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Abstract 

 
Our novel approach to modeling monopolistic competition with heterogeneous firms and 
consumers involves spatial product differentiation. Space can be interpreted either as a 
geographical space or as a space of characteristics of a differentiated good. In addition to price 
setting, each firm also chooses its optimal location in this space. We formulate conditions for 
positive sorting: more productive firms serve larger market segments and face tougher 
competition; and for the existence and uniqueness of the equilibrium. To quantify the role of the 
sorting mechanism, we calibrate the model using cross-sectional haircut market data and perform 
counterfactual analysis. We find that inequality in the distribution of the gains among consumers 
caused by positive market shocks can be substantial: the gains of consumers from more populated 
locations are 3-4 times higher. 
JEL-Codes: F100, L110, L130. 
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... The Fox seemed perplexed, and very curious. ... “Are there hunters on that planet?” “No.”

“Ah, that is interesting! Are there chickens?” “No.” “Nothing is perfect,” sighed the fox.

“Le Petit Prince”. Antoine de Saint-Exupéry.

1 Introduction

Ever since Dixit and Stiglitz (1977), monopolistic competition has been a workhorse model in

international trade, economic geography, growth, and macroeconomics. A large literature on

monopolistic competition1 demonstrates the important role of firm heterogeneity in determining

general-equilibrium outcomes and in explaining a broad array of empirically observed phenomena

(Melitz 2003; Chaney 2008; Zhelobodko et al. 2012; Mrazova and Neary 2017; Dhingra and Morrow

2019). At the same time, little attention has been paid to the role of consumer heterogeneity

and the interplay between heterogeneous demand and heterogeneous supply under monopolistic

competition (which can be, for instance, crucial for policy analysis). We seek to narrow this gap in

the literature and to make one more step towards understanding the implications of this two-sided

heterogeneity in a free entry equilibrium framework.

In this paper, we develop a novel theory of monopolistic competition with bilateral heterogene-

ity: (i) horizontal heterogeneity of consumers in their spatial locations (where the space can be

interpreted as either a geographical space or a product space); (ii) vertical heterogeneity of firms

in productivities. The distribution of consumers in space is one-dimensional, symmetric, and uni-

modal, with a compact support. In the geographical interpretation, these assumptions capture

the idea of a “monocentric city”, in which population density is higher towards the city center. In

the product-space interpretation, in which the horizontal heterogeneity across consumers becomes

taste heterogeneity, these assumptions capture the idea of “popularity”: the product type located

at the origin is the most popular among consumers, while the endpoint locations are the least

popular. In modeling firm behavior, our major departure from traditional Melitz-type models of

monopolistic competition with variable elasticity of substitution is that, apart from setting the

profit-maximizing price, each active firm chooses its location in the product space.2 This new di-

mension of firm behavior can be considered as either a geographical location choice or as a product

niche choice, i.e., which group of consumers (defined by their common tastes) to serve.3

1See Thisse and Ushchev (2018) for a recent survey.
2Recent work on monopolistic competition with variable elasticity of substitution (see, for instance, Behrens

and Murata 2007) has pointed out that not only this model is tractable but also flexible and capable of explaining
a broad array of empirically observed phenomena, e.g. variable markups (Bellone et al. 2014) and incomplete
pass-through (De Loecker et al. 2016).

3Our paper is obviously not the only one that considers a monopolistically competitive setup, in which a product
has more than one “dimension”. An additional dimension is often associated with product’s quality/appeal. In
particular, the growing literature extends a monopolistic competition framework allowing firms to choose both price
and quality of their varieties (see e.g. Feenstra and Romalis 2014; Kugler and Verhoogen 2012). Although our paper
abstracts from many specific issues discussed in these studies, it complements this literature by providing a fairly
general yet parsimonious model and discussing general conditions under which assortative matching between firm
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Each firm’s location choice entails the following trade-off. On the one hand, a more popular

niche results in a higher demand for the firm’s product and, thereby, in a potentially higher profit.

On the other hand, assume that all active firms choose to serve the most popular niche. Then,

the local competitive pressure there becomes so high that incentives arise to switch to less popular

but less competitive niches. To sum up, each firm compromises between access to a larger local

market and softer local competition. Or, as in our epigraph, a firm (a fox) wishes to “hunt” for

numerous consumers (chickens), but tries to avoid fierce competitors (hunters). Such a setup

provides new insights on equilibrium outcomes of monopolistic competition models (for instance,

the distribution of firm sales, prices, markups, etc.), which standard representative-consumer-

based models fail to deliver. Moreover, it enables us to explore the interaction between two very

different aspects of product differentiation: (i) the hedonic aspect (see Rosen 1974) and (ii) the

market power aspect.

We then ask what patterns of equilibria may arise in this new setting. As the baseline model,

we consider the case with fully localized competition, in which firms serve only those consumers, for

whom their products are the most preferred ones. Although this simplification assumes away direct

spatial competition among firms, there is still indirect spatial competition channeled through the

general equilibrium mechanism. Moreover, it is in line with recent evidence that households tend

to concentrate their spending on a few preferred products that vary across households (see, for

instance, Neiman and Vavra 2019). In our analysis, we do not impose any parametric restrictions

on the functional forms of consumer’s utility or population density. We find that, if the price

elasticity of demand is decreasing with consumption4 (the Marshall’s Second Law of Demand),

then (i) the equilibrium always exists, and (ii) all equilibria exhibit positive assortative matching

- more productive firms choose larger local markets. If, in addition, the population density is

log-concave, then the equilibrium is always unique. Note that the matching between firms and

market niches explored in the present paper has important implications for the distribution of

firm’s sales, prices, and markups and may result in a deeper understanding of data: in particular,

a firm may be smaller than another, not only because it has higher costs of production, but also

because it is forced to take a narrower market niche.

Another implication of our theory is that markups can vary non-monotonically across the space.

As a result, the relationship between firms’ markups and productivities can be non-monotonic as

well. Specifically, we prove that, under some non-restrictive conditions, the markups are highest

in the most populated locations (where the most productive firms are located) and in the least

populated ones (where the least productive firms are located). This result on markups differs

from that in models of “spaceless” monopolistic competition (see, for instance, Zhelobodko et al.

productivities and product characteristics – whether it be a product niche or some other product/consumer-specific
attribute – can occur.

4This case is often viewed as the most relevant one in monopolistic competition with variable elasticity of
substitution. See, e.g., Zhelobodko et al. (2012), Dhingra and Morrow (2019).
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2012), where firms’ markups increase with their productivity. Our non-monotonicity result is

driven by the interplay of two forces: firm heterogeneity and consumer heterogeneity. If firms

were homogeneous, then the markup distribution would follow the spatial distribution of local

competitive toughness. Since less popular niches exhibit lower competitive pressure, markups there

are higher. In other words, to compensate lower demand in more “remote” locations, homogeneous

firms would charge higher prices there. However, because firms are actually heterogeneous, positive

assortative matching drives less productive firms further away from denser locations. Since less

productive firms charge, ceteris paribus, lower markups, positive assortative matching creates

another component in the markup distribution, which decreases with the distance from the densely

populated but extremely competitive niche – the origin. As a result, the markup distribution

appears to be non-monotonic over the space. This pattern of the markup behavior is consistent

with empirical findings in Dı́ez et al. (2021), who document a U-shaped relationship between firm

size and markups employing a firm-level dataset on private and listed firms from 20 countries.

Moreover, in the data we use to calibrate the model, the relationship between markups and

productivities seems to be slightly non-monotonic as well.

Next, we calibrate the model to assess the quantitative distributional consequences of different

shocks on consumer welfare. In particular, we use cross-sectional data on the haircut market in

Bergen, Norway. The city has a distinct central area with the highest population density, which

declines as we move further from the city center. The haircut market closely corresponds to the

assumptions made in the monopolistic competition framework (see also Asplund and Nocke 2006,

who employ the data on the haircut market in Sweden). Moreover, the dataset we use provides a

number of variables we need to calibrate the model. Specifically, in addition to the distribution of

population in the city, we observe locations, turnovers and profits of hairdressers in the sample.

The latter allows us to back out the distribution of firm productivity without relying on the

structure of the theoretical model.

We find that the model performs quite well in fitting the relationships between firms’ prices/markups

and productivities in the data (these two moments in the data are not directly targeted by the cal-

ibration procedure), capturing, in particular, the potential non-monotonic pattern of the markups.

We then perform two counterfactual experiments: a 20% proportional increase in the population

density and setting the fixed cost of production to zero (a policy aimed to facilitate entry into

the market and/or to reduce exit). In both experiments, we observe that more firms enter the

market, increasing the level of competition in each city location. This in turn changes the match-

ing pattern: firms relocate to less populated locations, and the range of served locations expands.

We also find that consumers gain from these changes in the parameters. However, the gains are

not equally distributed across consumers. Our quantitative analysis shows that consumers located

closer to the city center gain 3-4 times more than those in more remote locations. This difference in

the gains seems substantial and emphasizes the quantitative importance of the sorting mechanism

explored in the paper. Interestingly, Bau (2019) documents that a rise in the competition level

4



between schools in Pakistan raises the level of inequality in learning test scores benefiting strong

students relatively more compared to poorly performing students. Though this empirical fact is

related to a different story, it resembles our quantitative results.

Note also that in our theoretical framework, a proportional rise in the population density can

be interpreted as the effects of frictionless trade with a similar country.5 As we find, such a

change increases the range of served niches/locations in the equilibrium. This finding is in line

with patterns in the trade data. In particular, Fieler and Harrison (2019) find that one of the

implications of tariff reductions on manufacturing in China in 1998-2007 was the introduction

of new products. Also, our theory is potentially in line with findings in Holmes and Stevens

(2014), who show that in the US smaller firms are less affected by competition with China as they

produce custom or specialty goods. As foreign exporting firms are typically more productive, in

our framework they choose more populated niches with a weaker impact on firms located in less

populated niches (that can be interpreted as custom or specialty product types).

Finally, we relax the assumption of fully localized competition and consider a more general

case, in which firms have a non-zero-measure range of service. By doing so, we allow consumers

purchasing product types different from their most preferred ones. This comes at a cost: given

other things equal, the utility derived from consuming product types different from the most

preferred one is lower and negatively related to the distance between the product types (as in the

Hotelling model). In other words, besides monopolistic competition, we consider direct spatial

competition among firms (Hotelling 1929; Kaldor 1935; Lancaster 1966; Beckmann 1972; Rosen

1974; Salop 1979). Although a complete analytical characterization of equilibria is a prohibitively

complex task in this case, we are able to describe some properties of the equilibrium (provided that

it exists). We find that more productive firms charge lower prices and produce larger volumes.

More importantly, we show that if the firm’s profit function (as a function of firm’s productivity,

location, and price) is supermodular in location and price, then each equilibrium displays positive

assortative matching.

Literature review

Our paper contributes to at least three important strands of literature. First, it adds to the litera-

ture that analyzes markets with spatially distributed consumers (see Lancaster 1966, Salop 1979;

Chen and Riordan 2007, and Vogel 2008 among others). Regarding this literature, it is impor-

tant to stress fundamental differences between our framework and standard spatial competition

approach. Indeed, although the space is described as a one-dimensional interval, which is akin

to Hotelling (1929), we assume that consumers (i) buy in volume, and (ii) exhibit love for vari-

ety. This leads to a very different demand structure compared to Hotelling-type setups. Another

5Non-uniform gains from trade are explored in a number of studies (see, for instance, Nigai (2016), who assumes
away the standard assumption about a representative consumer). In these papers, consumers are typically different
in terms of their income.
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distinctive feature of our approach is that monopolistically competitive firms make decisions on

entry, price, and location. To the best of our knowledge, no existing market competition model

captures a similarly rich pattern of firm behavior. Our setup allows studying the interactions

between two types of heterogeneity: on the firm side and on the consumer side; which have been

considered separately, but not together, in the spatial competition literature. In particular, Vogel

(2008) considers a model of spatial competition, where heterogeneous firms strategically choose

locations and prices. However, since Vogel (2008) assumes a uniform distribution of consumers,

more productive firms end up facing less elastic residual demand curves. In our model, the pat-

tern of demand elasticities firms face in equilibrium is bell-shaped w.r.t. firm’s productivity (see

Proposition 4 and the corresponding discussion in Subsection 2.5). Loertscher and Muehlheusser

(2011) consider a sequential location game among homogeneous firms in a space with unevenly

distributed consumers. These authors show that locations with a higher population density at-

tract more firms. However, since there is no price competition in the model and firms differ only

with respect to when they can enter, their model does not allow comparisons of more productive

firms versus less productive firm behavior or studying the equilibrium markup patterns. Goryunov

et al. (2022) consider a monopolistic competition framework with spatially distributed consumers.

However, in contrast to the present paper, this work focuses on the case with homogeneous firms

and uniformly distributed consumers. As a result, it does not examine sorting of firms across

product niches. Another paper related to ours is Ushchev and Zenou (2018), who develop a model

of price competition in product-variety networks. Both consumers and suppliers of a differenti-

ated product are embedded into a network which captures proximity between product varieties:

two varieties are linked to each other if they are close substitutes, otherwise no link exists. Each

consumer’s location is her most preferred variety, while her willingness to pay for other varieties

decays exponentially with their geodesic distance (induced by the network) from her most pre-

ferred variety. Like in most of the network literature, the network structure of the economy is

assumed fixed. Therefore, Ushchev and Zenou (2018) abstract from niche choices of firms and

spatial sorting.

