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Can we distinguish between common nonlinear time series models and

long memory?

Heri Kuswanto and Philipp Sibbertsen1

Leibniz Universität Hannover, Department of Economics, Institute of Statistics

Abstract

We show that specific nonlinear time series models such as SETAR, LSTAR,

ESTAR and Markov switching which are common in econometric prac-

tice can hardly be distinguished from long memory by standard methods

such as the GPH estimator for the memory parameter or linearity tests

either general or against a specific nonlinear model. We show by Monte

Carlo that under certain conditions, the nonlinear data generating pro-

cess can have misleading either stationary or non-stationary long memory

properties.

KEYWORDS: Nonlinear models, long - range dependencies

JEL - classifications: C12, C22

1 Introduction

Long memory attracts attention among practical and theoretical econometricians in

the recent years. In econometrics it is mainly applied to model financial time series

such as volatilities of stock returns and exchange rate dynamics.

1Corresponding author, Email: sibbertsen@statistik.uni-hannover.de



However, so far it is not clear whether the evidence of long - range dependencies

in economic time series is due to a real long memory or whether it is because of other

phenomena such as structural breaks. Recent works show that structural instabil-

ity may produce spurious evidence of long memory. Dieblod and Inoue(2001) show

that stochastic regime switching can easily be confused with long memory. Davidson

and Sibbersten(2005) prove that the aggregation of processes with structural breaks

converges to a long - memory process. For an overview about the problem of misspec-

ifying structural breaks and long - range dependence see Sibbertsen(2004). Whereas

these papers consider regime switching in the sense of a structural break in the mean

of the process there can be many other ways of regime switching leading to the various

nonlinear models such as TAR, STAR or Markov - Switching which are considered

in this paper. Carasso (2002) shows that simply testing for structural breaks might

lead to a wrong usage of linear models although the true data generating process is

a nonlinear Markov Switching model.

Granger and Ding (1996) pointed out that there are a number of processes which

can also exhibit long memory, including generalized fractionally integrated models

arising from aggregation, time changing coefficient models and nonlinear models as

well. Granger and Teräsvirta (1999) demonstrate that by using the fractional dif-

ference test of Gewecke and Porter - Hudak (1983), a simple nonlinear time series

model, which is basically a sign model, generates an autocorrelation structure which

could easily be mistaken to be long memory. In this paper, we examine specific non-

linear time series models which are short memory and show by Monte Carlo that

they can hardly be distinguished from long memory by standard methodology. In

order to do this we estimate the long memory parameter by applying the Gewecke

and Porter - Hudak(1983) (further on denoted by GPH) estimator to the nonlinear

SETAR, LSTAR, ESTAR and Markov switching model. It turns out that not ac-

counting for the nonlinear structure will bias the GPH estimator and give evidence
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of long memory. On the other hand we generate linear long memory time series and

apply linearity tests to them. We apply the general Teräsvirta Neural Network test

as well as linearity tests constructed specially for the considered nonlinear models.

It turns out that none of these tests can correctly specify the linear structure of the

long memory process. All of these tests are biased towards a rejection of linearity.

As a result nonlinearity and long - range dependence are two phenomena which can

easily be misspecified and standard methodology is not able to distinguish between

these phenomena.

This paper is organised as follows. Section 2 presents briefly the concept of long

memory, an overview of the nonlinear time series models used in this paper is given

in section 3. The results of our Monte Carlo study are presented in section 4 and 5

and section 6 concludes.

2 Long memory, GPH estimator and rescaled vari-

ance test

Long memory or long-range dependence means that observations far away from each

other are still strongly correlated. A stationary time series Yt, t = 1, . . . , T exhibits

long memory or long-range dependence when the correlation function ρ(k) behaves

for k →∞ as

lim
k→∞

ρ(k)

cρk2d−1
= 1 (1)

Here cρ is a constant and d ∈ (0, 0.5) denotes the long memory parameter. The

correlation of a long memory process decays slowly that is with a hyperbolic rate.

For d ∈ (−0.5, 0) the process has short memory. In this situation the spectral density

is zero at the origin and the process is said to be antipersistent. For d ∈ (0.5, 1)

the process is non-stationary but still mean reverting. Further discussion about long
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memory can be found for example in Beran (1994).

