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Variable Selection in High Dimensional Linear
Regressions with Parameter Instability

Abstract

This paper is concerned with the problem of variable selection when the marginal effects of
signals on the target variable as well as the correlation of the covariates in the active set are
allowed to vary over time, without committing to any particular model of parameter instabilities.
It poses the issue of whether weighted or unweighted observations should be used at the variable
selection stage in the presence of parameter instability, particularly when the number of potential
covariates is large. Amongst the extant variable selection approaches, we focus on the One
Covariate at a time Multiple Testing (OCMT) method. This procedure allows a natural distinction
between the selection and forecasting stages. We establish three main theorems on selection,
estimation post selection, and in-sample fit. These theorems provide justification for using
unweighted observations at the selection stage of OCMT and down-weighting of observations
only at the forecasting stage. The benefits of the proposed method as compared to Lasso, Adaptive
Lasso and Boosting are illustrated by Monte Carlo studies and empirical applications to
forecasting monthly stock market returns and quarterly output growths.
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1 Introduction

“When you have eliminated the impossible, whatever remains, however improbable, must be

the truth” Sir Arthur Conan Doyle, The Sign of the Four (1890)

There is mounting evidence that models fitted to many statistical relationships are subject
to parameter instabilities. In an extensive early study, Stock and Watson (1996) find that
a large majority of time series regressions in economics are subject to breaks. Clements
and Hendry (1998) consider parameter instability to be one of the main sources of forecast
failure. This problem has been addressed at the estimation/forecasting stage for a given
set of selected regressors. However, the theory of variable selection in the presence of time-
varying parameters is still largely underdeveloped. In this study, we investigate whether
unweighted or weighted observations should be used at the variable selection stage when it
is known or suspected that the parameters are subject to change. To address this issue we
allow the marginal effects of signals on the target variable as well as the correlation of the
covariates in the active set to vary over time, without committing to any particular model
of parameter instabilities. We provide theoretical arguments in favor of using unweighted
observations at the selection stage, and recommend that one should only consider weighting
the observations post selection, at the estimation and forecasting stages.

For a given model specification, many different approaches have been proposed in the
literature, basically trading off bias and efficiency of forecasts by considering differing es-
timation windows or down-weighting schemes. Typical solutions are either to use rolling
windows or exponential down-weighting. For instance, Pesaran and Timmermann (2007),
Pesaran and Pick (2011) and Inoue et al. (2017) consider the choice of an observation window,
and Hyndman et al. (2008) and Pesaran et al. (2013), respectively consider exponential and
non-exponential down-weighting of the observations. There are also Bayesian approaches to
prediction that allow for the possibility of breaks over the forecast horizon, e.g. Chib (1998),

Koop and Potter (2004), and Pesaran et al. (2006). Rossi (2013) provides a review of the

2



literature on forecasting under instability. There are also related time varying parameter
(TVP) and regime switching models that are used for forecasting. See, for example, Hamil-
ton (1988) and Dangl and Halling (2012). All these studies take the model specification as
given and then consider different ways of modeling and allowing for parameter instability.
But, to the best of our knowledge, none of these studies considers the problem of variable
selection in the presence of parameter instability.

In the case of models with stable parameters it is optimal to weigh the observations
equally for both variable selection and estimation purposes. However, there is little discussion
in the literature about whether or not weighted observations should be used at the variable
selection stage, particularly when the number of potential covariates is large. There are
a number of recent studies that use machine learning techniques to allow for parameter
instability, in particular penalized regression, especially the Least Absolute Shrinkage and
Selection Operator (Lasso) initially proposed by Tibshirani (1996). For example, Caner and
Knight (2013) and Koo et al. (2020) suggest recursive application of Lasso using rolling
windows. Qian and Su (2016) consider a linear regression model with a finite number of
covariates but allow for an unknown number of breaks and use group fused Lasso due to
Alaiz et al. (2013) to consistently estimate the number of breaks and their locations. Lee
et al. (2016) have proposed a Lasso procedure that allows for threshold effects. Kapetanios
and Zikes (2018) have proposed a time-varying Lasso procedure, where all the parameters
of the model vary locally. Fan et al. (2014) suggest an extension of the screening procedure
initially proposed by Fan and Lv (2008) to the case where the regression coefficients vary
smoothly with an observable exposure variable. Also recently, Yousuf and Ng (2021) propose
an interesting boosting procedure for the estimation of high-dimensional models with locally
time varying parameters. It is important to note that, in the case of both penalized regression
and boosting procedures, variable selection and estimation are carried out simultaneously in

a single step.



Chudik et al. (2018) propose an alternative procedure called one covariate at a time
multiple testing (OCMT). The procedure focuses on the statistical significance of the net
effects of the covariates under consideration on the target variable of interest, one-at-a-time,
rather than simultaneous consideration of the partial effects of all the covariates, while taking
full account of the multiple testing nature of the inferential problem involved. The idea of
using one-at-a-time regressions is not unique to OCMT and has been used in boosting as
well as in screening approaches. See, for example, Buhlmann (2006) and Fan and Lv (2018)
as prominent examples of these approaches. What is unique about the OCMT procedure is
its inferentially motivated stopping rule without resorting to the use of information criteria,
or penalized regression after the initial stage. In the case of models with stable parameters,
Chudik et al. (2018) establish that OCMT asymptotically selects all the relevant covariates
and none of the pure noise covariates under a fairly general set of assumptions. Moreover,
they provide rates for consistency of the regression error and coefficient norms of the selected
model. Finally, using Monte Carlo studies, they show that OCMT tends to perform better
than penalized regression or boosting procedures under various designs. Sharifvaghefi (2022)
has recently generalized the OCMT procedure to allow the covariates under consideration
to be strongly correlated, while penalized regression methods require the covariates to be
weakly correlated (see e.g. Zhao and Yu (2006)).

One clear advantage of OCMT is that it allows for a natural separation of the two
problems of variable selection and estimation/forecasting. As noted above, the focus of the
present paper is the application of OCMT for variable selection in the presence of parameter
instability, defined in a broad sense. The paper does not make any contribution to the ex-
isting literature on estimation and forecasting once the variable selection stage is completed.
Existing theoretical results from the forecasting literature can be applied to the post OCMT
selected model to test for breaks and decide on the optimal choice of the estimation window

or down-weighting among the remaining true covariates.



To take account of the time variations in the coefficients of the signals, we consider their
time averages and distinguish between strong signals whose average marginal effects tend
to a non-zero value, semi-strong signals whose average marginal effects tend to zero, but
sufficiently slow, and weak signals whose average marginal effects tend to zero quite fast. In
this way we allow for variety of time variations that could arise in practice. Strong signals
tend to have non-zero effects at all times, semi-strong signals could have zero effects during
some periods, with weak signals enter the model relatively rarely. Weak signals are often
indistinguishable from noise variables. In our theoretical analysis we will focus on selection
of strong and semi-strong signals.

We provide three main theorems in support of our proposed variable selection method.
Under certain fairly general regularity conditions we show that the probability of OCMT
selecting the true approximating model that contains all the signals (strong and semi-strong)
and none of the noise variables tends to unity as the number of time series observations (T')
tends to infinity. Our results apply both when N (the number of covariates in the active set)
is fixed as well as when N tends to infinity jointly with T, covering the case where N >> T
We also establish conditions under which (a) least squares estimates of the coeflicients of
selected covariates will tend to zero unless they are signals, and (b) the average square of
residuals of the selected model achieves the oracle rate for regression models with time-
varying coefficients. These theoretical findings provide a formal justification for application
of statistical techniques from the time-varying parameters literature to the post OCMT
selected model. Our Monte Carlo experiments indicate that the OCMT procedure with
weighted observations only at the estimation stage has appealing finite-sample performance
relative to Lasso and Adaptive Lasso (A-Lasso by Zou (2006)), as well as Boosting by
Buhlmann (2006), under many different settings. We also found that Lasso and A-Lasso
consistently outperform Boosting.

Finally, we consider two empirical applications: forecasting monthly returns of stocks



in Dow Jones and output growths across 33 countries, using OCMT, Lasso and A-Lasso.
We did not include Boosting in the empirical applications. The empirical results are in line
with our theoretical and MC findings and suggest that using down-weighted observations
at the selection stage of the OCMT procedure worsens forecast accuracy in terms of mean
square forecast error and mean directional forecast accuracy. Overall, based on the empirical
results we also find that OCMT with no down-weighting at the selection stage outperforms
penalized regression methods, such as Lasso and/or A-Lasso.

The rest of the paper is organized as follows: Section 2 sets out the model specification.
Section 3 explains the basic idea behind using the OCMT procedure for variable selection
without down-weighting in the presence of parameter instability. Section 4 discusses the
technical assumptions and the asymptotic properties of the OCMT procedure under param-
eter instability. Section 5 gives the details of the Monte Carlo experiments and a summary
of the main results. Section 6 presents the empirical applications, and Section 7 concludes.
Mathematical proofs are provided in the appendix. The paper is also accompanied with
three online supplements: a theory supplement that contains lemmas required to establish
the theorems in this paper; an empirical supplement that provides further details on the
two empirical applications presented in the paper; and finally a Monte Carlo supplement
that provides additional summary tables, the full set of Monte Carlo results, as well as the
description of the algorithms used for Lasso, A-Lasso and Boosting.

Notations: Generic finite positive constants are denoted by C; for i = 1,2,---. ||A]2
and ||A||r denote the spectral and Frobenius norms of matrix A, respectively. tr(A) and

M\i(A) denote the trace and the " eigenvalue of a square matrix A, respectively. |[/x||

o

o , are both positive sequences of real

denotes the ¢ norm of vector x. If {f,}°°, and {g,

numbers, then f, = &(g,) if there exist ng > 1 and positive constants Cy and C, such that

infy,>n, (fn/gn) = Cy and SUP;,>n, (fu/gn) < Ch.



2 Model specification under parameter instability

Consider the following data generating process (DGP) for the target variable, y;, in terms

of the signal variables (x;, for i =1,2,..., k)
Y = Zéat+z7]/‘€:1 Bitxit+uta for t = ]-727"' aT (]-)

with time-varying parameters, a; = (ais, ags, -+, ame) and {8y, i = 1,2, ..., k}, where z,; is
an m X 1 vector of pre-selected covariates, and w; is an error term. Since the parameters
are time-varying we refer to the covariate ¢ as “signal” if the average expected value of its
coefficient, B;p = T—1 Zthl E(Bit), is not equal to zero. The strength of the signal can be
captured by the exponent coefficient «; in ;7 = ©(T*71). For o; = 1, the signal is strong
and f;r does not converge to zero. For 1/2 < a; < 1, the signal is semi-strong and f3; 1
converges to zero, but not too fast. For 0 < o; < 1/2, the signal is weak and §; 7 tend to
zero at a fast rate. To simply the exposition, from now on we assume that there exist no
weak signals, namely 1/2 < a; < 1, or setting a; = 1 — ; we have B;7 = ©(T %), for some
0 <¥; < 1/2, and we shall refer to strong and semi-strong signals as signals.

Parameters can vary continuously following a stochastic process as in the standard ran-
dom coefficient model, 5;; = [;+0;:&;, or could change at discrete time intervals, for example
Bit = Bi[s], ift e [Ts_1,Ts) for s=1,2,--- .S, where Tp = 1 and Ts = T". The vector z; can
contain deterministic components such as a constant, dummy variables, and a deterministic
time trend as well as stochastic variables including observed common factors. It is assumed
that both the structure of the parameter instabilities and the identity of the k£ signals are
unknown. The task facing the investigator is to select the signals from a set of covariates un-
der consideration, Sy; = {1, o, - - , TNt }, known as the active set, with N, the number of
covariates in the active set, possibly much larger than 7', the number of data points available
for estimation prior to forecasting. We assume the coefficients (a;, and f, fori = 1,2, ..., k)

are independently distributed of the pre-selected covariates (z;) and all the covariates in the



active set Syy.

The application of penalized regression techniques to variable selection is often theoret-
ically justified under two key parameter stability assumptions: the stability of £; and the
stability of the correlation matrix of the covariates in the active set. Under these assump-
tions, the application of the penalized regression to the active set can proceed using the
full sample without down-weighting or separating the variable selection from the forecasting
stage. However, in the of presence parameter instability Lasso must be adapted to simulta-
neously deal with selection and parameter change. We are not aware of any machine learning
technique that simultaneously addresses both issues. As noted in the introduction, the prob-
lem has been recognized in the empirical literature focusing on slowly varying parameters
and/or the use of rolling windows without making a distinction between variable selection
and forecasting. It is also worth highlighting that in this paper, we relax the assumption
of fixed correlation among the covariates in the active set, which is very common in the
penalized regression studies, and allow for time-varying correlations.

In this paper we follow Chudik et al. (2018) and consider the application of the OCMT
procedure for variable selection using the full unweighted sample, and provide theoretical
arguments to justify such an approach. We first recall that OCMT’s variable selection is
based on the net effect of x;; on y; conditional z,. However, when the regression coefficients
and /or the correlations across the covariates in the active set are time-varying, the net effects
will also be time-varying and we need to base our selection on average net effects. Also, we
need to filter out the effects of the pre-selected covariates, z;, from x;; and y,, before defining

average net effects. To this end consider the auxiliary regressions of x; and y; on z;, as

defined by

~ 1.7 ~ /.7
Ye = Yt — Ztﬂ%,% and Ty = Ty — Zt”vbi,Ta



where ’l,[_)%T and 'gELT are m X 1 vectors of projection coefficients given by

_ T -1 T
By = [Tl SE (ztzo] TS E(zy)
t=1 t=1
and
3 T -1 T
Bip = [T—l SE <ztzg>} TS E(z).
t=1 t=1

Using the the filtered series, z; and ¢, the average net effect of the covariate z; on 1,

conditional on z;, can be defined as

_ZT - 1Zt 1 (witgt)'

Substituting for g, = y; — z; 1/_Jy7T in the above and noting that 6, r is a given constant, then

7zT =T Zt VE(Zay:) — "Z;T [T_l Zle E(fitzt)} .

Also,

T T

ZE(:Z‘itzt) = ZE(%‘tZt) —

t=1 t=1

ZE(ZtZ;)] Izz',T = ZE(xitZt) - ZE(xitZt) =0,

t=1
then it follows that 6; 7 = T~ Zthl E(Z;yy:). Now by substituting y; from (1) we can further

write @T as
; T = - Zt VE(Ziyr) = ! Zthl E [iit (agzt + Z?:l Bitrj + Utﬂ
_ T ~
=T E(@)E(iwz) + T Y, Z] BB ) EB(Zirwje) + T3y B(Fuy).
Since the excepted values of coefficients of pre-selected covariates are time-invariant, E(a;) =

a for all ¢, we can further write 7-' S| E(a))E(Zyz,) = AT 3. E(#y2z;) = 0. There-

fore, the average net effect can be written simply as

k
)i = Z (T_l ZE(ﬁjt)Uz‘j,t(Z)> + Oiur(2),

t=1

where 0;;4(z) = E(Zyx;1), and 65, 7(2) = 1Zt L E(Ziut). But, 65,7(2) = 1Zt | E(ziue)—

9



IZ;,T (T‘1 S E(ztut)), which will be identically zero if the covariates and the condition-
ing variables are weakly exogenous with respect to u;. In what follows we allow for a mild
degree of correlation between (x;,2;) and u, by assuming that &;, r(z) = O(T~%), for some
€; > 1/2. In this case the average net effects simplifies to

k T
Oir = Z (T_l ZE(ﬁjt)Uij,t(Z)> +0(T™)
j=1 t=1

In line with our assumption about the time averages of the marginal effects, namely that
Bir = ©(T7%), for some 0 < ¥J; < 1/2, we distinguish between covariates with strong and
semi-strong net effects, and the noise variables whose net effects, averaged over time, tend
to zero sufficiently fast. Specifically, for covariates with strong or semi-strong net effects we
set 0,7 = ©(T %), for some 0 < ¥J; < 1/2, and for the noise variables we shall assume that
O; 7 = ©(T~), for some ¢ > 1/2.

In what follows, we first describe the OCMT procedure and then discuss the conditions

under which the approximating model (that includes all the signals and none of the noise

variables) is selected with probability one by OCMT.

3 Parameter instability and OCMT

The OCMT procedure begins with NV separate regressions, conditional on z;, for each of the
N covariates in the active set Sy;. Specifically, the focus is on the statistical significance of

¢;r in the following simple regressions:
Yy = Q;7th + qbi,T'Iit + Nit, fOI' t= 1a 27 e aTa 1= 17 2a XS} Na

1 _
where ¢;p = [T Z;E(fft)} [T—l ZtT:lIE(:I:,-tgjt)] = [Gsir(2)] " O, with &;10(z) =

T3 Oie(z).!

!Under parameter stability, as assumed by Chudik et al. (2018), B;; = f; for all ¢, and the aver-
age net effects can be simplified to the net effects defined by 6; 7 = E?Zl BjGijr(%), where 7,5 r(z) =

10



Due to non-zero cross-covariate correlations, knowing whether ¢; r (or equivalently Q_i,T)
is zero does not necessarily allow us to establish whether BLT is sufficiently close to zero or

not. There are four possibilities:

(I) Signals Bir =o(T7%) and 0; 7 = (T V)
(I1) Hidden Signals | Bir = ©(T~?%) and 0,17 = o(T~%)
(I1T) Pseudo-signals | Bix = 0 for all t and ;7 = ©(T~?)
(IV) Noise variables | Bz = 0 for all t and 0; 7 = ©(T~%)

for some 0 < ¥; < 1/2, and ¢; > 1/2. Notice, if the covariate z; is a noise variable, then
0; 7 converges to zero very fast. Therefore, down-weighting of observations at the variable
selection stage is likely to be inefficient for eliminating the noise variables. Moreover, for a
signal to remain hidden, we need the terms of higher order, ©(T~%) with 0 < 9; < 1/2, to
ezactly cancel out such that 6; 7 becomes a lower order, i.e. S(7~%), that tends to zero at a
sufficiently fast rate (with ¢; > 1/2). This combination of events seem quite unlikely, and to
simplify the theoretical derivations in what follows we abstract from such a possibility and
assume that there are no hidden signals and consider a single stage version of the OCMT
procedure for variable selection.?
The OCMT procedure

1. For i = 1,2,---,N, regress y = (y1,y1,....,yr) on Z = (z1,2,...,z7) and x; =

(Ti1, Tigy ooy Tir) ;Y = 2,1 + ¢irx; + m;; and compute the t-ratio of ¢; 7, given by

Ggi,T XQMZY

tiT = =
) ~ A 7 )
S.€. ((bi,T) 0; V XZ‘MZXi

where ¢;7 = (X,M,x;)”" (x,M,y) is the Ordinary Least Square (OLS) estimator of

bir, 02 =1.:m,/T, and 7, is a T x 1 vector of regression residuals.

2. Consider the critical value function, ¢,(XN,d), defined by

c(N,6) = @~ (1 —p/2N°), (2)

T Y 0ia(2):
t— i7,t
2To allow for hidden signals, Chudik et al. (2018) extend the OCMT method to have multiple stages.

11



where ®~1(.) is the inverse of a standard normal distribution function; § is a finite

positive constant; and p is the nominal size of the tests to be set by the investigator.

3. Given ¢,(N,0), the selection indicator is given by
Ji = I|tir| > ¢,(N,6)], fori=1,2,---  N. (3)
The covariate x;; is selected if jl =1.

The main goal of OCMT is to use the t-ratio of the estimated ¢;r to select all the
signals and none of the noise variables, the selected model is referred to as an approximating
model since it can include pseudo-signals. To deal with the multiple testing nature of the
problem, the critical value ¢,(IN,d) used for the separate-induced tests is chosen to be an
appropriately increasing function of N, by setting 6 > 0. The choice of ¢ is guided by our

theoretical derivations, and will be discussed below. See Remark 6.

4  Asymptotic properties of OCMT under parameter
instability

We now provide the theoretical justification for using the OCMT procedure for variable
selection in models with time-varying parameters. It is assumed that m = dim(z;) and
k, the number of signals, are fixed integers. But we allow the number of pseudo-signals,
which we denote by k}. , to grow at a sufficiently slow rate relative to N and 7. Finally,
we define the approzimating model to be a model that contains all the signals (strong as
well as semi-strong), {z; : ¢ = 1,2,--- , k}, and none of the noise variables, {z; : k + kj +
1,k+k:+2--- N} Clearly, such a model can contain one or more of the pseudo-signals,
{zy  k+1,k+2,---  k+k}}. We start with some technical assumptions in Section 4.1 and
then provide the asymptotic properties of the OCMT procedure under parameter instability

in Section 4.2.
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4.1 Technical assumptions

Let q; = (z;,x})’, be the (m 4+ N) x 1 vector containing the pre-selected variables, z;, and
the set of covariates, x; = (214, Tor, - -+, Zn¢) under consideration, and define the filtrations:
fg = U(qtv -1, " )7 f;fa = G(ataat—la o )7 J—_ﬁ = U(ﬁjtaﬁj,t—lv o )a for ] =12 aka and
Fi = o(ug, uy, - ), and set F = Ule}"J’i and F, = FLUF2UFP U F*. Also consider the

following assumptions:

Assumption 1 (Martingale difference processes)
(a) Blaq; — E(qiqi)|Fea] = 0 fort =1,2,--- T,
(b) Eu? —E (u?)|Fiq]) =0 fort =1,2,--- ,T.
(c) E[quu; — E(quue)|Fr1] =0 fort =1,2,--- | T.
(d) Elag — E(ag)|Fi-1] =0 fort =1,2,--- mandt=1,2,---,T.
(e) E[Bi — E(Bi)|Fio1] =0 fori=1,2,--- [k andt=1,2,--- ,T.

Assumption 2 (Exponential decaying probability tails)

There exist sufficiently large positive constants Cy and Cy, and s > 0 such that

(a) sup;, Pr(|g;e| > o) < Coexp(—=Cha®), for all a > 0.
(b) sup,, Pr(Jag| > a) < Coexp(—Chra®), for all a > 0.
(c) sup;, Pr(|Bi| > a) < Coexp(—Cia®), for all o> 0.
(d) sup, Pr(|u;| > a) < Coexp(—Cia®), for all a > 0.

Assumption 3 (Coefficients of signals)

(a) The number of signals, k, is a finite fized integer.

(b) Bu,i=1,2,--- ,k, are distributed independently of ¢;iv, j=1,--- ,m+ N, and uy for

all t and t'.
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(c) Bir =T} ZtT:l E(Bi) = ©(T~?), for some 0 < ¥; < 1/2.

Assumption 4 (Coefficients of conditioning variables)

(a) The number of conditioning variables, m = dim(zy), is finite.
(b) ap, £ =1,2,--- . m, are independent of qjv,j =1,--- ,m+ N, and uy for allt and t'.
(c) E(ay) =ag for £ =1,2,--- ,m and all t.

Before presenting the theoretical results, we briefly discuss the pros and cons of our
assumptions and compare them with the assumptions typically made in the high-dimensional
linear regressions and the time-varying parameters literature.

Assumptions 1 allows the variables zy, ag , i, B and uy to follow martingale differ-
ence processes, which is weaker than the IID assumption typically made in the literature.
Following a similar line of argument as in Section 4.2 of Chudik et al. (2018), some of these
assumptions can be relaxed to allow for weak serial correlation in 2z, ag, T, 5;: and u;. Note
that part (e) of Assumption 1 accommodates both randomly and discretely changing param-
eter models, since E((;) is allowed to be time varying. For examples, see the time-varying
parameter models used in the Monte Carlo experiments.

Assumption 2 imposes the variables zg, ag, T, B;: and u; to have exponentially decaying
probability tails to ensure all moments exist. This assumption is stronger than those needed
in the studies on parameter instabilities, but it is required to drive upper and lower probabil-
ity bounds for selection of the approximating model. It is common in the high-dimensional
linear literature to assume some form of exponentially decaying probability bound for the
variables. For example, see Zheng et al. (2014), Fan et al. (2020) and Chudik et al. (2018).

Assumptions 3(a) and 4(a) are required to establish that the target variable, y;, has the
exponentially decaying probability tail of the same order as the other random variables.
Assumptions 3(b) and 4(b) ensure the distribution of time-varying parameters a,; and [ to

be independent of the observed covariates (x;; and zy) and u;, which is a standard assumption
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in the literature on time-varying parameters. Assumptions 3(c) ensures the average value of
the coefficients of the signal variables does not approach zero too fast. This is an identification
assumption that allows us to distinguish signal from noise variables. Finally, Assumption 4(c)

constrains the expected values of coefficients of pre-selected covariates to be time-invariant.

4.2 Theoretical results

As mentioned in Section 1, the purpose of this paper is to provide the theoretical argument
for applying the OCMT procedure with no down-weighting at the variable selection stage in
linear high-dimensional settings subject to parameter instability. We now show that under
certain conditions discussed in Section 4.1, the OCMT procedure selects the approximating
model that contains all the signals; {x;; : ¢ = 1,2,--- ,k}; and none of the noise variables;
{zy : k+Er+1,k+ k- +2,--- . N}. The event of choosing the approximating model is
defined by

Ag = {Z?:l j = k} N {Zi\;k-&-k}—i—l j@ = 0} : (4>

Note the the approximating model can contain pseudo-signals. In what follows, we show

that Pr(Ay) — 1, as N, T — oo.

Theorem 1 Lety;, fort =1,2,--- T be generated by (1), and let T = ©(N*) with k1 > 0,
and Syt = {x14, Tor, -+, XN} which contains k signals, kX pseudo-signals, and N — k — k.
noise variables. Consider the OCMT procedure with the critical value function c,(N,0) given
by (2), for some 6 > 0. Then under Assumptions 1-4, there exist finite positive constants

Co, and C7 such that, the probability of selecting the approximating model, Ay, defined by
(4), is given by

Pr(Ag) = 1 — O(N'7290%) — Olexp(—N"1)]. (5)

See Appendix A.1 for a proof.
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It is interesting that the asymptotic results regarding the probability of selecting the
approximating model are unaffected by parameter instability, so long as the average net
effects of the signals are non-zero or tend to zero sufficiently slowly in 7', as defined formally
by Assumption 3. In the next step, we focus on estimation of the coefficients of the selected
model. To simply the exposition we assume that there are no pre-selected covariates, in

which case, the DGP (1) simplifies to
Yt = Z?Zl Bixi + up = BiXpe +uy, fort =1,2,--- T, (6)

where X, = (14, Tog, -+, xt)’, and B, = (Buy, Por, -+, Pre)’. For the next set of results the

following additional assumption is also needed.

Assumption 5 (Eigenvalues) Denote the total number of signals (k) and pseudo-signals
(k%) by kr and let Xj,. . e the kr x 1 vector of signals and pseudo-signals. then
T

T! Z]E(X,;NX;;TJ)] > ¢ > 0.

t=1

AInin

This assumption ensures that the post OCMT selected model can be consistently esti-
mated subject to certain regularity conditions to be discussed below.

The post OCMT selected model can be written as
N -
Ye = iy Jizabi + 1

where J; = I [ltiz| > ¢,(IN, 6)], defined by (3). Also Zf\il J; = kr, where kp is the number
of covariates selected by OCMT. By Theorem 1 the probability that the selected model

contains the signals tends to unity as 7' — oo. We can further write

Y = Zfil Jiwib; + e = Z?L YeWet + N, (7)
where w;, = (wu, Way, -~ - ,w,;Tt)/. The least squares (LS) estimator of selected coefficients,
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vr = (11,72, ,73,) i given by

r= (17 S wowy) (TS0 wan) ®)
In establishing the rate of convergence of 4 we distinguish between two cases: when the
vector of signals, xg; = (T4, Tor, - - - ,xkt)' is included in w; as a subset, and when this is
not the case. But we know from Theorem 1 the probability of the latter tends to zero
at a sufficiently fast rate. The following theorem provides the conditions under which the
estimates of the coefficients of the selected pseudo-signals and signals tend to their mean
values, defined formally below.
Theorem 2 Let the DGP for y;, t = 1,2,--- T be given by (6) and write down the re-
gression model selected by the OCMT procedure as (7). Suppose that Assumptions 1-5 hold
and the number of pseudo-signals, k3, grow with T such that k3 = &(T%) with 0 < d < %

Consider the LS estimator of vy = (71, Yo+ ’%T)/’ given by (S).
(1) If E(Bi) = B; for all t, then,

N « d—1
e =il = 0, (1)

where 7;“ = (712752 e 772T)/; and

/YE € /6 = (517527' o 7Bk’)/7 ifwﬁt € Xt

v, =0, otherwise.

(i) If E (XffT:tX;cT,t> is a fized time-invariant matriz, where kp = k + kY., then,

d—1

e =3l = 0, (1)

where ¥7 = (Yirs Yars -+, ) 5 and
Yor € Br = (Bir, Bory -+, Brr)'s  if wer € Xy
’yZT =0, otherwise,

and Bip =T 'S B(By), i=1,2,--- k.
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See Appendix A.2 for a proof.

Remark 1 The above theorem builds on Theorem 1 and establishes that in the post OCMT
selected model only signals will end up having non-zero limiting values, as N and T — oo,
so long as 0 < d < 1/2 and § is sufficiently large. d controls the rate at which number
of pseudo-signals is allowed to rise with T'. The latter condition rules out the possibility of
signals and pseudo-signals sharing the same unobserved common factors. To deal with such
a possibility, following Sharifvaghefi (2022), one can first filter out the common factors using
principle components (PC) and then apply the OCMT procedure to the least squares residuals

of the regressions of the covariates on one or more of their top PCs.

