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Abstract This paper presents a profit-oriented shift scheduling approach
for inbound contact centers. The focus is on systems in which multiple agent
classes with different qualifications serve multiple customer classes with dif-
ferent needs. We assume that customers are impatient, abandon if they have
to wait, and that they may retry. A discrete-time modeling approach is used
to capture the dynamics of the system due to time-dependent arrival rates.
Staffing levels and shift schedules are simultaneously optimized over a set
of different approximate realizations of the underlying stochastic processes
to consider the randomness of the system. The numerical results indicate
that the presented approach works best for medium-sized and large contact
centers with skills-based routing of customers for which stochastic queueing
models are rarely applicable.

Key words: Call center, contact center, workforce scheduling, shift
scheduling, stochastic programming

1 Introduction

Contact centers are the multi-channel successors of phone-based call centers.
Customers can use phone, fax, e-mail etc. to reach the agents working in
an inbound contact center in order to receive some kind of service. Contact
centers have become the prevalent instrument of customer service in many
industries. This paper treats the problem to determine shift schedules for
the different agent classes working in an inbound contact center over the
course of a day.

The first step of the traditional approach to solve this problem is to
divide the day into separate intervals, often with a length of 30 minutes.
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In the so-called stationary independent period-by-period (SIPP) approach
or variants thereof (Green et al., 2001), these intervals are treated in isola-
tion under the assumption that the system is never overloaded. Stationary
queueing models are then used to determine staffing needs for each time
interval given the projected workload and a required service level. After the
staffing needs for each agent class and time interval have been determined,
one seeks the number of agents working on the different shifts to meet these
requirements at minimum cost. The last step, often called rostering, is to
assign personnel to the determined shifts.

Apart from all problems related to forecasting call arrivals (Aksin et al.,
2007, Sect. 2.1), this approach is accompanied by several problems: Firstly,
it ignores that staffing levels and hence also service levels during different
intervals are interrelated because agents work according to shifts which span
multiple intervals. This cannot be considered if requirements planning and
shift scheduling are separated into two subsequent planning steps. Secondly,
if customers are impatient, hang up and retry or unanswered e-mails are car-
ried over into subsequent intervals, the periods are also not independent as
assumed in the SIPP approach (Jiménez and Koole, 2004; Stolletz, 2007).
Thirdly, in order to use the SIPP approach, a stochastic queueing model (or
a time-consuming simulation) is required. Even the most tractable Marko-
vian models suffer from an explosion of the state space if multiple customer
and agent classes as well as retrials are considered. Only rather small call
centers with skills-based routing (SBR) can be analyzed, often under the
restrictive assumptions of Markovian queueing models (e.g. Stolletz, 2003;
Stolletz and Helber, 2004). Fourthly, even within a 30-minute period, the
call arrival rate can change significantly such that the system may hardly
reach a stationary or steady state based on the average call arrival rates for
the period.

In this paper, we assume that for the agents a set of possible shifts
is given and that for each class of agents the number of agents assigned
to each shift is sought. We allow for arrival rates to change continuously
over the day, whereas the number of agents on service can only be changed
at distinct moments in time, due to the predefined shift types. Difference
equations with time periods on the order of magnitude of a minute are
used to model system dynamics. In order to determine shift schedules, we
solve a linear mixed-integer optimization model using a standard solver.
We found that unlike in many other approaches for contact center shift
scheduling, computation times decrease as the system size increases, making
large systems particularly easy to solve. To incorporate randomness into
the model, we perform the optimization of the shift schedule over a set
of different scenarios simultaneously. This leads to a kind of simulation
optimization approach. It yields plans which are to some extent robust with
respect to the randomness of the problem. The numerical results indicate
that the method performs best for medium-sized and large call centers with
SBR. Our approach has four important features:
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Firstly, we model systems in which the undone workload of one interval
of the day is carried over to the subsequent intervals. Thus we treat both
the case of waiting customers that hang up to retry later and the case of
incoming e-mails that are served when the call volume decreases. In such a
setting, the different periods of the day cannot be treated in isolation. For
this reason, we determine staffing requirements and shift schedules simul-
taneously. Secondly, we focus on systems where multiple customer classes
are served by multiple agent classes such that a given customer class can
possibly be served by multiple agent classes and vice versa. The routing
of customers to agents is based on priorities. Both the customer and the
agent classes differ with respect to their particular operational and econom-
ical parameters. Thirdly, our stochastic integer programming approach is
completely numerical. Like a discrete-event simulation, it requires neither
a theoretical analysis of a probabilistic queueing model nor any particular
assumptions about distributions of random variables. Finally, the objective
is to find shift schedules that maximize the profit from the operation, pos-
sibly subject to approximate service level constraints, taking into account
cost and revenue of the served contacts.

We are not aware of a paper that combines all of these four features.
General reviews of the vast technical literature on call or contact centers
are given by Gans et al. (2003); Aksin et al. (2007) and, with a particular
emphasis on queueing models, by Koole and Mandelbaum (2002). The lit-
erature on staffing and shift scheduling for contact centers is quite limited
once the practically important aspects of either abandonment and retrials
or multiple customer and agent classes are considered. Stationary queueing
models or discrete-event simulations are usually used to evaluate any given
staffing level or shift schedule. In order to optimize staffing levels or shift
schedules, usually either integer programming, local search or some meta-
heuristic is applied. Apart from the above-mentioned problems of stationar-
ity, such queueing models often rely on the rather questionable assumption
of exponentially distributed processing times.