A popular semiparametric procedure of estimating the memory parameter d is the

GPH estimator introduced by Geweke / Porter-Hudak (1983). It is based on the first

m periodogram ordinates

Ij =
1

2πN
|

N∑
t−1

Yt exp(iλjt)|2 (2)

where λj = 2πj/N and m is a positive integer smaller than N . The idea is to estimate

the spectral density by the periodogram and to take the logarithm on both sides of

the equation. This gives a linear regression model in the memory parameter which

can be estimated by least squares.

The estimator is given by −1/2 times the least squares estimator of the slope pa-

rameter in the regression of {log Ij : j = 1, . . . ,m} on a constant and the regressor

variable

Xj = log |1− exp(−iλj)| =
1

2
log(2− 2 cos λj). (3)

By definition the GPH estimator is

d̂GPH =

−0.5
m∑

j=1

(Xj − X̄) log Ij

m∑
j=1

(Xj − X̄)2

(4)

where X̄ = 1
m

m∑
j=1

Xj.

This estimator can be motivated using the model:

log Ij = log cf − 2dXj + log ξj (5)

where Xj denotes the j-th Fourier frequency and the ξj are identically distributed

error variables with −E[log ξj] = 0.577, known as Euler constant. Besides simplicity
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another advantage of the GPH-estimator is that it does not require a knowledge about

further short-range dependencies in the underlying process. Referring to Hurvich et

al. (1998) to get the optimal MSE, we include o(N0.8) frequencies in the regression

equation.

As an alternative to the GPH estimator we also apply a nonparametric V/S test

proposed by Giraitis et al. (2003) to the series. The V/S statistic has better power

properties than either the R/S statistic by Mandelbrot/Wallis(1969) or the modified

R/S of Lo (1991). Defining S∗k =
∑k

j=1(Xj − X̄) as the partial sums of the obser-

vations with the sample variance V̂ ar(S∗1 , ..., S
∗
N) = N−1

∑N
j=1(S

∗
j − S̄∗N)2, the V/S

statistic is given by

QN = N−1 V̂ ar(S∗1 , ..., S
∗
N)

ŝ2
N,q

(6)

with

ŝ2
N,q =

1

N

N∑
j=1

(Xj − X̄N)2 + 2

q∑
j=1

ωj(q)γ̂j. (7)

In (7), ωj(q) = 1 − j
q+1

are the Bartlett weights. The clasical R/S statistic of Man-

delbrot/Wallis (1969) corresponds to q = 0. We consider the statistic for several

different values of q including the optimal q proposed by Andrews(1991).

3 Nonlinear time series models

Nonlinear time series models have become popular in recent years and are widely used

in applied macroeconometrics. This paper analyzes three types of models that are

most commonly used in nonlinear modelling particularly in modelling economic and

financial time series. These include self exciting threshold autoregressive (SETAR),

smooth transition autoregressive (STAR) and Markov switching models. These are

regime switching models. They share the property of being mean reverting with a
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long - memory process and they also mimic the persistence of long - range dependent

models by exhibiting only short - range dependencies. Therefore, these models are

natural candidates to be misspecified with long memory. In the following they are

briefly introduced.

The SETAR model by Tong(1983) has been widely considered in the econometric

literature as it is a very simple though extremely flexible nonlinear time series model.

A time series Yt is said to be a self-exciting threshold autoregressive (SETAR) process

if it follows the model

Yt = Φ
(j)
0 Yt−1 + a

(j)
t , cj−1 ≤ Yt−l < cj (8)

where j = 1, . . . , k and l is the lag parameter. The thresholds are −∞ = c0 < c1 <

. . . < ck = ∞. SETAR models drive the regime switching by themselves by looking

in which interval the observations with lag l are. However, the switches are rapid.

Since for p ≥ 2 these models can mimic a cyclical behaviour, they are expected to be

particularly applicable to series with a strong cyclical component. Tong(1990) gives

a thorough discussion of these models.

The smooth transition autoregressive (STAR) model is a regime switching model

similar to the SETAR model but allowing for a smooth transition between the regimes.