Remark 2 The conditions of Theorem 2 are met in the case of random coefficient models
where By = Bi + 0ui, and & are distributed independently of the signals (and of the pre-
selected covariates, if any), and the LS estimator of ~% is consistent, so long as0 < d < 1/2.
Interestingly, if signal and pseudo-signal variables are generated by a stationary process, and
hence they satisfy condition (ii) of Theorem 2, then we can extend the random coefficient

model to have time-variant means, and still estimate ~% consistently by LS.

Lastly, we consider the residuals of the post OCMT selected model, estimated by LS,

that is

)y :yt—zzlfygw&, fort =1,2,...,T. (9)

To obtain the asymptotic properties of the sum of square of residuals (SSR) of the selected

model, Zthl 72, we need the following assumption.
Assumption 6 (Weak time dependence) h;;; = xyxi(Si — BiT)(ﬁjt — BjT) is weakly
correlated over time such that

T T
Z ZCOU(hl‘j7t7 hijv) = O(T), fori,j=1,2,.,k,

t=1 t'=1

!

~+

where cov(.,.) is the covariance operator.
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Remark 3 Assumption 6 is a high-level assumption. Here is an ezample of conditions under
which this assumption holds. Suppose, Assumptions 1 and 3 hold, and the cross products of

coefficients of the signals follow martingale difference processes such that
E[ﬁitﬁjt _E(ﬁitﬁjt)‘ﬂ—l] = 0, fOT?; = 1,2, cee ,k?, j = 1,2," . ,k, G/ﬂdt = 1,2, s ,T.

Then, ZtT:l Z;‘Szl cov(hijt, hije) = O(T). To show this, let iLith = hij+ — E (hij+). We have

i i cov(hije, hije) = E < i, t) + 2 Z ZE < wthw t,)

t=1 t/'=1 t=1 t=2 t'=

E( ”t> +2ZZE[ %Jt’E( it | Fie 1)]

1 t=2 t'=

[M] =

Il
] =

t

But, E( it Fie 1) = E (hjji|Fiz1) — E(hije) and under the conditions mentioned in this

remark,

E (hijal Fi1) = E (zazjel Fer) B [(Bi = Bir) (B = Byr) | Fia]
= E (zij) {E(BiuBjul Fi1) — BirB(Bul Fimr) — BirE(BjulFim1) + BirByr }
= E (zuwj0) {E(BiBji) — ByrE(Bu) — Bir®(Bye) + BirByr }
= E (zuxj) E [(Bit — Bir) (Bt — Bir)] = E (hijs) -

Therefore, IE( iit| Fie 1) = 0. Hence, 31, Soh_y cov(hijs, hijir) = S, ( zyt> =0 (7).

The following theorem establishes the limiting property of SSR of the post OCMT selected

model.

Theorem 3 Let the DGP for y;,, t = 1,2,--- T be given by (6) and write down the re-
gression model selected by the OCMT procedure as (7). The residual of the selected model,
estimated by LS, is given by (9). Suppose that Assumptions 1-6 hold and the number of

pseudo-signals, k., grow with T such that kj = &(T%) with 0 < d < 3.

(i) If E(By) = B; for all t, then
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T18SR =621+ Agr + O, (T*%> + O, (T4, (10)

where 62 = T3 E(ud), and Agr = T713 1 tr(Zx, 1 Qs,) are non-negative,
with T, ¢ = (Cijew), Qs = (o4jep) fori,j = 1,2,--- k, and 040, = E(zpzje),
oijt,s = E (B — B1)(Bje — B;)]-

(i) If E (X%T,tX;ET,J is a fived time-invariant matriz, where kp = k + k%, then,

T-'SSR =627+ A+ O, (T—%) +0, (T*1), (11)

where NG, = T7! STt (B, €25,) is non-negative, with 05, = (a;‘jtﬁ) fori,j =
17 2a e 7k:7 and O-;}‘t,ﬁ =EK [(Blt - Bi,T)(Bjt - BJ,T)} .
See Appendix A.3 for a proof.

Remark 4 The condition d < % in Theorem 3 ensures that the number of pseudo-signals
grows sufficiently slowly in T, which in turn ensures that T~ < T—2 and hence from
equations (10) and (11), we can conclude that the average of square of residuals (T~'SSR)

of the Post OCMT selected model convergences at the same rate of T2 under both scenarios

(i) and (ii).

Remark 5 Results (10) and (11) show that the SSR of the selected model depends on (i)
the inherent uncertainty due to the unobserved error term, u, of the DGP, as given by the
term 537% (ii) the cost (in terms of fit) of ignoring the time variation in the coefficients of
the signals, By, i = 1,2,--- , k,as given by the term Agr and AET, respectively, and (iii)
the traditional O, (T~'/?) sampling uncertainty, which dominates the additional O, (T%")
uncertainty due to inclusion of ki = ©(T?) pseudo-signals. Clearly, the time variation cost
1s present even if only the signals are selected in the selection step. But, the cost could be
lower if Qs is close to zero in some periods, or if there are cancelling effects from negative
Tijt.x (a;kjt’z) when o1 p is positive, namely o 20ije5 < 0 (075,045t < 0), for some i # j

and somet. This finding for the in-sample fit is similar to the results for mean square forecast
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errors (MSFE) in the presence of breaks in the literature, such as Proposition 2 of Pesaran
and Timmermann (2007) or equation (20) of Pesaran et al. (2013), where the main focus is
to minimize the MSFE by mitigating the cost from the time variation in parameters at the
expense of increased sampling uncertainty by weighting the observations, such as the use of

optimal estimation windows or down-weighting of observations.

Remark 6 The above three theorems require the exponent ¢ in the critical value function,
(2), to be sufficiently large such that 6 > ﬁ, for some positive constant Cy. The extensive
Monte Carlo Studies in Chudik et al. (2018) suggest that setting 6 = 1 preforms well in

practice.

5 Monte Carlo evidence

We use Monte Carlo (MC) techniques to compare finite sample performance of OCMT with
and without down-weighting at the selection stage, as well as comparing the OCMT results
with those of Lasso, A-Lasso, and Boosting. In these comparisons we consider the number
of selected covariates (kr), the true positive rate (TPR), the false positive rate (FPR), and
the one-step-ahead mean square forecast error (MSFE) of the selected models. Sub-section
5.1 outlines the MC designs, sub-section 5.2 provides a summary of how the OCMT, Lasso,

A-Lasso, and Boosting procedures are implemented, and finally sub-section 5.3 presents the

main MC findings.

5.1 Simulation design

We consider the following data generating process (DGP):

k

Yt = Ct + PytYi—1 + Z Bt e + TyUy,
j=1

where the four signals Z;;, j = 1,2, 3,4 have non-zero, time-varying means p;; = E (Z;;). To

simplify the exposition of the DGP we consider the demeaned covariates, x;; = Z;; — ;¢ (S0
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that E (z;,) = 0), and write the DGP equivalently as

k
Y = di + py Y1 + Z Bt it + Ty, (12)
j=1
where
k
dy = ¢ + Z Bjtttje- (13)
j=1

Since ¢ is a free parameter, without loss of generality we also treat {d;, t =1,2,...,T} as
free parameters.

For each MC replication, » = 1,2, ..., R, the target variable, y;, is generated as random
draws using (12). The signal variables z;;, j = 1,2, 3,4, are unknown and belong to a set
Syt = {x1, Tay, -+, i} The vector of covariates x; = (21, Tor, - -+, ¥ny) is generated as
X; = R;met, where &, = (e1, €2, -+ ,ene) . {ci} are generated as AR(1) processes with

GARCH(1,1) innovations
€it = Pic€it—1 T+ (1 - P?g)lﬂ €ei, fort =1,2,--- Tiand 1 =1,2,..., N,

using the starting values €;9 ~ IIDN (0, 1). The parameters were generated heterogeneously
as independent draws, p;. ~ I[1DU (0,0.95). e.,; ~ I[IDN (O o? ), with O'Si,t given by

1Y eEt

2 _ 2 2
0o = (1= ong, — o) + g€l + Q0,07

where ay., ~ ITDU(0,0.2), and ay., ~ IIDU(0.6,0.75). The error terms, {u,},_,, in (12)

are generated as [IDN(0,02,) with o2, following the GARCH(1,1) specification

Y ut
= (1 — a1y — 24) + 1ty + 20,
Uut - A1y Ay, O‘luutfl Oé2u0-u,t717

using ug ~ N(0,1), ay, = 0.2 and ay, = 0.75.
As our baseline DGP we consider a model with stable parameters, and set 3;; = 1 for

Jj =1,2,3,4 We also set ¢, = 0 and pj; = 1 in (13), which yields d, = 4. In addition,
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we set p,; = 0 when the baseline model is static and p,; = 0.3 when the baseline model
is dynamic. In the dynamic case we set yo = (1 — p,1) *d;. In the case of models with
parameter instability we consider a mixed deterministic-stochastic model and generate (3;;

as
Bjt - bjt + Tmﬁjh for .] - 17 27 3747

where bj;; are deterministic and 7;; are AR(1) processes with GARCH(1,1) innovations,

1/2
Njt = PpjMjt—1 + (1 - P%j) Enjts

using the starting values ;o ~ IIDN (0,1), and p,; = 0.5, for all j. {e,,;} follows a normal

distribution with mean zero, and variance af,jt given by

2 2 2 .
Tt = (1 —ay, — agy,) + i, € 11 T+ Q2,0 4y, for j=1,2,3,4,

where ayy, = 0.2 and agy; = 0.75. We set 7, such that deterministic variations in f3;; are
quite large relative to the stochastic variations. To this end we set 7,, (using simulations)

so that
Ty b
1T )
L E|(8Y)

For the deterministic components of the slope coefficients (bj, for j = 1,2,3,4), we

=0.95, for j =1,2,3,4.

consider the following specifications

/

2 ifte{1,2,---,[T/3]},

it =bor =0 ift € {[T/3]+1,[T/3] +2,---,[2T/3]}, (14)

|1 ift e {[27/3] + 1,[27/3] +-2,--- . T},
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and

0.5 ifte{1,2,---,[T/2]},
bSt = b4t = (15)

15 ifte{[T/2]+1,[T/2|+2,-- T},
where [.] is the nearest integer function.

We also set ¢; =0 in (13) and generate the intercept as d; = Zle Bjtpeje, where

¢

0.6 ifte{1,2,---,[T/3]},

fie = p2e =\ 1.5 if t € {[T/3] + 1,[T/3] +2,---,[2T/3]}, (16)

0.9 ifte{[27/3]+1,[27/3]+2,---, T},

\

and

0.9 ifte{1,2,--,[T/2}
M3t = Hat = (17)
1.1 iftE{[T/2]+l,[T/2]—|—2,-~~ ,T},

In this design, the jumps in b;; and pj, for j = 1,2, have opposite signs and the jumps in
bj; and ¢, for j = 3,4, have the same sign.

The N x N correlation matrix of the covariates, R; = (r;;,), are set as r;; = rllf_j ‘, for
alli,7 =1,2,--- , N. We allow for a break in the correlation matrix

0.8 ifte{1,2,---,[T/2]}, and

Tt =

04 ifte{[T/2]+1,[T/2]+2,---,T}.

Also, we consider two possibilities for p, ;. In the static scenario we set p,; = 0 for all ¢. In

the dynamic scenario we allow for a switch in r,, and set it as

0.2 ifte{1,2,---,[T/2]},
Pyt = (18)
04 ifte{[T/2]+1,[T/2|+2,---,T}.

For the static and dynamic models with parameter instabilities, the parameter 7, is calibrated
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by simulations to ensure that the R-squared of the linear regression of y; on a constant
term, the signal variables {x1;, xa:, 3, 24}, and (in experiments with p,; # 0) the lagged
dependent variable is equal to 30% (low fit) and 50% (high fit). The same value of 7, is used
for the corresponding static and dynamic models without parameter instabilities.

We base the MC results on R = 2,000 replications, and consider N € {20, 40,100} and
T € {100,200, 500}, combinations. These choices of (N, T') cover our empirical applications.
For each pair of (N, T), there are four experiments in case of the models with no parameter
instabilities, and four experiments in the case of models with parameter instabilities, corre-
sponding to the two choices of 7, (low and high fit), p,, (static to dynamic). In total, we

carry out eight different experiments.

5.2 Selection and estimation methods using weighted and un-

weighted observations

Let wy = (x},4)', t = 1,2,--- ,T be the (unweighted) set of available observations, and
denote the corresponding set of down-weighted observations by w;(\) = AT *w; where 0 <
A < 1 is the down-weighting coefficient.> We will consider the following selection/estimation
methods: (1) OCMT with down-weighted observations {w;(\)}Z, used at both selection
and estimation stages; (2) OCMT with the unweighted observations, {w;}L ,, used at the
selection stage and down-weighted observations, {w;(\)}L,, used at the estimation stage;
(3) OCMT using unweighted observations, {w;}_,, at both selection and estimation stages;
(4,5 & 6) Lasso, A-Lasso, and Boosting also using unweighted observations, {w;}/_;; and
(7,8 & 9) Lasso, A-Lasso, and Boosting with down-weighted observations, {w;(\)}; used

as inputs.*

3We are not arguing for the use of exponential down-weighting — but use it as an example. There are
also non-exponential type down-weighting schemes that one can use, e.g. Pesaran et al. (2013)

4We also consider a two-step procedures based on Lasso, A-Lasso and Boosting. In the first step, we
apply Lasso, A-Lasso and Boosting to the original (unweighted) observations and select the variables with
non-zero coefficients. In the second step, we estimate the corresponding post-selected model by LS using the
weighted observations. Overall, the MSFEs of these procedures were higher than that of direct application
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We consider two sets of values for the down-weighting coefficient, A: (1) Light down-
weighting with A = {0.975,0.98,0.985,0.99,0.995, 1}, and (2) Heavy down-weighting with
A = {0.95,0.96,0.97,0.98,0.99,1}. For each of the above two sets of exponential down-
weighting schemes (light/heavy) we focus on simple average forecasts computed over the

individual forecasts obtained for each value of ) in the set under consideration.

5.3 Simulation results

A summary of the main results are provided in Tables 1 to 3, with additional summary tables
highlighting the effects of down-weighting at the selection stage, and the differences between
static versus dynamic models provided in the online MC supplement. Table 1 give the
number of selected covariates (kr), TPR and FPR of OCMT, Lasso, A-Lasso and Boosting
without down-weighting. Panel A of this table reports the results for different N and T
combinations, averaged across the four experiments without parameter instabilities, and
panel B of the table gives the corresponding results for the four experiments with parameter
instabilities. The results show that all the methods under consideration have higher average
TPR for models with stable parameters compared to the ones with parameter instabilities.
This is to be expected, as the models with parameter instabilities are subject to an additional
source of uncertainty:.

We further observe that the lower average TPR of OCMT in the models with parameter
instabilities is associated with a lower average number of selected covariates, and hence a
lower average FPR. On the other hand, the other procedures tend, on average, to select
more covariates in the models with parameter instabilities and hence have a higher average
FPR relative to the models without parameter instabilities. Lastly, OCMT selects fewer
covariates relative to Lasso, A-Lasso, and Boosting, while maintaining the TPR at a similar

level. As a result, OCMT has the lowest average FPR among the selection methods under

of Lasso, A-Lasso and Boosting to the weighted observations. The results are available in Section S-2 of the
online MC supplement.
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consideration across all N and T" combinations, with one exception, namley in the case of
models with stable parameters for 7' = 500 and N = 20, where the FPR for A-Lasso (0.11)
is slighly lower than that of OCMT (0.13). Summary Tables S.1 and S.2 in the online MC
supplement provide further results on the effects of down-weighting on TPR and FPR. The
results consistently show that down-weighting of observations provides no gains for OCMT
in terms of average TPR and FPR. This is also true for other methods in majority but not
all cases.

Table 2 focusses on the one-step-ahead MSFEs and provides comparative results on the
effects of down-weighting across the methods (OCMT, Lasso, A-Lasso and Boosting). As in
Table 1, Panel A of Table 2 gives average MSFEs for the four experiments without parameter
instabilities, and Panel B gives the corresponding results for the experiments with param-
eter instabilities. As expected, in the absence of parameter instabilities, using unweighted
observations gives the lowest MSFE across all the methods. Moreover, for all N and T
combinations and different down-weighting scenarios, the average MSFE of each method is
lower in the case of models with stable parameters as compared to those with parameter
instabilities. This observation is consistent with our finding in Theorem 3 about the cost
of time-variation in the coefficients on the in-sample fit of the estimated model. As can be
seen, for models with parameter instabilities, down-weighting does improve the forecasting
performance of OCMT (with and without down-weighting in the selection stage), Lasso,
A-Lasso, and Boosting. However, by comparing the MSFEs of OCMT with and without
down-weighting at the selection stage, we see that the down-weighting at the selection stage
always results in deterioration of the forecast accuracy of OCMT, which is in line with our
main theoretical result. Last but not least, the results in Table 2 show that OCMT with
down-weighting only at the estimation stage has the lowest average MSFE among all the
methods for all choices of N, T', and different down-weighting scenarios. In fact, in the case

of experiments with parameter instabilities OCMT with down-weighting (light or heavy) at
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the estimation stage only, always beats Lasso, A-Lasso and Boosting with light or heavy
down-weighting in terms of the one-step-ahead MSFE.

Table 3 compares the performance of OCMT with the down-weighting option at the
estimation stage to that of the other procedures, using the same set of down-weighting
parameter (A). Specifically, we report the MSFE of Lasso, A-Lasso, and Boosting relative to
that of OCMT. Since the relative MSFE ranking of OCMT, Lasso, A-Lasso, and Boosting
does not appear to be affected by no/light /heavy down-weighting options, as a summary
measure, we simply average relative MSFE values across individual experiments and the three
(no/light /heavy) down-weighting options. However, we provide the relative MSFE results
for the models without and with paramter instabilities separately, on left and right panels
of Table 3. Two observations stand out from this table. First, the reported average relative
MSFEs are greater than one for all the N and T choices, indicating that OCMT outperforms
Lasso, A-Lasso, and Boosting in all cases. Second, the degree of the outperformance of
OCMT over Lasso and A-Lasso generally increases (particularly for 7' > 100) with paramter
instability. This is less so if we compare OCMT with Boosting.

Tables S.4, 5.5, and S.6 in the online MC supplement provide further details about the
performance of the methods under consideration in static and dynamic experiments. In
Table S.4, we compare the number of selected covariates, the TPR, and the FPR of each
method without down-weighting across static and dynamic models. For various N and T
combinations the reported results are averaged across four experiments (with/without pa-
rameter instabilities and with/without high-fit). The results show that all the methods tend
to select fewer covariates in the dynamic models relative to the static ones, and hence have a
lower TPR and FPR. This is expected, as in the dynamic models, part of the variation in the
target variable is explained by its own lag rather than the signal variables. Consequently, in
Tables S.5 and S.6, which are about the MSFE in static and dynamic models, respectively,

we see that all the methods have a higher MSFE in dynamic models relative to the static
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ones. Additionally, the results in Tables S.5 and S.6 show that the MSFE for models with
stable parameters is always lower than the ones with parameter instabilities, regardless of
whether the model is static or not.

Overall, the results of our MC studies suggest that the OCMT procedure without down-
weighting at the selection stage is a useful method to deal with variable selection in linear

regression settings with parameter instability.

6 Empirical applications

The rest of the paper considers a number of empirical applications whereby the forecast
performance of the proposed OCMT approach with no down-weighting at the selection stage
is compared with those of Lasso and A-Lasso. In particular, we consider the following two

applications:®

e Forecasting monthly rate of price changes for 28 (out of 30) stocks in Dow Jones using

a relatively large number of financial, economic, as well as technical indicators.

e Forecasting quarterly output growth rates across 33 countries using macro and financial

variables.

In each application, we first compare the performance of OCMT with and without down-
weighted observations at the selection stage. We then consider the comparative perfor-
mance of OCMT (with variable selection carried out without down-weighting) relative to
Lasso and A-Lasso, with and without down-weighting. For down-weighting we make use
of exponentially down-weighted observations, namely Z;(\) = AT ~'x;, and §,(\) = A\ "y,
where y; is the target variable to be forecasted, x;, for ¢ = 1,2,..., N are the covariates in

the active set, and A is the exponential decay coefficient. We consider the same two sets

®We also consider forecasting Euro Area quarterly output growth using the European Central Bank (ECB)
survey of professional forecasters as our third application. The results of this application can be found in
Section S-3 of the online empirical supplement.
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of values for the degree of exponential decay, A, as in the MC section: (1) Light down-
weighting with A = {0.975,0.98,0.985,0.99,0.995, 1}, and (2) Heavy down-weighting with
A = {0.95,0.96,0.97,0.98,0.99,1}. For each of the above two sets of exponential down-
weighting schemes we again focus on simple average forecasts computed over the individual
forecasts obtained for each value of A in the set under consideration.

For forecast evaluation we consider Mean Squared Forecasting Error (MSFE) and Mean
Directional Forecast Accuracy (MDFA), together with related pooled versions of Diebold-
Mariano (DM), and Pesaran-Timmermann (PT) test statistics. A panel version of Diebold
and Mariano (2002) test is proposed by Pesaran et al. (2009). Let q; = e, — ey be the
difference in the squared forecasting errors of procedures A and B, for the target variable y;;
(l=1,2,...,L)and t = 1,2, ...,Tlf, where Tlf is the number of forecasts for target variable
[ (could be one or multiple step ahead) under consideration. Suppose g = «; + &, with

e ~ N(0,07). Then under the null hypothesis of Hy : a; = 0 for all [ we have

_ L L T
DM = 2 — ~ N(0,1), for Ty — oo, where TLf:Zﬂf,cj:TL_;Zqut, and
V(@) =1 =1 t=1
1 & 1 & 1 &
= f A2 : A2 2 ~
Vig) = T—gflz:;Tl o;, with 67 = ﬁ;(% @)” and g = 77 ;qlt'

Note that V(G) needs to be modified in the case of multiple-step ahead forecast errors,
due to the serial correlation that results in the forecast errors from the use of over-lapping
observations. There is no adjustment needed for one-step ahead forecasting, since it is
reasonable to assume that in this case the loss differentials are serially uncorrelated. However,
to handle possible serial correlation for h-step ahead forecasting with h > 1, we can modify
the panel DM test by using the Newey-West type estimator of o7.

The M DF A statistic compares the accuracy of forecasts in predicting the direction (sign)
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of the target variable, and is computed as

MDFA =100 Z Z 1[sgn(yueyiy) > 0] ¢,

where 1(w > 0) is the indicator function takes the value of 1 when w > 0 and zero otherwise,
sgn(w) is the sign function, y; is the actual value of dependent variable at time ¢ and yl];
is its corresponding predicted value. To evaluate statistical significance of the directional
forecasts for each method, we also report a pooled version of the test suggested by Pesaran

and Timmermann (1992):

A

P p
V) V()

PT =

Y

where P is the estimator of the probability of correctly predicting the sign of y;;, computed

by
& d
P= 0 > ) 1l sgn(yuy) > 0], and P* = dydys + (1 - d,)(1 - dyy), with
=1 t=1
L Tlf 1 L Tlf
= — Z Z [sgn(yi) > 0], and d,r T_ Z 1[sgn(yl) > 0].
T == =1 t=1
Finally, V(P) = Ty} P*(1 — P*), and
. A* ]_ 1 —f 27 - 4 - 7 - -
V(P ) T <2d _1) d (1 d )+T_(2dy_1) dy(l_dy>+T_Qdydyf(l_dy)(l_dyf)-
Ly Ly Lf

The last term of V(P*) is negligible and can be ignored. Under the null hypothesis, that
prediction and realization are independently distributed, PT is asymptotically distributed

as a standard normal distribution.
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6.1 Forecasting monthly returns of stocks in Dow Jones

In this application the focus is on forecasting one-month ahead stock returns, defined as
monthly change in natural logarithm of stock prices. We consider stocks that were part of
the Dow Jones index in 2017m12, and have non-zero prices for at least 120 consecutive data
points (10 years) over the period 1980m1 and 2017m12. We ended up forecasting 28 blue chip
stocks.® Daily close prices for all the stocks are obtained from Data Stream. For stock 7, the
price at the last trading day of each month is used to construct the corresponding monthly
stock prices, Py. Finally, monthly returns are computed by r; ;41 = 1001n(P; 441/ Py), for
1=1,2,...,28. For all 28 stocks we use an expanding window starting with the observations
for the first 10 years (I" = 120). The active set for predicting r;,1 consists of 40 finan-
cial, economic, and technical variables.” The full list and the description of the indicators
considered can be found in Section S-1 of online empirical supplement.

Overall we computed 8,659 monthly forecasts for the 28 target stocks. The results are
summarized as average forecast performances across the different variable selection proce-
dures. Table 4 reports the effects of down-weighting at the selection stage of the OCMT
procedure. It is clear that down-weighting worsens the predictive accuracy of OCMT. From
the Panel DM tests, we can also see that down-weighting at the selection stage worsens the
forecasts significantly. Panel DM test statistics is -5.606 (-11.352) for light (heavy) versus no
down-weighing at the selection stage. Moreover, Table 5 shows that the OCMT procedure
with no down-weighting at the selection stage dominates Lasso and A-Lasso in terms of
MSFE and the differences are statistically highly significant.

Further, OCMT outperforms Lasso and A-Lasso in terms of Mean Directional Forecast
Accuracy (MDFA), measured as the percent number of correctly signed one-month ahead
forecasts across all the 28 stocks over the period 1990m2-2017m12. See Table 6. As can be

seen from this table, OCMT with no down-weighting performs the best; correctly predicting

6Visa and DowDuPont are excluded since they have less than 10 years of historical price data.
"All regressions include the intercept as the only conditioning (pre-selected) variable.
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the direction of 56.057% of 8,659 forecasts, as compared to 55.33%, which we obtain for
Lasso and A-Lasso forecast, at best. This difference is highly significant considering the very
large number of forecasts involved. It is also of interest that the better of performance of
OCMT is achieved with a much fewer number of selected covariates as compared to Lasso
and A-Lasso. As can be seen from the last column of Table 6, Lasso and A-Lasso on average
select many more covariates than OCMT (1-3 variables as compared to 0.072 for OCMT).
So far we have focused on average performance across all the 28 stocks. Table 7 provides
the summary results for individual stocks, showing the relative performance of OCMT in
terms of the number of stocks, using MSFE and MDFA criteria. The results show that
OCMT performs better than Lasso and A-Lasso in the majority of the stocks in terms of
MSFE and MDFA. OCMT outperforms Lasso in 23 out of 28 stocks in terms of MSFE,
under no down-weighting, and almost universally when Lasso or A-Lasso are implemented
with down-weighting. Similar results are obtained when we consider MDFA criteria, although
the differences in performance are somewhat less pronounced. Overall, we can conclude that
the better average performance of OCMT (documented in Tables 5 and 6) is not driven by

a few stocks and holds more generally.

6.2 Forecasting quarterly output growth rates across 33 countries

We consider one and two years ahead predictions of output growth for 33 countries (20
advanced and 13 emerging). We use quarterly data from 1979Q2 to 2016Q4 taken from the
GVAR dataset.® We predict Ayy; = yir — Yit—a, and Agyiy = yir — Yi1—s, where y;;, is the log

of real output for country i. We adopt the following direct forecasting equations:

ApYissh = Yigtn — Yit = Qi + Nin1Yie + BipXit + Wine,

8The GVAR dataset is available at https://sites.google.com/site/gvarmodelling/data.
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where we consider h = 4 (one-year-ahead forecasts) and h = 8 (two-years-ahead forecasts).
Given the known persistence in output growth, in addition to the intercept in the present
application we also condition on the most recent lagged output growth, denoted by Ayy;; =
Yit — Yir—1, and confine the variable selection to list of variables set out in Table S.2 in
the online empirical supplement. Overall, we consider a maximum of 15 covariates in the
active set covering quarterly changes in domestic variables such as real output growth, real
short term interest rate, and long-short interest rate spread and quarterly change in the
corresponding foreign variables.

We use expanding samples, starting with the observations on the first 15 years (60 data
points), and evaluate the forecasting performance of the three methods over the period
1997Q2 to 2016Q4.

Tables 8 and 9, respectively, report the MSFE of OCMT for one-year and two-year
ahead forecasts of output growth, with and without down-weighting at the selection stage.
Consistent with the previous two applications, down-weighting at the selection stage worsens
the forecasting accuracy. Moreover, in Tables 10 and 11, we can see that OCMT (without
down-weighting at the selection stage) outperforms Lasso and A-Lasso in two-year ahead
forecasting. In the case of one-year ahead forecasts, OCMT and Lasso are very close to each
other and both outperform A-Lasso. Table 12 summarizes country-specific MSFE and DM
findings for OCMT relative to Lasso and A-Lasso. The results show OCMT under-performs
Lasso in more than half of the countries for one-year ahead horizon, but outperforms Lasso
and A-Lasso in more than 70 percent of the countries in the case of two-year ahead forecasts.
It is worth noting that while Lasso generally outperforms OCMT in the case of one-year ahead
forecasts, overall its performance is not statistically significantly better. See Panel DM test
of Table 10. On the other hand we can see from Table 11 that overall OCMT significantly
outperforms Lasso in the case of the two-year ahead forecasts.

Finally in Tables 13 and 14 we reports MDFA and PT test statistics for OCMT, Lasso
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and A-Lasso. Overall, OCMT has a slightly higher MDFA and hence predicts the direction
of real output growth better than Lasso and A-Lasso in most cases. The PT test statistics
suggest that while all the methods perform well in forecasting the direction of one-year ahead
real output growth, none of the methods considered are successful at predicting the direction
of two-year ahead output growth.