If one wants to model the waiting of multiple customer classes, the state
space of a queueing model explodes quickly. A possible remedy is to use sta-
tionary blocking models (Franx et al., 2006) of multi-skill call centers. How-
ever, this excludes modeling the carry-over of backlog such as unanswered
e-mails or call retrials. A different strategy is to combine discrete-event
simulation with a cutting plane approach for integer programming (Atlason
et al., 2004a,b). Here the idea is to find cost-minimizing staffing levels that
meet a given service level within an integer program, for example with re-
spect to the fraction of calls that are answered within a time limit. In an
iterative approach a discrete-event simulation is used to determine whether
a tentative schedule meets this service level requirement. Otherwise, simu-
lation is used to calculate a subgradient of the service level function at that
point. This subgradient leads to a cutting plane that is added to the integer
program to exclude the current tentative solution from the solution space.
The problem is then solved again until all service level requirements are met.
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A practical problem of this approach is that simulation times increase as call
volume and system size increase, and hence only a very small example with
few periods is presented in Atlason et al. (2004a). In Cezik and L’Ecuyer
(2007), this approach is extended to the multi-skill setting. However, due
to the computational effort to simulate larger and more complex systems,
Cezik and L’Ecuyer (2007) study only the single period staffing problem,
as opposed to the small multi-period shift scheduling problem considered in
Atlason et al. (2004a). Shift scheduling of a homogeneous call center with an
overall service level constraint is studied by Koole and Van der Sluis (2003)
via local search. Ingolfsson et al. (2003) also treat the homogenous case and
combine integer programming with the randomization (or uniformization)
method to analyze the transient behavior of the system. This approach is
limited to exponential interarrival and processing times. Harrison and Zeevi
(2005) and Bassamboo et al. (2006) treat the problem to determine both a
single staffing level and a dynamic allocation of servers to activities for a
time period during which average arrival rates are uncertain and dynamic.

Bhulai et al. (2006) present a two-step approach to solve the staffing
(Step 1) and shift scheduling (Step 2) problem for multi-skill call centers of
a realistic size. In Step 1, stationary blocking models (Franx et al., 2006) of
multi-skill call centers are used to determine staffing levels for each interval.
Given these required staffing levels, shift schedules are created via integer
programming in Step 2 to meet these staffing requirements. For multi-skill
agent groups, this includes the decision which skill set is actually used in
a given period. The approach by Bhulai et al. (2006) is probably the first
practically applicable shift scheduling approach for large and heterogenous
contact centers that deals with randomness in a systematic way. However,
it suffers from the above-mentioned problem to separate the staffing level
decision from the shift scheduling decision and is therefore unable to deal
with an intertemporal workload carry-over because of retrying customers. In
addition, it assumes an exogenously given service level. However, if calls gen-
erate revenues, it is economically beneficial to compute the time-dependent
profit-maximizing service level endogenously, even though this may not be
the current practice of call center management. Furthermore, their method
relies on assumptions about the distribution of processing times in the block-
ing model which our method does not require. On the other hand, our model
does not allow to specify the fraction of calls that are answered with a time
limit. This makes a direct quantitative comparison of the approaches dif-
ficult. However, we can impose approximate limits on the average waiting
times and the fraction of served calls. In Henken (2007), the profit-oriented
shift-scheduling problem for a contact center with two customer and three
agent classes is solved heuristically, based on deterministic dynamic fluid
models. This overestimates the profit from the operation of a stochastic
system and yields schedules that are not very robust with respect to the
randomness in the system. In addition, the heuristic optimization proce-
dure in Henken (2007) is purely profit-oriented and does not reflect service
level requirements.
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The remainder of this paper is organized as follows: In Section 2 the
contact center model is explained in detail and we outline the difference
equations that describe the dynamics of the number of customers in the sys-
tem. The basic shift schedule optimization model is presented in Section 3.
There we also discuss several options to incorporate different realizations
of the original stochastic processes in the deterministic model. Numerical
results are discussed in Section 4. The paper concludes with comments on
the managerial implications of the results and suggestions for further work
in Section 5.

2 Modeling heterogeneous contact centers

2.1 System description

We study contact centers with multiple customer or contact classes c ∈ C
and multiple agent classes a ∈ A. Let Ca ⊆ C denote the set of customer
classes c that can be served by agent class a and let Ac ⊆ A denote the set
of agent classes a that can serve customer class c. In Figure 1, an example
of such a contact center with two customer classes and three agent classes is
depicted. In this system, each customer class is served by a specialized class
of agents. A third class of flexible generalists can serve both customer classes.
We assume that the waiting space for each customer class is unlimited. The
number of agents of class a serving at time t is denoted by Nat. It is the
result of the shift schedule.

Customers of class c arrive with a time-dependent rate λct at time t.
They are served by agents of class a with rate µca. Waiting customers aban-
don with rate νc. After abandoning, they join the “orbit” of customers who
will retry with probability pc. Customers in the orbit retry with rate γc.
Our methodology does not require any particular distribution of interar-
rival times, processing times, times to abandon and times to retry. This
yields a substantial degree of freedom to use the one probability distribu-
tion that best matches the empirical data, instead of the one for which a
stochastic (possibly Markovian) queueing model can be solved analytically.

In a contact center with multiple customer and agent classes, routing
rules are needed. Often routing is based on static priorities. Assume that a
customer arrives while agents of different agent classes that could serve this
customer idle. In this case the problem of agent class selection arises. Let
pr1ac be the agent class selection priority for agent class a and customer
class c. A smaller value of pr1ac indicates a higher priority to route arriving
customers of class c to idle agents of class a.

Now assume that an agent finishes a service while customers of differ-
ent classes that can be served by this agent are waiting. In this situation
the problem of customer class selection emerges. Let pr2ac be the customer
class selection priority. A smaller value of pr2ac indicates a higher priority
for idle agents of class a to serve waiting customers of class c. These as-
sumptions allow to model a broad variety of contact center topologies that
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0.1 Contact Centers with Heterogeneous Customers and

Agents

0.1.1 Description of the Model
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Fig. 0.1. A contact center model with two types of customer classes, three kinds of

agent groups and retrials of impatient customers

The structure of the contact center considered in this section is depicted in
Figure ??. The contact center presented in Figure ?? on Page ?? and analysed
in ? is a special case of this model. We assume two types of customers who
arrive at the contact center according to Poisson processes with rates λ1(t) and
λ2(t) for type-1 and type-2 customers, respectively. These rates are assumed
to be time-dependent as in the previous section. This model combines the
problems associated with priority and with retrial queues which have so far
been considered solely in separation.

