:1 shows the

15



estimated break point of our test which will be discussedwel

Under the null hypothesis we obtain an estimated valudpofia the GPH approach with
MSE-optimal rate of frequencies that equals 0.617 indigation-stationary long-memory.
We apply the adjusted test without integrating the timeeseunder consideration since the
asymptotic distribution of the test statistic is not degated as long adp > 1/2 holds. Fur-
thermore, we de-mean the data in a first step, since a clearlirend is not obvious. Testing
the null hypothesis of constant memory against decreasemary gives a test statistic of
1.801 which is significant at the ten and five percent levelgiiicance. Note that we make
use of our estimated response curves to approximate thantleritical values. The test result
suggests that there is a decline in the persistence of USiamfldnterestingly, the estimated
break point is 1982:1 which is nine quarters after the begMotcker’'s chairmanship at the
Federal Reserve. When estimating the long memory paraméteiore and after this break-
point we get 0.862 and 0.246 which can be viewed as a sharmééclpersistence. Finally,
we tested the null hypothesis of constant memory for the peréod after 1982:1. Note that
we have to integrate the time series once, since the asyimgtstribution is degenerated for
0<dp< 1/2. The test statistic is now 1.667 and insignificant at cotiveal levels. Although
this result is based only on 91 observations, it suggestshbee is no additional break after
1982:1.

6 Conclusion

In this paper we present a modification of a test proposed ppdugrne and Kim (2007) that
allows for long memory dynamics. In particular, the testaastructed for the null hypothesis
that there is no change in the long-memory paramgtggainst the alternative that it breaks
from a stationary valu€0 < d < 1/2) to a non-stationary on@ /2 < d < 3/2) or vice versa.
We derive several asymptotic properties of the test si@atistder long-range dependent DGPs
and show that the asymptotic distribution dependsdonTherefore, we propose response
curves based on estimates bto obtain the relevant critical value easily and show by rsean

of a Monte Carlo study that this approach works well. Furtiane, the power of the test is

16



good and a simple breakpoint estimator has satisfying ptiege Finally, we apply the test to
US inflation data and find a break from non-stationary to @tety long-memory in the early

eighties.

Appendix A

Proof of Theorem 1: For the proof of the theorem let us consider the de-meaneifcas

The test statistic was defined by

infrea KT (1)
T infeen KT (1)’
with
K1) = (T 23 9
t; i1
and

For the nominator we have
T-0- 20, = T % 2y — T-%2x(1).
We have
gyt
T % 2Xry] = W, (1)
with Wy, denoting fractional Brownian motion with parametigr Furthermore we have
- 1 [1T]
T %-2x1) = T % 2Tt let
t=

[1T]

— T—do—%.[—l Z\Xt
t=

T
= T_l/ W, (r)dr.
0
Application of the continuous mapping theorem gives

T
Tidoi%\?[rt} = Wdo<r)_T1/ W, (r)dr
0
=: WJO(r,t)
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and thus for the nominator
T
TR () = 02 [ (T bgnar
T
= T_Z/O W (v, T)2dr.

Similarly we obtain for the denominator

1

T_do_év[rT] = Wdo(]-) _Wdo(l_r>+(1_T>_1/01_T(Wd0(1> _Wdo(l_r>dr)

1
_ wd0<1—r)—(1—T)1/ W (r)dr
= Vg, (r,1).

Again using the continuous mapping theorem we obtain fod#dreminator

T2k (1) = (1—r)—2/01_T

- -2

0

(T_do_%v[rﬂ)zdf

1-t
Vg (r,T)%dr.

Combining the result for the nominator and the denominategthe result.
The result for the de-meaned and de-trended case is obtayreguplying standard results

for linear regression with long-memory errors. We consttierforward statistic
TT]

[
KIn =172y &
(1) =[1T] t; t

wherev; = x — 4 — [§t are the residuals from the OLS regressiomafn the vector; = [1,t],
t=1,...,[tT]. Itis well known thafTf ~%~1/2(G — ) = By(1) andT~%~/2(B — @) = By(T)
andBy(1) andB1 (1) given as in the Theorem. Therefore, we obtain
deofl/Z\A/[ﬂ_} _ deofl/zv[m _ T4 12(g ) — rT-%-Y2(F )
= We(r) —Bo(T) —rBa(T)
= W (1)
As the forward statistic is a continuous functionarl'ofdo—l/z\“/m we obtain using the CMT
Tk = 2 (%129 2y
= 12 /OTWJO*(r,T)Zdr
= L'(0).
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The proof for the reverse statistic is analogous and thexedmitted. For the remainder of
the Appendix we omit proofs for the de-meaned and the dedé@rcase for the brevity of
notation as they are straightforwar.