It has been considered in detail for example by Teräsvirta(1994). Generally, a STAR

process of order p is defined by

yt = φ′xt[1−G(st; γ, c)] + θ′xtG(st; γ, c) + at, (9)

where x′t = (1, yt−1, . . . , yt−p) is an ((p + 1) × 1) vector containing lagged values of

yt and φ′ = (φ0, φ1, . . . , φp) and θ′ = (θ0, θ1, . . . , θp) are parameter vectors of the

same dimension. at is a Gaussian white noise, G(st, γ, c) is the transition function

governing the movement from one regime to another and st is a transition variable

so that st = yt−l.

According to Taylor, Peel and Sarno (2001), the transition variable is commonly
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chosen to be lagged by one period that is l = 1. This is what we use in this paper

as well. The variable γ determines the degree of curvature of the transition function

and c is a threshold parameter.

The exponential transition function can be written as:

G(st; γ, c) = 1− exp{−γ(st − c)2} (10)

with γ > 0. The limiting cases are limγ→∞G(st; γ, c) = 0 and limγ→∞G(st; γ, c) = 1.

Generally speaking, the transition function could be either a logistic function (result-

ing in LSTAR), or an exponential function (resulting in ESTAR). And the logistic

transition function can be written as :

G(st; γ, c) =
1

1 + exp(−γ(st − c))
. (11)

This function is asymmetric as it does not depend on the fact that the transition

variable moves above or below the threshold. The parameter γ controls the degree of

nonlinearity. When γ → 0, the transition function tends towards 0, and the model will

be a simple autoregressive process. When γ →∞, the transition function converges

towards unity, which implies that the model is a different autoregressive model with

coefficients equal to the mean of the autoregressive parameters of the two regimes. A

survey about recent developments related to STAR models can be found in van Dijk

et al. (2002).

The last class of regime switching models we consider in this paper are Markov switch-

ing models developed by Hamilton (1989). In this model class, nonlinearities arise

as discrete shifts between the regimes. Most importantly these shifts are breaks in

the mean of the process. By permitting switching between N regimes, in which the

dynamic behaviour of series is markedly different, more complex dynamic patterns

can be described.

In the following we will focus on a two-regime Markov switching AR model of order
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one. The general form of the model is given by

yt = αs(t) + φs(t)(L)yt−1 + σs(t)at (12)

where st is an m-state Markov chain taking values 1, . . . ,m, with transition matrix

P . φi(L), i = 1, . . . ,m is a lag polynomial of order p1, . . . , pm respectively.

The switching mechanism is controlled by an unobservable state variable that follows

a first order Markov chain. Thus, the probability that the state variable st equals

some particular value j depends on the past only through the most recent value st−1:

P{st = j|st−1 = i, st−2 = k, . . .} = P{st = j|st−1 = i} = pij (13)

The transition probability pij gives the probability that state i will be followed by

step j.

Investigating whether nonlinear models can be misspecified as long memory contains

two steps. First, we show that nonlinearity leads to a bias in estimators for the

memory parameter. Second, we show that standard linearity tests reject the null of

a linear process when the data exhibits long - range dependence.

4 Testing for long memory

In this section, we simulate various data generating processes from the above nonlin-

ear time series models, apply the V/S test and estimate the long memory parameter.

All nonlinear models considered in our Monte Carlo study are stationary and short

- range dependent. The autoregressive order is chosen to be one. Each model is

simulated with 1000 replications and different sample sizes of N = 250 and N = 600

after discarding the first 200 observations to minimize the effect of the initial value

of the simulated series. The error terms are modeled to be nid (0, σ2
ε).

This procedure is used to investigate whether the considered short memory nonlinear

models could be detected as to exhibit long memory. We apply the V/S test to
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the models and compute the rejection probabilities. When applying the V/S test

we do this for several values of q = 0, 5, 10, 25 and the q following Andrews(1991).

They are denoted by q1, q2, q3, q4 and q5 respectively. It should be kept in mind when

interpreting the simulation results below that by construction of the V/S - test the

rejection probability decreases for an increasing value of q.

For our simulation experiments we at first consider the simple 2 regimes SETAR

process as follows:

yt =

 φ1yt−1 + at if yt−1 ≤ 0

φ2yt−1 + at if yt−1 > 0
(14)

and we restrict our consideration on stationary nonlinear processes. We use φ1 = −φ2.