Fig. 1 M-designed contact center with retrials (Henken, 2007)

can be found in practice. In many real-world contact centers, we observe
non-preemptive service disciplines, i.e., a service is not interrupted when a
customer with a higher priority arrives. In the simulation model used to
evaluate our approach, we therefore model non-preemptive service, while
our numerical method implicitly assumes preemptive service. This differ-
ence becomes less relevant as contact centers get larger. For the system in
Figure 1 we assume that customers give priority to their respective class of
specialists and that generalist agents give priority to class 1 customers.

2.2 Approximating a dynamic stochastic system in continuous time via
multiple scenarios of difference equations

The generic model of a contact center presented in Section 2.1 describes a
system in which discrete events happen randomly in continuous time. Sys-
tem parameters such as arrival rates λct as well as the number of available
agents Nat, which is to be determined, are time-dependent. Both the num-
ber of customers in the system and the number of customers in the orbit
form stochastic processes in discrete space (as customers can be counted)
and continuous time. Instead of using a stochastic queueing model of the
system based on probability theory as in the SIPP approach, we use differ-
ence equations to describe the dynamic processes in the system. As these
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dynamic processes are stochastic, we consider multiple different scenarios
s ∈ S simultaneously.

To motivate this approach, we now concentrate on the dynamics of these
stochastic processes and the relationship between system size and process
variability. Consider a contact center with a single class of impatient cus-
tomers that arrive with exponentially distributed interarrival times. The
time-dependent arrival rate is depicted in Figure 2. Assume that processing
times and waiting time tolerances are also exponentially distributed with
rates 1 and 2 per minute, respectively.
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Fig. 2 Time-dependent arrival rate

In a base case we assume that 15 agents are scheduled constantly through-
out the day. The graph on the upper left-hand side of Figure 3 shows a sim-
ulated sample path realization of the number of customers in the system.
It exhibits a substantial degree of variability. Now we scale the system by
multiplying both the arrival rate and the number of servers by 10, 100, and
1000. The other three graphs in Figure 3 show the respective sample paths.

As the arrival rate and number of servers increase, the scaled process
Q(n)(t)/n of the number of customers divided by the scaling factor n appar-
ently becomes less variable. It can actually be shown (Mandelbaum et al.,
1998) that the scaled process in this so-called Halfin-Whitt scaling (Halfin
and Whitt, 1981) converges towards a deterministic mean (or fluid) process.
If the system gets in a sense “less variable” as its size increases, the relative
importance of the system dynamics over the randomness increases. How-
ever, a single numerical scenario s, i.e., a single realization or sample path
of this stochastic process, may not be sufficient to capture the randomness
in the system. Denote by QCs

ct the number of waiting customers of class c
at the beginning of a discrete period t, for example a minute, in scenario
s. Let ars

ct denote the (exogenous) primary arrivals in period t, REs
ct the

retrials, ABs
ct the number of customers who abandon and Es

cat the number
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of customers who exit the system after being served by an agent of class a.
Then the dynamics for customer class c in scenario s can be modeled via
the following difference equation for period t:

QCs
c,t+1 =QCs

ct + ars
ct + REs

ct −ABs
ct −

∑
a∈Ac

Es
cat (1)

The number of served customers Es
cat depends on the number Nat of

active agents of class a at time t, which is identical over all scenarios and
depends on the shift schedule. If a single class of customers c is served by a
single class a of agents, the following simple function results:

Es
cat = min

(
QCs

ct + ars
ct + REs

ct −ABs
ct, mus

catNat

)
∀c, t, a, s (2)

Figure 4 shows for two customer classes fictive average arrival rate func-
tions and Figure 5 shows sample path realizations for these average arrival
rate functions from a simulation run. If a schedule is optimized over several
different scenarios s ∈ S of call arrivals simultaneously, one can expect to
find a solution with some degree of robustness with respect to the uncer-
tainty of call arrivals.
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Fig. 4 Average call arrival rates for a contact center
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Fig. 5 Sample paths of call arrivals for a contact center

2.3 Shift schedules

We assume that a set of basic shift types k ∈ K is given. Table 1 presents an
example with 31 shift types. Shift types 1 to 12 are long shifts of 7.5 hours
with a half-hour break after 3.5 hours and shift-specific starting times. Shift
types 13 to 31 take four hours without a break.

For each basic shift type k an indicator parameter ski equals 1 if an agent
following this shift type k is on duty during interval i, and 0 otherwise. For
example, at t corresponding to 10:45 am, s1,i(t) = 0 as the break for shift
type k = 1 starts at 10:30 am and ends at 11:00 am.
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Table 1 Schematic presentation of the basic shift types

Type Interval i
k 1 5 6 10 11 15 16 20 21 26

7:00 - 9:30 9:30-12:00 12:00-2:30 2:30 - 5:00 5:00 - 8:00

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
...

. . .
. . .

. . .
. . .

. . .

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1 1
...

. . .
. . .

. . .
. . .

. . .