Proof of Theorem 2: First we prove the first part of the theorem. This is we assume a
breakpoint that the DGP breaks from a stationary to a naima&y long-memory process.
Let us first consider the situation oK 1o, wheretg denotes the true breakpoint. This means
thatX; ~ I (dy) with 0 < d; < 1/2. Have in mind that the standardization of the test statisti
is obtained fromHg : X; ~ 1(dp) with d; # do. In the stationary part we hawg > d;. In this

situation we obtain:
[tT]
T—2do+1Kc];o(.[) — T—lT—Zdo [TT]_l Zlvtz
P, oy,

In the case ofl; = dy the upper expression converges tdyg with yp denoting the variance
of X;. Ford; < dp, wich is the relevant case in practise, this expressionstémaero with a
rate depending on the difference of the tdgebefore the break and the hypothetic memory
parameter.

We next consider the situation of> 19 where we spliiKJ (1) up in its stationary and its
non-stationary part. Have in mind that the true DGP is of pid@ < dp < 3/2 after the break

with dy > dp in the non-stationary part.

T*ZdOKJ (.[) — 72T2 2d0 th 73 <T3/2 do ZB’)
0
— 72 (TZ 2d0 Z X[ +T2 2d0 Z Xt2>
t=[toT]+1
3 ([ +3/2—d FroT] 3/2—d S i
T[T N e+ T550 Yt
(g 3 )

t=[toT]+

[tT] iag 2
— T_2T2_2do z th _ .[—3 <T3/2—do Z Yt> + OP(:L)
t=[toT]+1 t=[ToT|+1

B Op(ri)
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From these considerations we see that the Iim‘l’m?doHKJO(T) is given byt ~1Op(T% %) 4

c0l(r-1,) Which is obviously minimized byo. Thus, we have

T2t infK! (1) 5 Op(Th %),
Ten -0

For the reversed series we obtain by similar arguments forg:
—2d P dp—d
T OKQO(T) — Op(T%270),

This gives us
inf K§ (1) = Op(T% %)

Ten

which gives us the first result of the theorem. The result)ig@btained by similar arguments
as aboves»
Proof of Theorem 3: Let us assume a break from stationary long memory to noiestaly
long memory, thatis & d; < 1/2 and ¥2 < d; < 3/2. The hypothetical memory parameter is
denoted bydg with d; < dy < dp. From Theorem 2 we know that the limit 6f2d0+1KJO(T)
is given byOp(lede)l(Tgro) + 00l Which is obviously minimized byo. The result
follows now by similar arguments as in Leybourne and Kim (200

The proof for the second part of the theorem, that is the bfeak non-stationary to
stationary long memory, is analogous and therefore omiitézd. >

Proof of Theorem 4. Because of the symmetry éfaround 05 we have

inf T 20K} (1) inf Tyo
S

TEN
= Ay
H —Zdo r E) H _ -1
TGO 5 -
= (1-AYv
— }\le07

whereA, andA; denote the upper and the lower bound of the intefvaéspectively. This

proves the theorem)
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Appendix B

Table 6: Estimated response curves for de-meaned data

Quantile Bo B1 B2 B3 Ba Bs Be Bz Bs Bo
1.0L 1.063 0 0 0 -41.002 133.627 -183.98 131.206 -47.89 7.102
5.0L 1.601 0 -7.486 9.449 0 0 -17.596 25.299 -13.724 2.688

10.0L | -221.524 2316.11 -10522.512 27414943 -45191.318 48807.5-34769.527 15666.998 -4062.561 462.173
10.0U| 5145.518 -54469.126 252323.451 -671384.183 1131196.8252080.53 910897.739 -420239.255 111628.329 -13015.697
5.0U| 10493.76 -110784.01 511682.48 -1357262 2279365.93 -Z&143 1822761.11 -837851.29 221721.78  -25752.77
1.0U | -1174.527 0 58540.259 -312952.617 792898.52 -1170633.31628D3.45 -586254.848 180679.152 -23898.266

Notes: xL andxU denote thex-th lower and upper quantile & OLS estimates fof; (i =0,1,...,9) in (2) are reported in column§; = 0 means that the parameter is set equal to zero.

Table 7: Estimated response curves for de-trended data

Quantile Bo Bu B2 Bs Ba Bs Bs Bz Bs PBo
10L| 1051 O 0 -4.815 0 18.496 -25.406 13.556 -263 0
50L| 1.151 O 0 -9.281 21.702 -21.366 9.999 -1.824 0O O

10.0L | -0.455 0 53.424 -234.177 459.766 -499.311 310.551 -103.8D9485 O

10.0U| 1.054 O 0 0 3.328 -3.117 0.868 0 0O O
50U| 1.008 O 0 0 8.274 -13.18 8.509 -1.971 0O O
10U| 1.187 O 0 0 6.272 -5.03 1.557 0 0 0

Notes: See Table 6.
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