It is also worth noting that as with the previous applications, OCMT selects very few
variables from the active set (0.1 on average for both horizons, with the maximum number
of selected variables being 2 for h = 4 and 8). On the other hand, Lasso on average selects
2.7 variables from the active set for h = 4, and 1 variable on average for A = 8. Maximum
number of variables selected by Lasso is 9 and 13 for h = 4, 8, respectively (out of possible
15). Again as to be expected, A-Lasso selects a fewer number of variables as compared to
Lasso (2.3 and 0.8 on average for h = 4,8, respectively), but this does not lead to a better
forecast performance in comparison with Lasso.

In conclusion, down-weighting at both selection and forecasting stages deteriorates OCMT’s
MSFE for both one—year and two-years ahead forecast horizons, as compared to down-
weighting only at the forecasting stage. Moreover, light down-weighting at the forecasting
stage improves forecasting performance for both horizons. Statistically significant evidence
of forecasting skill is found for OCMT relative to Lasso only in the case of two-years ahead
forecasts. However, it is interesting that none of the big data methods can significantly beat

the simple (light down-weighted) AR(1) baseline model.

7 Conclusion

The penalized regression approach has become the de facto benchmark in the literature on
variable selection in the context of linear regression models. But, barring a few exceptions
(such as Kapetanios and Zikes, 2018), these studies focus on models with stable parame-

ters, and do not consider the implications of parameter instabilities for variable selection.
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Recently, Chudik et al. (2018) proposed OCMT as an alternative procedure to penalized
regression. One clear advantage of the OCMT procedure is the fact that the problem of
variable selection is separated from the forecasting stage, in contrast to the penalized regres-
sion techniques where the variable selection and estimation are carried out simultaneously.
Using OCMT one can decide whether to use the weighted observations at the variable selec-
tion stage or not, without preempting whether to down-weight and how to down-weight the
observations at the forecasting stage.

We have provided theoretical arguments for using the unweighted observations at the se-
lection stage of OCMT, and down-weighted observations at the forecasting stage of OCMT.
The benefits of the proposed method are illustrated by a number of empirical applications to
forecasting output growth and stock market returns. Our results consistently suggest that
using down-weighted observations at the selection stage of OCMT deteriorate the forecast-
ing accuracy in terms of mean square forecast error and mean directional forecast accuracy.
Moreover, our MC results suggest that overall OCMT without down-weighting at the selec-
tion stage outperforms penalized regression methods such as Lasso and A-Lasso, as well as

Boosting which tend to be prone to over-fitting.
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Table 1: The number of selected variables (kr), True Positive Rate (TRP), and False Positive Rate (FPR)

averaged across Monte Carlo experiments with and without parameter instabilities.

kp TPR FPR
N\T 100 200 500 100 200 500 100 200 500
A. Without parameter instabilities
OCMT
20 391 515 6.68 0.80 0.95 1.00 0.03 0.07 0.13
40 3.69 501 6.52 0.77 0.94 1.00 0.02 0.03 0.06
100 347 4.74  6.26 0.73 091 1.00 0.01 0.01 0.02
Lasso
20 6.93 733 7.54 0.86 0.94 0.99 0.18 0.18 0.18
40 8.48 889  8.99 0.83 0.93 0.99 0.13 0.13 0.13
100 11.17 10.95 10.98 0.80 0.91 0.98 0.08 0.07 0.07
A-Lasso
20 539 581  6.06 0.77 0.88 0.97 0.12 0.11 0.11
40 6.75  7.28 745 0.76 0.89 0.97 0.09 0.09 0.09
100 9.27 945 9.70 0.75 0.88 0.97 0.06 0.06 0.06
Boosting
20 9.19 958 9.74 0.90 0.95 0.99 0.28 0.29 0.29
40 16.04 16.52 16.78 0.89 0.96 0.99 0.31 0.32 0.32
100 35.32 36.64 37.72 0.88 0.95 0.99 0.32 0.33 0.34
B. With parameter instabilities
OCMT
20 325 455  5.93 0.69 0.90 0.99 0.02 0.05 0.10
40 3.10 441 5.85 0.66 0.88 0.99 0.01 0.02 0.05
100 296 4.23 5.71 0.61 0.85 0.99 0.01 0.01 0.02
Lasso
20 7.60 839 9.20 0.78 0.89 097 0.22 0.24 0.27
40 10.16 11.71 12.83 0.75 0.88 0.97 0.18 0.20 0.22
100 14.54 16.61 19.82 0.72 0.85 0.96 0.12 0.13 0.16
A-Lasso
20 5.84  6.58  7.40 0.68 0.81 0.93 0.16 0.17 0.18
40 797 940 10.51 0.68 0.82 0.94 0.13 0.15 0.17
100 11.58 13.70 16.73 0.66 0.81 0.94 0.09 0.10 0.13
Boosting
20 9.76 10.39 10.95 0.84 0.92 0.98 0.32 0.34 0.35
40 17.50 18.72 19.50 0.84 0.92 0.98 0.35 0.38 0.39
100 37.33 40.37 43.22 0.83 091 0.98 0.34 0.37 0.39

Notes: There are k = 4 signal variables out of N observed covariates. The reported results for OCMT, Lasso, A-Lasso, and
Boosting in the table are based on the original (not down-weighted) observations. Each experiment is based on 2000 Monte
Carlo replications. See Section 5 for the detailed description of the Monte Carlo design.
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Table 2: The effects of down-weighting on one-step-ahead MSFE of OCMT, Lasso, A-Lasso and Boosting
averaged across all MC experiments with and without parameter instabilities.

Down-weightingT: No Light Heavy No Light Heavy No Light Heavy
N\T 100 200 300
A. Without parameter instabilities
OCMT(Down-weighling only at the estimation stage)

20 29.35 30.16 31.47 24.08 24.76  25.90 22.97 24.00 25.53

40 26.84 27.22 28.03 29.45 31.00 32.77 22,98 23.70 25.12

100 27.37 2757  28.29 26.72 27.22  28.68 22.91 2445 26.59
OCMT (Down-weighling at the variable selection and estimation stages)

20 29.35 30.30 32.63 24.08 2531 28.44 22.97 25.07 30.62

40 26.84 2730 29.63 29.45 31.82 38.12 22.98 27.52  41.30

100 27.37 2812 31.56 26.72 28.88  36.87 22.91 33.50 62.79
Lasso

20 29.54 31.02 33.03 24.29 2526  27.02 23.02 24.31 26.21

40 27.39 28.66 31.70 29.49 31.38 35.20 23.10 24.84 27.83

100 28.13 30.70 34.19 27.09 29.29 32.73 23.12 26.34 30.70
A-Lasso

20 30.85 3220 34.40 24.95 25.82 28.01 23.14 24.72  26.99

40 29.34 3047  33.70 30.48 32.62 36.27 23.58 25.71  29.36

100 32.28 34.76 3797 29.51 31.97 35.50 23.86 28.35 33.14
Boosting

20 31.69 3526  40.62 25.07 28.70  34.11 23.54 28.08 32.73

40 30.11 34.24 38.90 31.83 3898 43.98 23.91 30.32 35.23

100 35.20 3943  42.23 31.33 36.17 39.97 24.78 33.06 37.88

B. With parameter instabilities
OCMT (Down-weighling only at the estimation stage)

20 33.68 32.77 33.24 27.18 25.75 26.51 26.26 24.58 26.04

40 30.55 29.54 29.77 32.65 31.93 33.22 25.68 24.23 2547

100 31.60 30.75 30.90 30.68 28.96 30.00 26.63 25.00 26.84
OCMT(Down-weighling at the variable selection and estimation stages)

20 33.68 33.38 34.79 27.18 26.48 29.45 26.26 26.00 31.46

40 30.55 30.08 32.15 32.65 33.29  40.09 25.68 28.63 42.35

100 31.60 31.46 35.07 30.68 31.10 40.90 26.63 34.56  64.47
Lasso

20 34.50 34.48 35.64 27.84 26.76 28.28 26.58 25.25 27.31

40 31.31 31.26 33.65 33.27 33.01 36.52 26.30 26.09 29.17

100 32.24 33.68 36.73 31.76 31.52 34.56 27.18 27.63 31.98
A-Lasso

20 35.79 35.35 36.76 28.28 26.99 29.06 26.60 25.49 28.02

40 33.29 33.05 35.76 3434 34.04 37.73 26.46 26.69  30.62

100 36.14 37.72  40.65 3454 34.29 37.60 27.95 29.59 34.51
Boosting

20 35.23 3790 42.76 27.68 2995  35.67 26.42 29.29  34.28

40 33.68 37.73  42.27 34.26 40.31  45.49 26.21 31.80 37.08

100 37.49 4243  45.35 34.32 3841 42.21 27.68 3452  39.77

Notes: The reported results are averaged across four experiments (with/without dynamics and with/with high-fit) for models
with and without parameter instabilities. See Section 5 for the description of the Monte Carlo design. Full set of results is
presented in the online Monte Carlo supplement.

TFor each of the two sets of exponential down-weighting (light /heavy) forecasts of the target variable are computed as the
simple average of the forecasts obtained using the down-weighting coefficient, A.
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Table 3: One-step-ahead MSFE of Lasso, A-Lasso and Boosting relative to OCMT averaged across MC
experiments with and without parameter instabilities.

N\T 100 200 500 100 200 500
A. Without parameter instabilities B. With parameter instabilities
Lasso
20 1.038 1.024 1.015 1.067 1.047 1.033
40 1.072 1.027 1.051 1.090 1.062 1.081
100 1.128 1.083 1.080 1.119 1.111 1.116
A-Lasso
20 1.077 1.052 1.031 1.093 1.061 1.042
40 1.144 1.068 1.089 1.157 1.101 1.107
100 1.268 1.179 1.149 1.244 1.211 1.187
Boosting
20 1.191 1.182 1.160 1.168 1.186 1.175
40 1.260 1.215 1.241 1.275 1.226 1.262
100 1.408 1.304 1.279 1.338 1.297 1.302

Notes: This table reports MSFE of Lasso, A-Lasso and Boosting relative to MSFE of OCMT. Relative MSFE values are
averaged across experiments and across the three options for down-weighting: no down-weighting (for all methods), light
down-weighting of observations prior to Lasso, A-Lasso and Boosting procedures relative to OCMT with light down-weighting
only at the estimation stage, and heavy down-weighting of observations prior to Lasso, A-Lasso and Boosting methods
compared with OCMT with heavy down-weighting only at the estimation stage. See Section 5 for the description of the
Monte Carlo design. Full set of results is presented in the online Monte Carlo supplement.

Table 4: Mean square forecast error (MSFE) and panel DM test of OCMT of one-month ahead monthly

return forecasts across the 28 stocks in Dow Jones index between 1990m2 and 2017m12 (8659 forecasts)

Down-weighting at'

Selection stage Forecasting stage MSFE
(M1) no no 61.231

Light Down-weighting, A = {0.975,0.98,0.985,0.99,0.995, 1}
(M2) no yes 61.641
(M3) yes yes 68.131

Heavy Down-weighting, A = {0.95,0.96,0.97,0.98,0.99,1}
(M4) no yes 62.163
(M5) yes yes 86.073
Pair-wise panel DM tests
Light down-weighting Heavy down-weighting
(M2) (M3) MY (M)

(M1) -1.528 -5.643 (M1) -2.459 -11.381
(M2) - -5.606 (M4) - -11.352

Notes: The active set consists of 40 covariates. The conditioning set only contains an intercept.

TFor each of the two sets of exponential down-weighting (light /heavy) forecasts of the target variable are computed as the
simple average of the forecasts obtained using the down-weighting coefficient, A, in the “light” or the “heavy” down-weighting
set under consideration. See footnote to Table S.3.
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Table 5: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso and A-Lasso of
one-month ahead monthly return forecasts across the 28 stocks in Dow Jones index between 1990m2 and
2017m12 (8659 forecasts)

MSFE under different down-weighting scenarios

No down-weighting Light down-weighting Heavy down-weighting?

OCMT 61.231 61.641 62.163
Lasso 61.849 63.201 69.145
A-Lasso 63.069 65.017 72.038

Selected pair-wise panel DM tests

No down-weighting  Light down-weighting  Heavy down-weighting

Lasso A-Lasso Lasso A-Lasso Lasso A-Lasso
OCMT -1.533 -4.934 -2.956 -6.025 -7.676 -10.261
Lasso - -4.661 - -6.885 - -9.569

Notes: The active set consists of 40 covariates. The conditioning set contains only the intercept.

T Light down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.975,0.98,0.985,0.99, 0.995, 1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A ={0.95,0.96,0.97,0.98,0.99, 1}.

Table 6: Mean directional forecast accuracy (MDFA) and the average number of selected variables (k) of
OCMT, Lasso and A-Lasso of one-month ahead monthly return forecasts across the 28 stocks in Dow Jones
index between 1990m2 and 2017m12 (8659 forecasts).

Down-weighting MDFA k

OCMT No 56.067 0.072
Light' 55.330  0.072

Heavy* 54.302  0.072

Lasso No 55.364  1.659
Light 54.221 2.133

Heavy 53.2056 3.794

A-Lasso No 54.648 1.312
Light 53.840 1.623

Heavy 52.951  2.855

Notes: The active set consists of 40 variables. The conditioning set contains an intercept.

T Light down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.975,0.98,0.985,0.99,0.995,1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.95,0.96,0.97,0.98,0.99, 1}.
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Table 7: The number of stocks out of the 28 stocks in Dow Jones index where OCMT outper-
forms/underperforms Lasso, and A-Lasso in terms of mean square forecast error (MSFE), panel DM test
and mean directional forecast accuracy (MDFA) between 1990m2 and 2017m12 (8659 forecasts).

MSFE
Down- OCMT OCMT significantly OCMT OCMT significantly
weighting outperforms outperforms underperforms underperforms
Lasso No 23 4 5 2
Light? 25 5 3 0
Heavy* 26 14 2 0
A-Lasso No 24 9 4 2
Light 27 10 1 0
Heavy 28 24 0 0
MDFA
Down- OCMT OCMT
weighting  outperforms underperforms
Lasso No 14 6
Light 24 4
Heavy 17 10
A-Lasso No 18 4
Light 21 3
Heavy 19 7

Notes: The active set consists of 40 variables. The conditioning set only contains an intercept.

T Light down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.975,0.98,0.985,0.99,0.995,1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.95,0.96,0.97,0.98,0.99, 1}.

Table 8: Mean square forecast error (MSFE) and panel DM test of OCMT of one-year ahead output growth
forecasts across 33 countries over the period 1997Q2-2016Q4 (2607 forecasts)

Down-weighting atf MSFE (x10%)
Selection stage Forecasting stage All Advanced Emerging
(M1) no no 11.246 7.277 17.354
Light down-weighting, A = {0.975,0.98,0.985,0.99,0.995,1}
(M2) no yes 10.836 6.913 16.871
(M3) yes yes 10.919 6.787 17.275
Heavy down-weighting, A = {0.95,0.96,0.97,0.98,0.99,1}
(M4) no yes 11.064 7.187 17.028
(M5) yes yes 11.314 6.906 18.094
Pair-wise panel DM tests (all countries)
Light down-weighting Heavy down-weighting
o) (M3) 61 ()
(M1) 2.394 1.662 (M1) 0.668 -0.204
(M2) - -0.780 (M4) - -1.320

Notes: There are up to 15 macro and financial variables in the active set.

TFor each of the two sets of exponential down-weighting (light /heavy) forecasts of the target variable are computed as the
simple average of the forecasts obtained using the down-weighting coefficient, A, in the “light” or the “heavy” down-weighting
set under consideration.
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Table 9: Mean square forecast error (MSFE) and panel DM test of OCMT of two-year ahead output growth
forecasts across 33 countries over the period 1997Q2-2016Q4 (2343 forecasts)

Down-weighting atf MSFE (x10%)
Selection stage Forecasting stage All Advanced Emerging
(M1) no no 9.921 7.355 13.867
Light down-weighting, A = {0.975,0.98,0.985,0.99,0.995,1}
(M2) no yes 9.487 6.874 13.505
(M3) yes yes 9.549 6.848 13.704
Heavy down-weighting, A = {0.95,0.96,0.97,0.98,0.99,1}
(M4) no yes 9.734 7.027 13.898
(M5) yes yes 10.389 7.277 15.177
Pair-wise panel DM test (all countries)
Light down-weighting Heavy down-weighting
(M2) (M3) My (M)
(M1) 3.667 2.827 (M1) 0.943 -1.664
(M2) - -1.009 (M4) - -3.498

Notes: There are up to 15 macro and financial variables in the active set.

TFor each of the two sets of exponential down-weighting (light /heavy) forecasts of the target variable are computed as the
simple average of the forecasts obtained using the down-weighting coefficient, A, in the ”light” or the ”heavy” down-weighting
set under consideration..

Table 10: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso, and A-Lasso for
one-year ahead output growth forecasts across 33 countries over the period1997Q2-2016Q4 (2607 forecasts)

MSFE under different down-weighting scenarios

No down-weighting Light down-weighting® Heavy down-weighting®
All Adv.* Emer.** All Adv. Emer. All Adv. Emer.
OCMT 11.246 7.277 17.354 10.836 6.913 16.871 11.064 7.187 17.028
Lasso 11.205 6.975 17.714  10.729 6.427 17.347 11.749 7.186 18.769
A-Lasso 11.579 7.128 18.426 11.153 6.548 18.236 12.254 7.482 19.595
Pair-wise panel DM tests (All countries)
No down-weighting Light down-weighting Heavy down-weighting
Lasso A-Lasso Lasso  A-Lasso Lasso  A-Lasso
OCMT 0.220 -1.079 0.486 -1.007 -1.799  -2.441
Lasso - -2.625 - -3.626 - -3.157

Notes: There are up to 15 macro and financial covariates in the active set.

T Light down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
X = {0.975,0.98,0.985,0.99,0.995,1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A ={0.95,0.96,0.97,0.98,0.99,1}.

* Adv. stands for advanced economies.

** Emer. stands for emerging economies.
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Table 11: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso, and A-Lasso of
two-year ahead output growth forecasts across 33 countries over the period1997Q2-2016Q4 (2343 forecasts)

MSFE under different down-weighting scenarios

No down-weighting Light down-weighting’ Heavy down-weighting?
All Adv.* Emer.** All Adv. Emer. All Adv. Emer.
OCMT  9.921 7.355 13.867  9.487 6.874 13.505  9.734 7.027 13.898
Lasso 10.151 7.583 14.103  9.662 7.099 13.605 10.202 7.428 14.469
A-Lasso 10.580 7.899 14.705  10.090 7.493 14.087 11.008 8.195 15.336

Pair-wise panel DM tests (All countries)

No down-weighting Light down-weighting Heavy down-weighting
Lasso A-Lasso Lasso  A-Lasso Lasso  A-Lasso
OCMT -2.684 -4.200 -2.137  -4.015 -3.606  -4.789
Lasso - -5.000 - -4.950 - -4.969

Notes: There are up to 15 macro and financial covariates in the active set.

T Light down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.975,0.98,0.985,0.99,0.995, 1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A ={0.95,0.96,0.97,0.98,0.99,1}.

* Adv. stands for advanced economies.

** Emer. stands for emerging economies.

Table 12: The number of countries out of the 33 countries where OCMT outperforms/underperforms Lasso,
and A-Lasso in terms of mean square forecast error (MSFE) and panel DM test over the period 1997Q2
-2016Q4

OCMT OCMT
Down- OCMT  significantly OCMT significantly
weighting outperforms outperforms underperforms underperforms
One-year-ahead horizon (h = 4 quarters)

Lasso No 13 0 20 3
Light' 12 1 21 3
Heavy* 17 1 16 3
A-Lasso No 16 1 17 2
Light 14 2 19 2
Heavy 19 1 14 0
Two-years-ahead horizon (h = 8 quarters)
Lasso No 24 1 9 0
Light 25 1 8 1
Heavy 25 1 8 0
A-Lasso No 25 2 8 0
Light 28 3 5 1
Heavy 30 3 3 0

Notes: There are up to 15 macro and financial covariates in the active set.

TLight down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.975,0.98,0.985,0.99,0.995,1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A ={0.95,0.96,0.97,0.98,0.99, 1}.
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Table 13: Mean directional forecast accuracy (MDFA) and PT test of OCMT, Lasso and A-Lasso for
one-year ahead output growth forecasts over the period 1997Q2-2016Q4 (2607 forecasts)

Down- MDFA PT tests
weighting  All  Advanced Emerging All' Advanced Emerging
OCMT No 87.6 87.4 88.0 8.12 7.40 3.48
Light' 87.4 87.1 87.8 7.36 6.95 2.53
Heavyt  86.8 86.3 87.5 6.25 5.93 1.95
Lasso No 87.0 86.9 87.2 9.64 9.15 3.80
Light 87.1 87.1 87.1 8.12 8.22 2.26
Heavy 86.0 85.8 86.4 6.24 6.43 1.40
A-Lasso No 87.3 87.3 87.2 10.80 9.91 4.75
Light 86.5 86.6 86.4 8.25 8.36 2.48
Heavy 85.5 85.3 85.7 6.84 6.92 1.88

Notes: There are up to 15 macro and financial variables in the active set.

T Light down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A = {0.975,0.98,0.985,0.99,0.995,1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A ={0.95,0.96,0.97,0.98,0.99,1}.

Table 14: Mean directional forecast accuracy (MDFA) and PT test of OCMT, Lasso and A-Lasso for
two-year ahead output growth forecasts over the period 1997Q2-2016Q4 (2343 forecasts)

Down- MDFA PT tests
weighting  All  Advanced Emerging All Advanced Emerging
OCMT No 88.0 86.7 89.9 0.52 0.00 0.47
Lightt 87.7 86.6 89.3 1.11 0.39 0.94
Heavyt  87.0 85.8 88.8 0.50 0.89 0.34
Lasso No 87.6 86.6 89.2 0.77 0.60 0.66
Light 87.5 86.3 89.4 0.07 0.79 0.88
Heavy 86.8 85.5 88.8 1.54 1.87 0.34
A-Lasso No 87.0 85.6 89.2 0.33 0.13 1.00
Light 87.1 85.9 88.9 1.03 1.82 1.10
Heavy 86.2 84.8 88.4 1.53 1.92 0.62

Notes: There are up to 15 macro and financial variables in the active set.

TLight down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A ={0.975,0.98,0.985,0.99,0.995,1}.

f Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the down-weighting coefficient,
A ={0.95,0.96,0.97,0.98,0.99, 1}.
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A  Appendix A: Mathematical Derivations

This appendix provides the proofs of Theorems 1 to 3. The proofs are based on lemmas
presented in the online theory supplement. Among these, Lemmas S-1.6 and S-1.7 are
key. For each covariate 1 = 1,2,--- , N, Lemmas S-1.6 establishes exponential probability
inequalities for the t-ratio multiple tests conditional on the average net effect, éi,T, being
either of the order ©(T~5) for some ¢; > 1/2, or of the order &(T), for some 0 < 9J; < 1/2.
For DGP given by (6), Lemma S-1.7 provides asymptotic properties of LS estimator of
coefficients and SSR of a regression model that includes all the signals and pseudo-signals.
This lemma establishes that the coefficients of pseudo-signals estimated by LS converges to
zero so long as k% = ©(T?) grows at a slow rate relative to T, i.e. 0 < d < 1/2. This lemma
also shows that the SSR of the regression model converges to that of the oracle model, which

includes only the signals.

Additional notations and definitions: Throughout this appendix we consider the

following events:
ko5 N A
Ay =HNG, where H = {Zi:l Ji= k} and G = {Zi:,ﬁk}ﬂ Ji = O} ) (A1)

where {J; for i =1,2,--- , N} are the selection indicators defined by (3). Ay is the event of
selecting the approximating model, defined by (4). H is the event that all signals are
selected, and G is the event that no noise variable is selected. To simplify the exposition,
with slight abuse of notation, we denote the probability of an event € conditional on 6; 7

being of order ©(T~?) by Pr[€]0;r = ©(T~%)],where a is a nonnegative constant.

A.1 Proof of Theorem 1

To establish result (5), first note that A§ = H°U G and hence (¢ denotes the complement
of H)

Pr(Aj) = Pr(H) + Pr(G°) — Pr(H° N G°) < Pr(H°) + Pr( G°), (A.2)

where H and G are given by (A.1). We also have H¢ = {35 J < k} and G° =
{Zﬁimk;ﬂji > 0}. Let’s consider Pr(H°) and Pr( G°) in turn. We have Pr(H¢) <
S Pr(J; = 0). But for any signal

Pr(J; = 0) = Pr [[tir| < (N, 0)|0ir = S(T~")] = 1=Pr [[tiz| > ¢,(N,0)|fir = S(T7")]



where 0 < #; < 1/2 and hence by Lemma S-1.6, we can conclude that there exist sufficiently
large positive constants Cy and C; such that Pr(J; = 0) = O [exp(—=CoT“")]. Since by

Assumption 3, the number of signals is finite we can further conclude that
Pr(H¢) = O [exp(—CoT")], (A.3)
for some finite positive constants Cy and (. In the next step note that
c N > N 5
Pr(G¢) = Pr (Zi:k+k;+1 Ji > O) < Zi:k—i—k*T—l—l Pr <~7i = 1) :

But for any noise variable Pr(J; = 1) = Pr [Itir| > ¢p(N,8)|6:r = S(T)] , where ¢; > 1/2
and hence by Lemma S-1.6, we can conclude that there exist sufficiently large positive con-
stants Cp, Cy and Cy such that Pr(J; = 1) < exp [—Co2(N,6)] + exp(—C1T). Therefore,

Pr(G¢) < Nexp [-Coc2(N,0)] + N exp(—C1T?),
and by result (II) of Lemma S-2.2 in online theory supplement we can further write

Pr(G¢) = O(N'72%%) + O [N exp(—C1T%)] . (A.4)
Using (A.3) and (A.4) in (A.2), we obtain Pr(A§) = O(N'72%%) + O [N exp(—C,T)] and

Pr(Ag) =1 — O(N'72%%) — O [N exp(—C,T)], which completes the proof.

A.2 Proof of Theorem 2

For any B > 0,
—d “ * 1-d A~ *
Pr (7% 47— 7il > B) =Pr (T |47 = 7ill > BlAo ) Pr(Ao) +
1-d A * C C
Pr (T |97 — il > BIAS) Pr (A7),

Since Pr <T% 157 — vl > B[AS) and Pr (Ap) are less than or equal to one, we can further

write,
1-d . " 1-=d . . N c
Pr (7% 47— 7il > B) < Pr (7% |47 = vill > Bldo) + Pr (4).

By conditioning on A, the dimension of vector 4, is at most equal to k + k}. and by
assumption k% = ©(T?) where 0 < d < 1/2. Therefore, by Lemma S-1.7 in online theory
supplement, conditional on Ay, ||[¥,— 45| is O, (T %) By Theorem 1, we also have



limy_,o Pr(A§) = 0. Hence, for any € > 0, there exists B, > 0 and 7. > 0 such that

Pr (T |97 = il > Belo) + Pr (Af) < & for all T > T..
Therefore, Pr (T% 1Yz — 5l > Bg> < ¢ for all T' > T, and we conclude that
. . d-1
14 =il = Op (7).

as required. Similar lines of arguments can be used to show that if E (X,;NX;;T t) is a fixed

time-invariant matrix, then |4, —~v%| = Op (T %>, which completes the proof.

A.3 Proof of Theorem 3

Let Dp =T~ %2 — (Agr + 62 7). For any B > 0,
Pr (T% \Dy| > B) —Pr (T% 1Dy| > B|Ao) Pr (Ao) + Pr (T% \Dy| > B|Ag) Pr(AS).
Since Pr <T 2 |Dy| > B |A8) and Pr (Ap) are less than or equal to one, we can further write,

Pr (T% \Dy| > B) <Pr (T% \Dy| > B|AO> 4 Pr(AS).

By conditioning on Ay, the number of selected covariates is at most equal to k + &k} and
by assumption ki = ©(T?), where 0 < d < 1/2. Therefore, by Lemma S-1.7 in online
theory supplement, conditional on Ay, Dr is O, (T‘é) By Theorem 1, we also have
limr o Pr(A§) = 0. Hence, for any ¢ > 0, there exists B. > 0 and 7. > 0 such that
Pr (T% \Dy| > BEIAO) 4+ Pr(A4Y) < e, forall T > T.. Therefore, Pr (T% \Dy| > B€> <
e for all T > T, and we conclude that

as required. Following similar lines of argument we get that if E (X’;TthiT t) is a fixed

time-invariant matrix, then,

which completes the proof.
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This online theory supplement has two sections. Section S-1 provides the main lemmas
needed for the proof of Theorems 1-3 in Appendix A of the paper. Section S-2 contains the
complementary lemmas needed for the proofs of the main lemmas in the previous section.
Notations: Generic finite positive constants are denoted by C; for i = 1,2,--- and c.
They can take different values in different instances. ||A|l2, [[A||lr, [|A|lw and ||A]]; denote
the spectral, Frobenius, row, and column norms of matrix A, respectively. A;(A) denotes
the 1" eigenvalue of a square matrix A. tr(A) and det(A) are the trace and determinant of
a square matrix A, respectively. ||x|| denotes the ¢5 norm of vector x. If {f,,}°°, is any real
sequence and {g, }>°, is a sequence of positive real numbers, then f,, = O(g,), if there exists a
positive constant Cy and ng such that | f,|/g, < Cy for all n > ng. f, = o(g,) if fn/g, — 0 as
n — oo. If {f,}22, and {g,}52, are both positive sequences of real numbers, then f, = S(g,)
if there exist nog > 1 and positive constants Cy and Cy, such that inf,>,, (f./g,) > Co and
SUD, >y (fr/9n) < Ch. respectively. If { f,}52, is a sequence of random variables and {g,}52,
is a sequence of positive real numbers, then f, = O,(g,), if for any € > 0, there exists a

positive constant B. and n. such that Pr (| f,| > g,B:) < € for all n > n..