30 1 1 1 1 1 1 1 1
31 1 1 1 1 1 1 1 1

3 The shift schedule optimization model

3.1 Basic optimization model

In this section we present the basic shift schedule optimization model taking
multiple scenarios into account. The notation is summarized in Table 2. In
addition to the modeling assumptions and notation presented in Section 2,
we assume the following:

– The length of a period is ∆t, e.g., a minute.
– Customers arrive at the system at the beginning of a period. This holds

both for retrials and primary arrivals. The number of primary arrivals
of customers of class c in period t of scenario s is ars

ct and the number
of retrials is REs

ct.
– Only those customers already waiting at the beginning of period t can

hang up. Those who hang up do so immediately. The fraction of the
waiting customers that hang up is min(1, nuc) where nuc = νc∆t de-
pends on the length ∆t of a period. The fraction pc of those customers
who abandon join the orbit.

– Only those customers already in the orbit at the beginning of period
t can retry. Those who retry do so immediately. The fraction of the
customers in the orbit that retry is min(1, gac).

– Those customers who already waited at the beginning of period plus
those who arrived or retried minus those who abandoned are available
to be served in the period.

– Customers that are served leave the system at the end of a period. The
number Es

cat of customers of class c that is served by agents of class
a in period t of scenario s is the minimum of those that are available
to be served and that can potentially be served. The number that can
potentially by served depends on the capacity this agent class devotes
to customer classes with higher priority.
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Table 2 Notation

Sets and indices

a ∈ A agent classes
Ac ⊂ A set of agent classes that can serve customer class c
c ∈ C customer classes
Ca ⊂ C set of customer classes that can be served by agent class a
i ∈ I time intervals (e.g., half-hours)
k ∈ K shift types
s ∈ S scenarios (sample paths)
t ∈ T time periods (e.g., minutes)

Input data

ars
ct primary arrivals of customer class c in period t of scenario s

∆t length of a period

FS
min
c minimum fraction of served contacts of class c

gac fraction of customers of class c in the orbit that retry during a period
lc line cost of class c per time unit
mus

cat number of customers of class c that can be served per agent of class
a serving this class in period t and scenario s

nmax
a maximum number of available agents of type a

νc abandonment rate of waiting customers of class c in continuous time
nuc abandonments nuc = νc∆t per period and waiting customer
pc fraction of abandoning customers that are willing to retry
ski indicator, equals 1 if an agent working shift type k is active in interval

i, 0 otherwise
rvc revenue per served contact of class c
wak wage of an agent of class a working a shift of type k

W
max
c maximum waiting time of contacts of class c

Decision variables

ABs
ct real-valued number of abandoning customers of class c in period t of

scenario s
Es

cat real-valued number of customers of class c served by agents of class a
in period t of scenario s

Nat integer number of agents of class a on duty in period t
QCs

ct real-valued number of customers of class c waiting in the system at
the beginning of period t in scenario s

QOs
ct real-valued number of customers of class c in the orbit at the begin-

ning of period t in scenario s
REs

ct real-valued number of retrials of customers of class c in period t of
scenario s

Xak integer number of agents of class a working shift type k



12 Stefan Helber and Kirsten Henken

– Agents work according to shifts k ∈ K.
– The total number of agents of class a on duty at time t is Nat. It depends

on the integer number Xak of agents of class a working shift k.
– Only a maximum number nmax

a of agents of class a can be scheduled for
the day.

– Each processed customer of class c leads to a deterministic revenue rvc.
– A customer in the system causes a line cost lc per period.
– The wage of an agent of class a working according to schedule k is wak.
– Primary arrivals ars

ct and the potential number of processed customers
per agent mus

ct are scenario-specific realizations of random variables.
– The objective is to find a shift schedule Xak which maximizes the average

profit over the different scenarios.

This leads to the following optimization problem P:

Max
1
|S|
∑
s∈S

∑
c∈C

∑
t∈T

((∑
a∈Ac

(rvc −
lc

mus
cat

)Es
cat

)
− lcQCs

ct

)
−
∑
a∈A

∑
k∈K

wakXak (3)

subject to

QCs
c,t+1 =QCs

c,t + ars
ct + REs

ct −ABs
ct −

∑
a∈Ac

Es
cat, ∀c, t, s (4)

QOs
c,t+1 =QOs

c,t −REs
ct + pcABs

ct, ∀c, t, s (5)

ABs
ct =min(1, nuc) QCs

ct, ∀c, t, s (6)

REs
ct =min(1, gac) QOs

ct, ∀c, t, s (7)

Es
cat = min

(
QCs

ct + ars
ct + REs

ct −ABs
ct −

∑
ã∈Ac¬{a}

pr1cã<pr1ca

Es
cãt, (8)

mus
cat

(
Nat −

∑
c̃∈Ca¬{c}

pr2ac̃<pr2ac

Es
c̃at

mus
c̃at

))
∀c, t, a, s

Nat =
∑
k∈K

sktXak, ∀a, t (9)∑
k∈K

Xak ≤ nmax
a , ∀a (10)

Xak ∈{0, 1, 2, 3, . . .}, ∀a, k (11)
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In the objective function (3) the average profit over the scenarios is
calculated by subtracting from the revenue of the processed customers the
line cost of customers in service or waiting and the wages for the agents.
The balance equations (4) for the number QCs

ct of customers waiting in the
contact center reflect retrials REs

ct, abandonment ABs
ct and the fact that

multiple agent classes a serve customer class c. In the balance equations
(5) for the number QOs

ct of customers in the orbit, we take into account
that only a fraction pc of the abandoning customers of class c joins the
virtual queue in the orbit to retry later. The retrying process in Equations
(7) is formally “self-service” in the orbit. To determine the number Es

cat of
customers of class c that are served by agents of class a in period t, the
minimum of two quantities has to be determined in Equations (8). The first
component in this minimum function is the number of customers of the
respective class that are available to be served by a particular agent class.
The second component in the minimum function in Equations (8) gives the
maximum capacity for this combination of customer class c and agent class
a. It depends on the number Nat of agents of class a available during period
t. However, due to the customer class selection priority of the agents, we
need to subtract the capacity of this agent class that is already devoted to
customer classes with a higher priority. Note that Equations (8) are non-
linear. In Appendix A we show how this system can transformed into an
equivalent set of linear constraints so that this conceptional model can be
solved using a solver for mixed-integer linear programs. In our numerical ex-
periments, we actually replaced all constraints (8) of the form x = min(a, b)
by two constraints of the form x ≤ a and x ≤ b as we observed a tendency
of the model to make one of the constraints tight. In Equations (9) the total
number of active agents at time t is computed. The upper limit of available
agents of each class is represented in Equations (10).