Second, our paper is related to the literature on spatial selection/sorting of heterogeneous

firms. One of the most related papers is Nocke (2006) who considers sorting of heterogeneous

firms across imperfectly competitive markets of different size. He finds a similar outcome - more

productive firms choose to locate in larger markets. However, our paper differs in at least two

aspects. We tackle sorting between firms and product niches in a continuous fashion, somewhat

similar to continuous economic geography in Allen and Arkolakis (2014). More importantly, Nocke

(2006) mainly focuses on sorting per se, while we consider a free entry equilibrium framework with

monopolistic competition analyzing its existence and uniqueness and explore its implications for

markups and consumer welfare. Among other studies, Okubo et al. (2010) explores how trade

liberalization affects sorting across location in a two-country model with linear demand. Behrens

et al. (2014) construct a model of selection of talented individuals across ex-ante homogeneous

6



cities.6 Gaubert (2018) develops a quantitative model of sorting of heterogeneous firms across

cities where firm’s choice depends on local input prices and agglomeration externalities. Faber

and Fally (2020) document that more productive firms endogenously sort into serving the taste of

richer households, implying asymmetric effects on household price indices. Our paper complements

this strand of the literature by focusing in more detail on the selection of firms across product

niches in a quite general setup with continuous space. Carballo et al. (2018) empirically study self-

selecting of firms into specific foreign market niches, but their approach to modeling product space

is very different from ours. There is some similarity of our approach with Eckel and Neary (2010)

who develop a model of flexible manufacturing with core competence of every firm.7 However, the

sorting of firms is not addressed in this paper. Finally, the present paper also complements the

literature on the role of consumer heterogeneity in monopolistic competition and its implications

for the distribution of the gains from trade.8 Focusing on horizontal consumer heterogeneity that

assumes away income effects, our paper provides a new rationale for the unequal distribution of the

gains from trade. Another related paper is Sharapudinov (2022), who explores the implications of

costly international trade between countries in a general equilibrium setup with matching between

heterogeneous firms and various product markets/niches.

The rest of the paper is organized as follows. In Section 2 we develop a baseline model

of fully localized spatial monopolistic competition with unspecified functional form of consumer

demand. In Section 3, we calibrate our baseline model using detailed cross-sectional data on the

haircut market in Bergen, Norway, and study the distributional consequences of various shocks

on consumer welfare. In Section 4, we discuss an extension of our model to the case when firms

compete not just within but also across the niches. Section 5 concludes.

2 The baseline model

In this section, we develop a model of a closed economy, which blends the features of monopo-

listic competition à la Melitz (2003) with the characteristics approach to product differentiation

developed by Lancaster (1966). This model allows us to study the role of interactions between

two very different facets of product differentiation: (i) the hedonic aspect: the price of a certain

type of product depends on its type-specific characteristics (possibly including the geographical

6See also Behrens and Robert-Nicoud (2015) for a survey.
7In Eckel and Neary (2010), each firm chooses the product line to produce based on the market conditions and

competition with other firms. In our paper, each firm produces just one product, but decides about its location in
the product/ geographical space.

8Among this large literature, Fajgelbaum et al. (2011) and Tarasov (2012) develop models of international trade
with income heterogeneity and non-homothetic preferences. Osharin et al. (2014) consider a model of monopolistic
competition where the elasticity of substitution between any pair of varieties is consumer-specific. Nigai (2016)
considers a quantitative trade model with heterogeneous (in income and preferences) consumers and shows that
the assumption of a representative consumer may overestimate (underestimate) the welfare gains from trade of the
poor (rich).
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location where it is supplied) (Rosen 1974); and (ii) the market-power aspect: because varieties

are differentiated, pricing above marginal cost need not result in losing all the customers. In the

model, the demand for a certain type of product is not only affected by its price, but also by the

“location” of the product in the space of product characteristics. As a result, each firm chooses

both price and location. In this context, a firm’s location choice means targeting a certain market

segment (taking into account its size and the level of competition).

2.1 Product space and demand

Spatial structure. The space X, which can be interpreted either as a geographical space or a

product space, is one-dimensional and represented as a real line: X ≡ R.9 Let l(x) ≥ 0 be the

population density at location x ∈ X, and denote by L ≡
�
X
l(x)dx the total population in the

economy. We assume that the population density is continuously differentiable (except, possibly,

at the origin), symmetric w.r.t. the origin, decreasing with the distance from the origin, and has

compact support [−S, S], where S > 0. In the geographical interpretation, this means that we are

considering a spatial structure similar to a “monocentric city” with a negative density gradient.

In the product-space interpretation, this means that product types are ordered by “popularity”

in the descending order: product type x ∈ X is preferred by more consumers than product type

y ∈ X if and only if |x| < |y|. In this context, we refer to l(·) as the spatial distribution of consumer

tastes, which we use interchangeably with “population density” in what follows. We do so both

for brevity and for the sake of exploiting the intuitive appeal of Hotelling’s spatial metaphor.

In our baseline model, each consumer located at x values only varieties supplied at location x.

This is the case of fully localized competition: varieties compete for consumer’s attention within but

not across locations . The reason for introducing this assumption is that price competition among

firms can be described as an aggregative game (Anderson et al., 2020), which makes the analysis

of firm behavior and equilibrium characterization relatively simple. In Section 4, we discuss the

consequences of relaxing this assumption.

The utility function of a consumer located at x is given by

Ux = V

(�
ω∈Ωx

u(q(ω, x))dω

)
+ q0. (2.1)

where Ωx is the set of varieties of type x, q(ω, x) is the individual consumption volume of a

specific variety ω ∈ Ωx by a consumer located at x, and q0 is the consumption of the outside good

produced in a perfectly competitive market under constant returns to scale, which we choose to

be the numéraire. The function V : R+ → R is an upper-tier utility function, which captures the

9In the product-space interpretation, each point in space corresponds to a certain type of product, so that
consumer’s location x ∈ X represents her most preferred product type. This bears some resemblance with the ideal
variety concept introduced by Hotelling (1929). We refrain from using the term “ideal variety” to avoid confusion:
in our model, a variety is something different from a product type, as each type of product available on the market
is represented by a continuum of varieties.
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substitutability between the differentiated good and the outside good, while u : R+ → R is a lower-

tier utility function, which captures the substitutability between varieties of the differentiated

good. We make the following assumptions:

Assumption 1. The upper-tier utility V (·) is sufficiently differentiable, satisfies V ′(·) > 0 and

V ′′(·) < 0, and has a finite choke price: V ′(0) <∞.

Assumption 2. The lower-tier utility u(·) is sufficiently differentiable, and satisfies the conditions

u′(·) > 0, u′′(·) < 0, u(0) = 0, and u′(0) <∞.10

A consumer located at x ∈ X seeks to maximize her utility (2.1) subject to the budget

constraint given by �
ω∈Ωx

p (ω) q (ω, x) dω + q0 ≤ I, (2.2)

where p (ω) is the market price for variety ω ∈ Ωx, while I is consumer’s income. Assuming that I

is sufficiently high and, therefore, allows for positive consumption of the numeraire, and using the

standard monotonicity argument, the consumer’s utility maximization problem can be restated as

follows:

max
q(·,x)

[
V

(�
ω∈Ωx

u(q(ω, x))dω

)
−
�
ω∈Ωx

p(ω)q(ω, x)dω

]
. (2.3)

The individual inverse demand for each variety ω ∈ Ωx follows from the consumer’s FOC:

p(ω) =
u′(q(ω, x))

λ(x)
, (2.4)

where λ(x) is a product-type specific demand shifter defined by

λ(x) ≡ 1

V ′
(�

ω∈Ωx
u(q(ω, x))dω

) . (2.5)

The local aggregator λ(x) can be viewed as a measure of local competitive toughness associated

with the market segment x ∈ X: a higher λ(x) means a downward shift of the demand schedule

for each particular variety ω ∈ Ωx.

Solving (2.4) for q(ω, x), we obtain the individual Marshallian demand of an x-type consumer

— i.e. a consumer whose preferred product type is x — for variety ω:

q (ω, x) = D (λ(x)p(ω)) , (2.6)

10The last condition in Assumption 2, u′(0) < ∞, is equivalent to saying that the individual demand schedule
generated by the lower-tier utility u(·) has a finite choke price.
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where D(·) is the downward-sloping individual demand schedule defined by

D(z) ≡

u′−1(z), if z < u′(0),

0, otherwise,
(2.7)

for all z > 0.

Since location x hosts l(x) identical consumers, (2.6) implies that the market demandQ(p(ω), x)

for variety ω ∈ Ωx is given by

Q(p(ω), x) ≡ q (ω, x) l(x) = D (λ(x)p(ω)) l(x). (2.8)

As can be seen from equation (2.8), the market demand at x is affected by two demand shifters:

the population density l(x), which plays the role of a vertical shifter, and the local toughness of

competition λ(x), which plays the role of a horizontal shifter.

2.2 Firms

The supply side in the model follows Melitz (2003). Each firm is single-product, i.e. it can produce,

at most, one variety. The only factor of production is labor, one unit of which is inelastically

supplied by each individual.

The timing of the game among firms is as follows. First, to enter the market, firms pay a sunk

entry cost equal to fe > 0 units of labor and draw their marginal cost c > 0 from an absolutely

continuous univariate distribution described by a differentiable cdf G : [cmin,∞) → [0, 1], or,

alternatively, by a pdf g(·) defined by g(c) ≡ G′(c) for any c > cmin. Here cmin ≥ 0 is the marginal

cost of the most efficient firm.11 In what follows, we call a firm, whose draw is c, a c-type firm.

Second, based on their draws of c, firms decide whether to stay in business or exit by assessing

their operating profits and comparing them with the fixed production cost equal to f > 0 units

of labor. Third, the active firms (i.e. those who decided to stay in business) choose their profit-

maximizing locations, taking the pattern λ(·) of local competitive toughness as given. Forth, and

last, the active firms choose their profit-maximizing prices. It is worth noting that, as there are

no strategic interactions among firms in the model, the corresponding first order conditions are

the same as in the case, when firms choose price and location simultaneously (due to the envelope

theorem).

Using equation (2.8) for the market demand, we obtain firm ω’s profit function:

Π(p, x; c(ω)) ≡ (p− c(ω))Q (p, x) = (p− c(ω))D (λ(x)p) l(x),

where c(ω) is the marginal cost of the firm, while p and x are, respectively, price and location

11We assume that, for the case when cmin = 0, the aggregates in the model are well defined.

10



choices. Up to a zero-measure subset of firms, pricing and location decisions of any two firms, ω

and ω′, of the same type, i.e., such that c(ω) = c(ω′), will be identical. Hence, it is legitimate to

re-index firms so that they are indexed by their type c. As a result, it suffices to consider c-type

firm’s operating profit:

Π(p, x; c) ≡ (p− c)D (λ(x)p) l(x), (2.9)

Note that, since l(x) has the property of mirror symmetry w.r.t. the origin, firms are indifferent

between locating at x and locating at −x for every x > 0. Hence, it is natural to focus on equi-

librium configurations where both firm’s location pattern and spatial pattern λ(x) of competitive

pressure are also mirror-symmetric w.r.t. zero. Therefore, without loss of generality, we only

consider locations x ≥ 0 from now on. In other words, we assume that the space X is represented

by [0, S] interval.

Let p(c) and x(c) be, respectively, c-type firm’s profit-maximizing price and location choice:

(p(c), x(c)) ≡ argmax
(p,x)

{Π(p, x; c) | p ≥ c, x ≥ 0 },

and let π(c) stand for the c-type firm’s maximum profit:

π(c) ≡ Π(p(c), x(c); c).

Using (2.9) and the envelope theorem, we get:

π′(c) = −D (λ(x(c))p(c)) l(x(c)) < 0,

hence, more productive firms earn higher profits. A c-type firm chooses to produce if and only if

π(c) ≥ f . If, in addition, we can guarantee that π(cmin) > f > π(∞), then the equation π(c) = f

has the unique solution c > cmin. Following the literature, we call c the cutoff cost. In other words,

c is the marginal cost of the least productive active firm, which is indifferent between producing

and non-producing.

2.3 Sorting between firms and locations

In this section, we show that, under quite general assumption about the lower-tier utility u(·),
firms that choose internal locations, S > x(c) > 0, are completely sorted across the locations: less

productive firms choose to locate further from zero. In other words, x (c) is increasing in c.

For each active firm type c ∈ [cmin, c], the profit-maximizing price and location choices

(p(c), x(c)) solve the firm’s FOCs, Πp = Πx = 0. The FOC w.r.t. price, Πp = 0, can be written as

follows:
p− c

p
=

1

ED (λ(x)p)
, (2.10)

11



where ED (·) is the price elasticity of demand,

ED(z) ≡ −zD
′(z)

D(z)
.

Equation (2.10) is the standard monopoly pricing condition. Solving (2.10) w.r.t. p, we obtain

the relationship between the price and firm’s location, which we define as p (x, c). Given this

relationship, the firm’s profit-maximizing location choice is obtained by solving the FOC w.r.t.

location, Πx = 0, which implies12

l(x)

l′(x)
· λ

′(x)

λ(x)
=

1

ED (λ(x)p (x, c))
. (2.11)

Combining (2.10) and (2.11), we derive a neat expression for the markup M(x, c):

M(x, c) ≡ p (x, c)− c

p (x, c)
=
λ′(x)

λ(x)
· l(x)
l′(x)

. (2.12)

The expression for markups given by (2.12) implies the following lemma.