The table below presents the rejection probabilities of the V/S test. All rejection

probabilities are given to the 5% level.

Table 1: Rejection probabilities of V/S test for the SETAR process

N = 250 N = 600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.05 0.045 0.034 0.012 0.04 0.054 0.05 0.047 0.031 0.037

0.2 0.061 0.047 0.031 0.01 0.049 0.069 0.055 0.049 0.038 0.04

0.3 0.084 0.04 0.034 0.005 0.041 0.082 0.053 0.05 0.043 0.044

0.4 0.112 0.05 0.036 0.008 0.041 0.107 0.055 0.049 0.034 0.052

0.5 0.148 0.049 0.04 0.011 0.055 0.172 0.066 0.06 0.032 0.063

0.6 0.23 0.065 0.048 0.006 0.047 0.26 0.072 0.049 0.036 0.063

0.7 0.408 0.071 0.046 0.013 0.061 0.424 0.103 0.074 0.043 0.076

0.8 0.687 0.138 0.071 0.012 0.037 0.645 0.142 0.075 0.039 0.085

0.9 0.944 0.309 0.13 0.019 0.019 0.969 0.321 0.177 0.053 0.084

For q1, which is the classical R/S test, the test tends to reject the null hypothesis too

often under both sample sizes. The rejection probability increases with an increasing

autoregressive parameter. Using small lags (q1, q2 and q3) the test has a strong bias

towards rejecting the nonlinear short memory null hypothesis. The longer the lag
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q, the lower is the probability to reject the null in general as we expected. We see

that q4 has the lowest probability compared to the others. Interestingly, q5 which

is considered to be the optimal q rejects the null hypothesis with a probability of

around 5% and therefore gives reasonable values.

The following table presents the GPH estimator in order to see whether the GPH

estimator is biased towards long memory2.

Table 2: GPH estimator for the SETAR process

N = 250 N = 600

φ1 = −φ2 d t− stat d t− stat

0.1 -0.004 -2.5468 -0.0024 -1.5664

0.2 0.0109 5.3870 0.0097 5.9102

0.3 0.0342 15.257 0.0215 14.0443

0.4 0.0662 32.3718 0.0481 31.6628

0.5 0.1137 51.3184 0.0865 53.6984

0.6 0.1676 73.9037 0.1428 87.9102

0.7 0.2566 108.9098 0.2199 126.8156

0.8 0.3750 148.9203 0.3419 183.3246

0.9 0.5360 203.8089 0.5291 287.3747

It can be seen that the GPH estimator indicates either stationary or non-stationary

long memory for the SETAR process. In most cases the GPH estimator is in the

stationary long memory region. Only for φ1 = −φ2 = 0.1, the GPH estimator is not

significantly different from zero according to the t - statistic. The memory parame-

ter increases with the autoregressive parameter. Increasing the sample size does not

reduce the bias significantly.
2We use m = o(N0.8) as number of frequencies employed for the estimation as Hurvich et al

(1998) proved that this rate results in an optimal MSE. However, we did also the simulation with

m = N0.5 as originally proposed by Geweke/Porter-Hudak (1983) for a comparison. The results

indicate that the GPH estimator might be biased towards long memory for a higher amount of

frequencies used. This is in line with the findings of Davidson and Sibbertsen (2006)
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As the GPH estimator is computed by means of the periodogram it seems useful to

compare the periodograms of the nonlinear process and the long - memory process.

The upper panel of Figure 4 in the appendix presents a sample ACF plot and the

periodogram of the SETAR model with φ1 = −φ2 = 0.8. The lower panel shows the

ACF and the periodogram of a long - memory process with the same memory pa-

rameter d = 0.3419 as estimated above. The periodograms of these two DGPs do not

show much significant difference. The periodogram of the nonlinear process seems to

be more flat near the origin. However, the ACF of the SETAR model shows even

more pronounced correlations than the ACF of the long memory process indicating

also long term correlations in the nonlinear time series model.

After considering SETAR models we examine both types of STAR models, LSTAR

as well as ESTAR. We use the transition variable st = yt−1 and c = 0. The degree

of non-linearity in the LSTAR / ESTAR model is determined by the parameter γ

in the transition function. Thus, we use two values of γ to examine the behavior

of the GPH estimator depending on the transition function. The parameters under

consideration are γ = 5 and γ = 25.