This basic model aims at maximizing the profit from the served calls.
The profit-maximizing service level with respect to waiting times etc. is
hence determined endogenously. If the per-call revenue of a customer class
does not exceed the cost per call, no specialized agents for this class will
be scheduled and, possibly, no customers will be served. In many real-world
applications there is no direct revenue associated with a served call, e.g., for
support calls. Therefore the model needs to be extended to enforce some
pre-specified level of service for these customer classes.

3.2 Enforcing service level constraints

If one wants to serve the customers even though there are no direct revenues
related to each call, an economically rational approach is to minimize cost
subject to some exogenously defined service constraint. In our modeling ap-
proach, the service quality can be expressed in terms of the average waiting
time or the fraction of customers that are served. Both quantities can be
limited (from above or below, respectively) for either each single period or
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the complete planning horizon of a day. Based on discussions with call cen-
ter managers it is our impression that the fraction of calls that are served is
of utmost importance. We define an aggregate measure FSc of the fraction
of the primary contacts (not counting retrials) that are eventually served at
the end of the day:

FS
s

c =

∑
t∈T

∑
a∈Ac

Es
cat∑

t∈T ars
ct

, ∀c, s (12)

A minimum aggregated fraction of served callers FS
min

c in each scenario
can be enforced via the following simple constraints:

FS
s

c ≥FS
min

c , ∀c, s (13)

The instantaneous waiting time for customers arriving during period t
can be roughly approximated as the number of waiting customers, divided
by the rate at which customers are either served or abandon at that mo-
ment in time. (It is an approximation as these rates can change within this
instantaneous waiting time.) If m denotes the length ∆t of a period t (in
seconds), a measure W s

ct of the instantaneous waiting time (in seconds) can
be computed as follows:

W s
ct =

QCs
ct(

ABs
ct +

∑
a∈Ac

Es
cat

)
m−1

, ∀c, t, s (14)

To compute an aggregate measure W
s

c of the waiting time, a weighting
factor should reflect the different numbers of customers facing specific in-
stantaneous waiting times during periods of low or high traffic, respectively.
We decided not to use the relative number of arriving calls as the weighting
factor, because it is in practice very difficult to distinguish primary arrivals
from retrials. However, it is very easy to measure calls that are served or
abandoned. For this reason in our model the instantaneous waiting time
is weighted by the relative number of leaving customers, and the following
measure of the aggregated waiting time W

s

c results:

W
s

c =
∑
t∈T

(
ABs

ct +
∑

a∈Ac
Es

cat

)∑
t∈T

(
ABs

ct +
∑

a∈Ac
Es

cat

)W s
ct

=
∑

t∈T QCs
ct∑

t∈T
(
ABs

ct +
∑

a∈Ac
Es

cat

)
m−1

, ∀c, s (15)

A maximum W
s

c ≤ W
max

c of the aggregated waiting time in each scenario
s and customer class c can be enforced as follows:
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∑
t∈T

QCs
ct ≤ W

max

c

∑
t∈T

(
ABs

ct +
∑

a∈Ac

Es
cat

)
m−1, ∀c, s (16)

In this form the constraint has the linear form that can be solved using
mixed-integer linear programming.

3.3 Optimizing over the single mean process or multiple scenarios

The model presented in Section 3.1 optimizes a shift schedule over a set S of
scenarios that differ with respect to two parameters, the number of primary
arrivals ars

ct and the processing rate mus
cat of an agent of class a serving

customers of class c. Three different approaches to deal with randomness of
these parameters are summarized in Table 3.

Table 3 Different approaches to deal with randomness

Approach 1 2 3

Number of scenarios |S| 1 20 (10) 20 (10)

Arrivals ars
ct λct∆t ∼POI(λct∆t) ∼POI(λct∆t)

Processed customers mus
cat µcat∆t µcat∆t ∼ POI(µcat∆tN∗∗

at )

N∗∗
at

per period and agent

Resulting staffing level N∗
at N∗∗

at N∗∗∗
at

In Approach 1, only the (single) mean process is modeled as both the
arrivals and the number of processed customers per agent are set to their
respective average values. This leads to the single scenario of a deterministic
fluid model. In Approaches 2 and 3, we try to optimize the shift schedule
over 20 different scenarios simultaneously. If this does not lead to a solution
with an optimality gap of the MIP solver of at most 1% within 1000 seconds,
we reduce the number of scenarios to 10 and try again. Approach 2 mod-
els arrivals as realizations of random variables that are Poisson-distributed
with parameter λct∆t, whereas processing is deterministic as in Approach
1. In Approach 3, we additionally model Poisson-distributed numbers of
customers that can potentially be processed. Here we have to adjust the
realization mus

cat of the number of processed customers per agent because
multiple agents of class a may work in parallel on customer class c. This leads
to a superposition of Poisson departure processes. However, the exact num-
ber of these agents is unknown, to be determined within the optimization.
We approximate it by the total number of available agents N∗∗

at from the
solution of Approach 2, compute a realization of a Poisson-distributed ran-
dom variable with parameter µcat∆tN∗∗

at and normalize this again through
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a division by N∗∗
at . (If Approach 2 did not lead to a solution, we used N∗

at

from Approach 1 instead.) This allows us to have (within the framework of
a MIP) numbers of potentially processed customers that are approximately
Poisson with a mean that is proportional to the number of agents on duty.
Falling back on results from Approach 2 (or 1) can be interpreted as a kind
of iterative approach which we found to be reasonable as total staffing levels
from the different approaches didn’t differ too much.