Lemma 1. If l(x) is strictly decreasing w.r.t. x over (0, S), then in equilibrium λ(x) is strictly

decreasing over (a, b), where (a, b) ⊆ (0, S) is any interval such that Ωx is non-empty for every

x ∈ (a, b).

Proof. If Ωx is not empty for any x ∈ (a, b) in equilibrium, then any point x on (a, b) is an optimal

location for some firms that stay in the market. The markups set by these firms are strictly

positive (since there is the fixed cost of production). From (2.12), positive markups imply that

λ′(x) < 0 on (a, b) (as l′(x) < 0 on (a, b)).

The result in the lemma can be explained by a simple trade-off. Choosing an optimal loca-

tion, firms face a trade-off between the size of the location and the level of competition there.

Decreasing l(x) means that, all else equal, the further is firm’s location from zero, the lower is

the demand for its product. Hence, if firms find it profitable to locate further from zero, lower

demand must be compensated by a lower level of competition at this location, which in turn

means lower λ(x). The expression in (2.12) also implies that, depending on the behavior of the

fraction λ′(x)l(x)/ (λ(x)l′(x)) (which is, in fact, the ratio of the elasticities of the population and

competition measures), markups can, in general, grow or decline with a rise in the distance from

the zero location.

Next, we explore how a firm’s location choice depends on its type, i.e., the marginal cost of

production. It turns out that necessary and sufficient conditions for spatial equilibria to exhibit

positive (or negative) spatial sorting of firms can be expressed in terms of the demand schedule

properties. More precisely, the following proposition holds.

12In what follows, we assume that λ(x) is differentiable.
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Proposition 1. Assume that l(x) is strictly decreasing in x for all x ∈ (0, S). If, in addition,

ED (·) is strictly increasing (decreasing), then, in equilibrium, for all c such that S > x(c) > 0, we

have: dx(c)/dc > 0 (< 0).

Proof. The proof is based on the log-supermodularity property of the operating profit function.

Specifically, we have

log Π (p, x, c) = log(p− c) + log l(x) + logD (λ(x)p) .

Thus,
∂2 log Π

∂p∂c
=

1

(p− c)2
> 0,

∂2 log Π

∂x∂c
= 0,

∂2 log Π

∂p∂x
= −λ′(x)dED (λp)

dλp
> 0 ⇐⇒ dED (λp)

dλp
> 0,

since −λ′(x) > 0. The above log-supermodularity properties of the profit function result in the

statements of the proposition.

One can readily verify that linear demand has an increasing demand elasticity. Most specifi-

cations well established in the literature13 also satisfy this property. It is worth noting that CES

demand has a constant elasticity of demand. In particular, the variable profit of a firm can be

written as follows:

Π (c, p(x, c), x) = (p(x, c)− c) l(x)D (λ(x)p(x, c)) =
(σ − 1)σ−1

σσ
c1−σ l(x)

(λ(x))σ
.

Such a profit function implies that, given λ(x), all firms (irrespective of their marginal cost) choose

the location(s) where l(x)/(λ(x))σ achieves its maximum on [0, S]. This outcome may result in

multiple equilibria. Indeed, if there exists an equilibrium with a certain schedule of λ(·), then any

reallocation of firms across the locations that keeps λ(x) the same is also an equilibrium (see more

on the equilibrium concept in the model in the next section).

Note also that the presence of the numeraire good assumes away income effects on consumption,

firms’ prices and locations, etc. If the income effects were allowed, then the choice of firm’s location

would be affected not only by the distribution of location size l(x), but also by the distribution of

income among consumers. In this case, different scenarios are possible. For instance, if consumers

in more distant and, therefore, less populated locations have also lower income, then we would

expect the same assortative matching between firms and consumers as stated in Proposition 1. In

other cases, the outcome is ambiguous in general.

13Other examples include the CARA demand system (Behrens and Murata 2007) and Stone-Geary demand
system (Simonovska 2015). See Zhelobodko et al. (2012) and Arkolakis et al. (2018) for more examples.
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2.4 Equilibrium

In this section, we describe the free entry equilibrium in our baseline model. We assume that l(S)

is sufficiently low. This assumption together with the presence of the fixed cost of production

imply that the location of the firm with marginal cost c̄, x(c̄), always belongs to [0, S). That is,

there are some locations (close to S) that are not served by firms (consumers there purchase only

the numeraire). This case is of a particular interest as it implies one more endogenous margin of

production - the set of niches served by firms in the market.

We showed that, when the demand elasticity is strictly increasing (see Proposition 1), firms

are positively sorted on (0, S): dx(c)/dc > 0. This implies that the most productive firms choose

zero as the optimal location: x(cmin) = 0. The mass of firms at location x ≥ 0 is then given by

µ(x) =Me g (c(x)) c
′(x),

where Me is the mass of entrants into the economy and c(x) is the inverse function of x(c) and

represents the productivity of firms located at x.

An equilibrium is then a bundle
(
Me, c̄, {λ(x), p(x, c), x(c)}x∈Ω,c∈[cmin,c̄]

)
, such that the fol-

lowing conditions hold:

C1 The measure of competition intensity satisfies:

λ(x) =
1

V ′ (µ(x)u(q(x)))
, (2.13)

where q(x) = D (λ(x)p(x, c(x))) is the per capita consumption of one variety produced by a firm

located at x. As there are no firms located at x > x(c̄) ≡ x̄, λ(x) = 1/V ′ (0) for all x ∈ (x̄, S]. To

hold the continuity of the problem, the value of λ(x) defined in (2.13) at the rightmost location x̄

must be equal to 1/V ′ (0). Equivalently, c′(x̄) must be equal to zero.

C2 The schedule of prices, p(x, c), solves with respect to p

p− c

p
=

1

ED (λ(x)p)
. (2.14)

C3 The profit-maximizing location x(c) of a c-type firm solves with respect to x

p(x, c)− c

p(x, c)
=
λ′(x)

λ(x)

l(x)

l′(x)
, (2.15)

with x(cmin) = 0.

C4 The cutoff c̄ is determined by the zero-profit condition:

Π (c̄, p(c̄), x(c̄)) = f. (2.16)

C5 The mass of entrants is determined by the free entry condition:
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� c̄

cmin

(Π (c, p(c), x(c))− f) · g (c) dc = fe. (2.17)

Next, we explore the existence and uniqueness of the equilibrium defined above. Note that the

above definition of equilibrium implies that the spatial pattern {c(x), λ(x)}x∈[0,x] is described by

the following system of differential equations

dλ

dx
= −a(x)λM(x, c),

dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(q(x))
,

where a(x) ≡ −l′(x)/l(x) > 0 is the rate at which population decreases with the distance |x| from
the origin. It is straightforward to show (see Section 2.5) that M(x, c) and q(x) are functions of

λ(x)c. Thus, the system can be rewritten as follows:

dλ

dx
= −a(x)λM(λc), (2.18)

dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(q(λc))
. (2.19)

Hence, the existence of the equilibrium is in fact determined by the existence of the solution of the

above system with the following boundary conditions: c (0) = cmin and λ (x) = 1/V ′ (0) ≡ λmin.

In particular, the following proposition holds.

Proposition 2. If l (S) is sufficiently low and l (0) is sufficiently high, then there exists an equi-

librium in the model described by the conditions in C1-C5.

Proof. In the Appendix.

Sufficiently low l (S) implies that x̄ < S, while sufficiently high l (0) is necessary to guarantee

the positive mass of entrants, Me, into the market. In the Appendix, we formulate the exact

conditions on l(S) and l(0) in terms of the primitives in the model. We also show that, under

quite a general condition on l(x), the equilibrium is unique. Specifically, the following proposition

holds.

Proposition 3. Assume that, in addition to the conditions in Proposition 2, a′(x) ≥ 0. Then,

the equilibrium is unique.

Proof. In the Appendix.
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Notice that a′(x) ≥ 0 if and only if l′(x)2− l′′(x)l(x) ≥ 0.14 Note that the condition is sufficient

meaning that the equilibrium can be unique even when a′(x) < 0 for some x.

2.5 The distribution of markups

In this section, we explore how firm markups depend on firm locations and marginal costs of

production. To do so, we first express firm’s markups in terms of quantities sold. Specifically, the

firm’s profit maximization problem can be reformulated in the following way. Given the inverse

demand function, a firm maximizes its profit with respect to its location and the quantity per

consumer sold at this location, q. Taking into an account (2.4), the inverse demand function is

given by

p (q, x) =
u′ (q)

λ(x)
.

Hence, a firm’s variable profit function can be written as follows:

Π (c, q, x) =

(
u′ (q)

λ(x)
− c

)
ql(x).

This implies that given firm’s location x, the quantity per consumer supplied by the firm solves

∂Π(c, q, x)

∂q
= 0 ⇔ u′ (q) + q u′′ (q) = λ(x)c. (2.20)

Let us define the solution of the above expression as q(x, c): a quantity per consumer sold at x

by a firm with cost c. Note that q(x, c) is completely determined by λ(x)c and is a decreasing

function of λ(x)c.

Given q(x, c), the firm then chooses its optimal location (in the case, when the optimal location

is internal: x ∈ (0, S)) by solving:

∂Π(q, x, c)

∂x
= 0 ⇔ λ′(x)

λ(x)

l(x)

l′(x)
= 1− λ(x)c

u′ (q(x, c))
= −q(x, c)u

′′ (q(x, c))

u′ (q(x, c))
.

The latter implies that a firm’s markup, M(x, c), is equal to Eu′ (q(x, c)). Since, q(x, c) is a function

of λ(x)c, M(x, c) is a function of λ(x)c. Moreover, if ED is increasing in price, Eu′ is increasing in

quantity. This in turn implies that M(x, c) is a decreasing function of λ(x)c.

In equilibrium, less productive firms choose locations that are further from zero: c(x) is in-

creasing in x for all x > 0. At the same time, λ(x) is decreasing in x. As a result, λ(x)c(x) and,

therefore, the markup function can be non-monotonic in x. In fact, the behavior of the markup

function in the equilibrium is determined by the interplay of two forces: firm heterogeneity and

consumer heterogeneity. In particular, when firms are homogeneous in terms of their productivity

14We need this condition on l(x) to guarantee the uniqueness of the cutoff c, which is not straightforward in our
framework.
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and consumers have different locations, the behavior of the markup function is solely determined

by λ(x), which is decreasing in x. This implies that the markup function is increasing in x: firms

located further from zero set higher markups. Indeed, to compensate lower demand in more “re-

mote” locations, homogeneous firms charge higher prices there. When firms are heterogeneous,

less productive firms choose more remote locations to avoid tougher competition in denser loca-

tions. Since less productive firms charge lower markups, the presence of firm heterogeneity adds

a decreasing trend in the behavior of the markup function. As a result, the markup function can

be non-monotonic. In particular, we can prove the following proposition.

Proposition 4. 1) The markup function M(λ(x)c(x)) always locally increases w.r.t. x around x =

x̄. 2) If | l′(0) |<∞ and cmin is sufficiently close to zero, then the markup function M(λ(x)c(x))

locally decreases w.r.t. x around x = 0. 3) Finally, if, in addition, g′(c) ≥ 0 and (l′(x)/l(x))′x ≤ 0,

then the markup function, M(λ(x)c(x)), has a U-shape on [0, x̄].

Proof. In the Appendix.

The first two statements in the proposition mean that the markup function is decreasing around

zero (under some restrictions on the parameters) and increasing around x̄. The intuition behind

that is as follows. Other things equal, lower cmin implies a higher level of firm heterogeneity in

the neighborhood of 0 in the equilibrium. When this level is high enough (which is specified in

the Appendix), we have the decreasing markup function in the neighborhood of 0, as within the

markup shifter λ(x)c(x) the second multiplier c(x) changes faster than the other one. In the

neighborhood of x̄, c′(x) is close to zero, implying a low level of firm heterogeneity there. As a

result, the markup function is increasing. Finally, under some additional assumptions on g(c) and

l(x), the markup function is globally U-shaped. Note that the assumption on g(c) seems to be

natural: it is more likely to get a bad productivity draw than a good one. For instance, a Pareto

distribution satisfies this property.

An important implication of the above findings is that, due to the positive sorting in the

equilibrium, the relationship between firm’s marginal costs and markups has a U -shape as well. In

other words, in the equilibrium, the most and least productive firms set the highest markups, while

in traditional models of monopolistic competition with firm heterogeneity, the highest markups

are set by the most productive firms only – the relationship between firm’s marginal costs and

markups is negative.

Another implication of Proposition 4 is that the demand elasticity 1/M(λ(x)c(x)) is bell-

shaped w.r.t. x. Combining this with our perfect sorting result, we infer that the demand elastic-

ities faced by firms in equilibrium are bell-shaped w.r.t. productivity. This result contrasts with

Vogel (2008), who finds that more productive firms end up facing less elastic demands.
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2.6 Comparative static: A proportional rise in the population density

In this section, we analyze the implications of a proportional change in l(x) in all locations:

lnew(x) = (1 + ∆) lold(x); that can be interpreted as the comparison of equilibrium outcomes

between cities with different population sizes or the outcome of free trade between symmetric

countries. Without loss of generality, we assume ∆ > 0 meaning that the population density

uniformly rises.

To explore the effects of the change in l(x), we distinguish between the short-run and long-run

effects. This also simplifies understanding of the intuition behind. By the short-run effects we

mean the implications of the change in l(x), when the mass of entrants, Me, does not react to

changes in l(x). The following lemma holds.

Lemma 2. Under fixed Me, a proportional rise in l(x) increases the cutoffs x̄ and c̄. Given this

change in l(x), the values of the functions λ(x) and c(x) rise in all locations (only c(0) = cmin

does not change).