The model equation for the LSTAR or ESTAR series is given by:

yt = φ1yt−1 − (φ1 − φ2)yt−1F (yt−1, γ) + at. (15)

The tables below give the results for the V/S test for ESTAR processes with both γ3.
3We do not present the results for the LSTAR processes since they are similar to the ESTAR

results.
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Table 3: Rejection probabilities of V/S test for ESTAR (γ = 5)

N=250 N=600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.102 0.044 0.03 0.008 0.05 0.087 0.05 0.049 0.038 0.058

0.2 0.154 0.065 0.052 0.013 0.051 0.154 0.072 0.054 0.043 0.057

0.3 0.221 0.051 0.033 0.006 0.052 0.277 0.068 0.048 0.036 0.065

0.4 0.396 0.082 0.061 0.01 0.06 0.362 0.07 0.051 0.042 0.069

0.5 0.511 0.094 0.062 0.015 0.069 0.536 0.09 0.057 0.031 0.06

0.6 0.679 0.124 0.063 0.017 0.048 0.722 0.139 0.078 0.05 0.058

0.7 0.849 0.179 0.082 0.019 0.044 0.858 0.189 0.107 0.052 0.063

0.8 0.969 0.29 0.139 0.027 0.042 0.978 0.339 0.168 0.064 0.064

0.9 0.998 0.587 0.335 0.056 0.025 1 0.665 0.387 0.144 0.06

Table 4: Rejection probabilities of V/S test for ESTAR (γ = 25)

N=250 N=600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.098 0.05 0.041 0.014 0.05 0.099 0.054 0.048 0.038 0.058

0.2 0.163 0.053 0.042 0.012 0.054 0.167 0.059 0.05 0.034 0.062

0.3 0.274 0.057 0.031 0.003 0.051 0.283 0.072 0.051 0.039 0.061

0.4 0.392 0.098 0.057 0.012 0.056 0.384 0.084 0.06 0.043 0.06

0.5 0.548 0.103 0.049 0.01 0.063 0.565 0.108 0.068 0.046 0.049

0.6 0.676 0.116 0.058 0.013 0.07 0.738 0.165 0.099 0.062 0.075

0.7 0.869 0.185 0.08 0.015 0.062 0.894 0.236 0.128 0.065 0.073

0.8 0.972 0.305 0.146 0.023 0.058 0.986 0.386 0.205 0.079 0.072

0.9 0.999 0.61 0.332 0.06 0.034 1 0.684 0.389 0.137 0.053

Again, the classical R/S test fails to detect the short memory property for all consid-

ered nonlinear processes. Similar to the results of the V/S test for SETAR processes,

the rejection probability increases with the autoregressive parameter. For the lag

length q5 the null hypothesis is rejected with a probability around 5% though usu-

ally a bit higher in almost all cases. For the lag length q4 the test shows a better
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performance but the probability still reaches values above 5% for high autoregressive

parameters and a large sample size. This seems also to be rather an artefact of the

V/S statistic. Interestingly, changing the transition functions does not change the

rejection probability.

Table 5: GPH estimator for the ESTAR process (γ = 5)

N = 250 N = 600

φ1 = −φ2 d t− stat d t− stat

0.1 0.0309 11.9327 0.0244 14.5522

0.2 0.0777 30.8505 0.0647 36.5351

0.3 0.1385 54.9238 0.1095 62.9958

0.4 0.2043 78.5431 0.1717 98.3033

0.5 0.2856 111.5377 0.2399 140.2350

0.6 0.3713 181.1988 0.3244 182.7908

0.7 0.4780 227.128 0.4294 242.483

0.8 0.6057 141.1256 0.5611 309.304

0.9 0.7679 290.485 0.7344 404.768

Table 6: GPH estimator for the ESTAR process (γ = 25)