S-1 Main lemmas

Lemma S-1.1 Let y, be a target variable generated by equation (1), zy = (214, 226, " * 5 Zmt)’

be the m x 1 vector of conditioning covariates in DGP (1) and x; be a covariate in the active

S.1



set Sy = {1, T, -+, N ). Under Assumptions 1, 8, and j we have
E [yixi — E(yewi)[Fi-1] = 0,
fori=1,2,--- N,
E [yezee — E(yr2)[Fi-1] = 0,
fort=1,2,--- m, and
E [y — E(y7)|Fia] = 0.
Proof. Note that y; can be written as
Ye = 23+ X5, By + e = 20y anza + 35—y By + us,

where xg¢ = (14, Tot, -+, xe)', and B, = (B, Pat, -+, Bre)’. Moreover, By Assumption 4,

ag is independent of x;» and zpy for all 4, ¢/, and t'. Hence, for i = 1,2,--- , N, we have
E(yzi|Fio1) = Y ey E(aft|E—1)E(zétxit|}—t—l)+Z§:1 E(Bje| Fi1)E(xjexie| Feo1)+E(uxie| Fioq).

By Assumption 1, we have E(ay|Fi—1) = E(an), E(zpxit|Fio1) = E(zazy), E(Bjt| Fio1) =
E(B;i), E(xjixi|Fio1) = E(xjxy), and E(uzy|Fimr) = E(wz,). Therefore,

E(yera| Fi1) = Y ey E(aew)E(zaxi) + Z?=1 E(Bj0)E(zjizir) + E(wiri) = E(yeaa).

Similarly, we can show that for £ =1,2,--- ,m,

E(yzee| Fio1) = 227:1 E(ap| Fi—1)E(zeezee| Fe—1) + Z§:1 E(Bje| Fio1)E(xjez0e| Fi1) + E(uezee| Fi-1)
= > -1 E(ars)E(zerze) + Z§:1 E(B0)E(zjeza) + E(urze) = E(yiza).

Also to establish the last result, we can write y; as y; = q;8; + u;, where q; = (z},%, )’

and &; = (a},3;)’. We have,

E(y;|Fi-1) = E( 8| Fe-1)E(aedy| Fi-1)E(8e| Fror) + E(uf | Fimr) + 2E(8; | Feo1 ) E(qrue| Fin)
= E(6))E(quay)E(0:) + E(uf) + 2E(d;) E(qeu) = E(y7).
|

Lemma S-1.2 Let y; be a target variable generated by equation (1). Under Assumptions

2-4, for any value of a > 0, there exist some positive constants Cy and Cy such that

sup Pr(|y;| > a) < Cy eXp(C’las/Q)
t
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Proof. Note that
el < 3005 [aaze| + Z§:1|ﬁjtxjt| + el
Therefore,
Pr(ly| > o) < Pr(300%, |agzu| + E?=1|ﬁjt95jt| + Jw| > a),

and by Lemma S-2.3 for any 0 < m; < 1,t=1,2,--- ,k+m + 1, with Zfilmﬂwj =1, we

can further write

Pr(|ye > ) < 30, Prfagze| > mea) + 35 Pr(|Bjas] > mj0) + Pr(|ug| > Thsmirar).
Moreover, by Lemma S-2.4, we have

Pr(|Bjuzje] > mja) < Prllaje] > (mj0)?] + Pr[|Be] > (micr) /7],

Pr(lagze| > mar) < Prl|zg| > (ma)lﬂ] + Prllag| > (moz)l/2],

and hence

Pr(ly] > o) < 308, Prllzal > (mea)'?] + 3772, Prllag| > (mea)'/?1+
S Prlla] > (w02 + 5 Pr|Bs] > (m0) V2] + Pr(juy| > mepaa),

Therefore, under Assumptions 2-4, we can conclude that for any value of @ > 0, there

exist some positive constants Cy and C' such that

sup Pr(|y,] > a) < Cyexp(Cra®/?).
t

n
Lemma S-1.3 Let x;; be a covariate in the active set, Sy = {x14, Tog, -+ , TNt} and z, =
(216, 296, -+ 2me)” be the m x 1 wvector of conditioning covariates in the DGP, given by (1).

Define the projection regression of x; on z; as

-/ ~
Tip =Y, 2y + Tit,

where ¥, p = (Y17, -+, Ymir)' is the m X 1 vector of projection coefficients which is equal to
(TS B(zez)) [T S B(zewi)]. Under Assumptions 1, 2, and 4, there exist some
finite positive constants Cy, Cy and Cy such that if 0 < X\ < (s +2)/(s +4), then

Pr(|x;M.x; — E(X/X;)| > (r) < exp(—=CoT~'¢}) + exp(—C1T?)
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and if X > (s +2)/(s+4), then
/ Sl s/(s+1) Co
Pr(jxiM.x; — E(X%;)| > (r) < exp(=Coty ) + exp(=C1 1)

. . 5 s~ =\ /
for all i and j, where X; = (T4, Tio, -, Tir)', Xi = (T, Tigy -+, Ti7), and M, = Iy —

T‘lzﬁDZjZ’ with Z = (21,22, ,27) and 3., = T ] (z,2}).
Proof. By Assumption 1 we have
E [2e:200 — E(2e1204)| Fi-1] = 0.
for 0,0/ =1,2,---,m,
E [xitl‘jt - E(%t%tﬂft—l] =0,
fores,7=1,2,---,N, and
E [zezis — E(ze74)| Fi-1] = 0,

for{ =1,2,--- ,m,i=1,2,--- ,N. Moreover, by Assumption 2, for all ¢, ¢, and ¢, x;;, and
ze have exponential decaying probability tails. Additionally, by Assumption 4 the number of
pre-selected covariates m is finite. Therefore by Lemma S-2.20, we can conclude that there

exist sufficiently large positive constants Cy, C1, and C5 such that if 0 < XA < (s+2)/(s+4),
Pr(xM.x; — E(RZ)| > Cr) < exp(—CoT~'2) + exp(—ChT)

and if A > (s +2)/(s+4)
Pr(|xM.x; — E(X%;)| > ¢r) < exp(—Co¢y/*™) + exp(—C1T)

for all 7 and j. m

Lemma S-1.4 Lety; be a target variable generated by the DGP given by (1), z; = (z14, 226, -+ 5 Zme)’
be the m x 1 vector of conditioning covariates in DGP (1) and x;; be a covariate in the active

set, {1, Tor, -+, XNt ). Define the projection regression of xy on z; as
! 7 ~
Tit = th’i,T + Tit,

where ’QZZ‘,T = (Y17, Ymiz) i the m x 1 vector of projection coefficients which is equal

-1
to | TS, E(ztz;)] (TS0 B(zx4)]. Additionally define the projection regression of
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Ys ON Zy QS

Y = Z:f,lzy,T + gt?

-1

where 7ﬁy,T = (Y115 Ymy,r)" is equal to [Tfl Zle E(zz) [Tfl Zthl E(zy)]. Un-
der Assumptions 1- 4, if 0 < X < (s +2)/(s+4),

Pr(|xiM.y — ;7| > (r) < exp(=CoT'(F) + exp(—C1T),
and if A > (s +2)/(s+4)
Pr(jx/M.y — 0;7] > Cr) < exp(—Co¢ ™) + exp(—C1T),

foralli=1,2,--- | N; where x; = (vi1,Ti2, - ,xir), Yy = (Y1,Y2, -+ ,yr), Oir = T@LT =
E<}~<{L§’)7 il = ('%ﬂ?‘%i?v” : 7jiT>/ ) S’ = (gbg?v' o 7gT)/7 MZ =1- T_lzﬁ:,z_zlzl7 7 = (Zl7z2>
-, z7) and S, =T"1! Ele 747

Proof. Note that by Assumption 1 and Lemma S-1.1, for all ¢ and ¢, cross products of x;,
zy and y; minus their expected values are martingale difference processes with respect to
filtration F;_;. Moreover, by Assumption 2 and Lemma S-1.2 , for all 4, ¢, and ¢, x;;, z,; and
y; have exponential decaying probability tails. Additionally, by Assumption 4 the number of
pre-selected covariates m is finite. Therefore by Lemma S-2.20, we can conclude that there
exist sufficiently large positive constants Cy, Cy, and C5 such that if 0 < XA < (s+2)/(s+4),
then

Pr(|xiM.y — ;7| > (r) < exp(=CoT~'(F) + exp(—=C1T),
and if A > (s +2)/(s +4), then

Pr(jx{M.y — 0;7| > (1) < exp(—CoGy/*) + exp(~C1T),
foralle=1,2,---,N. m

Lemma S-1.5 Let y; be a target variable generated by equation (1), z; be the m x 1 vec-
tor of conditioning covariates in DGP(1) and x; be a covariate in the active set, Sny =

{14,224, -+ , Nt }. Define the projection regression of y, on qi = (2}, z4) as

-/
Yt = G; 7t + Mit,

_ -1
where ¢, = |T7! S E(qitq;t)] (TS0 B(quy:)] is the projection coefficients. Under

Assumptions 1-4, there exist sufficiently large positive constants Cy, Cy and Cy such that if
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0<A<(s+2)/(s+4), then
Pr{|nMymn; — E(in,)| > (] < exp(=CoT ') + exp(=ChT),
and if A > (s +2)/(s+4), then
Pr([miMy,m; — E(nin)| > ¢r] < exp(—Cog! ) + exp(~ChT)
n; Vg, 1, n;n; CT = €xp OCT €xXp 1 )

for all i = 1,2,--- | N; where n; = (0, M2, ,mir)’, My, = Ip — Q:(QQ)'Q, and
Q; = (qi, diz, -+ qir)'-

. By Lemma S-1.1 we have

Proof. Note that n;M,,n, = y'M,,y, where y = (y1,y2,--- ,yr)
E [yiwie — E(yswi) | Fia] = 0,

fori=1,2,---, N,
E [y:zer — E(ys2ze)| Fr-1] = 0,

for { =1,2,--- ,m, and

E [y; — E(y})|Fi—1] = 0.

Moreover, by Assumption 2 and Lemma S-1.2, for all ¢, ¢, and t, x;, z4 and y; have expo-
nential decaying probability tails. Additionally, by Assumption 4 the number of pre-selected
covariates m is finite. Therefore by Lemma S-2.20, we can conclude that there exist suf-
ficiently large positive constants Cp, C7, and Cy such that if 0 < A < (s + 2)/(s + 4),
then

Pr [|n;Mym; — E(min,)| > ¢r] < exp(=CoT™'(7) + exp(=Ci T?),
and if A > (s +2)/(s +4), then

Pr [|n;Myn, — E(nin,)| > Cr] < exp(=CoGy/ ™) + exp(=C1T4),
foralle=1,2,--- . N. =

Lemma S-1.6 Let y; be a target variable generated by equation (1), z; be the m x 1 vec-
tor of conditioning covariates in DGP (1) and x; be a covariate in the active set Sy =

{14, T2, - ,xNt}. Define the projection regression of x; on z; as
! 7 ~
Ty = 2,0, 7 + Tit,

S.6



where ’d_)i,T = (Yur, s Ymir) = [Tflzle]E(ztzg)*l][Tfl ZtT:l]E(thit)] is the m x 1
vector of projection coefficients. Additionally define the projection regression of y; on z; as

Yt = Z::"Zy,T + Yt

-1
where ¥, r = (Vry1, s Ymyr) = [Tfl S ]E(ztzé)] (TS E(zy,)]. Lastly, define

the projection regression of y; on qu = (2, xy) as

Yo = By Qi + it

_ -1
where ¢, p = [T‘l ST E(qitq;t)} (TS0 B(quy:)] is the vector of projection coeffi-
cients. Consider

B T x!M,y

VT M/ T XM,

tir

foralli =1,2,--- | N; where x; = (21, T2, ,2ir), Yy = (Y1, ¥2,- -, yr) M = (i, M2,
i), My = 1= Z(Z'Z2)7'Z), Z = (21,29, ,20) , My, = Ip — Qi(QiQi)'Q;, Qs =
(di1, Qiz, -+, Qir)’ - Under Assumptions 1-4, there exist sufficiently large positive constants
Cy, C1 and Cy such that

1
Pr[|tir| > ¢p(N,6)|0;r = (T )] < exp [-Coci(N,0)] + exp(—CT), for e; > 3

where c,(N,d) is defined by (2), 0,7 = TO;r = E(XY), X; = (Ti1, Tig, -+, Tir), and § =
(1,72, -+, Jr)'. Moreover, if c,(N,8) = o(TY?7=¢) for any 0 < ¥ < 1/2 and a finite
positive constant c, then there exist some finite positive constants Cy and Cy such that,

Pr [|ti,T| > ¢y(N,6)|0ir = @(Tl_ﬂiﬂ > 1 —exp(—CoT), for 0 <v; < %
Proof. Let o) = E(T'nin,), and 0%, = E(T~'X}X;). We have [t;p| = AipBir, where,
T~ M.y|

09,0z,

Air =

and

99,9,

Bir = .
b VT M /T X MLx;

In the first case where 6; 7 = ©(T*) for some ¢; > 1/2, by using Lemma S-2.4 we have

Pr [[tir| > ¢p(n,0)|0ir = S(T'™)] < Pr [Air > ¢(N,8)/(1 +dp)|0sr = (T )] +
Pr [BzT >1+ dT|91',T = @(Tliei)} ,
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where dr — 0 as T' — oo. By using Lemma S-2.6,

Pr [BZT > 1+ dTl‘gi,T = @(T1_6i>]

_P O'niaffi
=P\ /T X M.x;
\/ TI’L qinl X’L 2 X

T M, n,)(T7'xM.x; i
(|( n; %;72)C£2 L ) - 1| > dT|9i7T = @(Tl Z)>

i~ T

— ]_| > dT|07j,T = @(Tl_gi)>

< Pr

= Pr[Mir + Rir + MirRir > dr|0;r = (T 4)]

where Ry = [(T~'niMy,n;) /02, — 1| and My = |(T7'x]M.x;)/0%, — 1|. By using Lemmas
S-2.3 and S-2.4 , for any values of 0 < m; < 1 with Zf’zl m; = 1 and a strictly positive

constant, ¢, we have

Pr [Bir > 1+ dp|6ir = (T )]
< Pr[Mr > mdy|b;r = S(T' )] + Pr [Rir > modr|bir = (T )] +
Pr [Mir > Ztdr|0ir = S(T'%)] + Pr[Rir > c|fir = S(T'4)].

First, consider Pr [M;r > mdr|0;7 = &(T*%)], and note that
Pr [Mr > mdr|0;7 = ©(T'™%)] = Pr [|x|M.x; — E(X%;)| > mo] Tdr|0;r = ©(T' )] .
Therefore, by Lemma S-1.3, there exist some constants Cy and C such that,
Pr [./\/liT > mdr|0;r = @(Tl_ei)} < exp(—C’oTcl).
Similarly,
Pr [Mr > %dr|0ir = ©(T"9)] < exp(=CoT™).
Also note that
Pt [Rir > madr i = S(T")] = Pt [JgMy m, — E(nfn))| > 0’ Tdgl6iz = (1))
Therefore, by Lemma S-1.5, there exist some constants Cy and C' such that,
Pr [R,-T > modr|0;r = @(Tl_ei)} < exp(—C’chl).
Similarly,

Pr [RzT > C|9i,T = @(Tliei)] < eXp(—CoTCI).
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Therefore, we can conclude that there exist some constants Cy and C such that,
Pr [B'LT > 14+ dT\HLT = @(Tliq)] < exp(—C’oTcl)
Now consider Pr[A;r > ¢,(N,0)/(1+ dr)|0;7 = ©(T' )], which is equal to

"M,y — 0, 0; _
Pr (|Xz y T + ,T| > |6i,T — e(Tl—el)>

(N,
0',71.0'5;1. 1+dT

< Pr{ M.y — fir| > MTUQC}?(N? 8) — ;7| 100 = (T %) ).
’ 1 +dT ’ )

Note that since €; > 1/2 the first term on the right hand side of the inequality dominate the
second one. Moreover, Since ¢,(N,§) = o(T?) for all values of A > 0, by Lemma S-1.4, there

exists a finite positive constant Cy such that

Pr[|x|M.y| > kiT"?¢,(N, 8)|6;7 = ©(T' )] < exp [—Cgcz(N, 5],

n; 9&;
1+dp °
Given the probability upper bound for A;r and B;r, we can conclude that there exist

where k| =

some finite positive constants Cy, C; and Cy such that
Pr [|tir| > ¢p(N,6)|0;r = S(T" )] < exp [-Coci(N,0)] + exp(—C T%).
Let’s consider the next case where 0; 7 = (T %) for some 0 < ¥J; < 1/2. We know that
Pr[[tir| > cp(N,8)|0ir = ©(T" )] =1—Pr [tir < cu(N,8)|0;7 = (T )] .
By Lemma S-2.8,
Pr [[tir| < cp(N.0)|ix = (') < Pr [ Air < VI +dre(N,0)|fur = S(T'")| +
Pr [Bﬁ <1/\/1+ drlbir = @(Tl—ﬂi)} .

Since ;7 = ©(T'~7), for some 0 < ¥J; < 1/2 and ¢,(N,§) = o(T?77=¢), for any 0 < ¥ <
1/2, |0i7| — 04,05 [(1 + dp)T)Y2c, (N, §) = ©(T*~%) > 0 and by Lemma S-2.5, we have

Pr [AiT <V 1+drc,(N,0)|0ir = @(Tl_ﬂi)}
_pr {\T—lﬂngZy — T-120, p + T-1/20, 4

OO,

< v/ 1+ dTCp(N, 5>|91,T = @(Tl_ﬁi)

< Pr[[x\M.y — 0;7| > |0;7| — 0,05,[(1 + dr)T)?c, (N, 0) |07 = (T )] .
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Therefore, by Lemma S-1.4, there exist some finite positive constants Cy and C; such that,
Pr [[x;M.y — x| > |0i7| — 09,05, [(1 + dr)T)V?e, (N, 8) |60 = S(T' )] < exp(=CoT),
and therefore

Pr [A” <V 1+ drey(N,0)|bir = @(TH%)] < exp(=CoT™").
Now let consider the probability of B;r,

Pr (Bir < 1/v/1+ dlbr = 0(1'™))
0, Oz 1
— PI' i~ X4 < 01 =5 Tl—'ﬂi
<\/T177§Mqﬂ7i\/T1X’iszi m| T ( )
T_l ,M ) i T—l IMZ ;
- << - ‘11;721)0(2 xMex) > 1+dpl0ir = @(Tl_ﬁi))

i~ T

< Pr(Myr + Rir + MirRir > dr|0; 7 = S(T7)),

where Ry = [(T7'miMy,n;) /02, — 1| and My = |(T7'x]M.x;)/02, — 1|. By using Lemmas
S-2.3 and S-2.4 | for any values of 0 < 7; < 1 with Z?Zl m; = 1 and a positive constant, c,

we have

Pr |:B’LT < 1/\/ 1+ dT|9i,T = @(Tliﬁi)}
< Pr[Mir > mdr|0ir = S(T")] + Pr [Rir > madr|0ir = &(T' )] +
Pr [Mir > %dr|0;r = S(T"")] + Pr [Rir > clbir = ©(T" )] .

Let’s first consider the Pr [MiT > mdy|0;r = @(Tl_ﬁi)}. Note that
Pr [Mir > mdr|0;7 = &(T"")] = Pr [|x/M.x; — E(Z}&;)| > mo2, Tdr|0;r = o(T"")] .
So, by Lemma S-1.3, we know that there exist some constants Cy and C such that,
Pr [./\/liT > mdr|b;r = @(Tl_ﬁi)} < exp(—=CoTM).
Similarly,
Pr [Mr > Zdp|0; 0 = (T'")] < exp(—=CoT).
Also note that

Pr [Rir > madlfr = ©(T'")] = Pr [|Mym, — B(im,)| > w0 Tzl = (T

S.10



Therefore, by Lemma S-1.5, there exist some constants Cy and C] such that,
Pr(Rir > modr|0;r # 0) < exp(—COTCI).

Similarly,
Pr(Rir > clfir # 0) < exp(=CoT).

Therefore, we can conclude that there exist some constants Cy and C such that,

Pr [BiT <1/\/1+ dplbir = @(TH%’)] < exp(—CyTC).
So, overall we conclude that
PI‘ [|tz,T| > Cp(N, 6)|91,T = @(Tl_ﬂi)}
=1 — PI‘ [ti,T < Cp(N, 5)|92,T = @(Tl_ﬂi)} Z 1-— exp(—C’OTcl).

Lemma S-1.7 Suppose y; are generated by

k
ye=Y xuBu+uy fort=1,2,-- T, (S.1)

i=1

and consider the LS estimator of the following regression augmented with the additional lp

regressors from the active set:
Y = Xpu® + 8107 + 1,

where Xgy = (T14, Tty -+, Tre)', 18 the kX1 vector of signals, s; is the lp x 1 vector of additional
regressors, ¢ = (¢1, ¢, -+, ¢r) and & = (01,09, -+ ,0;,.)" are the associated coefficients. The
LS estimator of vy, = (¢',87) is

Yp = (TW'W) ™ (T W'y) (S.2)
where W = (w1, Wy, -, wr)', w; = (X},,8}) andy = (y1,92,- -+ ,yr)'. The model error is
n=y— W4 (5.3)

Suppose that Apin [T 'E(W'W)] > ¢ > 0, and Iy = S(T?), where 0 < d < 1. Moreover
suppose that Assumptions 1-4 holds. Now,
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(i) If B(By) = B; for all t, then
N « d—1
Iz =il = 0, (7).

where v = (B, 0,,) and B = (B, B2, , B)'. Under Assumption 6 we also have

A~/ A~ x 1 lT
T nn_UuT+Aﬁ,T+OP<\/T)+O (T)7

where 62 7 = TV E(u?), and Agr = T~V 3, tr(Ex Q) are non-negative,
with Exk,t = (O-ijt,:c); Qﬂ,t =
aijip = E{(Bi = Bi) (Bt = B;)]-

(oijep) fori,j = 1,2,--- k, and 051, = E(xyxj),

(i1) If E(w,w}) is time-invariant, then
A a1
Iz =il = 0, (7).

where 7% = (B;“?O;T)lf BT = (BlT;BQT,' o 7BkT)/7 and BiT = Til Zle ]E(th) [f
Assumption 6 also holds, then

A 1 lr
where A;T =T Zthl tr (Exk,ts}z,t) is nori—negative, with 5, = (a;kjt’ﬂ) fori,j =
1,2,--- k, and Ufjt,g =E [(ﬁit - ﬂi,T)(ﬁjt - 5j,T)} .

Proof. In the first scenario, where E(5;;) = ; for all ¢ , we can write (S.1) as

Z Iztﬁz + Z Tt th Bz + U = Z xztﬁz + Z Tit + U = thﬁ + rtT + Ut,

where 1y = xy (B — 5), v = (ru, 7o, -+ ,7re), and 7 is a k x 1 vector of ones. We can

further write the DGP in a following matrix format,

y =X;8+Rr +u, (S.4)

where X, = (thxkz,“' XkT) R = (1‘171‘27"'7 I‘T)'

substituting (S.4) into (S.2), we obtain

and u = (uj,ug, -+ ,ur). By

r = (T7WW) (T WX 8) +(T7'W'W)  (TT'W'RT) + (T W'W) ™ (T7'W'a) |

where W = (Xk’ S), and S = (Sl,Sg, cee ,ST)/. Since "}’; = (,BI,OET)/, Xk,B = Xk:,B + SOZT =
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W=+, which in turn allows us to write the above result as:

Y = (T7W'W) ™ (T W'W) v (TT'W'W) ™ (T 'WRT) +(T'W'W) ™ (T W),

and hence
Y =5 = (TT'W'W) 7 (T'W'RT) + (TT'W'W) ™ (T 'W'u) . (S.5)
We can further write
o= vr ={ (T WW) " = [E (T WW)] {7 [(WRT) E(W’RT)]} +
{(Tww) ™ [E( 1WW} R (WRT)]
[E(T"WW)] T (WRT) - IEZ(VVRT }+
{(Tww) ™~ [E(T 1W’W} T E (W'u)]} +
{(rwWw) ™ — [E (1 W'W)] "} [T'E (W'n)
[E(77'W'W)] {77 [(W'a) — E(W'a)]}.
Hence, by the sub-additive property of norms and Lemma $-2.9, we have
1 =il < |[(TWW) = [E (T WW)] T [(WRT) — E(WRT)]| +
(T'WW) ™" = [E(T'W'W)]~ HFHT 'E (W'RT)|| +
[E(T"'W'W)] 7| |77 [( WRT) — E(W'RT)]|| +
(T7'W'W) ™" = [E (T"'W'W)] ‘1H |77 [(W'a) — E (W) || +
(T'W'W) " — [E(TW'W)] || [[TE (W) +
[E(T-'WW)]™ (W) —E(W u)]||.

Since, by Assumption 3, Gy for ¢ = 1,2,--- |

t:1a27"' 7Ta

T'E(W'RT) =

kT T k
Z T_1 Z E Wtrzt Z
i=1 | t=1 i=1
kT T
= Z T_l Z E(th’zt) (ﬁzt - Bz)
-1 L =1

S.13
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Hence,

WW) T - [E(TTWW)] T

el < T WR|+

[y

|7 "W'R|| +
2

1

TWW) - [E(TT'W'W)]”

| rw +

[y

(T
[E(TW'W)]
(T
[E

(T ww))”

|7~ "Wul|.
2

Since Assumptions 1 and 2 imply that W and u satisfy condition (i) and (ii) of Lemma
S-2.12, by Lemmas S-2.12 and S-2.13, we have

vl o, (5 ).

Similarly,

|7 [(W'W) — E(WW)]||, = O, (l—ﬁ) |

and since lr = O(T?) with 0 < d < 1/2, by Lemma S-2.14,

|ww) - E@ww)] | =0, (%) .

Now consider ||[T-*W’'R 7||. Note that the row j and column i of I7 x p matrix T-'W'R
is equal to 7! Zthl wjry. Hence the 7™ element of Iy x 1 vector T7'W'RT is equal
T-! Zle Zthl wjiry. In other words, T'W'Rr = T~! Zle Zthl w;ri. Therefore, (re-
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calling that r; =z (Bie — 5i))

kT 2 k T 2
HT_IW'R‘I'H2 =Tt Z Z (WyTit) Z T Zwtl’z‘t (Bit — Bi)
kz:thZIT =1 t=1
=7 Z Z Z Wi Wy L (B — Bi) (B — Bs)
i=1 t=1 t'=1
kT tT kg
=72 Z Z Z Z Wt Wet Tt Tit! (5@'1& - ﬁi) (Bit’ - ﬁi) .
i=1 t=1 /=1 (=1

Since, by Assumption 1, §; for ¢ = 1,2,--- ,k are distributed independently of w; for
t=1,2,---,T, we can further write,

k+lr

kK T T
E HT‘IW’RTH2 <772 Z Z Z E (wewe xazi) E[(Bi — Bi) (B — Bi)]
=1 =1 /=1 (=1
T T ktbr t

k
ST NN D E(wawwzazi )| < BBy — ) (B — 5]

=1 t=1 t'=1 (=

kK T T
<71 (/C + KT) SUP; ¢t ¢ |E WeW o Tt Ty | Z Z Z |E ﬁzt - ﬁz ﬁzt' - 51)“

=1 t=1 t'=1

+

o~
I

Since W satisfy condition (i) of Lemma S-2.12, we have sup, ¢, , [E(wuwe zizi )| < C < o0o.
Also, note that for any ' < t,

E [(5zt - 51) (5%’ - 62)] =E [(Bit’ - B@) E (th - /6i|~7:t—1)] )

and by Assumption 1, E (8;; — f;|Fi—1) = 0. Therefore,

Z Z |E th ﬁz ﬁzt’ - Bz)”

t=1 t'=1

\ [(Bie — B | +2) Y IE[(Bie — Bi) (B — B)]]

t=2 t'=1

I
Mﬂ HMH

B [(B: — 8:)*]| = O(T).

t=1

Since, by Assumption 3, k is also a finite fixed integer, we conclude that

E|T*WRr|* =0 (%T) ,
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and hence, by Lemma S-2.13,

, l
|T'W'RT|| =0, ( %) .

So, we can conclude that

. . Iy
157 = il = O, ( ?) ,

as required.
In the next step, consider the mean square error of the model, T~'#7#,. By substituting

y from (S.4) into equation (S.3) for the model error, we have
N=y— WA, =X;8+R7 +u—- WH,.

Since X8 = W~7, where 47 = (8',0;,)’, we can further write,
N=Rr+u— W& —77).

Therefore,

RT+u~W( 47 —77)] [RT +u—~W (97 — 77)]

R7+u) (RT +w) + T [W (37 — )] [W (47 —77)] -
2T [W (7 — )] (RT +u)
=T (T'RR7r +u'u) + 2T '7'R'u+ (3, — ;) (T7"W'W) (3, — v5) —
2(3r =) [T (W' Rt + Wa)] .

T'fH="T"
= 7!