Proof. In the Appendix.

The intuition of the findings above is as follows. All else equal, a rise in the population size

implies higher firm’s profits. As a result, some inefficient firms that did not produce before find it

profitable to produce now under a higher level of the population size: c̄ rises. Similarly, as some

product niches that were not attractive to firms before now become larger and start generating

positive profits, x̄ rises. Finally, a rise in the number of firms in the neighborhood of x̄ leads to

a higher level of competition in this region (increasing λ(x)). As a result, tougher competition

forces firms to relocate closer to the origin, implying that c(x) rises in all locations, except for

x = 0.

To analyze the long-run effects, one needs to take into account the corresponding change in

Me and its effects on the equilibrium outcomes. We expect that a uniform rise in the population

density leads to a higher value ofMe. Though this outcome is very intuitive (and confirmed by our

numerical simulations), under the presence of sorting between firms and product niches we cannot

provide a strict proof for this statement. Nevertheless, in the below considerations we assume that

Me increases. In the proof of the uniqueness of the equilibrium (see Step 4 in the Appendix), we

show that a rise inMe implies that λ(x) increases at all locations. Combining this with the results

in Lemma 2, we can formulate the following lemma.

Lemma 3. Given a proportional rise in l(x), if the number of entrants in the equilibrium,Me,

increases under this change in l(x), then the function λ(x) shifts upwards implying that the cutoff

x̄ increases.

The above lemma implies that a uniform rise in the population size makes some firms choose

product niches that were not served before. This is because the short-run and long-run forces
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work in the same direction with respect to λ(x) and x̄. In the long-run, new entrants induce

tougher competition at each location. As a result, less productive firms are forced to move to less

populated niches to avoid competition, which in turn increases x̄.

Regarding c(x) and c̄, the short-run and long-run effects seem to be different. On the one hand,

a uniform rise in l(x) shifts c(x) upwards and increases c̄ (as stated in Lemma 2 and discussed

after). On the other hand, in the long-run there are new entrants that force less productive firms

to choose less populated niches and least productive firms to exit: c(x) shifts downwards and c̄

decreases. It appears that it is very complicated to show which effect is stronger in our model.

However, we run numerous simulations and in all of them the long-run effect is stronger meaning

that a uniform rise in the population density shifts c(x) downwards and decreases the productivity

cutoff c̄. The latter outcome is in line with results in standard models of monopolistic competition

with variable markups: a rise in the market size makes least productive firms leave the market.

3 Calibration

In this section, we calibrate the model to explore the distributional consequences of different

shocks on consumer welfare. In doing so, we use cross-sectional data on the haircut market in

Bergen, Norway. Bergen is the second-largest city in Norway with population around 236000 as of

2021. The city has a distinct central area with the highest population density there, which then

declines as we move further from the city center. This is consistent with the assumption about

the population density in our model.15

We use data on the regular haircut sector for two reasons. First, the haircut industry seems to

satisfy, with a reasonable degree of precision, the assumptions we make in the theory part.16 In our

sample, each hairdresser is too small to strategically manipulate the market environment, which

makes the monopolistic competition framework an obvious modeling choice.17 Also, hairdressers

are present in most parts of Bergen, which is in accordance with the assumption of a continuous

distribution of firms. Furthermore, we limit our analysis to regular hairdressers that typically offer

traditional haircuts homogeneous in quality, which is in line with our focus on horizontal product

15Bergen is also the most homogeneous in income among large cities in Norway (the Gini coefficient is around
25.9 according to the Statistics Norway).

16It is worth noting that Asplund and Nocke (2006) also employ the data on the haircut market, but in Swe-
den, motivating this by that such a market closely corresponds to the assumptions related to the monopolistic
competition framework.

17In Norway there is only one hairdresser chain, Cutters, that runs multiple hairdressers. Specifically, in Bergen
there are 12 Cutters hairdressers. These hairdressers have been excluded from the sample for the following reasons.
Their multi-store nature allows us to observe the revenue and profit information only at the chain level, and not at
the level of each hairdresser, which in turn prevents us from using them in the analysis. Moreover, their “format”
differs from the one that regular hairdressers in our sample have. In particular, they offer a drop-in concept of a
quick haircut. They are also usually located in large shopping malls, attracting consumers that come in a mall to
shop for other goods and services rather than to have a haircut. With the exception of Cutters, other hairdressers
in the sample are small (compared to the whole industry) single-product firms.
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differentiation. The absence of significant quality differences also suggests that consumers have

a haircut in their neighborhood rather than in a more distant hairdresser, which substantiates

our assumption of fully localized competition. Moreover, a haircut is tied to the location of a

hairdresser and cannot be “delivered”, which is in accordance with the absence of shipping costs

in our model. Finally, the regular haircut market is rather free from the income effects, which are

not present in our model.

Second, the data set we consider provides several important variables we need to calibrate the

model. In particular, in addition to the distribution of population in the city, we observe locations,

turnovers, profits of hairdressers in the sample. The latter allows us to calibrate the distribution

of firm productivity employing just the data without relying on the structure of the theoretical

model (see details in Subsection 3.2.2).

3.1 Data description

The data that we use for calibrating the model comes from three sources : Geodata, Business

Compensation Scheme, and manually collected data on regular haircut prices. We now describe

each data source in more detail. The primary data source is the database provided by Geodata,

the primary Norwegian provider of spatial data. The database (“Bedriftsregister”) contains in-

formation for the period 2015-2020 on all businesses registered in Norway, including location,

turnover, profit, and some store characteristics. We then use the Standard Industrial Classifica-

tion (SIC 2007) to select hairdressers. Specifically, we consider all firms that fall into the “96.020

Hairdressing and other beauty treatment” code. Further, we keep only firms specializing in hair-

cuts rather than in beard grooming, nail care, or other beauty treatments, using the information

on the corresponding websites or Facebook pages. As a result, our final sample for the city of

Bergen contains 116 hairdressers, for which we observe yearly data on revenues. Data on profits

are available only for 86 firms. We replace the missing data on profits by employing a standard

imputation procedure.18 To calibrate the model, we employ revenues and profits for 2019.

The other important data source became available due to the Business Compensation Scheme –

a part of the measures introduced by the Norwegian government to support firms facing significant

losses due to the Covid-19 crisis. The scheme was introduced in March 2020 and lasted until

October 2021. It allocated grants to firms that were subject to a decrease in their turnover of at

least 20 percent in March 2020. Since all hairdressers had to be closed due to safety measures, all

of them were eligible to apply for this support. Specifically, the Business Compensation Scheme

allows us to get some measure of the fixed costs of production associated with the haircut market,

which is then used in our calibration procedure. More specifically, firms, which applied for the

support, had to specify their turnover and fixed costs in March 2020 and in the corresponding

18In the procedure, the conditional expectation is based on a linear regression with firms’ revenue, distance to
the city center and their interaction.
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period one year ago (March 2019). The fixed costs are defined as the costs that cannot be reduced

in the short term together with the firm’s activity level. In particular, these costs include the cost

of leasing of commercial premises, lighting and heating, rental of machinery, costs for electronic

communication, and various financial fees related to accounting, audit, and insurance. In our

analysis, we use data on the fixed costs for March 2019 to avoid the effects of the Covid-19 crisis.

Note that a strict verification process, which each application had been undergone before receiving

the support, guarantees the reliability of this data source. To match the firm-level data from the

Business Compensation Scheme with the Geodata database, we use an organization number as a

unique identifier of a firm.

We also have data on regular female and male haircut prices collected manually, using the

information on hairdressers’ websites, Facebook groups, or by asking hairdressers directly by

phone. We checked the accuracy of the data by physically visiting some of the hairdressers. To

construct the price data for 2019, we use the general inflation rate in Norway, which is relatively

modest (about 3.9%), and assume that inflation increased prices proportionally among firms. The

descriptive statistics for our main variables are presented in Table 1.

Table 1: Descriptive statistics for hair salons

Variable Mean SD Min Median Max

Turnover, thous. NOK 2998 3025 195 2180 19538
Profit, thous. NOK 196 210 2 151 1270

Fixed costs, thous. NOK 557 526 118 385 2771
Price for a male haircut, NOK 536 113 250 490 760
Price for a female haircut, NOK 730 143 250 765 1099
Distance to the city center, km 4.1 3.9 0.02 2.6 11.7

The demographics data is taken from publicly available databases managed by Statistics Nor-

way and Geonorge (a public initiative for managing spatial data). To calibrate the distribution of

population, we use the division of Norway into the smallest geographical unit - Basic unit (BU).

A BU is a zone defined by Statistics Norway, it is similar to the census blocks used in the US.

In Bergen, there are 361 BUs, with the median area equal to 0.28 squared km. Figure 8 in the

Appendix shows the BUs in the city of Bergen. For each BU, we count the number of people

residing there. We use the Euclidean distance between the city center and the centroid of the

corresponding BU for the distance between a certain BU and the city center. The descriptive

statistics for basic units are presented in Table 2.

3.2 Calibration strategy

In this subsection, we describe our calibration procedure.
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Table 2: Descriptive statistics for basic units in Bergen

Variable Mean SD Min Median Max

Area, sq.km 1.58 4.23 0.01 0.29 52.7
Population 675 522 3 493 4108

Pop. density, people per sq.km 3276 4134 7.9 2100 24526
Distance to the city center, km 4.8 3.5 0 4.5 16.2

Number of firms 0.32 0.96 0 0 8

3.2.1 Population distribution

We assume that the distribution of consumers in our space is represented by l(x) = A(1−(x/S)γ),

where A > 0 and γ > 0 are parameters which capture, respectively, the total population size and

the curvature of the distribution. To calibrate the parameters in the distribution function, we

employ the distribution of population in Bergen across BUs normalized by the BU areas. This

distribution as a function of the BU distance from the city center is presented in Figure 9 in the

Appendix.

To calibrate γ, we note that γ is the elasticity of 1 − l(x)/l(0) with respect to x. Using the

empirical counterpart of 1− l(x)/l(0), where x is the BU distance from the city center and l(0) is

the maximum population size across all BUs, we run the corresponding OLS regression and find

that the estimate of γ is significant and equal to 0.18. We set S to 16.2 - the distance from the city

center to the most remote BU. Finally, we set A to be equal to the maximum value of normalized

density in a BU, which is 24526. As a result, our distribution of the population takes the following

form: l(x) = 24526(1− (x/16.2)0.18).

3.2.2 Productivity distribution

To calibrate the distribution of firm productivity, we construct its empirical counterpart employing

the data on firm turnovers, profits, fixed costs of production, and prices. It is worth noting that, in

our sample, hairdressers’ revenues and operating profits aggregated at the BU level and normalized

by its area are decreasing as functions of the distance of the corresponding BU to the city center:

the total revenues and profits are lower in more remote basic units, which is consistent with our

theory. The relationship between the hairdresser’s fixed costs of production and its distance to

the city center appears to be not significant, suggesting that hairdressers’ fixed costs of production

are barely affected by hairdresser’s remoteness.

As a proxy for the price of a haircut, we use the price of a regular male haircut. This is

done for at least two reasons. First, a male haircut is a more standardized product than a female

one. Second, as we consider regular hairdressers that do not offer nail care or other beauty

treatments, it is more likely that the role of male haircuts in determining revenues and profits
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prevails over that of female ones. Moreover, in our data, prices for male and female haircuts are

highly positively correlated (0.79). In fact, our calibration procedure shows that employing prices

for female haircuts instead of male ones does not substantially affect the quantitative predictions of

the model (see below). The left panel in Figure 1 shows the BU-level distribution of the weighted

(by revenues) average prices. As can be seen, the slope is positive, which is consistent with the

theory, but not significant. The right panel in the figure represents the relationship between the

prices of male haircuts and distance without averaging prices at the BU level: each dot in the

picture represents the price level of a certain hairdresser. As can be inferred, the slope is again

positive and significant at the 5% significance level.

Figure 1: Haircut prices in Bergen

Note: The left panel: each dot represents one basic unit of Bergen. The number of dots (which is 62) corresponds
to the number of basic units with at least one hair salon. The estimate of the slope parameter is 2.22 with no
significance. The right panel: each dot represents the price of a certain hairdresser. The estimate of the slope
parameter is 5.25 at the 5% level of significance.

The data on revenues, profits, prices, and fixed costs allow us to calculate the marginal costs

of production of each hairdresser in the sample.19 Figure 2 depicts the relationship between the

hairdressers’ marginal costs and its remoteness from the city center. As can be seen, less productive

hairdressers tend to locate further from the city center. This is in line with our theory when we

assume the increasing in price demand elasticity. Figure 3 presents the distribution of the markups

across space. One can see that the further a hairdresser is located from the city center, the lower

markup it charges. Recall that, according to our theoretical results, the markup schedule can have

a U-shape: the markup function is first decreasing and then increasing in distance. In Figure 3,

we do not observe such a pattern. However, the relationship between markups and marginal costs

(see Figure 5) is “closer” to being non-monotonic: markups are first decreasing in marginal costs

19To compute the marginal costs of a firm, we first derive the quantity as the revenue of this firm divided by
the price. Then, we find the total variable costs by subtracting the profit and the fixed costs from the revenue.
Assuming that marginal costs are constant, we calculate the marginal costs by dividing the total variable costs by
the quantity. The markup is then the ratio between the difference in the price and marginal costs and the price.
Note that for two hairdressers we derive negative marginal costs. These observations have been dropped, when
calibrating the productivity distribution.
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and then seem to be slightly increasing.