N = 250 N = 600

φ1 = −φ2 d t− stat d t− stat

0.1 0.02965 11.4185 0.0263 15.1419

0.2 0.0888 34.9036 0.0689 40.4176

0.3 0.1536 60.7541 0.1219 73.4514

0.4 0.2178 83.0316 0.1812 104.261

0.5 0.3043 118.4546 0.2545 154.1513

0.6 0.3929 152.4049 0.3427 191.467

0.7 0.4999 182.6267 0.4484 249.69

0.8 0.6261 240.7276 0.5782 322.25

0.9 0.7729 292.6791 0.7426 419.5613

Table 5 and 6 show that the GPH estimator is biased towards long memory either
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stationary or non-stationary depending on the parameter settings for the ESTAR

model. Furthermore, even doubling the sample size (increasing the sample from 250

to 600) does not decrease the bias significantly. These results are also robust against

changing the γ parameter in the transition function. This confirms the simulation

results of Choi and Wohar (1992) which investigate the performance of the GPH

estimator if the DGP is a stationary AR(1) process. The GPH estimator is seriously

biased with an increasing bias for an increasing value of the autoregressive parameter,

even for a relatively large sample size.4

Figure 5 in the appendix shows the ACF and periodograms of an ESTAR and LSTAR

process with γ = 5, φ1 = −φ2 = 0.6 and a true long memory process generated by

using the according memory parameter as estimated above (d = 0.3427). All peri-

odograms show a clear long memory behaviour which is shown by the negative slope

of the fitted line. However,the ESTAR process shows the most pronounced peak in

the periodogram near the origin indicating some long - memory behaviour. The sam-

ple ACFs can hardly be distinguished. However the ACF of the true long memory

process seems to decay hyperbolically for the first few lags.

Finally, we investigate the behaviour of the GPH estimator when the true DGP is a

Markov switching model. The DGP in this section is simulated based on the general

Markov switching process:

yt =

 φ1yt−1 + at if St = 1

φ2yt−1 + at if St = 2
(16)

with ut ∼ NID(0, 1)

In line with other considered nonlinear models, we set φ1 = −φ2 in all of our simula-

tions in order to generate a stationary nonlinear process. The transition probabilities
4Choi and Wohar (1992) consider a stationary AR(1) process and use N0.5 frequencies for their

simulation.
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are taken from Hamilton (1989), which are P = (0.1, 0.25, 0.75, 0.9).

Table 7: Rejection probabilities of the V/S test for Markov switching processes

N=250 N=600

φ1 = −φ2 q1 q2 q3 q4 q5 q1 q2 q3 q4 q5

0.1 0.065 0.041 0.03 0.008 0.045 0.064 0.052 0.045 0.037 0.047

0.2 0.109 0.047 0.034 0.007 0.047 0.12 0.066 0.057 0.041 0.049

0.3 0.147 0.05 0.034 0.009 0.038 0.128 0.062 0.05 0.038 0.059

0.4 0.227 0.062 0.039 0.009 0.048 0.229 0.088 0.067 0.038 0.058

0.5 0.306 0.077 0.046 0.006 0.037 0.321 0.099 0.068 0.049 0.083

0.6 0.431 0.116 0.067 0.015 0.041 0.462 0.121 0.079 0.056 0.095

0.7 0.551 0.138 0.055 0.008 0.05 0.607 0.177 0.108 0.069 0.099

0.8 0.723 0.175 0.087 0.013 0.052 0.759 0.196 0.101 0.05 0.157

0.9 0.873 0.3 0.137 0.019 0.03 0.893 0.35 0.172 0.069 0.174

From table 7 we see that the result of the V/S test has a similar tendency as the

previous results. However, for Markov switching models the rejection probabilities

for q5 are relatively higher and reach 0.174 for a sample size of N = 600.

Table 8: GPH estimator for Markov switching processes

N = 250 N = 600

φ1 = −φ2 d t− stat d t− stat

0.1 0.0245 11.8715 0.0159 10.2812

0.2 0.0585 27.7900 0.0449 28.6479

0.3 0.0903 40.4370 0.0821 52.2730

0.4 0.1231 51.2194 0.1272 79.0536

0.5 0.1586 61.0404 0.1839 112.041

0.6 0.1952 70.9674 0.2407 144.956

0.7 0.2325 80.5741 0.3136 179.8552

0.8 0.2691 91.5120 0.3916 214.0388

0.9 0.3040 97.4647 0.4774 249.6712
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The GPH estimator does not show any surprising result. It is biased towards sta-

tionary long memory and increases with the autoregressive parameter but with a

relatively slow rate. However, the bias increases with the sample size for a very small

amount in contrast to the other processes. These results therefore confirm Smith

(2002) who shows that the GPH estimator is substantially biased for a stationary

Markov switching process which does not contain long memory.