By substituting for 4, — 4 from (S.5), we get

T'Wa=T"(TRR 7+ uu)+ 2T '7Ru+

[T~ (W'RT + Wu)] (T'W'W) ™ [T~ (WRT + Wu)] —
2[T"H(WR T+ Wu)] (T"'WW) ™' [T (WRT + W)
=T'(rR'R7 +u'u) + 27 '7'R'u—

[T-1 (W'RT + W)] (T7'WW)

-1

[T (WRT + Wu)].
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we can further write
T 'R =T"E(T'RRr+uu)+T H[TRR 7 - E(T'R'R7)| + [uu - E (u'u)]} +
27 '7R'u— [T (WRT + Wu)|' [E (T7'W'W)] - [T (WRT + Wu)| -
[ (WRr + W) { (T W'W) ™ = [E (T WW)] [T (WR + W)
Therefore,
T'9'H —T'E(T'R'RT 4+ u'u) <
T'7TR Rt —E('RR7)]+ T ' [uu—Euu)|+
27 R+ |77 W (R + )| | [B (77 wrw))

+
2

-1

|77 W R+ w1 || (7 Ww) T [E (T ww) |

First, consider 7! [f'R'R7 — E (7'R'R7)]. Note that

. T T/ k
TR'Rr =7/ (Z rﬂ'é) T = Z 7'ry) (r7) = Z (Z T”) (Z it
t=1 t=1 =1

Recalling that r; = x;(8y — 5;), and hence,

k kK T
T7'[rRRr —E(TR'R7)] = ZZ (T 127:"]‘7?*) ’

where
Tijt = TitTje — E(Titrjt)

2
Now consider E (T‘l ZtT:l fij,t) and note that

By Assumption 6, 723 S0 B (7;,7i;0) = O (T™"), and hence, by Lemma S-2.13, it
follows that

T

-1 ~
> i = O
t=1

S.17



Since by Assumption 3, k is a finite fixed integer, we can further conclude that

k k T
T [*RRr —E(rRR7)|=> Y <T‘1 > f,-j,t> =0, <%) : (S.7)

i=1 j=1

Now, consider, T-!'7'R’u. Note that

T T T &k k T
T 'Ru=T"17 (Z rtut> =71 Z Ty =T71 Z Z Tilly = Z <T1 Z ritut> )
=1 =1 =1 i—1 i—1 =1
We have
T 2 T
(T ! Z r,tut) =72 Z E Ztut +2772 Z Z E (ryrauguy)
=1 =2 ¢'—

Since ry; = x4(Bi — Bi), and By for i = 1,2,---  k are distributed independently of z;s,
j=1,2,--- N, and u, for all t and s, we can further write for any ¢’ < ¢
E (Titﬁt/utut’) =K (ﬂfitutiﬂitfut/) E [(B@t - ﬁz)(@zt' - Bz)]
=K (%tutmit/ut/) E {(ﬁz‘t/ - 51)E [(ﬁzt - 51')’-7:1&71]} .

But, by Assumption 1, E[(8; — 5;)|Fi—1] = 0 and thus E (ryrpwuy) = 0 for any ¢/ < t.

Therefore,

Hence, by Lemma S-2.13, ‘T*I Zthl TirlUs

fixed integer, we conclude that

T'7'Ru = i (Tl iritut> =0, <%) : (S.8)

=1 t=1

=0, <L> Since, by Assumption 3, k is a finite

By substituting (S.7) and (S.8) into (S.6), and noting that |7-*W’ (RT + u)||> = O,(lp/T),
H(T‘1W’W)_1 BT WW) (F — 0,(Ir/VT), and T~ [w'u — E ( w'u)] = O,(1/v/T),
we conclude that

k
IR _ _ 1 I
T 177/77 = Z Z (T 1 ZO'@'jt,:pO'ijt,B> + Ui,T + Op (\/T) + O <T) ,

t=1

where Oijte = E (l’itafjt), Oijt,3 = E [(ﬁzt — 5%)(ﬁ]t — 5]')]7 and 5'3771 = TﬁlE (u/u). We further
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have

k T T kook T
Agr = Z Z (T_l Z Jijt,xaijt,,8> =7 Z (Z Z Oijt,xaijt,6> = % Zl tr (s, 3x,.0) 5
; , —

where Qg, = (0413) and X, ; = (04jt,) for 1,7 =1,2,--- k. By result 9(b) on page 44 of
Liitkepohl (1996), we can further write

tr (25,8, 1) > k [det (Q5,)]"* [det (By, )]

But k is a finite fixed integer. Furthermore, det (€25;) > 0 and det (Xx, ;) > 0, since Qg
and 3, ; are positive semi-definite and positive definite matrices, respectively. So, we can
conclude that Agr > 0 as required.

In the second scenario, where E (w;w}) is time-invariant, we can write (S.1) as

Z xztﬁzT + Z xzt 57,t - 51T + Uy = Z xztﬁzT + Z hzt + Uy = Xk;tﬁ + h T+ Uy,

where h; = (ﬂn — BiT), and hy = (hyg, hoy, -+, hgy)’. We can further write the DGP in

(S.1) in a following matrix format,
y = X8 + HT +u,

where H = (hy,hy, .-+ hy). Now, by using the similar lines of arguments as in the first

scenario, we obtain
Yy — S = (T—lwlw)*l (T_1W'HT) + (T_IW’W)fl (T_1W'u) ‘

Notice that
-

T7E(WHr)=> [T E(wih)

k T
= Z {T‘l Z E[w,2i(Bir — BzT)]}

t=1

E(Wtﬂﬁit)E(ﬁit - BzT)

<. -
E| El
— —

o~

Il

—

T
E<th‘it)T_1 ZE(ﬂzt - BzT) = 0.
t=1

i=1 i

Hence, we can further use the similar lines of arguments as in the first scenario and conclude
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that

-1

e = el < | (T Ww) " - [E (0 ww)] |||t wWET |+
[E(T-'WW)]™ 'WHT|| +
(T Ww) = [E (T WW)] |7 W+
[E(T-'WW)]™ "'W'u|

We know that

7wl - o, (@) ,

| ww) ™ - [E (T W W)

and

-1

=0 (r)

Now consider |T-*W'Hr||. By using the similar lines of arguments as in the first scenario,

we have

k

+

k ktlp T T
HT”VV’H‘I'H2 <7 Z Z Z WerWep Tit Tt/ (ﬁzt - Bz) (ﬁit/ - Bz) .
i=1 t=1 ¢

=1 t= =1

o~

Since, by Assumption 3, (§; for ¢ = 1,2,--- ,k are distributed independently of w; for

t=1,2,---,T, we can further write,

k k-‘,—lT T

EHT 'w HTH <7 Z Z ZZE W Wy Tiy Ty ) [(611& _Bz) (Bit’ _Bz)}
i=1 (=1 t=1 /=
k k+ly T .

—723 S SR (wka?) [@t—@) }
e T

T Z ZE (wpwepzyry) E [(Bit - Bz) (6@'1&’ - Bz)} .
i=1 (=1 t=1 t'#t
Since, by Assumption 1, E [wywe; — E(wgwe)| Fi—1] =0 for all £, ¢ and t = 1,2,--- | T, we
have for any ¢ #t

E (wtztwet'CEitl’it/) =EK (wetxz't) E (wet'CCz‘t') .
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Therefore,

Z Z E (wgtWEtllCitwit') E [(ﬂzt - B@) (ﬁit’ - B@)}

t=1 1/t
Z Z (wawi) E (wei) E [(ﬁit - BZ) (ﬁit/ - Bz)] :
t=1 1/t

Since E (w;w;}) is time-invariant, we can further write

Z Z E (wewep zyxip ) E [(ﬁzt - Bz) (ﬁit' - Bz)}

t=1 t'#t

T
U)gtaizt Z Z ﬁzt - /Bz (ﬁzt /B’L)] .
=1 v/t

Note that, by Assumption 1, for any ' # t, E [(@t — Bl) (ﬁit/ — BZ)] = [E (Bi) — B,} [E (Bi) — Bz]

Therefore

Z Z E (wywepzyzip) E [(@zt - Bz) (/Bit’ - Bz)]

t=1 /ot
T
wgtl’zt Z Z /th ﬂz (6#/) - BJ )
t=1 ¢/t

We can further write,

T
Z Z E (wgwep vyzip) E [(ﬂzt - B@) (51‘15’ - B@)}
t=1 't

T T

= [E (waza))’ {Z Z (Bit) — Bi] [E (i) — ] Z (Bi) — }

t=1 t/=1 t=1

. =
= wétmzt 2 { th } {Z ﬁzt }
t=1 t'=1

2

K (wetiUit)]Q Z []E (Bit) — 3

Mq

But, Zthl [E (Bit) — Bz} = 0, and therefore,

Z Z E (w&wet'%t%t’) E [(th - ﬂ_z) (Bit’ - Bz)] = - []E (wét%‘t)]z Z [E (ﬁzt) - Bz] ’ .

t=1 't t=1
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So,

<723 Y S {E(wRad) E | (Bu - 5)°] - [E (waa))” [E(50) - 3]}

and hence, by Lemma S-2.13,

|T-"W'HT| =0, (@) :

So, we conclude that

) o It
15 =74l = O, (x/f) -

Lastly, consider the model mean square error for the second scenario. Following the same
lines of argument as in the first scenario, we can write,

T7'9'H — T7'E(rHHT + u'u) <
T'[*H Hr -E(rHH7)]+ 7T "' [uu-E )]+
2+ ([T W (B w1 | [E (T wrw)]

N (S.9)
2
|7 w @ )| (rww) T - B (rww)) |
First, consider 7! [+'H'HT — E (7'"H'H7)]. Note that

THHT =71/ (Z hth;> T = Z( 7'ry) (v)7) = Z <Z hit) (Z hjt) =

k
t=1 t=1 i=1 J=1 =

k
>N hichye.

i=1 j=1 t=1

Recalling that h; = 24 (Bi — Bir), and hence,

I P B (PHHD) =3 ) (T‘l > h) >

i=1 j=1 t=1

where

hije = hishjr — E(hahyy).
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N2
Now consider E (T‘l ZtT:l hij,t> and note that

T 2 T T o
E (T_l Z h’ij,t) = T_2 Z Z E (hij,thij,t’> .
t=1

t=1 t'=1

By Assumption 6, 723" I E (ﬁmﬁij’t/) = O (T™1), and hence, by Lemma S-2.13, it

follows that
d 1
| =0, (=)
17,0 D .
t=1 VT

Since by Assumption 3, k is a finite fixed integer, we can further conclude that

T [FHHr —E(r'HHr)| = 3 (T‘l > h) =0, (%) - (.10)

Now, consider, T-'7'H'u. Note that

T T
T_lT/H/u = T_l'T/ (Z htut) = T_l Z 'T/htut -1 hltut Z (T_ Z hltut> .
t=1

t=1 t=1 i=1
We have
T 2 T T
E <T1 > hitut> =T E[(hiw)’] + T Y E (hihiuu) .
t=1 t=1 t=1 t'#t

Since hy = x4(Bi — Bir), and By for i = 1,2,--- |k are distributed independently of zj,
j=1,2,--- N, and u, for all ¢t and s, we can further write for any ¢’ # ¢

E (hithiuuy) = E (zguwypuy ) E [(ﬁzt - BiT)(ﬁit' - B’LT)] .

But, by Assumption 1, E [z u; — E(zyu)|Fi—1] = 0 and we also have E(zju;) = 0 for
1=1,2,---,k and thus for any ¢’ # ¢t we have

E (fEitUtl’it/Ut/) = E (flfitut) E (xit’ut’) = 0.

Therefore,

T 2 T
E (lemtut> — T 221@ hiu)’] = O (%) .
t=1

t=1
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Hence, by Lemma S-2.13, ‘T‘l ST hay

fixed integer, we conclude that

T '7'Hu = Z (T thut) =0, <%) . (S.11)

i=1

=0, (%) Since, by Assumption 3, & is a finite

By substituting (S.10) and (S.11) into (S.9), and noting that || T-'*W' (Hr + u)||* = O, (I7/T),
H(T*W'W)*l _[E (T*lW/W)rlHF = 0,(Ir/VT), and T~ [u'u — E ( w'u)] = O,(1/v/T),
we conclude that
—1 Al A : -1 d s —2 1 It
=33 (1 S ari) + 0, () <0 (5).
i=1 j=1 t=1

where 07, 5 = E (8 — Bir)(Bje — Bir)], Br = T3 E(By), and 62, = T'E (w'n).
We further have

k k T T k k
— Z Z (T—l Z Jijt,xdfjtﬁ) -1 Z (Z Z Tijtali, 6) Z tr (€25, 3x,.¢)

i=1 j=1 t=1 i=1 j=1

where €2, = (O’;kjtﬁ) and Xy, = (0410) for 4,5 =1,2,--- k. By result 9(b) on page 44 of
Liitkepohl (1996), we can further write

tr (925, D) > K [det (25,)] 7" [det (S )]V

But k is a finite fixed integer. Furthermore, det (£25,) > 0 and det (2, ) > 0, since 3,
and X, ; are positive semi-definite and positive definite matrices, respectively. So, we can

conclude that A};T > 0 as required. m

S-2 Supplementary lemmas

Lemma S-2.1 Let z; be a martingale difference process with respect to F7 , = o(z_1,
Zi_9,+++), and suppose that there exist some finite positive constants Cy and Cy, and s > 0
such that

sup Pr(|z:| > o) < Cyexp(—Cia®), for all a > 0.
¢
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Let also o2, = E(27|F7 ) and 62, = T! ST 0%, Suppose that (p = S(T?), for some
0<A<(s+1)/(s+2). Then for any 7 in the range 0 < m < 1, we have,

—(1—7)2¢2
Pr (|ZtT:1 2| > CT) < exp [(JTZ)TCT] :
If A > (s+1)/(s+2), then for some finite positive constant Cs,

Pr (|ZtT:1 2| > §T> < exp (—C’QC;/(SH)) .

Proof. The results follow from Lemma A3 of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S-2.2 Let

cp(n,8) = &' (1 - 2f(i,5)) , (S.12)

where ®~1(.) is the inverse of standard normal distribution function, p (0 < p < 1) is the

nominal size of a test, and f(n,d) = cn® for some positive constants § and c. Moreover,
leta>0and 0 <b < 1. Then (I) cp(n,d) = O [wdln(n)] and (I1I) n®exp [—bci(n,6)] =
@(na—zbé).

Proof. The results follow from Lemma 3 of Bailey et al. (2019) Supplementary Appendix

A m
Lemma S-2.3 Let x;, fori =1,2,--- ,n, be random variables. Then for any constants m;,
fori=1,2,--- n, satisfying 0 < m; <1 and Y ;_, m = 1, we have

Pr(3_ o] > Co) < 3001, Pr(|zi| > mCo),
where Cy is a finite positive constant.

Proof. The result follows from Lemma A1l of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S-2.4 Let z, y and z be random variables. Then for any finite positive constants

Cy, C1, and Cs, we have
Pr(lz| x [y| > Co) < Pr(|z] > Co/Ch) + Pr(ly[ > Ch),
and
Pr(ja] x ly] x |2 > Co) < Pr(Jz| > Co/(C1C)) + Pr(lyl > C4) + Pr(|z| > C).
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Proof. The results follow from Lemma A1l of Chudik et al. (2018) Online Theory Supple-

ment. ®

Lemma S-2.5 Let x be a random variable. Then for some finite constants B, and C', with
|B| > C >0, we have

Pr(|z + B| < C) < Pr(|lz| > |B| - C).

Proof. The results follow from Lemma A12 of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S-2.6 Let xr to be a random variable. Then for a deterministic sequence, ar > 0,

with ar — 0 as T — o0, there exists Ty > 0 such that for all T > Ty we have

1
Pr ( T 1‘ > aT) < Pr(jzr — 1] < ar).

Proof. The results follow from Lemma A13 of Chudik et al. (2018) Online Theory Supple-

ment. ®

Lemma S-2.7 Consider random variables x; and z, with the exponentially bounded proba-

bility tail distributions such that
Sl;p Pr(|z;| > a) < Coexp(—C1a®), for all a > 0,
sup Pr(|z| > a) < Cyexp(—Cra®), for all a > 0,
where Cy, and Cy are some finite positive constants, s, >0, and s, > 0 . Then

sup Pr(|z,2| > o) < Cyexp(—Cia®/?), for all a > 0,
t

where s = min{s,, s, }.
Proof. By using Lemma S-2.4, for all o > 0,
Pr(|ziz| > a) < Pr(|z] > o'/?) + Pr(|z| > o!/?)
So,
Sl;p Pr(|aiz] > a) < sgp Pr(|z;| > o!/?) + Sl:p Pr(|z| > o!/?)

< () exp(—ClaSI/z) + Cy exp(—ClasZ/Q)
<y eXP(—CloéS/Q)

where s = min{s,,s.}. m
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Lemma S-2.8 Let x, y and z be random variables. Then for some finite positive constants

Cy, and Cy, we have

Pr(lz| x |y[ < Co) < Pr(la] < Co/Cy) + Pr(ly < C1),

Proof. Define events 2 = {|z| x |y| < Cp}, B = {|z| < Cy/C1} and € = {|y| < C;}. Then
20 € B UL Therefore, Pr(2A) < Pr(B U ). But Pr(B UC) < Pr(B) + Pr(€) and hence
Pr(A) < Pr(B) 4+ Pr(¢). =

Lemma S-2.9 Let A and B be n X p and p X m matrices respectively, then
|AB|r < [[Allr|[Bl2, and [|AB[|r < [|A[[2[|B]|F.

Proof. ||AB||% = tr(ABB’A’) = tr[A(BB’)A’], and by result (12) of Liitkepohl (1996,
p.44),

tr[A(BB')A'] < \unax(BB)tr(AAY) = ||A[[5] B3,

where A\ (BB’) is the largest eigenvalue of BB'. Therefore, ||[AB||r < ||A]|#||Bl2, as

required. Similarly,

|AB||% = tr(B'A’AB) = t[B'(A’A)B] < Apax(A’A)tr(B'B) = || A[[3]|BJ[%,
and hence

[AB| 7 < [[All2][B]|F-
]

Lemma S-2.10 Let A = (a;j)nxm where sup;; |ai;| < C < oo, then

|All, = O (vVnm) .
Proof. This result follows, since [|All, < \/[|All L |All;, |All, = O(m) and ||A|; = O(n).

Lemma S-2.11 Consider two N x N nonsingular matrices A and B such that
B~ [l2[|[A = Blr < 1.

Then

B~HIIA — Bllr

A _Bl.< .
| Ir < T B LA —Bl,
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Proof. By Lemma S-2.9,
AT =B r = AT (B - A)B | < [AT2]|B — Allp[IB72

Note that

A7 s = [AT =B + B, < [AT =B, + [|B™||2
<A =B p+ | B,

and therefore,

A =B r < (A7 = B+ B 2)B - All#[B~]..
Hence,

IA™ =B~ |p(1 = [IB7'[l2B — Allr) < [B[3IB — Allr.

Since ||B7!|2|B — Al|r < 1, we can further write,

IB~MZIA — Bl
— [IB72/|A = BJlr

AT =B7p < 1
]

Lemma S-2.12 Let X and Y be T' x N, and T' x N, matrices of observations on random
variables xi and yj, fori=1,2,--- Ny, 7 =1,2,--- Ny andt =1,2,--- T, respectively.

Denote
wije = TuYjr — E(xuy;), for alli,j and t.
Suppose that
(i) sup;, E|zy|* < C, sup,, E |y|" < C, and
(i) Sup; ; [Zthl ZtT’zl E<wij,twij,t’>} = O(T).

Then,

E(|T' XY -EXY)]|. = (%) .

Proof. The results follow from Lemma A18 of Chudik et al. (2018) Online Theory Supple-

ment. W
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Lemma S-2.13 Let X = (zij)rxn, and Y = (yij)rxn, be matrices of random variables,

respectively. Suppose that,
-1 ! / 2
E|T7' XY -EX'Y)]||, = O(ar),
where ar > 0. Then
|77 XY —EX'Y)]||, = Op(Var).

Proof. For any B > 0, by the Markov’s inequality

7' XY - EXY)]|
CLT32

Pr (|77 [X'Y —E(X'Y)]||, > Byar) <

Since E|| 77 [X'Y — E(X'Y)] H; = O(ar) , there exist C' and Ty such that for all T' > T,
E|7 ' [XY - EX'Y)) < Car.
Hence, for any € > 0, there exist B, = \/g and T. = Ty, such that for all T > T,
Pr(|77'[X'Y —E(X'Y)]||, > B-var) <e.
Therefore,
|7 XY~ EXY)]|,. = 0, (var)
n

Lemma S-2.14 Let X1 be a positive definite matrix and S be its corresponding estimator.
Suppose that A\yin (X7) > ¢ > 0, and

N 2
E HZT sl = 0ar)
F

where ar > 0, and ar = o(1). Then

= Op(\/@)

F

A -1

3, — 37!

Proof. Let Ay = {HE;

ETH <1}, By = {Hﬁz;l—z; > Byfar} and
F F

TR | .
Dy = I T ol — L~ > B./a where B > 0 is an arbitrary constant. If A
! {@n S |, [Br—=r,) ! Y !
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holds, by Lemma S-2.11,

—112 ||
Is7 5] < H2T|u\zf—zhﬂp |
P52, [ - =
F
Hence Br N Ay C Dy. Therefore
=0 2| - ]|

PI"(BT N .AT) < Pr ( ) > B\/@)

(==l |2 ==,

) B/ar
—Pr | [Sr— 2| > v
( SR 2T1||2(H2T1||2+B\/@)>

By the Markov’s inequality, we can further conclude that

R 2
E|¥Xr—Xr =112 (|-t \ BJa 2
P 14 < e BB 1, )
ar B
. 2
Since by assumption E |3 — 2r|| = O(ar), there exist C and Ty > 0 such that for all
F

T > T(),
. 2
E HET - ETH < Car.
F
Therefore, for all T' > Ty,

¢l =245 (|27, + Byar)

2
B2 '

PI“(BT N .AT) S

Moreover,

Pr(A5) = Pr (||2;1|]2

. . 1
e- 3], 21) = re 8-, > st )
F P =,
By the Markov’s inequality, we can further write
. 2
Pr(AS) < |27 < E HET - ETHF’
and hence, for all T' > Ty,

Pr(A5) < C |75 ar.
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Note that
Pr(Br) = Pr (Br N Ar) + Pr(Br|A7) Pr(A7),

and since Pr(Br 1 Ar) < Pr(Dy) and Pr(Br|AS) < 1, we have
Pr(Br) < Pr(Br N Ar) + Pr(A7).

Therefore, for all T' > Ty,

—1112 _1 9
- > B\/@) < CHET H2 (H EBJ; ”2+B\/@)

Now, for a given € > 0, we are interested to find B. > 0 and 7. > 0 such that for all 7" > T,

057 ar.

Pr (Hi;l >

Pr (Hi;l >

> Bg\/aT> <e.
F

To do so, we first find a value of B such that

C =2l (=5, + Byvar)”
B2

O[5 ar ==

By multiplying both sides of the above equality by B? and bringing all the equations to the

left hand side we have
(e 20|z yar) B2 = 20 |57y varB — C =7, = 0.

By solving the above quadratic equation of B we have

20 |27 vz £ /A€ |57, = 402 |27 ar
2 (= =207 or)

o (v )

B* =

2aT
of ='[;
Notice that ar — 0 as T" — oo, therefore for large enough 7" we have both W 2ar
T
and W — ar being greater than zero for all T > T*. Now, by setting 7. = max{7T™*, Ty}
T
and i
=, (v )
o=z,
B >0,

€
———= — 2ar
ol
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we achieve our goal that for all T > T,

Pr (Hﬁ;l Dy | BE\/aT> <e.
F

Remark 7 By using Lemma S-2.11 we achieve the probability convergence order for Hﬁ];l -3
that is sharper than the one shown in the proof Lemma A21 of Chudik et al. (2018) (see
equations (B.103) and (B.105) of Chudik et al. (2018) Online Theory Supplement).

F

Lemma S-2.15 Let z; be a random variable for i = 1,2,--- /N, and j = 1,2,--- | N.
Then, for any dr > 0,

Pr(N=230, 320 2] > dr) < N?sup, ; Pr(|z;| > dr).
Proof. We know that N=237 Z;vzl || < sup, ; |2zi5]. Therefore,
Pr(N=23°0, S0 |2i] > dr) < Pr(sup, ;|2 > dr)
N N
< PrUY, Ué‘V:1 (25l > dr)] < 3235 Zj:l Pr(|zi;| > dr)
< NZsup, ; Pr(|z;| > dr).

Lemma S-2.16 Let S be an estimator of a N x N symmetric invertible matriz 3. Suppose

that there exits a finite positive constant Cy, such that

sup Pr(|6i; — 04| > dr) < exp(=CoTd3), for any dr > 0,
4,3

where o;; and 6;; are the elements of 3 and 3 respectively. Then, for any by > 0,

.1 Tb?
Pr(|¥ — 7Y > bp) < N?exp [—C — L }+
( > br) NS TR s+ br)?

T
N? —Cy— | .
eXp( 0N2\|E‘1II%>

Proof. Let Ay = {|Z7!||2]| = Z||p < 1} and By = {||ZA3_1 — 37| > br}, and note that
by Lemma S-2.11 if Ay holds we have

I=721E - 2|r
1= |27 2% = 2|r

1

1= -=r <
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SBIE- =
I~ 512 - m~>h)
= =7 )l = S

> e =
1= (=7 2 + br)

1/2
NS 6y - aij)2> . Therefore,

1572 + br)

(

— e 1%~ e br |
(
|

N N 1/2 b
Pr(BylAy) < Pr | {3 (65 —aﬁ) BRI :
: 2

N
b2
=P Tii — 2"2> T
4253” 75 SRS s + br)?

By Lemma S-2.15, we can further write,

b2
Pr(By|Ax) < N%su Pr[&it—ait2> T }
(BulAv) < NosupPr | (04 = 0u) > [isTa (=T, + br?
br
= N?su Pr{&i-—af > ]
wp P10 = ol > ST o)
Tb2
< N?exp {—C’ — T }
"N TYR(I= s + br)?

Furthermore,

Pr(Ay) = Pr(|Z7 |2 ~ Z|r > 1)
=Pr(|X - 3)F > [Z7YF1)

N N 1/2
= Pr <Z > (64— %‘)2) > =75

i=1 j=1
- N N
=Pr|> Y (i —0y) > =75
=1 =1
< N?supPr {(@‘ —045)? > ;_}
ij TV T N =T

1
< N?supPr [|6Z~- — 04| > —_}
inj T T NIE

T
< N2 —Cy—|.
= “p[°Nwzwﬂ
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Note that
Pr(Bx) = Pr(B|Ax) Pr(Ax) + Pr(By| Ay) Pr(A3).

and since Pr(Ay) and Pr(By|.A% ) are less than equal to one, we have
Pr(By) < Pr(By|An) + Pr(A%Y).

Therefore,

Tb? T
Pr(Byr) < N?exp | —Cp — T } + N2 exp {—CO—_} .
N2[ISTHBUIZ 2 + br)? N2||=7H3

Lemma S-2.17 Let 3 be an estimator of a N x N symmetric invertible matriz 3. Suppose

that there exits a finite positive constant Cy, such that

sup Pr(|6y; — 04| > dr) < exp [=Co(Tdr)*/**?] | for any dr > 0,

2y

where o;; and 0,5 are the elements of X and 3 respectively. Then, for any by > 0,

- Tby)*/*+?
Pr(||X t S HE > br) < NPexp | —Co 1 s§s+2T) —1
NSRS BT |2 4 br)s/ot

N2 o Ts/s+2
ex — .
p ONS/S+2||271||;/5+2

Proof. The proof is similar to the proof of Lemma S-2.16. =

Lemma S-2.18 Let {zy}l | fori=1,2,--- N and {z;;}_, for j = 1,2,--- ,m be time-
series processes. Also let Fji = 0(vi, Tig—1,---) fori=1,2,--- N, Fi, = 0(2js, Zj4-1," ")
forj=1,2,--- . m, FF =UN,Fz F7= UL F7, and Fy = FP U Ff. Define the projection

regression of Ty on zy = (211, 2o, ++ 5 Zmy) QS
! 7 ~
Tip = 2, 0+ Tt

where 1,51-’T = (Vi1 Y2ur, s Umir) is the m x 1 vector of projection coefficients which is
-1

equal to [T‘l Zthl E (ztz;)] [T-! Zthl E(zxi)]. Suppose, Elryxis — B(wyzs)|Fi1] =0

for all i,i" = 1,2,--- N, Elzjszju — E(zjezje)|Fea] = 0 for all j,j° = 1,2,--- ,m, and

Elzjxie — E(zjixi)|Fio1]) =0 for all j =1,2,--- ;m and for alli=1,2,--- ,N. Then

E (2% — E(Tui)|Fi-1] = 0,
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forall j,5'=1,2,--- /N,
E [Zizj1 — E(Zizj)| Fioa] = 0,
forallt=1,2,--- N and j=1,2,--- ,m, and
T3 E(#az) = 0,
forallt=1,2,--- N and j=1,2,--- ,m.

Proof.

E(ZuZit|Fio1) = E(xpxi] Fio1) — E(xitzﬂft—l)";i’j_
E@z”tzﬂﬂfl)&w + "E;T E(thﬂftfl)ii',T
= E(2ywi) — E(xitZ;)lzz",T - E(xi’tzf‘,)"zi,r"

¢;,TE(Zt z) Wy = E(TuTint).