Figure 2: Marginal costs

Note: The left panel: each dot represents one basic unit of Bergen. The number of dots (which is 62) corresponds
to the number of basic units with at least one hair salon. The estimate of the slope parameter is is 6.15 with 10%
level significance. The right panel: each dot represents the marginal cost of a certain hairdresser. The estimate of
the slope parameter is 7.74 with 5% level significance.

Figure 3: Markups

Note: The left panel: each dot represents one basic unit of Bergen. The number of dots (which is 62) corresponds
to the number of basic units with at least one hair salon. The estimate of the slope parameter is is -0.01 with 10%
level significance. The right panel: each dot represents the markup of a certain hairdresser. The estimate of the
slope parameter is -0.01 with 5% level significance.

For the theoretical distribution of firm productivity, we assume the Weibull functional form on

[cmin,∞):
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α )
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where k is the shape and α is the scale parameter. The choice of the Weibull distribution is

mainly determined by that the empirical density function is not monotone (see Figure 4), which

is captured by the Weibull functional form. We set cmin to 0.062 - the minimum marginal cost

of production in the data measured in thousands of krones. To calibrate the shape and scale

parameters, we employ the maximum likelihood (ML) procedure using the empirical distribution

of marginal costs. Note that in the data, we observe the conditional distribution of marginal

cost of production, as firms with c > c̄ exit the market. Therefore, to calibrate k and α, we fit

g(c)/G(c̄) to the data, where c̄ is the marginal cost of the least productive firm in the market,

which is 0.615. The ML procedure results in k being equal to 3.8 and α equal to 0.43. Thus, the

calibrated distribution function is

G(c) = 1− e−(
c

0.43)
3.8

e−(
0.062
0.43 )

3.8 .

Figure 4 presents the fit of the ex-post density function to its empirical counterpart. As can

be seen, the Weibull distribution fits the empirical density function for the marginal costs of

production quite well.

Figure 4: Empirical and calibrated distribution of marginal costs

Note: Marginal costs area calculated using prices of male haircuts. One observation is one hairdresser.

Note that if we use prices for female haircuts to calibrate G(c), then the calibrated value

of the shape parameter barely changes (it increases from 3.8 to 4.0). The value of the scale

parameter changes more substantially (it rises from 0.43 to 0.57). However, the latter change is

“quantitatively compensated” by the changes in the calibrated values of the other parameters (see

the next subsection).
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3.2.3 The other parameters

For the upper-tier utility function, we assume V (x) = ln(1 + x). For the lower-tier utility we

choose the quadratic function: u(q) = q − aq2/2; where parameter a is calibrated to match the

location cutoff x̄, which is 11.7. For the fixed costs of production f , we take the average fixed

costs across all hairdressers in the data, which is 553.948 thousand krones. Finally, to calibrate

the entry costs fe, we match the productivity cutoff c̄, which is 0.615. Table 3 summarizes our

calibration strategy.

Table 3: Calibration Strategy

Function Parameterization Values from the data Fitted moment and value

V (x) : ln(1 + x)
u (q): q − a

2
q2 x̄ = 0.615, a = 0.107

l (x): A
(
1−

(
x
S

)γ)
A = 24526, γ = 0.18, S = 16.2

g (c): e−( c
α )k

e
−( cmin

α )
k
k
α

(
c
α

)k−1
k = 3.8, cmin = 0.062, α = 0.43

fe: c̄ = 11.7, fe = 2018.4
f : 553.948

3.3 Results and counterfactual analysis

Our calibration strategy results in fe and a being equal to 2018.4 and 0.107, respectively. To

assess how well the model fits the data, we present two figures. Figure 5 depicts the relationship

between marginal costs and markups in the data and the one generated by the calibrated model.

As can be seen, the markup function generated by the model fits the empirical relationship quite

well. The model implies, on average, slightly lower markups for more productive firms and higher

markups for less productive ones. The average markup generated by the model is 0.31, while

the average markup in the data is 0.29. The model also generates non-monotonicity of markups,

which is consistent with the data. Figure 6 stands for the relationship between marginal costs and

prices. Again, it can be seen that the model performs well in fitting this relationship. The prices

generated by the model are, on average, slightly higher for less productive firms than those in the

data and lower for firms with the lowest marginal costs. We also compare the average revenues in

the data and those generated by the model. In the data, the revenues per firm are around 3000

thous. krones, the model predicts the average revenues being around 7159 thous. krones. The

fit is not perfect, but taking into account that, when calibrating the model, we do not target the

moment related to revenues at all, the difference is not that substantial.
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Figure 5: Simulated and observed marginal costs and markups

Note: Each dot represents one hairdresser. Both parameters of the fitted parabola are 1% significant.

Figure 6: Simulated and observed marginal costs and prices

Note: Each dot represents one hairdresser.

Next, we perform two counterfactual experiments. First, we consider a 20% proportional

increase in the population density: that is, we increase A by 20%. Second, we eliminate the fixed

cost of production setting f to zero. The latter counterfactual can be interpreted as a policy

aimed to facilitate entry into the market and/or to reduce exit. In our experiments, we are mainly

interested in the distribution of welfare changes across consumers.

Our quantitative analysis shows that, as discussed in Section 2.6, a proportional increase in

the population density, l(x), leads to a higher level of competition in each location resulting in an
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upward shift of λ(x). Tougher competition in the market in turn implies tougher selection with a

lower cutoff c̄ in the new equilibrium. At the same time, the location cutoff x̄ goes up, as a higher

level of population makes more remote locations attractive for firms. Our experiment shows that

the matching function c(x) shifts downward: in the new equilibrium, each location (except the

most populated one) is served by more productive firms. We also observe a decrease in the price

levels in all locations in the city. However, the impact on firms’ markups is non-monotonic. We

find that, in the most populated locations, the markups decrease, but the least populated locations

experience an increase in markups. The reason behind this outcome is that the sorting effect for

these locations on markups is positive and strong enough to compensate the downward pressure

of higher competition on markups.

Finally, we explore the changes in consumer welfare in the economy. Note that the quasi-linear

structure of consumer preferences implies that welfare changes can be interpreted as equivalent

changes in money income. Figure 7 reports the distribution of welfare gains across consumers

caused by a 20% proportional rise in the population density. As can be inferred, consumers located

closer to the city center gain relatively more than more “remote” consumers. In particular, the

gains around the center are about 33 NOK, while consumers located around the original location

cutoff x̄ (which is 11.7) gain 3-4 times less, about 8-10 NOK. The relative difference in the gains is

quite substantial and, thereby, emphasizes the quantitative importance of the sorting mechanism

explored in the paper.

Figure 7: Welfare gains: A rise in the population density
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Note: Welfare gains for each location are calculated as follows: Unew
x − Ux, where Ux denotes welfare level under

the baseline parameterization, while Unew
x is the counterfactual welfare level under a 20% increase in population

density.

In our second counterfactual experiment, we set the fixed costs of production f to zero. Our

quantitative analysis shows that in this case, the level of competition in each location rises: λ(x)
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shifts upwards. At the same time, since we reduce the fixed costs of production, the selection

into the market is less tough, implying a higher cutoff c̄ and a higher location cutoff x̄. Moreover,

each location, except for the most populated one, is served by more productive firms in the new

equilibrium. This shift in the matching function c(x) together with a higher level of competition

yield a downward shift in prices across the city. Our analysis also shows that, in this experiment,

the competitive pressure is strong enough to outweigh the sorting effect and eventually generates

a downward shift in markups across the whole city.

As for welfare gains, as in the previous experiment, the more remote locations gain less than

those closer to the city center. In fact, the pattern of the distribution of the gains across locations

is very similar to that derived in the case of a proportion rise in the population density. We have

that the gains around the city center constitute about 45 NOK, while consumers located around

the original location cutoff x̄ (which is 11.7) gain about 15 NOK. It is worth noting that the

relative difference in the gains between the central and most remote locations seems to be stable

across our experiments - the gains around the city center are 3-4 times higher than those at the

“peripheral” locations.20

4 Extension: competition across locations

In this section, we discuss what happens if we relax the assumption of fully localized competition.

More precisely, assume that consumers value varieties supplied at locations other than their place

of residence, and that the appeal of a product type y to a x-type consumer decays with the distance

|x− y| between x and y. Under these circumstances, the utility function of a consumer located at

x ∈ X is given by

Ux = V

(�
X

kτ (x, y)

�
Ωy

u(q(ω, x))dωdy

)
+ q0, (4.1)

where Ωy is the set of varieties of niche y ∈ X, kτ (x, y) is a spatial discount factor, q(ω, x) is the

individual consumption of variety ω ∈ Ωy by a consumer located at x (where y may differ from

x), while V (·), u(·) and q0 have the same meaning as in (2.1).

This way of modeling preferences is akin to the model proposed by Ushchev and Zenou (2018),

where consumer’s willingness to pay for a variety decreases with the geodesic distance from a

consumer to a firm in a product-variety network. However, unlike these authors, we do not

assume specific functional forms for preferences and the distance decay patterns. We only impose

Assumptions 1-2 from Section 2 on V (·) and u(·), respectively. In addition to these, we impose

the following assumption about the spatial discount factor kτ (x, y):

20In the earlier version of the paper (see Kokovin, Sharapudinov, Tarasov, and Ushchev 2020), we numerically
explore how the parameters characterizing the distribution of consumer tastes, A and γ, and the shape parameter
of the firm productivity distribution affect the implications of a uniform increase in population.
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Assumption 3. The kernel kτ : X × X → R+ representing the spatial discount factor in (4.1)

has the following structure:

kτ (x, y) = τψ(τ |x− y|), (4.2)

where τ > 0 is a “transport cost” parameter which captures the decay rate of utility with distance

from the most preferred product type, while ψ : R+ → R+ is the distance decay function, which

(i) decreases with distance: ψ′(·) < 0, and (ii) sums up to one: 2
�
R+
ψ(z)dz = 1.

In other words, the family {kτ}0<τ<∞ of decay kernels constitutes a standard mollifier (see,

e.g., Evans 2010, p. 713). To give a few examples, the distance decay function ψ(·) may be (i)

negative exponential: ψ(z) ≡ exp{−z}; (ii) Gaussian: ψ(z) ≡ (2π)−1/2 exp{−z2/2}.

Assumption 3 implies that, when τ → ∞, we obtain our baseline model (Section 2) as the limit

case. Indeed, since the distance decay kernel kτ (x, ·) is a standard mollifier, it converges (weakly)

to the Dirac’s delta with support {x}.21 As a result, when τ → ∞, (4.1) becomes (2.1).

A consumer located at x ∈ X seeks to maximize her utility (4.1) subject to the budget

constraint, which is now given by

�
X

�
ω∈Ωy

p (ω) q(ω, x)dωdy + q0 ≤ I, (4.3)

where p (ω) is the market price for variety ω of the y-type product, while I is consumer’s income.

The consumer’s utility maximization problem can be restated as follows:

max
q(·)

[
V

(�
X

kτ (x, y)

�
Ωy

u(q(ω, x))dωdy

)
−
�
X

�
ω∈Ωy

p(ω)q(ω, x)dωdy

]
. (4.4)

The individual demand q(ω, x) is the solution to the consumer’s FOC, which now takes the form

p(ω)

kτ (x, y)
=
u′(q(ω, x))

λ(x)
, (4.5)

where y is the product niche variety ω belongs to (ω ∈ Ωy), while λ(x) is the local competitive

toughness, which now takes the form

λ(x) ≡ 1

V ′
(�

X
kτ (x, y)

�
Ωy
u (q (ω, x)) dωdy

) . (4.6)

Solving (4.5) for q (ω, x), we obtain the individual Marshallian demand of an x-type consumer —

21More precisely, we have: mτ ⇀ δx as τ → ∞ were mτ is the linear functional defined by mτ (φ) ≡�
X
kτ (x, y)φ(y)dy for any function φ which is continuous over X, while ⇀ stands for convergence w.r.t. the

weak topology. The Dirac’s delta δx concentrated at x ∈ X is a linear functional defined as follows: δx(φ) ≡ φ(x)
for any function φ which is continuous over X. See Evans (2010) for details.
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i.e. a consumer whose preferred product type is x — for variety ω:

q (ω, x) = D

(
λ(x)

p(ω)

kτ (x, y)

)
, (4.7)

where D(·) is the downward-sloping demand schedule defined by (2.7). To obtain the market

demand Q(ω, x) for variety ω ∈ Ωx, we integrate (4.7) across the product space X with respect to

the population density:

Q(ω, x) =

�
X

D

(
λ(y)

p(ω)

kτ (x, y)

)
l(y)dy. (4.8)

Equation (4.8) implies that the shape of the market demand is affected by: (i) the exogenous spatial

distribution l(·) of consumers; (ii) the endogenous spatial distribution λ(·) of local competitive

toughness; and (iii) the spatial discount factor.

Using the market demands (4.8), we obtain the profit of a c-type firm as a function of price

and location choices:

Π(c, p, x) ≡ (p− c)

�
X

D

(
λ(y)p

kτ (x, y)

)
l(y)dy. (4.9)

As in Section 2, we use the following notation:

(p(c), x(c)) ≡ argmax
(p,x)

Π(c, p, x).

We also denote by Q(c) the c-type firm’s profit-maximizing production scale:

Q(c) ≡ Π(c, p(c), x(c))

p(c)− c
.

We have the following result.