To investigate the impact of the transition probabilities to the GPH estimator, we

consider another Markov process by considering the various P values given above and

the parameter setting φ1 = −φ2 = 0.9. We use this autoregressive parameter, since

it leads to a higher bias of the GPH estimator and therefore shows the relevant effect

more clearly. Table 9 presents the results for the considered process.

Table 9: GPH estimator for the Markov switching process

N = 250 N = 600

P11 = P22 d t− stat d t− stat

0.1 -0.1363 -61.264 -0.4441 -223.5914

0.2 -0.1099 -45.2729 -0.3314 -156.9377

0.3 -0.070 -27.990 -0.2216 -102.034

0.4 -0.0437 -16.5335 -0.1174 -52.1006

0.5 -0.0064 -2.4088 -0.0081 -3.7331

0.6 0.034 11.9585 0.1006 43.9457

0.7 0.0769 26.1633 0.2230 100.850

0.8 0.1203 39.9354 0.3453 150.018

0.9 0.1734 58.8143 0.4800 198.999

Note that when P11 = P22 = 0.5 it implies that P11 + P22 = 1 and thus there is no

persistence in the Markov process because the probability that st switches from state

1 to state 2 is independent of the previous state. This is a rather simple switching

model. From the table we see that for some values of the transition probabilities

above 0.5 (close to one), they are biased towards stationary long memory and the

16



process is detected as to be short memory when the transition probability is less than

0.5. It is natural since as the parameters approach the non-ergodicity point (when

P11 and P22 are equal one), the AR component gets more persistent and causes the

dominant component of the GPH bias (see Smith (2000) for details)

Similar to the other nonlinear models periodograms which are generated from the

Markov Switching model do not show much difference than those of the true long

memory process (see figure 6 in the appendix). On the other hand we see that the

ACF of the Markov Switching model does not decay as slow as the true long memory

process.

From the above results, we come to the conclusion that although the process under

the null is nonlinear but still a short memory process, the above results for the V/S

test are consistent with Lo (1997) and Giraitis et al. (2003), where the probability

to reject the short memory null hypothesis is lower for large q, since the imprecision

with which the higher order autocovariances can introduce considerable noise into

the statistic is reduced. The classical R/S test fails to identify the short memory

properties. The Andrews procedure also reject the null relatively often and might

reach a probability of more than 5%.

The GPH estimator, which is also quiet popular as a semiparametric procedure to

detect long memory fails to distinguish the considered nonlinear processes from long

range dependencies. Most of the processes are biased towards long memory. The

periodogram of nonlinear and long memory processes behave quite similar near the

origin. Thus, we can say that by these quite common tests, it is difficult to distinguish

between nonlinearity and long memory. Long memory tests as well as point estimates

can lead to a misleading inference. However, using a higher lag order in the V/S test

gives more reliable results.
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5 Testing linearity

In this section we apply a general linearity test, namely the Neural Network test of

Teräsvirta et al. (1991), as well as specific linearity tests constructed to test the

null hypothesis of linearity against the alternative of a specific nonlinear structure,

namely SETAR or STAR.

We compute the rejection probabilities of the 5% significance level with 10000 repli-

cations and various sample sizes N = 100, 500, 1000 and 1500.

First, we use a portmanteau test in order to test for a SETAR type nonlinearity.

For a detailed discussion of this test, see Petrucelli and Davies (1986). This test was

also considered by Chan and Ng (2004) who show that the test is not robust against

misspecifications of the model. It is also not robust against outliers. Figure 1 shows

the rejection probabilities of this test when the true DGP is long memory.