4 Numerical results

To evaluate the performance of the shift scheduling approach, we performed
a systematic numerical study. We studied the M-designed system with two
customer classes and three agent classes shown in Figure 1. The shift types
were those introduced in Table 1. We assumed sinusoidal average arrival
rate functions like those depicted in Figure 4 that were generated by the
equation

λ(t) =



1
2m1 ·

(
1− cos

(
2π t−t0

t2−t0

))
for t0 ≤ t < t1

1
2m1 ·

(
1− cos

(
2π t−t0

t2−t0

))
+ 1

2m2 ·
(
1− cos

(
2π t−t1

t3−t1

))
for t1 ≤ t < t2

1
2m2 ·

(
1− cos

(
2π t−t1

t3−t1

))
for t2 ≤ t < t3

(17)

with the parameters in Table 4. All other parameters are also presented
in this table with the exception of the hourly wage, which was assumed
to be 15 for the specialists and 18 for the generalists. Given the identical
productivity, generalists are therefore 20% more expensive than specialists.
We assumed that there is no limit on the number of agents for each class,
i.e, nmax

a = ∞. The length ∆t of a period t was set to 60 seconds.
Of particular interest is the distinction between small, medium-sized and

large contact centers. For this reason, we scaled the arrival rate function
(17) of the small contact center (S) by a factor of 4 to generate the arrival
rate function for the medium-sized contact center (M), and by a factor of
42 = 16 for the large center (L). This resulted in systems with peak numbers
of active agents between 20 and 30 for the small system, 80 and 90 for the
medium-sized system, and 370-390 in the large system. With respect to the
two customer classes we chose the parameters such that the first customer
class is always highly profitable, but customers are very impatient. This
models a sales channel. The other class models customers that generate
very little profit directly or no profit at all, but are much more patient, as
in a support channel. For each size class (S, M, or L) we studied six cases 1
- 6 with specific parameters reported in Table 5. In cases 1 to 3 we assumed
that the per-call revenue of a support call slightly exceeds the direct per-call
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Table 4 Problem parameters

Customer class 1 (Sales) 2 (Support)

Call arrivals
t0 7 am 7 am
t1 12:30 pm 10 am
t2 4 pm 1 pm
t3 8 pm 8 pm
m1 (S/M/L) (200/800/3200) (100/400/1600)
m2 (S/M/L) (150/600/2400) (120/480/1920)

Processing rates µca

Type-1 specialists 12h−1 -
Type-2 specialists - 12h−1

Generalists 12h−1 12h−1

Abandonment rates νc 240h−1 12h−1

Retrial rates γc 0.5h−1 4h−1

Retrial probability pc 0.5 0.5

Per call revenue rvc 10.0 1.3 (Cases 1-3) or 0.0 (Cases 4-6)
Hourly line cost lc 6.0 0.0

Table 5 Revenue for support customers and service level limits

Case (S, M, L) 1 2 3 4 5 6

rv2 1.3 1.3 1.3 0 0 0

FS
min
2 [%] 0.0 0.0 99.9 0.0 90.0 99.9

W
max
2 [sec.] ∞ 60.0 ∞ 60.0 ∞ ∞

cost of this call, if served by the least costly agent class (the specialists). In
cases 4 to 6 we always assumed that support calls do not generate any direct
revenue and therefore enforced a minimum FS

min

2 of the aggregated fraction
of served calls or a maximum W

max

2 on the aggregated waiting time. For
each system size and case all three approaches (see Table 3) were applied.
We used CPlex 10.0 on a 3 GHz Pentium 4 PC with 4 GB RAM to solve
the models. The branch&bound process was aborted if an integer solution
was known to be at most 1% away from the optimum of the MIP model
or the computation time limit of 1000 seconds per approach and number of
scenarios (20 or 10 in Approaches 2 and 3) was exceeded.

The shift schedules resulting from the optimization model were then
evaluated via a discrete event simulation model coded in C++ which is
based on a simulation model used in Feldman (2004). For each system,
1000 replications were made to compute confidence intervals of the profit
with a relative half-width always below 0.25%.

With respect to the algorithmic performance of the approach the nu-
merical results show the following: Modeling the contact center via a fluid
model (Approach 1) always led to a MIP model that could be solved. In
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Table 6 Results for the small contact center

Case 1S 2S 3S 4S 5S 6S

Approach 1

Profit (MIP) 11941 11914 11837 10925 10925 10680
Profit (SIM) 9882 9979 10009 8938 8938 8892
Rel. Dev. [%] 20.84 19.39 18.26 22.23 22.23 20.10

FS2 [%] 83.40 90.32 93.04 87.00 87.00 92.50

W 2 [sec.] 84.45 52.27 38.49 68.11 68.11 41.84

Approach 2

Profit (MIP) 10719 10819 9151 9581 9674 -
Profit (SIM) 10280 10293 9838 9192 9230 -
Rel. Dev. [%] 4.27 5.11 -6.98 4.23 4.81 -

FS2 [%] 92.42 96.34 99.89 95.85 96.60 -

W 2 [sec.] 41.85 21.01 0.65 23.66 19.67 -

Approach 3

Profit (MIP) 9784 - - 8650 8561 -
Profit (SIM) 10268 - - 9178 9241 -
Rel. Dev. [%] -4.71 - - -5.75 -7.36 -

FS2 [%] 91.11 - - 96.63 96.60 -

W 2 [sec.] 48.62 - - 19.56 19.58 -

Dev Best

Appr1 [%] -3.88 -3.05 0.00 -2.76 -3.28 0.00
Appr2 [%] 0.00 0.00 -1.71 0.00 -0.12 -
Appr3 [%] -0.12 - - -0.15 0.00 -