E(Zizji| Fi-1) = E(zizj| Fi1) — E(zpze| Fee1) i1
= E(l’z‘tzjt) - E(Zézjt)";i,T = E(fitzit)-
T3 E(Zuz) =TS, E(zuz) — "E;_Tl S E(zz))]
= T_l Z?:l E(xitzt) — T_l Z?:l E(xitzt) = O

Lemma S-2.19 Let {zy} | fori=1,2,--- N and {z;}_, for j = 1,2,--- ,m be time-

series processes. Define the projection regression of x; on zy = (214, 221, - - ,zm,t)’ as

! T ~
Ty = 2,9, p + Tit

where J’LT = (Yrir, Yo, -, Ymiz) s the m x 1 vector of projection coefficients which
-1

is equal to [T’l ZthlE (ztzft)] 7! ZthlE(thit)]- Suppose that only a finite number of

elements in ’l/_Ji,T 1s different from zero for alli =1,2,--- | N and there exist sufficiently large

positive constants Cy and Cy, and s > 0 such that
(i) sup;, Pr(|zj| > a) < Coexp(—Cia®), for all a >0, and
(ii) sup;, Pr(|zi| > a) < Cyexp(—Cia®), for all o> 0.
Then, there exist sufficiently large positive constants Cy and Cy, and s > 0 such that

sup Pr(|Z4| > a) < Cyexp(—Cra®), for all a > 0.
it
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Proof. Without loss of generality assume that the first finite ¢ elements of ¢, r are different

from zero and write
Tit = 2521 Vi Tz + Tit
Now, note that
Pr([&a] > ) < Pr (foal + 5, [0yurzl > ).
and hence by Lemma S-2.3, for any 0 < 7; <1, 7=1,2,--- £+ 1 we have,

Pr(|u| > o) < 5, Pr([Wjirzl > m5a) + Pr (] > mepa)
= Z?:l Pr(|zj| > || tmia) + Pr (Jay| > 7o)

< Usup;, Pr([z;] > 7|t a) + sup;, Pr (|zi| > 7*a),

where 5. = sup; j{tj;r} and 7" = inf ey ... p11{m;}. Therefore, by the exponential decaying

probability tail assumptions for z;; and z;; we have
Pr(|Zi| > a) < (Cyexp(—Cia®) + Cpexp(—Cia®),

and hence there exist sufficiently large positive constants Cy and C, and s > 0 such that
sup Pr(|Zy| > a) < Cyexp(—Cia®), for all a > 0.

Lemma S-2.20 Let {z;}, fori = 1,2,--- N and {zu}L, for £ = 1,2,--- m be time-

series processes and m = O(T?). Also let F& = o(xiy, xi41,-++) fori=1,2,--- N, Fi =
o(zet, 2041, ) for £ =1,2,-- m, Ff = UN,F& Ff=UR,F;, and F; = FFUFF. Define
the projection regression of xy on zy = (214, 2at, -+ * , Zmt) GS

! T ~
Ty = 2, 7 + Tut,

where ¥, p = (Vri1, Yo, Ymir) 08 the m x 1 vector of projection coefficients which is
-1

equal to [Tfl ST E (ztzg)} [T S E(zwy)]. Suppose, Blrya;, — E(zyxj)|Fia] = 0

foralli,j=1,2,--- N, Elzuzem—E(zpze)| Fio1] = 0 forall 0,0 =1,2,--- ;m, and E[zpxy—

E(zgxi)|Fee1] =0 for all € = 1,2,--- ,m and for all i = 1,2,--- | N. Additionally, assume

that only a finite number of elements in v,/_)LT 1s different from zero for all v =1,2,--- /N

and there exist sufficiently large positive constants Cy and Cy, and s > 0 such that
(i) sup;, Pr(|zee| > o) < Coexp(—=Cha®), for all a >0, and
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(ii) sup;, Pr(|zy| > a) < Coexp(—Cia®), for all o> 0.

Then, there exist some finite positive constants Cy, Cy and Cs such that if d < X <
(s+2)/(s+4),

Pr(|x;M.x; — E(&,%;)| > (r) < exp(=CoT~'¢}) + exp(—C1T?),
and if X > (s +2)/(s+4)
Pr([xM.x; — E(&/Z;)| > ¢r) < exp(—=CoGy ) + exp(—CiT®),

fO’f’ all Za] = 17 27 e 7N7 where 531 = (i)ilvji% T sz) (x117$127 e 7xiT),; and Mz =
I-71 Zf];;Z’ with Z = (21,29, ,2z7) and 3., = T~ thl(ztzt).

Proof.
Pr{[x;M.x; — E(&Z;)| > (7] = Pr[|ZM.&; — E(Z;&;)| > (7]
— Pr||@&, - B(#&;) - T '#25\2%, - T'#Z(,. - N2 > CT] :
where 3., = E[T~' Y/ (z2,)]. By Lemma S-2.3, we can further write
Pr[|xM.x; — E(&Z;)| > (7]
< Pr[|&&; — E(:Efzﬁj)y > 1| + Pr(|[T'&Z22 )} 2'%;| > molr)+
Pr [|T FZ(E - 52 Zay)) > mlr)

where 0 < m; < 1 and 25’:1 m; = 1. By Lemma S-2.9,
Pr(|T'& 237 2% > mo(r) < Pr(|Z 2] pl| 22 2% » > matr D),

and again by Lemma S-2.4, we have

Pr(|T'#Z2Z'%;| > m(r)
< Pr(|ZZ|r > |Z225 " *m G TY?) + Pr(| 2% | ¢ > (|1Z22], P ms G2 T,

Similarly, we can show that
Pr(T'Z( £, - :2)Z'E;| > msr)
< Pr(|EZ]p|S. — SR 2%l r > msteT)

< oS — B2 > 07'6r) + Pr(|EZ] > 7y 64°T?)
+ Pr(||Z'%,||F > 7T1/2(51/2T1/2)
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where 07 = &(T) with 0 < o < A
Note that Pr(||Z'&||p > ¢) = Pr(|Z'&;||% > ) = Pr[>r, (O, Fazu)? > 2], where ¢
is a positive constant. So, by Lemma S-2.3, we have
Pr(||Z/& | > ¢) < 3L, Pr{(S, Faezer) > m~'e?],
Hence, Pr(||Z'&|r > ¢) < S0, Pr(| 300, #uzu| > m~"/%¢). Also, by Lemma S-2.18 we
have Zthl E(Z;1ze:) = 0 and hence we can further write

Pr(||Z'%i||r > c) < 321, Pr{] Z?:l[j:itzét — E(Zir2e)]| > m~"/2c}.

Note that ||X.}||5 is equal to the largest eigenvalue of X' and it is a finite positive constant.

So, there exists a positive constant C' > 0 such that,

Pr(|x;M.x; — E(Z]&;)| > (r)
< Pr{| S0 [#a e — B(Zady)]| > CT M)+
> e Pr{] ZtTﬂ[fz‘th — E(Zy20)| > CTY2HN27d/2) 1
S P S #5020 — B@g020)| > CTY2HA2-4/2) 4
> e Pr{| Et UZize — E(Zyza]| > CTY/>e/2=d/2) 4
S P ST [ — E(ipn]| > CTV2+a/2-d/2) 4
Pr(|S., — 2k > 65'¢r).

Let
ki (h,d) = Z Pr{| Z Tiz — B(Tyze]| > CTY?HR2=42Y for h = )\, o,

and ¢ = 1,2,...,N. By Lemmas S-2.7, S-2.18, and S-2.19, we have %,z — E(Z;%;) and
Tz — E(Ty20) are martingale difference processes with exponentially bounded probability
tail, 3. So, depending on the value of exponentially bounded probability tail parameter,

from Lemma S-2.1, we know that either
i (hd) < mexp [ © (T"9)]
or
kri (h, d) < mexp [_ o (Ts(1/2+h/2—d/2)/(s+2))] :

for h = A\, . Also, depending on the value of exponentially bounded probability tail param-
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eter, from Lemmas S-2.16 and S-2.17 we have,

Tor*G; } N
m? | BEUIE 2 + 07 r)?

T
2
—Cp—————
me@( %M@?M»

z

z

Pw@2—23w>@%wSm%m{4a

or

. TO7 (o )s/s+2
Pr(|$.) = S5 > 67¢r) < mPexp [_CO (T57"Cr) ]

ms/s+2|| ST P2 o + 071 ¢r)s/s+2

) Ts/s+2
m-exp | —C )
P\ e s

Therefore,

A~ —1
Pr(HEzz - Ez_leF > 5;1CT)

< mexp[— o (Tmax{l—2d+2(A—a)11—2d+>\—a,1—2d})]+

mexp[— & (T'7)],

or,

A1
Pr(|[3,, =22 r > 67'Cr)

z

< mexp|[— © (Tomax{1-dtA-a1=d}/(s+2)y)
mexp|— © (T30-9/(+2))],

Setting d < 1/2, « = 1/2, and A > d, we have all the terms going to zero as T' — oo and

there exist some finite positive constants C; and C5 such that
kri (A d) < exp (—ClTCQ) , ki (o, d) < exp (—C’lTCQ) ,
and
Pr(|.) — B2 e > 07'¢r) < exp(~CiT).
Hence, if d < XA < (s+2)/(s +4),
Pr(|x{M.x; — E(Z,&;)| > (r) < exp(—CoT'(7) + exp(—C1T),
and if A > (s +2)/(s +4),

Pr(|x/M.x; — E(&;)| > (1) < exp(—Col/ ™) + exp(—C, T),
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where Cy, C and Oy are some finite positive constants. m
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This online empirical supplement has three sections. Section S-1 provides the full list and
description of technical indicators considered in the stock market application. Section S-2
provides the list of variables in the conditioning and active sets in the application on forecast-
ing output growth rates across 33 countries. Last section focuses on the third application,
forecasting Euro Area quarterly output growth using the European Central Bank (ECB)
survey of professional forecasters. The section starts with description of the data and then

discusses the results.

S-1 Technical and financial indicators

Our choice of the technical trading indicators is based on the extensive literature on system
trading, reviewed by Wilder (1978) and Kaufman (2020). Most of the technical indicators
are based on historical daily high, low and adjusted close prices, which we denote by Hy(7),
Ly (1), and Py(1), respectively. These prices refer to stock i in month ¢, for day 7. Moreover,
let D! be the number of trading days, and denote by Dlit the last trading day of stock 7 in
month ¢. For each stock ¢, monthly high, low and close prices are set to the last trading day
of the month, namely Hy(Dj,), Li(Dj,) and Py(Dj,), or Hy, Ly, and Py, for simplicity. The
logarithms of these are denoted by hy, l;;, and p;, respectively.

The 28 stocks considered in our study are allocated to 19 sectoral groups according to

Industry Classification Benchmark.® The group membership of stock i is denoted by the set

9The 19 groups are as follows: Oil & Gas, Chemicals, Basic Resources, Construction & Materials, Indus-
trial Goods & Services, Automobiles & Parts, Food & Beverage, Personal & Household Goods, Health Care,
Retail, Media, Travel & Leisure, Telecommunications, Utilities, Banks, Insurance, Real Estate, Financial
Services, and Technology.
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g:, which includes all S&P 500 stocks in stock i** group, and |g;| is the number of stocks in
the group.

The technical and financial indicators considered are:

1. Return of Stock i (ri): 7 = 100(piyt — pit—1)-
2. The Group Average Return of Stock i (7),): 7% = [gil ™" 2y, 7t

3. Moving Average Stock Return of order s (mary(s)): This indicator, which is also

known as s-day momentum (see, for example, Kaufman, 2020), is defined as
mar;(s) = MA(ry, s),

where MA (x4, s) is Moving Average of a time-series process z;; with degree of smooth-

ness s which can be written as
S
1
MA(z4,$) = s E Tit—p.
=1

4. Return Gap (gri(s)): This indicator represents a belief in mean reversion that prices

will eventually return to their means (for further details see Kaufman, 2020).

grie(s) = riy — MA(ry, s).

5. Price Gap (gpit(s)): gpir(s) = 100 [piy — MA(pi, s)] -

6. Realized Volatility (RVj;): RV = \/Zil (Ra(T) — ]5%)2, where

Ry(r) = 100 [Py(7)/Py(r — 1) = 1], and Ry = »_ Riy(7)/D}.

=1

7. Group Realized Volatility (RV}): RV} = \/|g|—1 > icg RViZ-

8. Moving Average Realized Volatility (mavy(s)): “Signals are generated when a price
change is accompanied by an unusually large move relative to average volatility” (Kauf-

man, 2020). The following two indicators are constructed to capture such signals

mavi(s) = MA(RVy, s)

9. Realized Volatility Gap (RVG(s)): RVGyu(s) = RVyy — MA(RVy, s)
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10.

11.

12.

13.

Percent Price Oscillator(PPOj(s1, $2)):

t731) - MA(Pz‘t, 32)
MA(-Pih 82)

MA(P,
PPO;(s1,82) = 100 < ( ) , where 51 < 5.
Relative Strength Indicator (RSI;): This is a price momentum indicator developed by
Wilder (1978) to capture overbought and oversold conditions. Let

APZ;F = APitIAPit>O(APit)7 and APJ = A]DitIAPitgo(APit)a

where APy = Py — P, and 14(z;) is an indicator function that take a value of one
if ;; € A and zero otherwise. Then
MA(AP], s) 1
RSy = ———— """~ and RSI5 =100 (1 — ——— | .

" UMA(AR, ) T ( I+ RS;)
Williams R (WILLR;(s)): This indicator proposed by Williams (1979) to measure
buying and selling pressure.

hit—s+j) — pi
jemax (hitstj) = pi

R ) — i L. ..
ety (aesd) = 0 (e

WILLR;(s) = —100

Average Directional Movement Index (ADXj(s)): This is a filtered momentum indi-
cator by Wilder (1978). To compute AD X (s), we first calculate up-ward directional
movement (DM;), down-ward directional movement (DM, ), and true range (T R;;)
as:

hit = hiz—1, if hyy — hiz—1 >0 and hy — hig—1 > L1 — L,

DM =
0, otherwise.

DM- — lig—1 — bty if Ligm1 — L > 0 and Lz — lip > hig — i1,
it =
0, otherwise.

TRy = max{hz‘t — iy, ‘hit - pz’,t—1|7 |pi,t—1 - lz‘t|}-

Then, positive and negative directional indexes denoted by D (s) and IDj,(s) re-

spectively, are computed by

MA (DM MA (DM,
ID,I(S):l()O( ( Zt’S ( zt’s))’

) )
i S T2 R ID; =1
MA(TRy,s) ) 4 1Pule) =10\ Fram, 75
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14.

Finally, directional index DX;(s) and ADX;(s) are computed as

[ID;;(s) — ID;(s)]
ID;(s) + 1D, (s)

DX (s) =100 ( > , and ADX;(s) = MA(DX(s), s).
Percentage Change in Kaufman’s Adaptive Moving Average (AKAM A (s1, $2,m)):
Kaufman’s Adaptive Moving Average accounts for market noise or volatility. To com-
pute AKAM A;(s1, s2, m), we first need to calculate the Efficiency Ratio (ER;;) defined
by

|pit —DPi t—m|
ER; =100 - ’ )
' <Zj1 |APi,t—m+j|

where AP, = Py — P,;_1, and then calculate the Smoothing Constant (SC;;) which is

2 2 2 1°
! |: t<81+1 82+1)+82+1:|

where s; < m < so. Then, Kaufman’s Adaptive Moving Average is computed as

KAMA(Py, s1, 82, m) = SCy Py + (1 — SCi ) KAMA(P, ;_1, 51, S2,m)

where

KAMA(]DZ'SQa S1, 82, m) = 52_1 Z Iji’f'

k=1

The Percentage Change in Kaufman’s Adaptive Moving Average is then computed as

KAMA(Py, s1, s2,m) — KAMA(P; ;_1, 51, 52,
AKAM Ay (sq, S2,m) = 100( (Pit, 51, 82,m) (Pit—1,51, 52 m))

KAMA(P,;_1, 51, S2,m)

For further details see Kaufman (2020).

Other financial indicators

In addition to the above technical indicators, we also make use of daily prices of Brent Crude

Oil, S&P 500 index, monthly series on Fama and French market factors, and annualized

percentage yield on 3-month, 2-year and 10-year US government bonds. Based on this data,

we have constructed the following variables. These series are denoted by PO; and P,

respectively, and their logs by po; and ps,,. The list of additional variables are:

1. Return of S&P 500 index (7gp¢): 7spt = 100(pspsr — Pspi—1), where pgp,, is the log of
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S&P 500 index at the end of month t.

2. Realized Volatility of S&P 500 index (RVj,):

sp
Dt

RV = Z (Rops(7) = RSp’t)Z’

=1

where Ry, = Y200 Riy(7)/ D%, Rapi(1) = 100([Pap s (7)/ Pops (T — 1) = 1], Pyyy(7) is
the S& P 500 price index at close of day 7 of month ¢, and D;” is the number of days

in month ¢.

3. Percent Rate of Change in Oil Prices (Apo;): Apo; = 100(po; — po;—1), where po; is

the log of oil princes at the close of month .

4. Long Term Interest Rate Spread (LIRS;): The difference between annualized percent-

age yield on 10-year and 3-month US government bonds.

5. Medium Term Interest Rate Spread (M IRS;): The difference between annualized per-

centage yield on 10-year and 2-year US government bonds.

6. Short Term Interest Rate Spread (SIRS;): The difference between annualized percent-

age yield on 2-year and 3-month US government bonds.
7. Small Minus Big Factor (SM B;): Fama and French Small Minus Big market factor.

8. High Minus Low Factor (HML;): Fama and French High Minus Low market factor.

A summary of the covariates in the active set used for prediction of monthly stock returns

is given in Table S.1.

Table S.1: Active set for percentage change in equity price forecasting

Target Variable: rit+1 (one-month ahead percentage change in equity price of stock )

A. Financial Variables: 1y, 75, Tspt, RVie, RV, RVspr, SM By, HM L.
B. Economic Variables:  Apo;, LIRS; — LIRS; 1, MIRS; — MIRS; 1, SIRS; — SIRS; ;.

C. Technical Indicators: marj, for s = {3,6,12}, mav;, for s = {3,6,12}, gr, for s = {3,6,12},
gps, for s = {3,6,12}, RVGS, for s = {3,6,12}, RS, for s = {3,6,12},
ADX}, for s = {3,6,12}, WILLR;, for s = {3,6,12},
PPO;(s1,s2) for (s1,s2) ={(3,6),(6,12),(3,12)},
AKAM A (s1,s2,m) for (s1,s2,m) = (2,12,6).
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S-2 List of variables used when forecasting output growths

Variables in the conditioning and active sets for forecasting output growth across 33 countries
are listed in Table S.2 below.

Table S.2: List of variables in the conditioning and active sets for forecasting quarterly output
growths across 33 countries

Conditioning set

c, Alyit
Active Set

(a) Domestic variables, £ = 0,1. (b) Foreign counterparts, £ = 0, 1.

Avyi—1 Aly;t—é

ANE R ESNANY R, Avrfy g —Aam,
Aﬂ“ft,g —Airitg Alril:;fé — Ay
Avgip—e — ATy Avgly o —Damy

Total number of variables in the active set x;: n = 15 (max)

S-3 Forecasting euro area output growths using ECB

surveys of professional forecasters

This application considers forecasting one-year ahead Euro Area real output growth using
the ECB survey of professional forecasters, recently analyzed by Diebold and Shin (2019).
The dataset consists of quarterly predictions of 25 professional forecasters over the period
1999Q3 to 2014Q1.1% The predictions of these forecasters are highly correlated suggesting
the presence of a common factor across these forecasts. To deal with this issue at the vari-
able selection stage following Sharifvaghefi (2022) we also include the simple average of the
25 forecasts in the conditioning set, z;, as a proxy for the common factor in addition to
the intercept. We consider 39 quarterly forecasts (from 2004Q3 and 2014Q1) for forecast
evaluation, using expanding samples (weighted and unweighted) from 1999Q3. We also con-
sider two simple baseline forecasts: a simple cross sectional (CS) average of the professional
forecasts, and forecasts computed using a regression of output growths on an intercept and
the CS average of the professional forecasts.

Table S.3 compares the forecast performance of OCMT with and without down-weighting

at the selection and forecasting stages, in terms of MSFE. The results suggest that down-

10We are grateful to Frank Diebold for providing us with the data set.
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weighting at the selection stage leaves us with larger forecasting errors. The MSFE goes from
3.765 (3.995) to 3.874 (4.672) in case of light (heavy) down-weighting. However, the panel
DM tests indicate that the MSFE among different scenarios are not statistically significant,
possibly due to the short samples being considered. In Table S.4, we compare OCMT (with
no down-weighting at the selection stage) with Lasso and A-Lasso. The results indicate
that the OCMT procedure outperforms Lasso and A-Lasso in terms of MSFE when using no
down-weighting, light down-weighting, and heavy down-weighting at the forecasting stage. It
is worth mentioning that OCMT selects 3 forecasters (Forecaster #21 for 2004Q4-2005Q1,
Forecaster #7 for 2007Q2-2008Q3, and Forecaster #18 for 2011Q2-2011Q3). This means
that over the full evaluating sample, only 0.3 variables are selected by OCMT from the
active set on average. In contrast, Lasso selects 12.6 forecasters on average. Fach individual
forecaster is selected for at least part of the evaluation period. As to be expected, A-Lasso
selects a fewer number of forecasters (9.8 on average) as compared to Lasso (12.6 on average),
and performs slightly worse.

To summarize, we find that down-weighting at the selection stage of OCMT leads to
forecast deterioration (in terms of MSFE). OCMT outperforms Lasso and A-Lasso, but the
panel DM tests are not statistically significant. Moreover, none of the considered big data

methods can beat the simple baseline models.
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Table S.3: Mean square forecast error (MSFE) and panel DM test of OCMT of one-year ahead Euro Area
annual real output growth forecasts between 2004Q3 and 2014Q1 (39 forecasts)

Down-weighting at'

Selection stage Forecasting stage MSFE
(M1) no no 3.507
Light down-weighting, A = {0.975,0.98,0.985,0.99,0.995,1}
(M2) no yes 3.765
(M3) yes yes 3.874
Heavy down-weighting, A = {0.95,0.96,0.97,0.98,0.99,1}
(M4) no yes 3.995
(M5) yes yes 4.672
Pair-wise panel DM tests
Light down-weighting Heavy down-weighting
(M2) (M3) MY (M)
(M1) -0.737 -0.474 (M1) -0.656 -0.741
(M2) - -0.187 (M5) - -0.645

Notes: The active set consists of 25 individual forecasts. The conditioning set consists of an intercept and
the cross sectional average of 25 forecasts.

tFor each of the two sets of exponential down-weighting (light /heavy) forecasts of the target variable are
computed as the simple average of the forecasts obtained using the down-weighting coefficient, A, in the
“light” or the “heavy” down-weighting set under consideration.

Table S.4: Mean square forecast error (MSFE) and panel DM test of OCMT versus Lasso and A-Lasso of
one-year ahead Euro Area annual real output growth forecasts between 2004Q3 and 2014Q1 (39 forecasts)

OCMT
Lasso
A-Lasso

OCMT

Lasso

MSFE under different down-weighting scenarios

No down-weighting Light down-weighting Heavy down-weighting?

3.507 3.765 3.995
5.242 5.116 5.385
7.559 6.475 6.539

Selected pair-wise panel DM tests

No down-weighting  Light down-weighting  Heavy down-weighting

Lasso A-Lasso Lasso A-Lasso Lasso A-Lasso
-1.413 -1.544 -0.990 -1.265 -1.070 -1.267
- -1.484 - -1.589 - -1.527

Notes: The active set consists of forecasts by 25 individual forecasters. The conditioning set contains an
intercept and the cross sectional average of the 25 forecasts.

 Light down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, A = {0.975,0.98,0.985,0.99,0.995,1}.

¥ Heavy down-weighted forecasts are computed as simple averages of forecasts obtained using the
down-weighting coefficient, A = {0.95,0.96,0.97,0.98,0.99,1}.
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This online Monte Carlo supplement has three sections. Section S-1 explains the algorithms
used for implementing Lasso, A-Lasso, Boosting and Cross-validation. We provide additional
summary tables of our Monte Carlo simulation findings in Section S-2. The full set of Monte

Carlo results for all the baseline experiments are provided in Section S-3.

S-1 Lasso, A-Lasso, Boosting and cross-validation al-

gorithms

This section explains how Lasso, K-fold cross-validation, A-Lasso, and Boosting are imple-
mented in this paper. Let y = (y1,v2,- -+ ,yr) be a T x 1 vector of target variable, and let
Z = (21,23, - ,2z7) be aT xm matrix of conditioning covariates where {z, : t = 1,2,--- | T}
are m x 1 vectors and let X = ( x1,Xg, -+ ,X7) be a T x N matrix of covariates in the active

set where {x; :t=1,2,--- ,T} are N x 1 vectors.
Lasso Procedure

1. Construct the filtered variables § = M,y and X = M,X = ( X10,X20, -, XNo), where
Mz = IT — Z( Z'Z)_1Z’, and 5'(1-0 = (i’il,i’ig, v ,fiiT)/.

2. Normalize each covariate X;o = (Tij1, Tin, -+ , Tyr) by its lo norm, such that

Sk

X, = Xio/||Xio|2,

where ||.||a denotes the ly norm of a vector. The corresponding matriz of normalized

covariates in the active set is now denoted by X*.
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3. For a given value of ¢ > 0, find 43(0) = [¥1,(2): 45, (2), -+ +Akn(9)] such that

7:() = argmin {5 = X733 + ellvil |

T

where ||.||1 denotes the {1 norm of a vector.

4. Divide 7, (p) fori=1,2,--- /N by ly norm of the X;, to match the original scale of

X0, namely set

Fia () = Vi () /1Ko 2,

~

where 7,(¢) = [F12(©), Yoz (©), -+, ANz ()] denotes the vector of scaled coefficients.

5. Compute A.(0) = [31:(9), A2:(0)s -+, Am= ()] by A.(p) = (Z'Z)Z'&(p) where &(p) =

For a given set of values of s, say {¢; : 7 = 1,2,--- , h}, the optimal value of ¢ is chosen

by K-fold cross-validation as described below.
K-fold Cross-validation

1. Create a T x 1 vector w = (1,2,--- | K,1,2,--- | K,--+) where K is the number of
folds.

2. Let w* = (wi,ws,--- ,w}) be a T x 1 vector generated by randomly permuting the

elements of w.

3. Group observations into K folds such that

gk:{tt€{1,27’T} andw::k}forkal’Q’...jK_

4. For a given value of p; and each fold k € {1,2,--- , K},

(a) Remove the observations related to fold k from the set of all observations.

(b) Given the value of ¢;, use the remaining observations to estimate the coefficients
of the model.

(c) Use the estimated coefficients to compute predicted values of the target variable
for the observations in fold k and hence compute mean square forecast error of
fold k denoted by MSFE(yp;).
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5. Compute the average mean square forecast error for a given value of p; by

MSFE(p;) = Y  MSFE(¢;)/K.
k=1

6. Repeat steps 1 to 5 for all values of {¢; : 7 =1,2,---  h}.

7. Select @; with the lowest corresponding average mean square forecast error as the op-

timal value of .

In this study, following Friedman et al. (2010), we consider a sequence of 100 values of

9 . T ~x ~
©’s decreasing from @pax t0 @min on log scale where Yy = max;—12... N { 1> s xityt|} and
Omin = 0.001¢max. We use 10-fold cross-validation (K = 10) to find the optimal value of .
Denote 4, = 4,(pop) where ¢,, is the optimal value of ¢ obtained by the K-fold cross-

validation. Given 4,, we implement A-Lasso as described below.

A-Lasso

1. Let § = {i : i € {1,2,---,N} and ¥, # 0} and Xs be the T x s set of covari-
ates in the active set with %, # 0 (from the Lasso step) where s = |S|. Addition-

ally, denote the corresponding s x 1 wvector of non-zero Lasso coefficients by 4, s =

(:)/1:1:,87 ’3/21,87 e 7:)/5:1:,8)/-

2. For a given value of 1» > 0, find st(w) = [51‘%3(1&), 5595,3(1/’)7 e ,5’;%3(1#)]’ such that

Ak

8, 5(0) = argmin { |5 — Xsdiag(y,, )% 515 +v85sl |

z,S

where diag(¥,,s) is an s X s diagonal matriz with its diagonal elements given by the

corresponding elements of 4, s.

3. Post multiply st(w) by diag(9, s) to match the original scale of X, such that

PN A%k

5I,S(¢) = diag(ﬁ’:p,é‘)éas (W :

The coefficients of the covariates in the active set that belong to S¢ are set equal to
zero. In other words, 8, s:(1)) = 0 for all ¢ > 0.

A A ~

4. COTnljutf 8.(¢) = [012(1), 00 (¥), -+, 0 ()] by 8.(¢) = (Z'Z) ' Z'& () where &(yp) =
Yy — Xs0..5(¢).
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As in the Lasso step, the optimal value v is set using 10-fold cross-validation as described

before.'!
Boosting

We implement boosting algorithm proposed by Buhlmann (2006).

1. Consider the matrixz of normalized filtered covariates X* = (Xfos X3, oy X50), defined in
Step 2 of the Lasso procedure above. Let the rowt (fort=1,2,....T) of X* be denoted
as X5, = (&3, @5, ..., &%,). Given the normalized covariates matriz X* and any vector

e = (e, eq,..,er), define the least squares base procedure:

o o / ~ N e'x*
o < ¥ — ¥ o — ] . ¥ —_ ~F R
O+ o(X5y) = 05T, 8 = arg min (e (in) (e §in> , 0= ey

)

2. Given the normalized filtered covariates data X* and the filtered target variable y =
M.y, apply the base procedure to obtain g;zy(iit). Set F(l)(iﬁt) = vggy(izt), for
some v > 0. Set §Y) =35 and m = 1.