Proposition 5. (i) More productive firms produce at larger scales and charge lower prices:

dp(c)

dc
> 0,

dQ(c)

dc
< 0. (4.10)

(ii) More productive firms choose more competitive locations on [0, S) if and only if the profit

is supermodular along the price-location curve:

Πpx(c, p(c), x(c)) > 0. (4.11)

Proof. In the Appendix.

Recall that, in the baseline model of fully localized competition (Section 2), when τ → ∞,

the Marshall’s Second Law of Demand appears to be sufficient for perfect sorting among firms
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located on (0, S) in the equilibrium. Providing full analytical characterization of equilibria and a

clear-cut comparative statics for the case when τ < ∞ is problematic. The issue with that case

when τ <∞ is that the supermodularity condition in Proposition 5 cannot be expressed in terms

of the primitives of the model, as it is imposed on the reduced form of the profit function. The

lack of tractability of the case when τ <∞ stems from the fact that, as firms compete both within

and across locations, the price competition among firms cannot be described as an aggregative

game even locally (i.e., within the same location), since the whole schedule λ(·) of competitive

toughness matters for the individual pricing behavior of each firm. One can clearly see that from

the structure of the expression (4.9) for the profit.

5 Conclusion

This paper develops a monopolistic competition model that features matching between hetero-

geneous firms and product niches. Specifically, we formulate a sufficient condition for positive

sorting between firms and product niches: more productive firms choose more populated product

niches; while less productive firms move to smaller niches to avoid competition with the lead-

ers. This outcome provides new insights on the equilibrium distribution of firm sales, prices, and

markups that are now explained not only by comparative costs of these firms, but also by the

distribution and size of available market niches. Moreover, the positive sorting of firms in the

product space implies a new channel through which market shocks can affect the distribution of

welfare across consumers. This channel is absent in standard spaceless models of monopolistic

competition. The framework we develop seems to be quite rich in implications. To quantify the

role of the sorting mechanism, we calibrate the model using cross-sectional data on the haircut

market in Bergen, Norway and perform counterfactual analysis. We find that the unequal distri-

bution of the gains among consumers caused by positive market shocks can be quite substantial:

the gains of consumers located in more populated niches are 3-4 times higher than those of more

remote consumers. It is worth noting that the baseline model considered in the paper assumes

away the direct spatial competition among firms. As mentioned, the analysis of this more general

case is rather complicated. However, this research direction seems to be rich in its theoretical

and quantitative implications. Another interesting research direction is related to the behavior of

multiproduct firms within the considered framework with consumer heterogeneity. We leave these

questions for further research.
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6 Appendix

In this Appendix, we provide the proofs of some lemmas and propositions as well as some figures.

Proofs of some Lemmas and Propositions

The Proof of Proposition 2

We proceed in four steps.

Step 1. We start with a series of definitions. First, we define the following function:

π(λc) ≡ max
z≥0

[(u′(z)− λc)z].

In fact, this is the rescaled profit of a c-type firm under local competitive toughness λ. We define

xmax ≡ l−1

(
λminf

π(λmincmin)

)
. (6.1)

We assume that xmax < S ⇐⇒l(S) <λminf/π(λmincmin) (that is, l(S) is sufficiently low). We also

define

cmax ≡ 1

λmin

π−1

(
λminf

l(0)

)
. (6.2)

We assume that cmax > cmin ⇐⇒l(0) >λminf/π(λmincmin) (that is, l(0) is sufficiently high). Note

that, if the latter condition fails to hold, there clearly exists no equilibrium. Indeed, in this case,

the most productive firm would not break at x = 0, even if the competitive toughness λ is at

its minimum possible level: λ = λmin > 0. Therefore, l(0) >λminf/π(λmincmin) is an absolutely

necessary condition for the set of active firms to be non-empty.

Next, we define the cutoff curve C ⊂ R2
+ as follows:

C ≡
{
(x, c) ∈ R2

+ : l(x)π(λminc) = λminf, 0 ≤ x ≤ xmax, cmin ≤ c ≤ cmax

}
.

Clearly, C is the set of all a priory feasible solutions (x, c) of the zero-profit condition. Geo-

metrically, C is a downward sloping curve on the (x, c)-plane connecting the points (0, cmax) and
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(xmax, cmin), where xmax and cmax are defined, respectively, by (6.1) and (6.2). Note that, from the

definition of cmax, it follows that λmincmax < u′(0) (since π(λmincmax) = λminf/l(0) > 0).

Since xmax < S, the population decay rate a(x) ≡ −l′(x)/l(x) is a bounded continuous function

over [0, xmax].
22 Therefore, using the Weierstrass theorem, we can define:

A ≡ max
0≤x≤xmax

a(x) <∞. (6.3)

Step 2. Consider any x ∈ (0, xmax]. Because the cutoff curve C is downward sloping, there

exists a unique c ∈ [cmin, cmax) such that (x, c) ∈ C. By Picard’s theorem (see, e.g., Pontrya-

gin 1962), there exists ε > 0 such that, for any x ∈ (x − ε, x], there exists a unique solution

(λx(x), cx(x)) to (3.14) – (3.15) satisfying the boundary conditions: λx(x) = λmin, cx(x) = c.

Picard’s theorem applies here, since the right-hand sides of (3.14) – (3.15) are well-defined and

continuously differentiable and, thereby, locally Lipshitz in (λ, c) in the vicinity of (λmin, c). In

particular, the denominator of the right-hand side of (3.15) never equals zero. Indeed, because

(x, c) ∈ C, we have: λminc < λmincmax < u′(0) (see Step 1).

Next, we show that the above local solution (λx(x), cx(x)) can be extended backwards either

on [x0, x], where x0 ∈ [0, x) and cx(x0) = cmin, or on [0, x]. In intuitive geometric terms, it

means the following: the solution (λx(x), cx(x)) can be extended backwards either until it hits

the plane {(x, λ, c) ∈ R3 : x = 0} or up to the plane{(x, λ, c) ∈ R3 : c = cmin}. Note that

the case when (λx(x), cx(x)) hits the intersection line of these two planes, i.e. the straight line

{(x, λ, c) ∈ R3 : x = 0, c = cmin}, is not ruled out.

Assume the opposite: (λx(x), cx(x)) can be only extended backwards on (x0, x], where x0 ∈
(0, x) and limx↓x0 cx(x) > cmin. By the continuation theorem for ODE solutions (Pontryagin 1962),

this may only hold true in two cases:

Case 1: an “explosion in finite time” occurs, i.e.

lim sup
x↓x0

∥(λx(x), cx(x))∥ = ∞, (6.4)

where || · || stands for the standard Euclidean norm in R2.

Case 2: the right-hand side of the system (3.14)–(3.15) is not well defined at (x0, λ, c), where

(λ, c) = limx↓x0 (λx(x), cx(x)).

Let us first explore the possibility of Case 1. One can show that λx(x) is bounded on (x0, x].

Indeed, we have on (x0, x] (recall that M (λc) is decreasing in λc, as the price elasticity of demand

is increasing)

0 >
dλx(x)

dx
> −AM (λmincmin)λx(x).

22Observe that a(x) need not be bounded and continuous over the whole range [0, S]. To see this, set S = 1 and
consider a linear symmetric population density: l(x) = 1 − |x| for x ∈ (−S, S). Then, we have a(x) = 1/(1 − x),
which is clearly unbounded over (0, 1).
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This implies that d lnλx(x)/dx is uniformly bounded from above in the absolute value, which in

turn means that λx(x) is bounded from above on (x0, x]. Clearly, cx(x) is also bounded, as it

increases in x and satisfies:

0 ≤ cmin < lim
x↓x0

cx(x) ≤ cx(x) ≤ cx(x) = c <∞,

for all x ∈ (x0, x]. As a result, (6.4) cannot hold, meaning that Case 1 is not possible.

Let us now explore the possibility of Case 2. When u′(0) = ∞, this clearly cannot be the

case, as the right-hand side of (3.14)–(3.15) is well defined for all c > cmin, for all λ > λmin,

and for all x ≥ 0. Thus, it remains to explore the case when u′(0) < ∞. In this case, the

ODE system (3.14)–(3.15) is not well defined, when limx↓x0 λx(x)cx(x) = u′(0) (in this case, the

denominator of the right-hand side in (3.15) is equal to zero). Assume that this is the case.

Then, (λx(x), cx(x))x∈(x0,x]
and λc = u′(0) define each a curve in the (λ, c)-plane. Note that

u′(0) > λx(x)cx(x) for any x ∈ (x0, x], otherwise (λx(x), cx(x)) could not be extended backwards

on (x0, x]. Hence, the curve (λx(x), cx(x))x∈(x0,x]
lies strictly below the curve λc = u′(0) in the

(λ, c)-plane and intersects it at (limx↓x0 λx(x), limx↓x0 cx(x)) (the limits exist, as λx(x) and cx(x)

are monotone and bounded). This in turn implies that

lim
x↓x0

∣∣∣∣ dcx(x)/dxdλx(x)/dx

∣∣∣∣ ≤ u′(0)

limx↓x0 λ
2
x(x)

. (6.5)

However, using (3.14)–(3.15), we have:

0 > lim
x↓x0

dλx(x)

dx
> −∞, lim

x↓x0

dcx(x)

dx
= +∞,

which contradicts the inequality (6.5) when u′(0) < ∞. That is, Case 2 is not possible as well.

Hence, we observe a contradiction to that (λx(x), cx(x)) can be only extended backwards on (x0, x],

where x0 ∈ (0, x) and limx↓x0 cx(x) > cmin.

As a result, the solution (λx(x), cx(x)) can be extended backwards either up to the plane

{(x, λ, c) ∈ R3 : x = 0} or up to the plane{(x, λ, c) ∈ R3 : c = cmin}, or both options hold

simultaneously.

Step 3. We now construct an equilibrium without taking into account free entry into the

market: i.e., we assume that Me is given. To do this, we define the following function over

[0, xmax]:

φ(x) =

cx(0)− cmin, if (λx(x), cx(x)) can be extended up to {x = 0},

−c−1
x (cmin), if (λx(x), cx(x)) can be extended up to {c = cmin}.

(6.6)

By continuity of solutions to ODE w.r.t. initial values (Pontryagin 1962), φ(x) is a continuous

function of x. Furthermore, it is readily verified that the following inequalities hold:
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φ(0) = cmax − cmin > 0, φ(xmax) = −xmax < 0.

Hence, by the intermediate value theorem, there exists x∗ ∈ (0, xmax), such that φ (x∗) = 0. Setting

(λ∗(x), c∗(x)) ≡ (λx∗(x), cx∗(x)) and c∗ ≡ cx∗(x∗), derive a candidate equilibrium:{
x∗, c∗, (λ∗(x), c∗(x))x∈[0,x∗]

}
. (6.7)

We now verify that the candidate equilibrium (6.7) is indeed an equilibrium when Me is given.

That (λ∗(x), c∗(x)) is a solution to (3.14) – (3.15) follows by construction. The equality φ (x∗) = 0

means that (λ∗(x), c∗(x)) can be extended simultaneously up to both planes: {x = 0} and {c =
cmin}. This, in turn, is equivalent to c∗(0) = cmin, i.e. (λ

∗(x), c∗(x)) satisfies one of the boundary

conditions. The other boundary condition, λ∗ (x∗) = λmin, is satisfied by construction. Finally,

(x∗, c∗) ∈ C means that (x∗, c∗) satisfy the zero-profit condition (3.12).

Step 4. So far, we have been proceeding as ifMe were a constant. However,Me is endogenous,

and is determined by the free entry condition given by:

Πe(Me) ≡
c∗(Me)�

cmin

[
l(x∗(c,Me))

λ∗(c,Me)
π (λ∗(c,Me)c)− f

]
g(c)dc = fe, (6.8)

where λ∗(c,Me) is a decreasing function parametrically described by the downwards-sloping curve

(λ∗(x,Me), c
∗(x,Me))|x∈[0,x∗], while x

∗(·,Me) is the inverse to c∗(·,Me). We assume that l(0) is

such that

fe <

cmax�

cmin

[
l(0)

λmin

π (λminc)− f

]
g(c)dc. (6.9)

Further, we show that this condition is sufficient for equation (6.8) to have a solution M∗
e > 0.

First, we show that Πe(∞) = 0. Observe that, when Me → ∞, equation (3.15) implies that

dc∗/dx becomes uniformly small. Taking into account that c∗(0) = cmin, we have that

lim
Me→∞

c∗(Me) = cmin, lim
Me→∞

x∗(Me) = xmax.

It is straightforward to see that the above implies that Πe(∞) = 0.

Next, we consider Πe(0). Observe that, when Me → 0, equation (3.15) implies that dc∗/dx

becomes uniformly large or, equivalently, dx∗/dc becomes uniformly small. This implies that

lim
Me→0

x∗(Me) = 0, lim
Me→0

c∗(Me) = cmax.
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Hence,

Πe(0) =

cmax�

cmin

[
l(0)

λmin

π (λminc)− f

]
g(c)dc.

According to our assumption, Πe(0) > fe > 0 = Πe(∞). This means that equation (6.8) has a

solution M∗
e > 0. This completes the proof.

The Proof of Proposition 3

We proceed in four steps. Until Step 4, we ignore the free-entry condition and treat the mass

Me > 0 of entrants as exogenous. At Step 4, we take (6.8) into account and show that it uniquely

determines Me.

Step 1. Assume there are at least two equilibrium outcomes corresponding to the same value

of Me: {
x∗, c∗, (λ∗(x), c∗(x))x∈[0,x∗]

}
and

{
x∗∗, c∗∗, (λ∗∗(x), c∗∗(x))x∈[0,x∗∗]

}
.