If the DGP is a pure long memory processes (Figure 1(i)) the probability to reject the

null hypothesis of linearity reaches a maximum of 0.165. The probability increases

with higher values of the memory parameter and larger sample sizes. The same ten-

dency appears when the DGP follows an ARFIMA (φ, d, 0) process, this is a long

memory process with an additional autoregressive root. The rejection probability

increases with an increase of the autoregressive parameter. For a value of 0.8 the

rejections probabilities are already close to 1 even for moderate sample sizes. This is

due to an increase of the persistence of the process induced by the positive autore-

gressive parameter. However, we clearly see that the portmanteau test is not able to

capture the linearity of the long memory DGP.
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Figure 1: Rejection probabilities of linearity test against SETAR model (i) DGP is

ARFIMA(0,d,0),(ii) DGP is ARFIMA(0.2,d,0) and (iii) DGP is ARFIMA(0.8,d,0)

As a second test we consider a linearity test against the STAR alternative. The

test is a Lagrange Multiplier type test proposed by Luukkonen et al. (1988). It

is based on a third-order Taylor approximation of the transition function. By this

procedure, testing against ESTAR is not distinguishable from testing against LSTAR,
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when a second-order logistic transition function is employed (see also Saikkonen and

Luukkonen,1988). Figure 2 below presents the results of the test.
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Figure 2: Rejection probabilities of linearity test against STAR model (i) DGP is

ARFIMA(0,d,0),(ii) DGP is ARFIMA(0.2,d,0) and (iii) DGP is ARFIMA(0.8,d,0)

If the DGP is a pure long memory process, the results are similar to those of Anderson

et al. (1999). The rejection probability increases with the value of the memory
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parameter and with the sample sizes. The same results are obtained for an ARFIMA

(φ, d, 0) - process with a small autoregressive parameter (φ = 0.2). The rejection

probability reaches a value of up to 0.25 in our study. Interestingly, for the same

process but with a higher autoregressive parameter (φ = 0.8) the rejection probability

decreases with sample size. It actually collapses even under the nominal size of the

test.

Finally, we apply the neural network based linearity test proposed by Teräsvirta et al.

(1991). This test is a special neural network model with a single hidden layer. This

test is a Lagrange Multiplier (LM) type test derived from a neural network model

based on the "dual" of the Volterra expansion representation for nonlinear series.

Let consider Figure 3 for the results of this test. The results are similar to those of the

STAR test considered before. For a pure long memory DGP as well as for an ARFIMA

(φ, d, 0) - process with a small autoregressive parameter (φ = 0.2), the values of the

rejection probability increase with d and with the sample size. Again, for an increasing

autoregressive parameter the rejection probability collapses under the nominal size of

the test and converges to zero. Since the two tests are Lagrange multiplier test, which

involves the estimation of the autoregressive parameter to compute the statistic, the

higher AR and d parameter are confounded as a simple AR(1) parameter. This leads

to a higher sum of squared errors (SSE0) in the denominator and the statistic tends

to not reject the null hypothesis.
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Figure 3: Rejection probabilities of linearity test against Markov switching

model (i) DGP is ARFIMA(0,d,0),(ii) DGP is ARFIMA(0.2,d,0) and (iii) DGP is

ARFIMA(0.8,d,0)
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6 Conclusion

In this paper we show by Monte Carlo that popular nonlinear models such as TAR,

STAR and Markov - Switching models can easily be misspecified as long memory. We

estimate the memory parameter for various specifications of the above models and

find that the GPH estimator is positively biased indicating long - range dependence.

However, applying the V/S test with an optimal lag - length as suggested by Andrews

(1991) seems to give reasonable results. On the other hand do linearity tests reject

the null hypothesis of linearity when the true data generating process exhibits long

memory with a rejection probability tending to one. The rejection probabilities in-

crease with the memory parameter. This effect is more pronounced for tests against

a specific alternative such as TAR or STAR. The more general neural network test

shows a favorable behaviour. However, a strong autoregressive root can collapse the

rejection probabilities.

Therefore, nonlinear models can easily be misspecified as long - range dependence

and vice versa by using standard methodology. Methods for distinguishing between

these two phenomena are subject to future research.
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Appendix

 
 
 
 

 

Figure 4: Sample periodograms and ACF plots (i) SETAR process (ii) Long memory

with d = 0.3419
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      (iii) 

Figure 5: Sample periodograms and ACF plots (i) ESTAR process (ii) LSTAR process

(iii) Long memory with d = 0.3427
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(ii) 

Figure 6: Sample periodograms and ACF plots (i) Markov switching process (ii) Long

memory with d = 0.3916
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