3. Compute the residual vector ™ = §—F (X*), where F (X*) = [Fm)(xx,), FM/(%%,),
., Fm(xx ) and fit the base procedure to these residuals to obtain the fit values

gyt (%2,) and 30V Update

FoD(xr) = FOV(XE,) + vg%mﬁ% (X50)-

4. Increase the iteration index m by one and repeat Step 3 until the stopping iteration M
15 achieved. The stopping iteration is given by

M:arg1 min  AICq(m),

<m<Mmmax
for some predetermined large mpy.y, where

L+tr(Bn) /T

AlCe(m) =log(0") + 1 "p 3" 5y

o1

0 = T (S’ - Bmy)/ (S’ - Bmy) ’
By =1~ (I —vH)) (I — v (T — o},
Sk S/
) — Xgo%je
H T

1To implement Lasso, A-Lasso and 10-fold cross-validation we take advantage of glmnet package (Matlab
version) available at http://web.stanford.edu/~hastie/glmnet_matlab/
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We set mpy.x = 500 and consider the same value for the tuning parameter v = 0.1 as
suggested in Buhlmann (2006).

S-2 Additional Monte Carlo summary tables
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Table S.1: Comparison of the effects of down-weighting for TPR performance in MC exper-
iments with and without parameter instability.

Average TPR

Down-weighting: No Light Heavy No Light Heavy No Light Heavy
N\T 100 200 500
A. Without parameter instability
OCMT (down-weighting at the selection stage)
20 0.80 0.66 0.60 0.95 0.77 0.74 1.00 0.88 0.88
40 0.77 0.63  0.57 0.94 0.76 0.74 1.00 0.87 0.89
100 0.73 0.58 0.53 0.91 0.72 0.71 1.00 0.87 0.91
Lasso
20 0.86 0.80 0.75 0.94 0.84 0.76 099 0.86 0.78
40 0.83 0.78 0.74 0.93 0.82 0.77 0.99 0.83 0.77
100 0.80 0.75  0.72 0.91 081 0.77 0.98 0.82 0.78
A-Lasso
20 0.77 0.72  0.66 0.88 0.77  0.69 0.97 0.81 0.72
40 0.76 0.72  0.68 0.89 0.78 0.71 0.97 0.80 0.72
100 0.75 0.70 0.66 0.88 0.77 0.72 0.97 0.80 0.73
Boosting
20 0.90 0.89 0.89 0.95 094 0.93 0.99 097 0.95
40 0.89 0.89 0.87 0.96 0.93 0.90 0.99 095 091
100 0.88 0.86 0.82 0.95 091 0.85 0.99 092 0.86
B. With parameter instability
OCMT (down-weighting at the selection stage)
20 0.69 0.58 0.57 0.90 0.76 0.75 0.99 090 0.90
40 0.66 0.54 0.54 0.88 0.75 0.75 0.99 090 091
100 0.61 0.50 0.49 0.85 0.70 0.72 0.99 090 0.93
Lasso
20 0.78 0.74 0.73 0.89 0.83 0.79 0.97 0.89 0.82
40 0.75 0.72 0.72 0.88 0.81 0.79 0.97 0.87 0.81
100 0.72 0.69 0.68 0.85 0.79 0.78 0.96 0.86 0.82
A-Lasso
20 0.68 0.66 0.64 0.81 0.76 0.71 0.93 0.84 0.76
40 0.68 0.65 0.65 0.82 0.76 0.73 094 083 0.77
100 0.66 0.63 0.61 0.81 0.75 0.73 094 0.83 0.78
Boosting
20 0.84 0.84 0.87 092 093 0.93 0.98 0.97 0.96
40 0.84 085 0.85 092 0.92 0.90 0.98 0.96 0.92
100 0.83 0.81 0.79 0.91 0.88 0.85 0.98 094 0.89

Notes: Down-weighting column label "No” stands for no down-weighting, ”Light” stands for light down-weighting given by
values A = 0.975,0.98,0.985,0.99,0.995, 1, and ”Heavy” stands for heavy down-weighting given by values

A =0.95,0.96,0.97,0.98,0.99, 1. For each of the two sets of exponential down-weighting (light/heavy) we average TPR across
the choices for A. Best results are highlighted by bold fonts. The reported results are based on 4 experiments for models
without parameter instabilities (panel A) and 4 experiments with parameter instabilities (panel B). See Section 5 for the
description of the Monte Carlo design.
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Table S.2: Comparison of the effects of down-weighting for FPR performance in MC exper-
iments with and without parameter instability.

Average FPR

Down-weighting: No Light Heavy No Light Heavy No Light Heavy
N\T 100 200 500
A. Without parameter instability
OCMT (down-weighting at the selection stage)
20 0.03 0.04 0.09 0.07 0.10 0.21 0.13 0.27 042
40 0.02 0.03 0.08 0.03 0.09 0.22 0.06 0.27 0.46
100 0.01 0.02 0.07 0.01 0.07 0.21 0.02 0.26 0.51
Lasso
20 0.18 0.20 0.24 0.18 0.21 0.24 0.18 021 0.24
40 0.13 0.17 0.24 0.13 0.18 0.25 0.13 0.17 0.23
100 0.08 0.14 0.20 0.07 0.15 0.23 0.07 0.14 0.22
A-Lasso
20 0.12 0.14 0.17 0.11 0.14 0.17 0.11 0.15 0.17
40 0.09 0.13 0.19 0.09 0.13 0.19 0.09 0.13 0.17
100 0.06 0.11 0.15 0.06 0.12 0.18 0.06 0.12 0.17
Boosting
20 0.28 0.38  0.47 0.29 048 0.55 0.29 0.57 0.60
40 0.31 043 048 0.32 0.51  0.53 0.32 0.57 0.56
100 0.32 0.36  0.37 0.33 0.40  0.39 0.34 0.43 0.39
B. With parameter instability
OCMT (down-weighting at the selection stage)
20 0.02 0.04 0.10 0.05 0.11 0.22 0.10 0.27 0.42
40 0.01 0.03 0.09 0.02 0.09 0.22 0.05 0.27 0.46
100 0.01 0.02 0.07 0.01 0.08 0.21 0.02 0.26 0.51
Lasso
20 0.22 0.24 0.27 0.24 024 0.26 0.27 0.24 0.26
40 0.18 0.21 0.27 0.20 0.21 0.27 0.22 0.21 0.26
100 0.12 0.17 0.21 0.13 0.18 0.25 0.16 0.17  0.25
A-Lasso
20 0.16 0.17 0.19 0.17 0.17  0.19 0.18 0.17 0.19
40 0.13 0.16 0.21 0.15 0.16 0.21 0.17 0.16 0.20
100 0.09 0.13 0.16 0.10 0.14 0.19 0.13 0.14 0.19
Boosting
20 0.32 041 0.49 0.34 049 0.56 0.35 0.59 0.61
40 0.35 045 0.50 0.38 0.53 0.54 0.39 0.58 0.57
100 0.34 0.38 0.38 0.37 0.42 040 0.39 0.44 040

Notes: Down-weighting column label "No” stands for no down-weighting, ”Light” stands for light down-weighting given by
values A = 0.975,0.98,0.985,0.99,0.995, 1, and ”Heavy” stands for heavy down-weighting given by values

A =0.95,0.96,0.97,0.98,0.99, 1. For each of the two sets of exponential down-weighting (light/heavy) we average FPR across
the choices for A. Best results are highlighted by bold fonts. The reported results are based on 4 experiments for models
without parameter instabilities (panel A) and 4 experiments with parameter instabilities (panel B). See Section 5 for the
description of the Monte Carlo design.
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Table S.3: Comparison of the effects of down-weighting for the number of selected variables

k in MC experiments with and without parameter instability.

Average k
Down-weighting: No Light Heavy No Light Heavy No Light Heavy
N\T 100 200 500
A. Without parameter instability
OCMT (down-weighting at the selection stage)
20 391 343 4.22 515 519  7.23 6.68  8.89 11.87
40 3.69 3.58 5.54 5.01  6.60 11.66 6.52  14.12 21.89
100 3.47 4.11 8.90 4.74 9.91 23.84 6.26 29.45 54.25
Lasso
20 693 724 1.75 733 745  1.76 754 770  7.83
40 8.48 9.95 12.71 8.89 10.30 12.87 8.99 10.29 12.22
100 11.17 16.86 22.60 10.95 18.07 26.51 10.98 17.63 25.57
A-Lasso
20 539 571 6.09 581 594 6.11 6.06 6.15  6.18
40 6.75  8.04 10.20 7.28 843 10.34 745 848  9.85
100 9.27 13.69 17.78 9.45  14.97 20.85 9.70  14.79 20.16
Boosting
20 9.19 11.19 13.00 9.58 13.27  14.70 9.74 15.34  15.80
40 16.04 20.55 22.83 16.52 24.12 24.88 16.78 26.64 25.92
100 35.32 39.91 40.07 36.64 44.02 42.22 37.72 46.28 42.89
B. With parameter instability
OCMT (down-weighting at the selection stage)
20 3.25 3.15 4.18 4.55 518 7.34 5.93  9.00 11.94
40 3.10 344 5.64 441  6.72 11.88 5.85  14.32 21.99
100 2.96 4.28 9.29 4.23 10.32  24.20 5.71 29.78 54.33
Lasso
20 760 7775  8.22 839 816 8.44 9.20 841 8.59
40 10.16 11.27 13.64 11.71  11.80 14.13 12.83 11.73 13.66
100 14.54 19.31 23.86 16.61 20.93 28.46 19.82  20.45 28.10
A-Lasso
20 584 6.06 6.42 6.58 6.46  6.63 740 6.72 6.81
40 797 897  10.86 9.40  9.55 11.30 10.51 9.63 11.01
100 11.58 15.40 18.64 13.70 17.14 22.32 16.73 17.04 22.14
Boosting
20 9.76 11.51 13.18 10.39 1349 14.87 10.95 15.60 16.06
40 17.50 21.21 23.25 18.72 24.80 25.35 19.50 27.13 26.41
100 37.33 40.90 40.78 40.37 45.17 43.03 43.22  47.27 43.88

Notes: Down-weighting column label "No” stands for no down-weighting, ” Light” stands for light down-weighting given by
values A = 0.975,0.98,0.985,0.99,0.995, 1, and ”Heavy” stands for heavy down-weighting given by values

A =0.95,0.96,0.97,0.98,0.99, 1. For each of the two sets of exponential down-weighting (light/heavy) we average k across the
choices for X\. The reported results are based on 4 experiments for models without parameter instabilities (panel A) and 4
experiments with parameter instabilities (panel B). See Section 5 for the description of the Monte Carlo design.
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Table S.4: The number of selected variables (k), True Positive Rate (TRP), and False Positive

~

Rate (FPR) averaged across MC experiments with and without dynamics.

k TPR FPR
N\T 100 200 500 100 200 500 100 200 500
A. Static
OCMT
20 4.51 5.64 7.07 0.90 0.99 1.00 0.05 0.08 0.15
40 4.37 5.55 6.97 0.88 0.98 1.00 0.02 0.04 0.07
100 4.31 5.42 6.81 0.85 0.98 1.00 0.01 0.02 0.03
Lasso
20 7.83 8.32 8.75 0.89 0.96 1.00 0.21 0.22 0.24
40 9.88 11.15 11.83 0.88 0.96 1.00 0.16 0.18 0.20
100 13.25 14.96 17.44 0.85 0.95 0.99 0.10 0.11 0.13
A-Lasso
20 6.12 6.63 7.02 0.81 0.92 0.99 0.14 0.15 0.15
40 7.83 9.05 9.64 0.81 0.93 0.99 0.11 0.13 0.14
100 10.77 12.47 14.71 0.80 0.92 0.99 0.08 0.09 0.11
Boosting
20 9.74 10.27 10.61 0.92 0.97 1.00 0.30 0.32 0.33
40 16.76 17.90 18.55 0.92 0.97 1.00 0.33 0.35 0.36
100 35.57 38.09 40.72 0.91 0.97 1.00 0.32 0.34 0.37
B. Dynamic
OCMT
20 2.65 4.06 5.54 0.60 0.86 0.99 0.01 0.03 0.08
40 241 3.87 540 0.55 0.84 0.99 0.01 0.01 0.04
100 2.13 3.55 5.16 0.49 0.79 0.98 0.00 0.00 0.01
Lasso
20 6.71 7.40 8.00 0.74 0.87 0.96 0.19 0.20 0.21
40 8.76 9.45 9.99 0.71 0.86 0.96 0.15 0.15 0.15
100 1246 12.60 13.36 0.66 0.82 0.95 0.10 0.09 0.10
A-Lasso
20 5.12 5.76 6.44 0.63 0.78 0.92 0.13 0.13 0.14
40 6.89 7.64 8.31 0.62 0.79 0.92 0.11 0.11 0.12
100 10.08 10.67 11.72 0.60 0.78 0.93 0.08 0.08 0.08
Boosting
20 9.21 9.70  10.08 0.81 0.90 0.97 0.30 0.30 0.31
40 16.78 17.35 17.73 0.81 0.90 0.97 0.34 0.34 0.35
100 37.09 38.92 40.22 0.80 0.89 0.97 0.34 0.35 0.36

Notes: There are k = 4 signal variables out of N observed covariates. The top panel reports results averaged across 4 static
experiments, which do not feature lagged dependent variable. The bottom panel reports results averaged across 4 dynamic
experiments featuring lagged dependent variable. Each experiment is based on 2000 Monte Carlo simulations. OCMT, Lasso
and A-Lasso methods in this table are based on original (not down-weighted) observations. See Section 5 of the paper for the
detailed description of the Monte Carlo design.
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Table S.5: Comparison of the effects of down-weighting on one-step-ahead MSFE of OCMT, Lasso, A-Lasso
and Boosting averaged across all the static MC experiments without and with parameter instabilities.

Down-weighting: No Light Heavy No Light Heavy No Light Heavy
N\T 100 200 300
A. Without parameter instabilities
OCMT (Down-weighling only at the estimation stage)
20 15.01 15.38 16.11 12.60 12.98 13.69 11.98 1242 13.21
40 13.92 14.32 1497 14.76 1599 17.17 12.10 12.61 13.44
100 14.18 14.33 14.81 13.91 14.29 15.22 12.04 12.81 14.10
OCMT (Down-weighling only at the variable selection and estimation stages)
20 15.01 15.50 16.95 12.60 13.30 15.25 11.98 13.13 16.14
40 13.92 14.54 16.22 14.76 16.70  20.71 12.10 15.03 23.48
100 14.18 14.72  17.70 13.91 15.57 22.84 12.04 19.17  38.08
Lasso
20 15.35 15.88 16.92 12.79 13.17 14.05 12.01 12.63 13.52
40 14.33 15.05 16.30 14.74 16.10 17.87 12.09 13.05 14.28
100 14.57 1591 18.26 14.22 1546  17.02 12.11 13.65 15.82
A-Lasso
20 15.92 16.44 17.58 13.13 13.45 14.60 12.05 12.82 13.94
40 15.31 16.06 17.48 15.24 17.06 18.94 12.30 13.49 15.03
100 16.38 17.90  20.29 15.29 16.89 18.51 12.45 14.75 17.19
Boosting
20 16.12 17.42  19.99 13.06 14.68 17.39 12.15 14.09 16.14
40 15.28 17.01 19.25 15.64 18.87 21.44 12.40 1547 17.97
100 17.41 19.61 21.16 15.88 18.41 20.52 12.60 16.38 18.65
B. With parameter instabilities
OCMT (Down-weighling only at the estimation stage)
20 1843 17.56 17.59 15.21 13.90 14.32 14.67 13.08 13.85
40 16.88 16.22 16.35 17.37 16.80 17.59 14.37 13.21 13.95
100 1741 16.78 16.79 16.92 15.49 16.05 15.05 13.28 14.36
OCMT (Down-weighling only at the variable selection and estimation stages)
20 18.43 18.11 18.93 15.21 14.27 16.21 14.67 13.97 16.93
40 16.88  16.93  18.49 17.37 18.23  22.38 14.37 16.02  24.45
100 1741  17.39  20.94 16.92 17.71  25.90 15.05 20.19 39.64
Lasso
20 19.23 18.65 18.98 15.65 14.43 15.04 1497 13.51 14.37
40 17.73 17.47 18.39 17.89 17.74 19.29 14.70  14.08 15.50
100 18.31 18.68  20.45 17.86 17.35 18.61 15.38 14.85 17.10
A-Lasso
20 19.78 18.91 19.42 15.83 14.47 15.46 14.91 13.59 14.73
40 18.77 18.38 19.70 18.63 18.52  20.33 14.80 14.37 16.13
100 20.21 20.60 22.46 19.44 18.96 20.27 15.92 1598 18.59
Boosting
20 19.40 19.53  21.42 15.73 15.74 18.48 14.99 14.94 17.12
40 18.51 19.58 21.63 18.39 20.15  22.69 14.76 16.45 19.15
100 19.95 21.75  23.22 18.95 20.056  22.05 15.60 17.41  20.00

Notes: The reported results are averaged over two experiments (low fit and high fit) for models without and with parameter
instabilities. See Section 5 for the description of the Monte Carlo design. Full set of results is presented in the online Monte
Carlo supplement.

TFor each of the two sets of exponential down-weighting (light /heavy) forecasts of the target variable are computed as the
simple average of the forecasts obtained using the down-weighting coefficient, A.
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Table S.6: Comparison of the effects of down-weighting on one-step-ahead MSFE of OCMT, Lasso, A-Lasso
and Boosting averaged across all the dynamic MC experiments without and with parameter instabilities.

Down-weighting: No Light Heavy No Light Heavy No Light Heavy
N\T 100 200 300
A. Without parameter instabilities
OCMT (Down-weighling only at the estimation stage)

20 43.69 4493  46.82 35.56 36.54 38.11 33.96 35,59 37.85

40 39.75 40.11  41.09 44.15 46.01  48.36 33.86 34.79  36.81

100 40.55 40.81  41.77 39.54 40.15  42.13 33.79 36.09  39.09
OCMT (Down-weighling only at the variable selection and estimation stages)

20 43.69 45.10 48.31 35.56 37.31 41.64 33.96 37.00 45.10

40 39.75 40.06  43.03 44.15 46.93  55.54 33.86 40.01 59.11

100 40.55 41.52 4542 39.54 42.18  50.90 33.79 47.82 87.50
Lasso

20 43.73 46.17  49.15 35.78 37.35 39.99 34.03 35.99 38.90

40 40.45 4227  47.10 44.24  46.66  52.52 34.11 36.63 41.38

100 41.70 4549  50.11 39.96 43.11  48.45 34.12 39.03 45.57
A-Lasso

20 45.78 4797 51.21 36.76 38.20 41.43 34.24 36.62  40.03

40 43.37 44.87  49.92 45.72 48.17  53.60 34.87 3793  43.69

100 48.19 51.62 55.64 43.73 47.05 5249 35.28 4196  49.09
Boosting

20 47.27 53.10 61.26 37.08 4271  50.83 34.93 42.07 49.33

40 44.94 5147  58.55 48.02 59.09 66.52 35.41 45.17  52.48

100 52.98 59.26 63.31 46.79 53.93  59.42 36.96 49.74 57.10

B. With parameter instabilities
OCMT (Down-weighling only at the estimation stage)

20 4894 47.98 48.88 39.15 37.60 38.71 37.84 36.08 38.23

40 44.22 42.86 43.19 4793 47.06 48.85 36.99 35.25 36.99

100 45.79  44.71 45.01 44.45 42.42 43.94 38.21 36.72 39.32
OCMT (Down-weighling only at the variable selection and estimation stages)

20 48.94 48.64 50.65 39.15 38.69 42.68 37.84 38.02 46.00

40 44.22  43.22 45.82 47.93 48.35 57.80 36.99 41.24  60.26

100 45.79 45.53 49.20 44.45 44.49 5591 38.21 4893  89.29
Lasso

20 49.78 50.31  52.30 40.03 39.08 41.51 38.18 37.00 40.26

40 44.88 45.05 4891 48.65 48.27  53.76 37.90 38.09 4285

100 46.16 48.68  53.01 45.66 45.68  50.52 38.98 40.40 46.86
A-Lasso

20 51.79 51.79 54.11 40.73  39.51  42.67 38.30 37.39 41.32

40 47.81 47.72 51.83 50.05 49.57 55.13 38.13 39.02 45.11

100 52.08 54.84 58.84 49.64 49.62 54.93 39.98 43.20 50.43
Boosting

20 51.06 56.26  64.10 39.63 44.16  52.87 37.85 43.64 51.43

40 48.85 55.87  62.90 50.13 60.47 68.29 37.66 47.15  55.00

100 55.03 63.10 67.48 49.69 56.77  62.37 39.75 51.63 59.53

Notes: The reported results are averaged across two experiments (low fit and high fit) for models without and with parameter
instabilities. See Section 5 for the description of the Monte Carlo design. Full set of results is presented in the online Monte
Carlo supplement.

TFor each of the two sets of exponential down-weighting (light /heavy) forecasts of the target variable are computed as the
simple average of the forecasts obtained using the down-weighting coefficient, A.
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S-3 Monte Carlo results for all the experiments

S-3.1 MC findings for baseline experiments without parameter

instabilities
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Table S.7: MC results for methods using no down-weighting in the baseline experiment with
no dynamics (p, = 0) and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
Oracle
20 22.85 19.62 18.67 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 21.29 22.69 18.67 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 21.66 21.57 18.73 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
OoOCMT
20 23.59 19.75  18.77 4.15 5.33 6.78 0.88 099 1.00 0.03 0.07 0.14
40 21.82 23.08 18.96 3.95 5.20 6.62 0.85 098 1.00 0.01 0.03 0.07
100 22.28 21.84 18.85 3.71 4.95 6.33 0.80 098 1.00 0.01 0.01 0.02
LASSO
20 24.00 20.02 18.83 6.91 7.34 752 087 096 1.00 0.17 0.17 0.18
40 22.35 23.04 18.96 8.16 8.89 9.04 0.8 096 1.00 0.12 0.13 0.13
100 22.76  22.30 1899 10.22 10.64 10.83 0.81 0.94 1.00 0.07 0.07 0.07
LASSO for variable selection only. LS for estimation/forecasting.
20 25.74  20.68 19.09 6.91 7.34 752 087 096 1.00 0.17 0.17 0.18
40 24.40 24.18 19.59 8.16 8.89 9.04 085 096 1.00 0.12 0.13 0.13
100 26.74 24.44 19.63 10.22 10.64 10.83 0.81 0.94 1.00 0.07 0.07 0.07
A-LASSO
20 24.94 20.62 18.89 5.30 5.84 6.18 0.76 090 099 0.11 0.11 0.11
40 23.90 23.81 19.30 6.40 7.28 765 075 091 099 0.08 0.09 0.09
100 25.74 24.02 19.53 8.49 9.19 9.71 0.75 090 099 0.06 0.06 0.06
A-LASSO for variable selection only. LS for estimation/forecasting.
20 25.49  20.72 18.97 5.30 5.84 6.18 0.76 090 099 0.11 0.11 0.11
40 24.45 24.08 19.46 6.40 7.28 765 075 091 099 0.08 0.09 0.09
100 26.54 24.40 19.67 8.49 9.19 9.71 0.75 090 099 0.06 0.06 0.06
Boosting
20 24.95 20.33 18.99 9.05 9.56 9.73 091 097 1.00 0.27 0.28 0.29
40 23.58 24.34 19.38 15.52 16.31 16.65 0.90 0.97 1.00 0.30 0.31 0.32
100 26.97 24.78 19.71 33.89 35.47 37.07 0.89 0.97 1.00 0.30 0.32 0.33
Boosting for variable selection only. LS for estimation/forecasting.
20 26.80 20.96 19.14 9.05 9.56 9.73 091 097 1.00 0.27 0.28 0.29
40 27.73 27.28 20.32 15.52 16.31 16.65 0.90 0.97 1.00 0.30 0.31 0.32
100 40.82  32.19 2238 33.89 3547 37.07 0.89 097 1.00 0.30 0.32 0.33

Notes: This table reports one-step-ahead Mean Square Forecast Error (MSFE, x100) , average number of selected variables
(k), True Positive Rate (TPR), and False Positive Rate (FPR). The baseline model features no parameter instabilities in
slopes and intercepts. There are k = 4 signals variables out of N observed variables. The DGP is given by

yt =d+ pyyi—1 + Z§:1 Bjxjt + Tuut. Oracle model assumes the identity of signal variables is known. The reported results
are based on 2000 Monte Carlo replications. See Section 5 of the paper for the detailed description of the Monte Carlo design.

S.13



Table S.8: MC results for methods using light down-weighting in the baseline experiment
with no dynamics (p, = 0), and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 23.41 20.05 19.10 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 22.08 24.16 19.02 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 22.05 21.94 19.56 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 24.12 20.29 19.38 4.15 5.33 6.78 0.88 0.99 1.00 0.03 0.07 0.14
40 22.40 24.92 19.74 3.95 5.20 6.62 0.85 0.98 1.00 0.01 0.03 0.07
100 22.40 22.41 19.98 3.71 4.95 6.33 0.80 0.98 1.00 0.01 0.01 0.02
LASSO
20 26.46 21.71 20.06 6.91 7.34 7.52 0.87 0.96 1.00 0.17 0.17 0.18
40 24.89 26.71 21.31 8.16 8.89 9.04 0.85 0.96 1.00 0.12 0.13 0.13
100 27.75 25.52 21.01 10.22 10.64 10.83 0.81 0.94 1.00 0.07 0.07 0.07
A-LASSO
20 25.85 21.50 19.67 5.30 5.84 6.18 0.76 0.90 0.99 0.11 0.11 0.11
40 24.95 26.28 20.85 6.40 7.28 7.65 0.75 0.91 0.99 0.08 0.09 0.09
100 27.36 25.21 20.98 8.49 9.19 9.71 0.75 0.90 0.99 0.06 0.06 0.06
Boosting
20 27.67 22.18 20.44 9.05 9.56 9.73 0.91 0.97 1.00 0.27 0.28 0.29
40 28.91 30.74 23.34 15.52 16.31 16.65 0.90 0.97 1.00 0.30 0.31 0.32
100 43.40 36.87 29.47 33.89 35.47 37.07 0.89 0.97 1.00 0.30 0.32 0.33
B. Light down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 24.19 20.80 20.54 3.67 5.69 9.58 0.71 0.82 0.90 0.04 0.12 0.30
40 22.66 26.01 23.46 3.89 7.44 15.52 0.67 0.80 0.90 0.03 0.11 0.30
100 22.90 24.00 29.85 4.57 11.61 32.76 0.62 0.77 0.89 0.02 0.09 0.29
LASSO
20 24.73 20.57 19.76 6.99 7.20 7.51 0.80 0.84 0.86 0.19 0.19 0.20
40 23.39 25.08 20.37 9.10 9.57 9.60 0.77 0.82 0.83 0.15 0.16 0.16
100 24.74 24.09 21.25 14.32 14.88 14.77 0.73 0.79 0.81 0.11 0.12 0.12
A-LASSO
20 25.65 21.05 20.07 5.46 5.73 6.01 0.70 0.77 0.81 0.13 0.13 0.14
40 24.95 26.65 21.05 7.30 7.83 7.96 0.70 0.77 0.80 0.11 0.12 0.12
100 27.88 26.31 22.97 11.62 12.38 12.48 0.68 0.75 0.78 0.09 0.09 0.09
Boosting
20 26.98 22.72 21.91 11.03 13.18 15.30 0.89 0.95 0.97 0.37 0.47 0.57
40 26.27 29.37 24.06 20.12 23.96 26.63 0.89 0.94 0.95 0.41 0.50 0.57
100 30.40 28.62 25.50 39.22 43.74 46.27 0.86 0.91 0.93 0.36 0.40 0.43

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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Table S.9: MC results for methods using heavy down-weighting in the baseline experiment
with no dynamics (p, = 0), and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 24.49 20.88 19.90 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 23.26 25.26 19.64 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 22.95 23.00 20.83 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 25.20 21.35 20.56 4.15 5.33 6.78 0.88 0.99 1.00 0.03 0.07 0.14
40 23.33 26.64 20.96 3.95 5.20 6.62 0.85 0.98 1.00 0.01 0.03 0.07
100 22.99 23.86 21.87 3.71 4.95 6.33 0.80 0.98 1.00 0.01 0.01 0.02
LASSO
20 27.80 23.30 21.34 6.91 7.34 7.52 0.87 0.96 1.00 0.17 0.17 0.18
40 26.12 28.89 23.27 8.16 8.89 9.04 0.85 0.96 1.00 0.12 0.13 0.13
100 29.45 27.80 23.68 10.22 10.64 10.83 0.81 0.94 1.00 0.07 0.07 0.07
A-LASSO
20 26.77 22.73 20.63 5.30 5.84 6.18 0.76 0.90 0.99 0.11 0.11 0.11
40 26.09 27.95 22.74 6.40 7.28 7.65 0.75 0.91 0.99 0.08 0.09 0.09
100 28.69 27.13 23.30 8.49 9.19 9.71 0.75 0.90 0.99 0.06 0.06 0.06
Boosting
20 29.09 24.37 22.35 9.05 9.56 9.73 0.91 0.97 1.00 0.27 0.28 0.29
40 31.81 33.68 27.32 15.52 16.31 16.65 0.90 0.97 1.00 0.30 0.31 0.32
100 49.34 46.27 41.50 33.89 35.47 37.07 0.89 0.97 1.00 0.30 0.32 0.33
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 26.41 23.78 25.23 4.63 7.89 12.46 0.63 0.77 0.89 0.10 0.24 0.44
40 25.02 31.99 36.73 6.24 12.87 22.94 0.60 0.77 0.90 0.10 0.25 0.48
100 27.02 34.90 58.90 10.41 26.66 56.42 0.55 0.74 0.92 0.08 0.24 0.53
LASSO
20 26.26 21.87 21.05 7.20 7.11 7.27 0.72 0.74 0.75 0.22 0.21 0.21
40 25.24 27.66 22.08 11.24 11.20 10.54 0.71 0.73 0.73 0.21 0.21 0.19
100 28.33 26.33 24.46 20.32 21.38 20.20 0.68 0.72 0.73 0.18 0.18 0.17
A-LASSO
20 27.35 22.77 21.80 5.62 5.60 5.74 0.63 0.66 0.69 0.15 0.15 0.15
40 27.02 29.35 23.28 8.97 8.97 8.52 0.64 0.67 0.68 0.16 0.16 0.14
100 31.56 28.65 26.63 15.87 16.92 16.06 0.62 0.67 0.68 0.13 0.14 0.13
Boosting
20 30.90 26.82 25.02 12.85 14.63 15.77 0.88 0.93 0.95 0.47 0.54 0.60
40 29.66 33.27 27.84 22.55 24.77 25.90 0.87 0.90 0.91 0.48 0.53 0.56
100 32.68 31.73 28.89 39.58 41.97 42.74 0.81 0.84 0.86 0.36 0.39 0.39

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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Table S5.10: MC results for methods using no down-weighting in the baseline experiment
with no dynamics (p, = 0) and high fit.