Note that x∗ ̸= x∗∗. Indeed, if x∗ = x∗∗, then c∗ = c∗∗ (since the cutoff curve C is downward-

sloping). Hence, (λ∗(x), c∗(x)) and (λ∗∗(x), c∗∗(x)) are solutions to the same system of ODE

satisfying the same boundary conditions. By Picard’s theorem, this implies that (λ∗(x), c∗(x)) =

(λ∗∗(x), c∗∗(x)) pointwise.

Let us assume without loss of generality that x∗ < x∗∗. Because (x∗, c∗) ∈ C and (x∗∗, c∗∗) ∈ C,

x∗ < x∗∗ implies that c∗ > c∗∗. Since
{
x∗∗, c∗∗, (λ∗∗(x), c∗∗(x))x∈[0,x∗∗]

}
is an equilibrium for given

Me, we have that c∗∗(0) = cmin. Furthermore, (c∗∗)′x (x) > 0. Combining this with x∗ < x∗∗, we

derive the following inequalities:

c∗∗(x∗∗ − x∗) > c∗∗(0) = cmin = c∗(0) = c∗(x∗ − x∗). (6.10)

For each z ∈ [0, x∗], define ∆(z) as follows:

∆(z) ≡ c∗∗(x∗∗ − z)− c∗(x∗ − z). (6.11)

As has been shown, ∆(x∗) > 0. Taking into account that c∗ > c∗∗, ∆(0) < 0. By the intermediate

value theorem, there exists ξ ∈ (0, x∗), such that ∆ (ξ) = 0. Let ξ0 be the smallest of such ξs.

Clearly, we have: c∗∗(x∗∗ − ξ0) = c∗(x∗ − ξ0) and c
∗∗(x∗∗ − z) < c∗(x∗ − z) for all z < ξ0.

Step 2. Next, we show that

λ∗∗(x∗∗ − ξ0) > λ∗(x∗ − ξ0). (6.12)

Using (3.14) yields (recall that λ∗∗(x∗∗) = λmin = λ∗(x∗))
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(λ∗∗(x∗∗ − z))′z
∣∣
z=0

= a (x∗∗)λminM (λminc
∗∗) > a (x∗)λminM (λminc

∗) = (λ∗(x∗ − z))′z
∣∣
z=0

,

which holds true because a′(x) ≥ 0, c∗ > c∗∗, and the markup function M (·) is strictly decreasing.

Furthermore, we have:

(λ∗∗(x∗∗ − z))′z
∣∣
z=0

> (λ∗(x∗ − z))′z
∣∣
z=0

> 0.

Thus, λ∗∗ (x∗∗ − z) > λ∗ (x∗ − z) holds true for sufficiently small values of z.

Assume that there is some ξ1 ∈ (0, ξ0), such that λ∗∗(x∗∗ − ξ1) = λ∗(x∗ − ξ1), while λ
∗∗(x∗∗ −

z) > λ∗(x∗ − z) for all z < ξ1. Denote λ1 ≡ λ∗(x∗ − ξ1). Differentiating the log of the ratio

λ∗∗(x∗∗− z)/λ∗(x∗− z) w.r.t. z at z = ξ1 yields (recall that, from the previous step, c∗∗(x∗∗− z) <

c∗(x∗ − z) for all z < ξ0):

[
ln

(
λ∗∗(x∗∗ − z)

λ∗(x∗ − z)

)]′
z

∣∣∣∣
z=ξ1

= a (x∗∗ − ξ1)M (λ1c
∗∗ (x∗∗ − ξ1))− a (x∗ − ξ1)M (λ1c

∗(x∗ − ξ1)) > 0.

By continuity,
[
ln
(

λ∗∗(x∗∗−z)
λ∗(x∗−z)

)]′
z
> 0 must hold for any z ∈ (ξ1 − ε, ξ1), where ε > 0 is sufficiently

small. Hence, the ratio λ∗∗(x∗∗− z)/λ∗(x∗− z) increases over (ξ1 − ε, ξ1) and strictly exceeds 1 at

z = ξ1 − ε. Thus, λ∗∗(x∗∗ − ξ1)/λ
∗(x∗ − ξ1) also strictly exceeds 1, i.e. λ∗∗(x∗∗ − ξ1) > λ∗(x∗ − ξ1).

Based on that, we conclude that ξ1 does not exist. This proves (6.12).

Step 3. Differentiating the function ∆(z) defined by (6.11) at z = ξ0, we obtain:

∆′
z(ξ0) = − 1

Meg (c∗0)

[
(V ′)−1 (1/λ∗∗0 )

u (q (λ∗∗0 c
∗
0))

− (V ′)−1 (1/λ∗0)

u (q (λ∗0c
∗
0))

]
< 0. (6.13)

where c∗0 ≡ c∗(x∗ − ξ0) = c∗∗(x∗∗ − ξ0), λ
∗
0 ≡ λ∗(x∗ − ξ0), and λ

∗∗
0 ≡ λ∗∗(x∗∗ − ξ0). The inequality

(6.13) holds true because, by (6.12), we have λ∗∗0 > λ∗0, while the function (V ′)−1 (1/λ) /u (q (λc))

increases in λ for any given c > cmin. However, by definition of ξ0, ∆(z) must change sign from

negative to positive at z = ξ0. Hence, it must be true that ∆′
z(ξ0) ≥ 0. This contradicts (6.13)

and implies that, for any fixed value of Me, there is a unique equilibrium outcome corresponding

to this value of Me.

Step 4. To finish the proof of uniqueness, it remains to show that dΠe(Me)/dMe < 0 for any

Me > 0. Let us define

N(c,Me) ≡
l(x∗(c,Me))

λ∗(c,Me)
π (λ∗(c,Me)c) .

Then, we have:
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dΠe(Me)

dMe

=

c∗(Me)�

cmin

∂N(c,Me)

∂Me

g(c)dc+ [N(c∗(Me),Me)− f ]
dc∗(Me)

dMe

,

where the last term equals zero due to the cutoff condition. Hence,

dΠe(Me)

dMe

=

c∗(Me)�

cmin

∂N(c,Me)

∂Me

dG(c).

Thus, a sufficient condition for dΠe(Me)/dMe < 0 for any Me > 0 is given by

∂N(c,Me)

∂Me

< 0 for any Me > 0 and any c ∈ [cmin, c
∗(Me)] .

It is straightforward to see that, due to the envelope theorem, the latter is hold when

∂λ∗(x,Me)

∂Me

> 0 for any Me > 0 and any x ∈ [0, x∗(Me)] .

In fact, it is sufficient to show that

∂λ∗(x,Me)

∂Me

≥ 0 for any Me > 0 and any x ∈ [0, x∗(Me)]

and ∂λ∗(x,Me)/∂Me > 0 on some non-zero measure subset of [0, x∗(Me)]. The rest of the proof

amounts to establishing the latter statement.

Assume that, on the contrary, for some Me > 0, there exists a compact interval [x1, x2] ⊆
[0, x∗(Me)], such that ∂λ∗(x,Me)/∂Me ≤ 0 for all x ∈ [x1, x2]. Without loss of generality, let us also

assume that [x1, x2] cannot be extended further without violating the condition ∂λ∗(x,Me)/∂Me ≤
0 (otherwise, we can replace it with a larger one). We will therefore refer to [x1, x2] as a non-

extendable interval. We consider several possible cases.

Case 1: Assume that x1 = 0. In this case, we have: c∗(x1,Me) = cmin, hence ∂c
∗(x1,Me)/∂Me =

0. Recall that
dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(qx)
.

Since ∂λ∗(x1,Me)/∂Me ≤ 0, ∂c∗(x1,Me)/∂Me = 0, and Me rises, ∂ (c∗)′x (x1,Me)/∂Me < 0

(the right-hand side of the above equation decreases at x1 = 0 with a rise in Me). Note that

∂c∗(x1,Me)/∂Me = 0 and ∂ (c∗)′x (x1,Me)/∂Me < 0 imply that ∂c∗(x,Me)/∂Me < 0 in some right

neighborhood of x1 = 0.

Case 2: Assume that x2 = x∗(Me). We have λ∗(x∗(Me),Me) = λmin. This implies that

∂λ∗(x∗(Me),Me)

∂x

dx∗(Me)

dMe

+
∂λ∗(x∗(Me),Me)

∂Me

= 0.
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The second term in the left-hand side of the above equation is non-positive (as assumed). Recall

that λ∗(x,Me) is strictly decreasing in x. As a result, dx∗(Me)/dMe ≤ 0. Combining this with the

fact (x∗(Me), c
∗(Me)) ∈ C, where C is the downward sloping cutoff curve, we get: dc∗(Me)/dMe ≥

0. That is,
∂c∗ (x∗(Me),Me)

∂x

dx∗(Me)

dMe

+
∂c∗ (x∗(Me),Me)

∂Me

≥ 0,

where the first term is non-positive because, as shown above, dx∗(Me)/dMe ≤ 0, while

∂c∗ (x∗(Me),Me) /∂x > 0. Hence, the second term, ∂c∗ (x∗(Me),Me) /∂Me, must be non-

negative. If ∂c∗ (x∗(Me),Me) /∂Me = 0, then one can show that ∂ (c∗)′x (x
∗(Me),Me)/∂Me < 0.

Here, we use again the fact that
dc

dx
=

1

Me

(V ′)−1 (1/λ)

g(c)u(qx)
.

This in turn implies that ∂c∗ (x∗(Me),Me) /∂Me > 0 in some left neighborhood of x2 = x∗(Me).

Case 3: Assume that 0 < x1 < x2 < x∗(Me). Because [x1, x2] is non-extendable, there exists

a small open left half-neighborhood N1 of x1, and a small right half-neighborhood N2 of x2, such

that ∂λ∗ (x,Me) /∂Me > 0 for all x ∈ N ≡ N1 ∪N2. Hence, for a c-type firm where c = c∗ (x,Me)

with x ∈ [x1, x2], relocating marginally beyond [x1, x2] in response to a marginal increase in Me is

not profit-maximizing behavior. Indeed, that ∂λ∗ (x,Me) /∂Me ≤ 0 over [x1, x2] means that the

profit function increases uniformly over [x1, x2], while ∂λ
∗ (x,Me) /∂Me > 0 for all x ∈ N means

that relocating from [x1, x2] into N would lead to a reduction of maximum feasible profit.23 This

immediately imply that
∂c∗(x1,Me)

∂Me

≤ 0,
∂c∗(x2,Me)

∂Me

≥ 0.

Moreover, for j = 1, 2 we have (the proof is the same as in the previous cases)

∂c∗(xj,Me)

∂Me

= 0 ⇒ ∂ (c∗)′x (xj,Me)

∂Me

< 0.

The findings in the above cases allow us to formulate the following important result. There ex-

ists a location x4 in an arbitrary small right half-neighborhood of x1, such that ∂c∗(x4,Me)/∂Me <

0. Similarly, there exists a location x5 in an arbitrary small left half-neighborhood of x2, such that

∂c∗(x5,Me)/∂Me > 0.

By the intermediate value theorem, there must exist a location x3 ∈ (x4, x5) ⊂ [x1, x2] such

that
∂c∗(x3,Me)

∂Me

= 0,
∂ (c∗)′x (x3,Me)

∂Me

≥ 0.

23One may wonder why no firm would relocate from [x1, x2] to somewhere beyond N in response to a marginal
increase of Me. This would mean, for at least some firm type c, that the firm’s profit-maximizing location choice
x∗(c,Me) has a discontinuity in Me. However, by the maximum theorem (Sundaram 1996), x∗(c,Me) must be
upper-hemicontinuous in Me. Furthermore, by strict quasi-concavity of the profit function, x∗(c,Me) is single-
valued. For single-valued mappings, upper-hemicontinuity implies continuity. Hence, x∗(c,Me) cannot exhibit
discontinuities.
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The non-negative sign of the derivative follows from the fact that c∗(x,Me) is increasing in x. This

in turn implies that the derivative of

1

Me

(V ′)−1 (1/λ∗(x3,Me))

g(c∗(x3,Me))u(q(λ∗(x3,Me)c∗(x3,Me)))

with respect to Me is non-negative. That is, the derivative of

(V ′)−1 (1/λ∗(x3,Me))

g(c∗(x3,Me))u(q(λ∗(x3,Me)c∗(x3,Me)))

with respect to Me is strictly positive. This means that ∂λ∗ (x3,Me) /∂Me > 0 (recall that

∂c∗(x3,Me)/∂Me = 0). However, since x3 ∈ [x1, x2], it must be that ∂λ∗(x3,Me)/∂Me ≤ 0, which

is a contradiction. This completes the proof of uniqueness of the equilibrium.

The proof of Proposition 4

To prove the proposition, we use the equilibrium conditions for λ′(x) and c′(x). Specifically, from

(3.11) and (3.9),

λ′(x) =
l′(x)λ(x)

l(x)

p(x, c(x))− c(x)

p(x, c(x))
,

Meg (c(x)) c
′(x)u (q(x, c(x))) = (V ′)

−1
(1/λ(x)) ⇐⇒ c′(x) =

(V ′)−1 (1/λ(x))

Meg (c(x))u (q(x, c(x)))
.

Hence,

(λ(x)c(x))′x = c(x)λ′(x) + λ(x)c′(x)

=
λ(x)

g (c(x))

[
c(x)g (c(x))

l′(x)

l(x)

p(x, c(x))− c(x)

p(x, c(x))
+

(V ′)−1 (1/λ(x))

Meu (q(x, c(x)))

]
.