AvScnOpt 9945 9824 - 8824 8705 -
AvUB 9995 9874 - 8869 8749 -
RelDev Appr3 [%] 2.11 - - 2.46 2.15 -

Tables 6 to 8 we present for each combination of problem case and solution
approach the (average) profit as computed by the MIP solver as well as the
simulated profit for the computed shift schedule. The next line presents the
relative deviation of the MIP objective function value from the simulation
results. The simulated values of the fraction of served calls FS2 and the
aggregated waiting time W 2 of the second customer class (support channel)
are reported below. If we compare the results for Approach 1 in Tables 6 to
8, we see that for the small contact center, the fluid approach substantially
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Table 7 Results for the medium-sized contact center

Case 1M 2M 3M 4M 5M 6M

Approach 1

Profit (MIP) 48128 48128 47777 43763 43673 43101
Profit (SIM) 43636 43636 44067 39548 39395 39546
Rel. Dev. [%] 10.29 10.29 8.42 10.66 10.86 8.99

FS2 [%] 93.76 93.76 96.55 92.26 92.89 96.55

W 2 [sec.] 34.98 34.98 19.85 42.86 39.60 19.85

Approach 2

Profit (MIP) 46263 46082 42929 - 41875 38159
Profit (SIM) 42952 44154 44235 - 39551 39564
Rel. Dev. [%] 7.71 4.37 -2.95 - 5.88 -3.55

FS2 [%] 88.24 96.38 99.93 - 96.15 99.92

W 2 [sec.] 62.81 20.82 0.43 - 21.98 0.49

Approach 3

Profit (MIP) 44637 44548 38837 39040 40217 33293
Profit (SIM) 43471 44338 41317 41063 39850 35910
Rel. Dev. [%] 2.68 0.47 -6.00 -4.93 0.92 -7.29

FS2 [%] 92.25 97.14 100.00 95.14 97.57 100.00

W 2 [sec.] 42.92 16.46 0.01 27.68 14.12 0.00

Dev Best

Appr1 [%] 0.00 -1.58 -0.38 -3.69 -1.14 -0.04
Appr2 [%] -1.57 -0.41 0.00 - -0.75 0.00
Appr3 [%] -0.38 0.00 -6.60 0.00 0.00 -9.24

AvScnOpt 45099 44794 39047 40611 40640 34495
AvUB 45324 45018 39242 40814 40843 34667
RelDev Appr3 [%] 1.52 1.04 1.03 4.35 1.53 3.96

overestimates the profit that is associated with the proposed shift schedule,
while for the large contact center the deviation is only in the area of 4-5%.

Approach 2 (using multiple sample paths of call arrivals) apparently led
to a much better estimate of the profit, even for the small contact center. In
addition, the resulting shift schedule, when evaluated via simulation, turned
out to be better than those from Approach 1. It is also interesting to observe,
that in this approach the service level limits for customer class 2 were met
much better than via Approach 1. In the schedules computed via Approach
1, usually relatively few flexible generalist agents are scheduled, as these
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Table 8 Results for the large contact center

Case 1L 2L 3L 4L 5L 6L

Approach 1

Profit (MIP) 192774 192764 191276 176109 175857 172574
Profit (SIM) 184302 184113 184492 167052 166614 166009
Rel. Dev. [%] 4.60 4.70 3.68 5.42 5.55 3.95

FS2 [%] 96.81 96.82 98.64 95.69 95.96 98.64

W 2 [sec.] 18.51 18.41 8.00 24.69 23.23 8.00

Approach 2

Profit (MIP) 190105 189619 183207 173043 172597 164057
Profit (SIM) 183504 183840 184976 166268 166258 166284
Rel. Dev. [%] 3.60 3.14 -0.96 4.07 3.81 -1.34

FS2 [%] 92.34 96.12 99.92 95.92 96.10 99.93

W 2 [sec.] 42.56 22.30 0.46 23.46 22.38 0.44

Approach 3

Profit (MIP) 187938 186877 177342 170891 170170 158853
Profit (SIM) 183775 184152 181740 166224 166401 163314
Rel. Dev. [%] 2.27 1.48 -2.42 2.81 2.26 -2.73

FS2 [%] 89.90 96.61 99.99 96.46 96.87 99.99

W 2 [sec.] 54.96 19.62 0.05 20.51 18.15 0.06

Dev Best

Appr1 [%] 0.00 -0.02 -0.26 0.00 0.00 -0.17
Appr2 [%] -0.43 -0.17 0.00 -0.47 -0.21 0.00
Appr3 [%] -0.29 0.00 -1.75 -0.50 -0.13 -1.79

AvScnOpt 187906 187870 178393 171050 170760 159964
AvUB 188845 188809 179285 171905 171614 160764
RelDev Appr3 [%] 0.48 1.02 1.08 0.59 0.84 1.19

are assumed to be 20% more expensive than the specialists. The schedules
resulting from Approach 2, however, are usually more robust and hence
yield a higher average profit in the simulation than those from Approach 1
as they substitute specialists by generalists.

The additional effort to consider sample path realizations of processing
rates in Approach 3, however, had a rather limited additional benefit. For
the small contact center, three out of the six cases could not be solved
within the given time limit, whereas all cases for the medium-sized and
large center were solvable. The lower part of Tables 6 to 8 (Dev Best) shows
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Table 9 Average computation times of the MIP solver (seconds)

Approach \ System size Small (S) Medium (M) Large (L)

1 50 21 17
2 1436 694 397
3 1457 1605 913

the deviation from the best schedule over all three approaches. In general,
Approach 2 performed best. However, for the large contact center even the
pure fluid Approach 1 was almost as good.