Consider,

(λ(x)c(x))′x=0 =
λ(0)

g (cmin)

(
cmin g (cmin)

l′(0)

l(0)

p(0, cmin)− cmin

p(0, cmin)
+

(V ′)−1 (1/λ(0))

Meu (q(0, cmin))

)
.

Since g (c) is a density function, limcmin→0cmin g (cmin) = 0. Hence, if | l′(0) |< ∞, then for

sufficiently low cmin,

cmin g (cmin)
l′(0)

l(0)

p(0, cmin)− cmin

p(0, cmin)
+

(V ′)−1 (1/λ(0))

Meu (q(0, cmin))
> 0.
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Similarly,

(λ(x)c(x))′x=x̄ =
λ(x̄)

g (c̄)

(
c̄ g (c̄)

l′(x̄)

l(x̄)

p(x̄, c̄)− c̄

p(x̄, c̄)
+

(V ′)−1 (1/λ(x̄))

Meu (q(x̄, c̄))

)
.

Note that, as there is the fixed cost of production f , p(x̄, c̄) > c̄. Moreover, λ(x̄) = 1/V ′ (0) in the

equilibrium, implying that (V ′)−1 (1/λ(x̄)) = 0 (this also means that c′(x̄) = 0). As a result, since

l′(x̄) < 0,

c̄ g (c̄)
l′(x̄)

l(x̄)

p(x̄, c̄)− c̄

p(x̄, c̄)
+

(V ′)−1 (1/λ(x̄))

Meu (q(x̄, c̄))
< 0.

To prove the third statement of the proposition, we rewrite (λ(x)c(x))′x in the following way:

(λ(x)c(x))′x =
λ(x)

g (c (x))

(
l′(x)

l(x)
c (x) g (c (x))M(λ(x)c(x)) +

(V ′)−1 (1/λ(x))

Meu (q(λ(x)c(x)))

)
,

where M(.) is the markup function. Let us denote x̃∈ (0, x̄) as an interior extremum of λ(x)c(x):

(λ(x̃)c(x̃))′x = 0. We know that (λ(x)c(x))′x=0 > 0 and (λ(x)c(x))′x=x̄ < 0. Hence, λ(x)c(x) has at

least one interior local maximizer.

Next, we show that, for any x̃, (λ(x̃)c(x̃))′′xx < 0. We have

(λ(x̃)c(x̃))′′xx =
(

λ(x̃)
g(c(x̃))

)′ (
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))M(λ(x̃)c(x̃)) + (V ′)−1(1/λ(x̃))
Meu(q(λ(x̃)c(x̃)))

)
+ λ(x̃)

g(c(x̃))

(
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))M(λ(x̃)c(x̃)) + (V ′)−1(1/λ(x̃))
Meu(q(λ(x̃)c(x̃)))

)′
x
.

Note that the first term in the right hand side of the above formula is equal to zero. Thus, we

have (recall that (λ(x̃)c(x̃))′x = 0)

(λ(x̃)c(x̃))′′xx = λ(x̃)
g(c(x̃))

(
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))M(λ(x̃)c(x̃)) + (V ′)−1(1/λ(x̃))
Meu(q(λ(x̃)c(x̃)))

)′
x

= λ(x̃)
g(c(x̃))

((
l′(x̃)
l(x̃)

c (x̃) g (c (x̃))
)′
x
M(λ(x̃)c(x̃)) +

((V ′)−1(1/λ(x̃)))
′
x

Meu(q(λ(x̃)c(x̃)))

)
.

We have (
l′(x)

l(x)
c(x)g (c(x))

)′

x

=
l′(x)

l(x)
(c(x)g (c(x)))′x + c(x)g (c(x))

(
l′(x)

l(x)

)′

x

< 0,

since c′(x) > 0, g′(c) ≥ 0, and (l′(x)/l(x))′x ≤ 0. At the same time, (V ′)−1 (1/λ(x)) is decreasing

in x as V ′′(·) < 0 and λ′(x) < 0. Hence, (λ(x̃)c(x̃))′′xx < 0.

We now finish the proof of part (iii) of Proposition 3. As derived above, λ(x)c(x) has no
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interior local minimum over (0, x) and at least one interior local maximizer. Assume that λ(x)c(x)

has at least two distinct local maximizers. Then, there must be a local minimizer in between,

which contradicts our above finding. We conclude that λ(x)c(x) is bell-shaped in x, while the

markup function M(λ(x)c(x)) is U -shaped in x. This completes the proof.

The proof of Lemma 2

Note that in this proof it is important that ∂λ(x,Me, δ)/∂δ and ∂c(x,Me, δ)/∂δ are analytic in

x over (0, x), meaning that they can be represented by convergent power series (this is the case,

when, for instance, the primitives in the model are analytic):

∂λ(x,Me, δ)

∂δ
=

∞∑
k=0

ak(Me, δ)x
k,

∂c(x,Me, δ)

∂δ
=

∞∑
k=0

bk(Me, δ)x
k.

This makes the case when ∂λ(x,Me, δ)/∂δ = 0 and ∂(λ)′x(x,Me, δ)/∂δ = 0 at some x impossible.

Why? If this is the case, then ∂c(x,Me, δ)/∂δ = 0 and ∂(c)′x(x,Me, δ)/∂δ = 0 as well implying

that the derivatives of all orders of ∂λ(x,Me, δ)/∂δ w.r.t. x at this point equal to zero. An analytic

function with this property must be identically zero (Courant and John 2012, p. 545). This in turn

means that λ(x) does not change on the whole interval [0, x] when δ changes, which is impossible.

For the same reason, it is not possible that ∂c(x,Me, δ)/∂δ = 0 and ∂(c)′x(x,Me, δ)/∂δ = 0 at

some x.

To simplify the exposition of the proof, we divide it into several parts.

Part 1

In this part, we prove that ∂x(Me, δ)/∂δ > 0. Assume, on the contrary, that ∂x(Me, δ)/∂δ ≤ 0.

Then, because an increase in δ leads to an upward shift of the cutoff curve C, it must be that

∂c(Me, δ)/∂δ > 0. Note also that if ∂x(Me, δ)/∂δ < 0, then (by continuity) λ(x,Me, δ) must

decrease w.r.t. δ in some neighborhood of x (as λ(x,Me, δ) is decreasing in x). If x does not change

with the change in δ, one can derive from (3.14) that ∂
(
− (λ)′x (x,Me, δ)

)
∂δ < 0. This is because

∂c(Me, δ)/∂δ > 0 and λ(x,Me, δ) = λmin. This in turn also means that ∂λ(x,Me, δ)/∂δ < 0 in

some neighborhood of x. That is, if ∂x(Me, δ)/∂δ ≤ 0, λ(x,Me, δ) must decrease w.r.t. δ over

some interval (x1, x). Two cases may arise.

Case 1: x1 = 0. In this case, ∂λ(0,Me, δ)/∂δ < 0. Then, taking into account the boundary

condition c(0,Me, δ) = cmin, it is straightforward to see from the equilibrium condition in (3.15)

that ∂(c)′x(0,Me, δ)/∂δ < 0. This in turn implies that ∂c(x,Me, δ)/∂δ < 0 in the vicinity of

x = 0 (since c(0,Me, δ) = cmin is not affected by δ). As a result, we have the following situation:

given the rise in δ, c(x) falls in the neighborhood of zero and rises in the neighborhood of x as

∂c(Me, δ)/∂δ > 0. This implies that there exists x2 ∈ (0, x) such that ∂c(x2,Me, δ)/∂δ = 0 -

the value of c(x) at x2 is not affected by the rise in δ. Moreover, ∂(c)′x(x2,Me, δ)/∂δ > 0 (as
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c(x) falls around zero). This in turn means (here we use the equilibrium condition in (3.15)) that

∂λ(x2,Me, δ)/∂δ > 0 which contradicts the assumption that ∂λ(x,Me, δ)/∂δ < 0 for all x > 0.

Note that we will use this particular way of deriving the contradiction throughout the whole proof

of the lemma.

Case 2 x1 > 0. In this case, it must be true that ∂λ(x1,Me, δ)/∂δ = 0. Moreover, the absolute

value of the slope of λ(x) at this point increases: ∂ (−(λ)′x(x1,Me, δ)) /∂δ > 0, as ∂λ(x,Me, δ)/∂δ <

0 on (x1, x). In this case, from the equilibrium condition in (3.14) we derive that ∂c(x1,Me, δ)/∂δ <

0. Now, we use the same argument as in the previous case. There exists x3 ∈ (x1, x) such that

∂c(x3,Me, δ)/∂δ = 0 and ∂(c)′x(x3,Me, δ)/∂δ > 0. This in turn implies that ∂λ(x3,Me, δ)/∂δ > 0

which contradicts the assumption that ∂λ(x,Me, δ)/∂δ < 0 for all x > x1.

Thus, we show that ∂x(Me, δ)/∂δ > 0.

Part 2

Next, we show that ∂λ(x,Me, δ)/∂δ > 0 for all x. Assume that, on the contrary, there exists a

non-extendable interval (x4, x5) ⊂ [0, x] such that ∂λ(x,Me, δ)/∂δ ≤ 0 on this interval. Note that

since x rises (implying that ∂λ(x,Me, δ)/∂δ > 0 in some neighborhood of x), x5 < x. Consider

again two cases.

Case 1: x4 > 0. In this case, because (x4, x5) is a non-extendable interval where ∂λ(x,Me, δ)/∂δ <

0, it must be that:

∂λ(x4,Me, δ)

∂δ
= 0 =

∂λ(x5,Me, δ)

∂δ
.

Moreover,

∂
(
− (λ)′x (x4,Me, δ)

)
∂δ

> 0 >
∂
(
− (λ)′x (x5,Me, δ)

)
∂δ

.

In this case, (3.14) implies that

∂c(x4,Me, δ)

∂δ
< 0 <

∂c(x5,Me, δ)

∂δ
.

Hence, there exists x6 ∈ (x4, x5), such that

∂c(x6,Me, δ)

∂δ
= 0,

∂ (c)′x (x6,Me, δ)

∂δ
> 0.

This means that ∂λ(x6,Me, δ)/∂δ > 0, which contradicts the assumption that ∂λ(x,Me, δ)/∂δ ≤ 0

for all x ∈ (x4, x5).

Case 2: x4 = 0. In this case, it can potentially be that ∂λ(0,Me, δ)/∂δ = 0 or ∂λ(0,Me, δ)/∂δ <

0. Note that if ∂λ(0,Me, δ)/∂δ = 0, then ∂(λ)′x(x,Me, δ)/∂δ = 0 (as ∂c(0,Me, δ)/∂δ = 0). As

discussed at the beginning of the proof, this case is impossible. If ∂λ(0,Me, δ)/∂δ < 0, then from
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(3.15), ∂(c)′x(0,Me, δ)/∂δ < 0, meaning that in some neighborhood of zero c(x) falls with the rise

in δ. Then, we use again the logic from the previous case and, thereby, derive the contradiction.

Part 3

The next step is to show that ∂c(x,Me, δ)/∂δ > 0 for all x ∈ (0, x]. Assume that, on the con-

trary, that there exists a non-extendable interval (x7, x8) ⊂ [0, x], such that ∂c(x,Me, δ)/∂δ ≤ 0

on this interval. If x7 = 0, then ∂(c)′x(0,Me, δ)/∂δ ≤ 0 and ∂c(0,Me, δ)/∂δ = 0. In this case,

∂λ(0,Me, δ)/∂δ ≤ 0 which contradicts our previous results. If x7 > 0, then again ∂c(x7,Me, δ)/∂δ =

0 and ∂ (c)′x (x7,Me, δ)/∂δ < 0 (recall that ∂ (c)′x (x7,Me, δ)/∂δ cannot be equal to zero). That is,

we derive the contradiction: ∂λ(x7,Me, δ)/∂δ < 0.

Finally, since ∂c(x,Me, δ)/∂δ > 0, ∂x(Me, δ)/∂δ > 0, and (c)′x > 0, ∂c(Me, δ)/∂δ > 0.

The proof of Proposition 5

(i) Totally differentiating both sides of the FOCs, Πp = 0 and Πx = 0, w.r.t. c yields(
dp(c)/dc

dx(c)/dc

)
= −

(
Πpp Πpx

Πpx Πxx

)−1(
Πcp

Πcx

)
, (6.14)

where the right-hand side is evaluated at (p, x) = (p(c), x(c)). As implied by the FOCs and the

definition of the profit function, we have: Πcp = −Qp > 0, Πcx = −Qx = Πx

p−c
= 0. Plugging these

expressions for Πcp and Πcx back to (6.14) yields(
dp(c)/dc

dx(c)/dc

)
=

1

ΠppΠxx − Π2
px

(
ΠxxQp

−ΠpxQp

)
. (6.15)

Using (6.15) and the chain rule, and taking into account that Qx = 0, we obtain:

dp(c)

dc
=

Πxx

ΠppΠxx − Π2
px

Qp > 0,

d

dc
Q(p(c), x(c)) =

Πxx

ΠppΠxx − Π2
px

Q2
p < 0,

where both inequalities hold due to the SOC. This proves the inequalities in (30).

(ii) The equivalence of the inequality in (31) to dx(c)/dc > 0 follows immediately from (6.15)

and the SOC.
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Some Figures

Figure 8: Basic Units in the City of Bergen

Figure 9: Distribution of population in Bergen

Note: Each dot in the figure represents the number of people living in a certain basic unit of Bergen divided by
the basic unit area.
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