Given the randomness of interarrival and processing times, we can ex-
pect that a shift schedule which maximizes the average profit over a set of
different and stochastically independent scenarios is (ex post) suboptimal
for each single scenario if this scenario is treated in isolation. This is a typical
problem of stochastic programming with integer recourse. If we treat a sce-
nario in isolation and determine the scenario-specific optimal shift schedule,
we also compute a scenario-specific upper bound on the objective function
value. In order to assess the average quality of our solutions resulting from
Approach 3 (where both interarrival and processing times are realizations
of random variables), we therefore determined for each case an average up-
per bound of the MIP by averaging over the objective function values of
the (isolated or ex-post) solutions to 100 independent scenarios. In the bot-
tom part of Tables 6 to 8 we report these average objective function values
(AvScnOpt). We terminated the optimization when the optimality gap was
at most 0.5%. Multiplying AvScnOpt by 1.005 therefore gives an average
upper bound (AvgUB). The last line (RelDev Appr3) reports the relative
deviation of the MIP solution of Approach 3 from this average upper bound.
Note that these deviations are all relatively small and decrease as the size of
the system increases. We therefore conjecture that it is easier to determine
high quality schedules for a large system than for a small system.

If we compare the profit values of the simulated schedules for increasing
workloads and system sizes, we observe the superlinear increase of the profit
which demonstrates nicely the economies of scale in contact centers.

The average computation times of the MIP solver in Table 9 decrease
as the system size increases. The smallest computation times are observed
for the purely deterministic Approach 1. If both arrivals and processing
are modeled as realizations of random variables in Approach 3, the highest
computational effort results.

In order to study the system behavior, we now consider in more detail
case 1S from Table 6. In this small call center the class 2 customers generate
a per-call revenue that exceeds the direct cost of a call, if it is answered
by a specialist and no exogenous service level limit is imposed. Figures 6
and 7 show the different structure of the solutions, if we explicitly model
random customer arrivals in Approach 2 instead of the mean arrival process
in Approach 1. While in the solution to Approach 1, almost exclusively
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Fig. 7 Staffing level for Case 1S (Approach 2)

specialists are scheduled, the solution to Approach 2 uses many generalists
and no specialists for class 2 at all. This is a much more robust solution.

In Figure 8 we present a simulation result of Case 1S for the schedule
resulting from Approach 2. The figure shows that the waiting times of the
class 2 customers are much higher than those of class 1. This is due to the
lower profitability of class 2 calls and the higher impatience of class 1 cus-
tomers. The function of the average waiting times exhibits a characteristic
ramp profile which increases during the morning hours (as the number of
agent increases at distinct moments in time) and decreases in the afternoon.
The worst and most variable service is offered in the early morning and late
afternoon when small numbers of agents are faced with strongly changing
arrival rates. In the middle of the day, when both the number of customers
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and of agents in the system reaches peak levels, the system offers the lowest
waiting times due to its economies of scale.
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Fig. 9 Simulated average number of calls in the orbit and e-mails in the system

Our last numerical example addresses the carry-over on undone work
from one time interval to the next. We treat the large system, but assume
that neither customer class generates any revenue. Class 1 customers contact
the center by phone, have an average waiting time tolerance of 15 seconds
and call again after (on average) two hours. Customer class 2 sends e-mails
that remain in the center until they are served or the center is closed. We
demanded that 90% of the original class 1 calls and 99.9% of the e-mails
had to be served at the end of the day. Figure 9 presents a graph of the
number of class 1 customers (calls) in the orbit and of e-mails in the system.
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In this case, the different time intervals are clearly interrelated, as opposed
to the standard assumptions of the SIPP approach.

5 Managerial implications and suggestions for further research

We presented a model for the shift scheduling problem in dynamic contact
centers with skills-based routing, impatient customers and retrials. Unlike
the SIPP approach, it does not utilize a stationary queueing model. The
intertemporal interdependencies due to retrials or unanswered e-mails can
be represented in this approach and profit-maximizing schedules can be ap-
proximated. The uncertainty of interarrival and processing times can be
incorporated into a simulation optimization approach via an optimization
over a set of different scenarios. This leads to schedules that are to some
extent robust with respect to the average profit. To the best of our knowl-
edge, this is the first profit-oriented shift scheduling approach for contact
centers with SBR and retrials.

As the contact center gets larger, the accuracy and efficiency of the ap-
proach increases. In general it appears to be sufficient to model random call
arrivals to obtain robust and efficient schedules. The additional benefit of
modeling random processing times appears to be negligible while the addi-
tional numerical effort is substantial. The managerial implications are that
at least for large contact centers efficient shift schedules can be found with-
out using stationary queueing models which affects the design of workforce
planning systems.

Further research should address the tour scheduling problem over suc-
cessive days. A problem here is that the precision of the forecasts of contact
arrivals typically degrades quickly as the planning horizon is expanded.

Appendix

A Implementing a minimum function in a linear mixed-integer
model

In Equation (8) a minimum function is used. An auxiliary binary variably
y can be used to model a function z = min(x1, x2) via the following set of
constraints

x1 ≥ z (18)
x2 ≥ z (19)

z − x1 ≥ M1(1− y) (20)
z − x2 ≥ M2y (21)

where y = 1 if min(x1, x2) = x1 and y = 0 if min(x1, x2) = x2 (Suhl and
Mellouli, 2006, p. 104). The auxiliary parameter M1 has to be a negative
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lower bound on x2−x1 and M2 a negative lower bound on x1−x2. When we
implemented this modeling technique, we made an interesting observation:
Very often it was quite time-consuming to numerically enforce the binary
constraints on the y-variables for the minimum function. However, when
we relaxed this constraint and allowed for 0 ≤ y ≤ 1, usually all of the y
variables were either 1 or 0 or very close to 0 anyway. Apparently the objec-
tive function tends to enforce this minimum endogenously. We relaxed this
binary constraint to speed up the numerical solution process dramatically.
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