MSFE (x100) k TPR FPR
n\T 100 200 500 100 200 500 | 100 200 500 | 100 200 500
Oracle
20 6.30 541 5.14 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 5.87 6.25 5.14 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 597 594 5.16 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 6.44 545 5.20 5.43 6.48 812 099 1.00 1.00 0.07 0.12 0.21
40 6.02 6.43 524 5.29 6.40 798 099 1.00 1.00 0.03 0.06 0.10
100 6.09 598 5.22 5.27 6.23 777 098 1.00 1.00 0.01 0.02 0.04
LASSO
20 6.70 5.56 5.19 7.61 7.59 7.54 098 1.00 1.00 0.18 0.18 0.18
40 6.31 6.44 5.22 9.11 9.27 9.06 098 1.00 1.00 0.13 0.13 0.13
100 6.37 6.15 523 1148 11.13 1082 097 1.00 1.00 0.08 0.07 0.07
LASSO for variable selection only. LS for estimation/forecasting.
20 7.12  5.69 5.25 7.61 7.59 754 098 1.00 1.00 0.18 0.18 0.18
40 6.90 6.82 5.39 9.11 9.27 9.06 098 1.00 100 0.13 0.13 0.13
100 743 6.74 544 1148 11.13 1082 097 1.00 1.00 0.08 0.07 0.07
A-LASSO
20 6.90 5.64 5.20 6.17 6.18 586 096 099 1.00 0.12 0.11 0.09
40 6.72 6.67 5.31 7.47 7.63 716 095 099 1.00 0.09 0.09 0.08
100 7.02 6.57 5.37 9.73 9.64 9.18 095 099 1.00 0.06 0.06 0.05
A-LASSO for variable selection only. LS for estimation/forecasting.
20 7.03 5.67 5.22 6.17 6.18 586 096 099 1.00 0.12 0.11 0.09
40 6.90 6.77 5.35 7.47 7.63 716 095 099 1.00 0.09 0.09 0.08
100 721 6.69 5.39 9.73 9.64 9.18 095 099 1.00 0.06 0.06 0.05
Boosting
20 729 579 5.32 9.54 9.78 9.84 099 1.00 1.00 028 0.29 0.29
40 6.97 6.95 543 16.03 16.51 16.76 099 1.00 1.00 0.30 0.31 0.32
100 7.85 697 550 3442 3569 3714 098 1.00 1.00 030 0.32 0.33
Boosting for variable selection only. LS for estimation/forecasting.
20 7.50 5.79 5.28 9.54 9.78 9.84 099 1.00 1.00 028 0.29 0.29
40 7.67 756 560 16.03 16.51 16.76 099 1.00 1.00 0.30 0.31 0.32
100 11.53 882 6.16 3442 3569 37.14 098 1.00 1.00 030 0.32 0.33

Notes: See notes to Table S.7.
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Table S.11: MC results for methods using light down-weighting in the baseline experiment
with no dynamics (p, = 0), and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle

Oracle
20 6.45 5.52 5.26 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 6.08 6.66 5.24 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 6.08 6.05 5.39 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
OCMT
20 6.65 5.66 5.46 5.43 6.48 8.12 0.99 1.00 1.00 0.07 0.12 0.21
40 6.25 7.05 5.47 5.29 6.40 7.98 0.99 1.00 1.00 0.03 0.06 0.10
100 6.26 6.18 5.64 5.27 6.23 7.7 0.98 1.00 1.00 0.01 0.02 0.04
LASSO
20 7.33 5.98 5.53 7.61 7.59 7.54 0.98 1.00 1.00 0.18 0.18 0.18
40 7.14 7.63 5.88 9.11 9.27 9.06 0.98 1.00 1.00 0.13 0.13 0.13
100 7.72 7.12 5.79 11.48 11.13 10.82 0.97 1.00 1.00 0.08 0.07 0.07
A-LASSO
20 717 5.93 5.42 6.17 6.18 5.86 0.96 0.99 1.00 0.12 0.11 0.09
40 7.10 7.46 5.71 7.47 7.63 7.16 0.95 0.99 1.00 0.09 0.09 0.08
100 7.52 7.02 5.74 9.73 9.64 9.18 0.95 0.99 1.00 0.06 0.06 0.05
Boosting
20 7.78 6.17 5.61 9.54 9.78 9.84 0.99 1.00 1.00 0.28 0.29 0.29
40 8.04 8.55 6.46 16.03 16.51 16.76 0.99 1.00 1.00 0.30 0.31 0.32
100 12.16 10.14 7.99 34.42 35.69 37.14 0.98 1.00 1.00 0.30 0.32 0.33
B. Light down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
oCMT
20 6.82 5.80 5.72 5.13 7.13 11.02 0.90 0.92 0.95 0.08 0.17 0.36
40 6.42 7.39 6.59 5.70 9.60 17.97 0.89 0.92 0.95 0.05 0.15 0.35
100 6.55 7.13 8.49 7.20 15.43 37.53 0.87 0.90 0.96 0.04 0.12 0.34
LASSO
20 7.03 5.77 5.50 8.16 8.27 8.46 0.96 0.98 0.98 0.22 0.22 0.23
40 6.70 7.11 5.74 10.69 11.07 11.06 0.96 0.97 0.97 0.17 0.18 0.18
100 7.08 6.83 6.06 16.61 17.34 17.10 0.94 0.97 0.97 0.13 0.13 0.13
A-LASSO
20 7.23 5.85 5.58 6.60 6.70 6.73 0.93 0.95 0.96 0.14 0.14 0.14
40 7.17 7.48 5.94 8.79 9.12 9.07 0.92 0.95 0.96 0.13 0.13 0.13
100 7.91 7.47 6.52 13.64 14.51 14.36 0.92 0.95 0.96 0.10 0.11 0.11
Boosting
20 7.87 6.64 6.27 11.57 13.46 15.42 0.98 0.99 1.00 0.38 0.47 0.57
40 7.75 8.37 6.87 20.63 24.15 26.66 0.98 0.99 0.99 0.42 0.50 0.57
100 8.82 8.20 7.27 39.52 43.69 46.02 0.97 0.99 0.99 0.36 0.40 0.42

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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Table S.12: MC results for methods using heavy down-weighting in the baseline experiment
with no dynamics (p, = 0), and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 6.75 5.75 5.48 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 6.41 6.96 5.41 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 6.32 6.34 5.74 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 7.02 6.03 5.86 5.43 6.48 8.12 0.99 1.00 1.00 0.07 0.12 0.21
40 6.61 7.71 5.92 5.29 6.40 7.98 0.99 1.00 1.00 0.03 0.06 0.10
100 6.63 6.59 6.34 5.27 6.23 7.7 0.98 1.00 1.00 0.01 0.02 0.04
LASSO
20 7.70 6.45 5.87 7.61 7.59 7.54 0.98 1.00 1.00 0.18 0.18 0.18
40 7.57 8.38 6.44 9.11 9.27 9.06 0.98 1.00 1.00 0.13 0.13 0.13
100 8.23 7.79 6.51 11.48 11.13 10.82 0.97 1.00 1.00 0.08 0.07 0.07
A-LASSO
20 7.47 6.30 5.68 6.17 6.18 5.86 0.96 0.99 1.00 0.12 0.11 0.09
40 7.44 8.05 6.19 7.47 7.63 7.16 0.95 0.99 1.00 0.09 0.09 0.08
100 7.96 7.61 6.37 9.73 9.64 9.18 0.95 0.99 1.00 0.06 0.06 0.05
Boosting
20 8.22 6.77 6.14 9.54 9.78 9.84 0.99 1.00 1.00 0.28 0.29 0.29
40 8.85 9.47 7.58 16.03 16.51 16.76 0.99 1.00 1.00 0.30 0.31 0.32
100 13.67 12.67 11.09 34.42 35.69 37.14 0.98 1.00 1.00 0.30 0.32 0.33
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 7.48 6.73 7.04 6.18 9.32 13.59 0.80 0.87 0.94 0.15 0.29 0.49
40 7.42 9.43 10.23 8.46 15.23 24.69 0.79 0.88 0.95 0.13 0.29 0.52
100 8.39 10.78 17.26 14.22 31.12 59.27 0.77 0.87 0.96 0.11 0.28 0.55
LASSO
20 7.58 6.24 5.98 8.75 8.70 8.77 0.92 0.93 0.93 0.25 0.25 0.25
40 7.36 8.08 6.49 13.34 13.45 12.89 0.92 0.92 0.92 0.24 0.24 0.23
100 8.20 7.70 7.18 22.70 24.34 23.42 0.91 0.93 0.92 0.19 0.21 0.20
A-LASSO
20 7.80 6.43 6.09 6.99 6.92 6.92 0.87 0.89 0.90 0.18 0.17 0.17
40 7.94 8.52 6.78 10.81 10.83 10.36 0.88 0.89 0.89 0.18 0.18 0.17
100 9.02 8.38 7.76 17.73 19.20 18.49 0.88 0.90 0.90 0.14 0.16 0.15
Boosting
20 9.07 7.96 7.26 13.29 14.85 15.89 0.97 0.98 0.99 0.47 0.55 0.60
40 8.84 9.61 8.09 22.93 24.95 26.00 0.96 0.97 0.97 0.48 0.53 0.55
100 9.64 9.31 8.42 39.81 41.99 42.68 0.95 0.96 0.96 0.36 0.38 0.39

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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Table S5.13: MC results for methods using no down-weighting in the baseline experiment
with dynamics (p, # 0) and low fit.

MSFE (x100) k TPR FPR
n\T 100 200 500 100 200 500 | 100 200 500 | 100 200 500
Oracle
20 65.06 54.52  52.06 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 59.58 67.25 51.88 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 61.06 60.22 51.99 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 67.41 54.94 5245 1.97 3.62 522 046 081 099 0.01 0.02 0.06
40 61.62 68.21 52.23 1.65 3.41 5.09 038 078 099 0.00 0.01 0.03
100 62.82 61.15 52.17 1.36 3.02 483 032 070 098 0.00 0.00 0.01
LASSO
20 67.13 55.13 52.54 5.89 6.73 741 067 083 096 0.16 0.17 0.18
40 62.31 68.14 52.68 7.44 8.15 875 0.62 081 095 0.12 0.12 0.12
100 63.95 61.52 52.65 10.54 10.35 10.93 0.57 0.76 0.94 0.08 0.07 0.07
LASSO for variable selection only. LS for estimation/forecasting.
20 71.16  57.19 53.33 5.89 6.73 741 067 083 096 0.16 0.17 0.18
40 67.75 71.58  54.27 7.44 8.15 875 0.62 081 095 0.12 0.12 0.12
100 77.15 68.38 55.00 10.54 10.35 10.93 0.57 0.76 0.94 0.08 0.07 0.07
A-LASSO
20 70.45 56.61 5291 4.43 5.09 590 055 071 089 0.11 0.11 0.12
40 66.78 70.52  53.83 5.81 6.51 726 053 071 090 0.09 0.09 0.09
100 73.92  67.11 54.50 8.56 8.82 9.74 050 070 091 0.07 0.06 0.06
A-LASSO for variable selection only. LS for estimation/forecasting.
20 71.87 57.19 53.15 4.43 5.09 590 055 071 089 0.11 0.11 0.12
40 68.30 71.26 54.27 5.81 6.51 726 053 0.71 0.90 0.09 0.09 0.09
100 76.07 68.21 54.76 8.56 8.82 9.74 050 070 091 0.07 0.06 0.06
Boosting
20 71.62 56.38 53.22 8.72 9.22 9.59 0.76 087 097 028 0.29 0.29
40 67.92 73.13 54.06 16.07 1641 16.75 0.76 0.87 0.97 0.33 0.32 0.32
100 80.36 71.25 56.06 36.51 37.74 3842 0.74 086 097 034 034 035
Boosting for variable selection only. LS for estimation/forecasting.
20 76.86 57.22 53.33 8.72 9.22 9.59 0.76 087 097 028 0.29 0.29
40 80.99 77.62 56.84 16.07 1641 16.75 0.76 0.87 0.97 0.33 032 0.32
100 114.48 93.27 6223 36.51 37.74 3842 0.74 0.8 097 034 034 0.35

Notes: See notes to Table S.7.
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Table S.14: MC results for methods using light down-weighting in the baseline experiment
with dynamics (p, # 0), and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 67.66 56.22 54.33 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 61.57 69.79 52.83 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 63.05 61.72 55.30 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 69.20 56.30 54.92 1.97 3.62 5.22 0.46 0.81 0.99 0.01 0.02 0.06
40 61.85 70.78 53.55 1.65 3.41 5.09 0.38 0.78 0.99 0.00 0.01 0.03
100 63.20 61.91 55.68 1.36 3.02 4.83 0.32 0.70 0.98 0.00 0.00 0.01
LASSO
20 74.12 59.84 56.58 5.89 6.73 7.41 0.67 0.83 0.96 0.16 0.17 0.18
40 68.98 76.56 58.74 7.44 8.15 8.75 0.62 0.81 0.95 0.12 0.12 0.12
100 79.16 70.68 59.90 10.54 10.35 10.93 0.57 0.76 0.94 0.08 0.07 0.07
A-LASSO
20 74.62 59.65 55.89 4.43 5.09 5.90 0.55 0.71 0.89 0.11 0.11 0.12
40 69.47 75.51 57.88 5.81 6.51 7.26 0.53 0.71 0.90 0.09 0.09 0.09
100 77.14 70.04 59.19 8.56 8.82 9.74 0.50 0.70 0.91 0.07 0.06 0.06
Boosting
20 80.02 60.00 57.00 8.72 9.22 9.59 0.76 0.87 0.97 0.28 0.29 0.29
40 83.18 82.28 65.19 16.07 16.41 16.75 0.76 0.87 0.97 0.33 0.32 0.32
100 119.04 101.18 79.09 36.51 37.74 38.42 0.74 0.86 0.97 0.34 0.34 0.35
B. Light down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
oCcMT
20 69.34 57.56 57.13 1.65 3.30 6.98 0.34 0.56 0.77 0.01 0.05 0.20
40 61.40 72.29 61.59 1.54 3.97 10.96 0.29 0.52 0.75 0.01 0.05 0.20
100 63.83 65.01 73.43 1.53 5.56 23.20 0.23 0.46 0.74 0.01 0.04 0.20
LASSO
20 70.69 57.46 55.40 6.04 6.28 6.56 0.59 0.64 0.68 0.18 0.19 0.19
40 64.66 71.49 56.25 8.91 9.20 9.12 0.56 0.62 0.65 0.17 0.17 0.16
100 69.73 65.98 59.74 17.11 18.49 17.73 0.52 0.60 0.64 0.15 0.16 0.15
A-LASSO
20 73.47 58.83 56.33 4.69 4.90 5.21 0.50 0.55 0.61 0.14 0.13 0.14
40 68.65 73.64 58.24 7.10 7.44 7.49 0.48 0.56 0.60 0.13 0.13 0.13
100 79.18 71.84 64.09 13.74 15.17 14.78 0.46 0.55 0.60 0.12 0.13 0.12
Boosting
20 80.36 64.67 63.84 10.79 13.00 15.21 0.77 0.86 0.93 0.39 0.48 0.57
40 77.73 89.87 68.46 20.52 24.03 26.57 0.77 0.85 0.89 0.44 0.52 0.58
100 89.89 81.83 75.23 40.39 44.35 46.51 0.72 0.79 0.83 0.38 0.41 0.43

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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Table S.15: MC results for methods using heavy down-weighting in the baseline experiment
with dynamics (p, # 0), and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 71.35 58.74 57.44 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 64.90 72.62 55.19 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 66.62 65.52 59.08 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
ocMT
20 71.83 58.47 58.24 1.97 3.62 5.22 0.46 0.81 0.99 0.01 0.02 0.06
40 62.95 73.94 56.43 1.65 3.41 5.09 0.38 0.78 0.99 0.00 0.01 0.03
100 64.46 64.55 60.12 1.36 3.02 4.83 0.32 0.70 0.98 0.00 0.00 0.01
LASSO
20 78.37 63.15 61.50 5.89 6.73 7.41 0.67 0.83 0.96 0.16 0.17 0.18
40 71.96 81.94 63.55 7.44 8.15 8.75 0.62 0.81 0.95 0.12 0.12 0.12
100 83.51 77.14 65.96 10.54 10.35 10.93 0.57 0.76 0.94 0.08 0.07 0.07
A-LASSO
20 78.24 62.58 59.71 4.43 5.09 5.90 0.55 0.71 0.89 0.11 0.11 0.12
40 71.83 79.75 62.49 5.81 6.51 7.26 0.53 0.71 0.90 0.09 0.09 0.09
100 80.42 75.58 64.78 8.56 8.82 9.74 0.50 0.70 0.91 0.07 0.06 0.06
Boosting
20 83.95 65.15 62.34 8.72 9.22 9.59 0.76 0.87 0.97 0.28 0.29 0.29
40 89.75 88.32 74.92 16.07 16.41 16.75 0.76 0.87 0.97 0.33 0.32 0.32
100 131.63 122.52 106.79 36.51 37.74 38.42 0.74 0.86 0.97 0.34 0.34 0.35
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 74.05 64.20 69.45 2.40 5.32 10.33 0.34 0.56 0.80 0.05 0.15 0.36
40 65.61 85.19 90.87 3.06 8.68 19.55 0.29 0.54 0.80 0.05 0.16 0.41
100 69.13 77.90 133.63 4.87 18.16 50.30 0.25 0.50 0.83 0.04 0.16 0.47
LASSO
20 75.06 61.29 59.50 6.67 6.73 6.78 0.55 0.58 0.60 0.22 0.22 0.22
40 72.01 80.21 63.12 12.08 12.41 11.60 0.55 0.60 0.60 0.25 0.25 0.23
100 76.58 74.23 69.51 22.80 28.89 27.97 0.51 0.61 0.63 0.21 0.26 0.25
A-LASSO
20 78.34 63.57 61.19 5.21 5.24 5.33 0.46 0.49 0.53 0.17 0.16 0.16
40 76.23 81.69 66.63 9.64 9.91 9.34 0.47 0.52 0.53 0.19 0.20 0.18
100 85.00 80.34 74.77 18.02 22.61 21.95 0.45 0.54 0.56 0.16 0.20 0.20
Boosting
20 92.65 76.90 74.73 12.71 14.50 15.69 0.80 0.87 0.92 0.48 0.55 0.60
40 88.46 101.02 79.38 22.75 24.76 25.81 0.77 0.81 0.83 0.49 0.54 0.56
100 95.90 89.98 86.33 40.39 42.46 43.07 0.67 0.72 0.74 0.38 0.40 0.40

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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Table 5.16: MC results for methods using no down-weighting in the baseline experiment
with dynamics (p, # 0) and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 | 100 200 500 | 100 200 500
Oracle
20 19.13 16.07 15.36 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 17.53 19.75 15.32 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 17.93 17.75 15.34 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 19.98 16.19 15.48 4.08 5.16 6.59 089 099 1.00 0.03 0.06 0.13
40 17.89  20.09 15.49 3.85 5.02 6.40 086 099 1.00 0.01 0.03 0.06
100 18.27 17.92  15.40 3.55 4.77 6.11 0.81 098 1.00 0.00 0.01 0.02
LASSO
20 20.33 16.43 15.51 7.32 7.65 7.70 090 097 1.00 0.19 0.19 0.19
40 18.59 20.33 15.54 9.19 9.26 9.12 088 097 1.00 0.14 0.13 0.13
100 19.45 18.40 15.60 12.44 11.68 11.34 0.84 096 1.00 0.09 0.08 0.07
LASSO for variable selection only. LS for estimation/forecasting.
20 21.68 17.03 15.72 7.32 7.65 7.70 090 097 1.00 0.19 0.19 0.19
40 20.54 21.34 16.10 9.19 9.26 9.12 088 097 1.00 0.14 0.13 0.13
100 23.24 20.73 16.22 1244 11.68 11.34 0.84 096 1.00 0.09 0.08 0.07
A-LASSO
20 21.10 16.91 15.57 5.66 6.11 6.31 0.80 093 099 0.12 0.12 0.12
40 19.96  20.92 15.90 7.31 7.69 772 080 094 1.00 0.10 0.10 0.09
100 22.45 20.36 16.05 10.29 10.15 10.19 0.79 0.93 1.00 0.07 0.06 0.06
A-LASSO for variable selection only. LS for estimation/forecasting.
20 21.52  17.05 15.65 5.66 6.11 6.31 0.80 093 099 0.12 0.12 0.12
40 20.51 21.20 16.05 7.31 7.69 772 080 094 1.00 0.10 0.10 0.09
100 23.17 20.72 16.18 10.29 10.15 10.19 0.79 0.93 1.00 0.07 0.06 0.06
Boosting
20 22.92  17.78 16.64 9.45 9.76 9.79 093 098 1.00 0.29 0.29 0.29
40 21.96 2292 16.77 16.53 16.85 16.94 092 0.98 1.00 0.32 0.32 0.32
100 25.61 2233 17.86 36.46 37.66 3824 091 098 1.00 0.33 034 0.34
Boosting for variable selection only. LS for estimation/forecasting.
20 22.96 17.08 15.75 9.45 9.76 9.79 093 098 1.00 029 0.29 0.29
40 23.66 22.88 16.72 16.53 16.85 16.94 092 0.98 1.00 0.32 032 0.32
100 34.98 27.57 1832 36.46 3766 3824 091 098 1.00 0.33 034 0.34

Notes: See notes to Table S.7.
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Table S.17: MC results for methods using light down-weighting in the baseline experiment
with dynamics (p, # 0), and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 19.90 16.56 16.01 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 18.13 20.57 15.56 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 18.50 18.15 16.27 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 20.67 16.78 16.25 4.08 5.16 6.59 0.89 0.99 1.00 0.03 0.06 0.13
40 18.36 21.24 16.03 3.85 5.02 6.40 0.86 0.99 1.00 0.01 0.03 0.06
100 18.43 18.39 16.50 3.55 4.77 6.11 0.81 0.98 1.00 0.00 0.01 0.02
LASSO
20 22.71 17.99 16.79 7.32 7.65 7.70 0.90 0.97 1.00 0.19 0.19 0.19
40 21.07 22.97 17.35 9.19 9.26 9.12 0.88 0.97 1.00 0.14 0.13 0.13
100 24.18 21.74 17.62 12.44 11.68 11.34 0.84 0.96 1.00 0.09 0.08 0.07
A-LASSO
20 22.12 17.91 16.39 5.66 6.11 6.31 0.80 0.93 0.99 0.12 0.12 0.12
40 20.81 22.51 17.03 7.31 7.69 7.72 0.80 0.94 1.00 0.10 0.10 0.09
100 23.95 21.50 17.43 10.29 10.15 10.19 0.79 0.93 1.00 0.07 0.06 0.06
Boosting
20 24.12 18.17 16.88 9.45 9.76 9.79 0.93 0.98 1.00 0.29 0.29 0.29
40 24.61 24.80 19.11 16.53 16.85 16.94 0.92 0.98 1.00 0.32 0.32 0.32
100 36.33 29.92 23.55 36.46 37.66 38.24 0.91 0.98 1.00 0.33 0.34 0.34
B. Light down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 20.85 17.07 16.88 3.27 4.64 7.99 0.70 0.81 0.90 0.02 0.07 0.22
40 18.72 21.57 18.44 3.19 5.39 12.03 0.66 0.80 0.90 0.01 0.06 0.21
100 19.22 19.36 22.22 3.13 7.04 24.30 0.61 0.76 0.90 0.01 0.04 0.21
LASSO
20 21.64 17.24 16.58 7.76 8.06 8.28 0.84 0.88 0.90 0.22 0.23 0.23
40 19.88 21.84 17.02 11.12 11.37 11.38 0.83 0.87 0.88 0.20 0.20 0.20
100 21.24 20.24 18.32 19.40 21.57 20.92 0.80 0.87 0.88 0.16 0.18 0.17
A-LASSO
20 22.47 17.57 16.92 6.11 6.43 6.66 0.75 0.82 0.85 0.15 0.16 0.16
40 21.10 22.71 17.63 8.96 9.32 9.41 0.76 0.83 0.85 0.15 0.15 0.15
100 24.07 22.26 19.83 15.75 17.83 17.52 0.75 0.83 0.85 0.13 0.15 0.14
Boosting
20 25.84 20.75 20.30 11.38 13.44 15.42 0.91 0.96 0.98 0.39 0.48 0.57
40 25.22 28.30 21.89 20.94 24.36 26.73 0.91 0.95 0.96 0.43 0.51 0.57
100 28.63 26.03 24.25 40.51 44.31 46.32 0.89 0.93 0.95 0.37 0.41 0.43

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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Table S.18: MC results for methods using heavy down-weighting in the baseline experiment
with dynamics (p, # 0), and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 21.02 17.31 16.91 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 19.11 21.44 16.22 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 19.55 19.24 17.34 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 21.81 17.75 17.46 4.08 5.16 6.59 0.89 0.99 1.00 0.03 0.06 0.13
40 19.23 22.78 17.18 3.85 5.02 6.40 0.86 0.99 1.00 0.01 0.03 0.06
100 19.08 19.72 18.05 3.55 4.77 6.11 0.81 0.98 1.00 0.00 0.01 0.02
LASSO
20 24.13 19.34 18.24 7.32 7.65 7.70 0.90 0.97 1.00 0.19 0.19 0.19
40 22.32 24.87 18.92 9.19 9.26 9.12 0.88 0.97 1.00 0.14 0.13 0.13
100 25.95 23.98 19.47 12.44 11.68 11.34 0.84 0.96 1.00 0.09 0.08 0.07
A-LASSO
20 23.15 18.99 17.52 5.66 6.11 6.31 0.80 0.93 0.99 0.12 0.12 0.12
40 21.81 23.88 18.47 7.31 7.69 7.72 0.80 0.94 1.00 0.10 0.10 0.09
100 25.24 23.33 19.18 10.29 10.15 10.19 0.79 0.93 1.00 0.07 0.06 0.06
Boosting
20 25.57 19.88 18.55 9.45 9.76 9.79 0.93 0.98 1.00 0.29 0.29 0.29
40 27.10 27.60 22.04 16.53 16.85 16.94 0.92 0.98 1.00 0.32 0.32 0.32
100 39.99 36.20 32.23 36.46 37.66 38.24 0.91 0.98 1.00 0.33 0.34 0.34
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 22.57 19.07 20.76 3.69 6.40 11.11 0.62 0.76 0.89 0.06 0.17 0.38
40 20.45 25.88 27.35 4.38 9.87 20.38 0.58 0.75 0.90 0.05 0.17 0.42
100 21.70 23.90 41.37 6.09 19.41 51.02 0.53 0.73 0.92 0.04 0.16 0.47
LASSO
20 23.24 18.68 18.30 8.39 8.49 8.51 0.79 0.81 0.82 0.26 0.26 0.26
40 22.18 24.84 19.63 14.19 14.43 13.83 0.79 0.82 0.81 0.28 0.28 0.26
100 23.65 22.67 21.63 24.56 31.42 30.67 0.76 0.83 0.84 0.22 0.28 0.27
A-LASSO
20 24.08 19.29 18.87 6.57 6.69 6.74 0.70 0.73 0.75 0.19 0.19 0.19
40 23.61 25.51 20.74 11.39 11.64 11.18 0.71 0.75 0.76 0.21 0.22 0.20
100 26.29 24.63 23.40 19.50 24.67 24.15 0.70 0.78 0.79 0.17 0.22 0.21
Boosting
20 29.88 24.77 23.92 13.13 14.82 15.86 0.91 0.95 0.96 0.48 0.55 0.60
40 28.64 32.01 25.59 23.09 25.05 25.99 0.89 0.92 0.92 0.49 0.53 0.56
100 30.72 28.87 27.87 40.49 42.48 43.06 0.85 0.87 0.88 0.37 0.39 0.40

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.7.
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S-3.2 MC Findings for experiments with parameter instabilities
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Table S.19: MC results for methods using no down-weighting in the experiment with param-
eter instabilities, no dynamics (p, = 0) and low fit.

MSFE (x100) k TPR FPR
n\T 100 200 500 100 200 500 | 100 200 500 | 100 200 500
Oracle
20 26.22 22.07 21.40 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 23.89 25.39 20.79 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 24.59 2431 21.71 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
OoCMT
20 27.27 2227 21.51 3.60 4.89 6.16 0.77 096 1.00 0.03 0.05 0.11
40 24.95 25,57 21.10 3.44 4.78 6.08 0.74 096 1.00 0.01 0.02 0.05
100 25.67 2479 21.92 3.31 4.62 591 0.69 094 1.00 0.01 0.01 0.02
LASSO
20 28.02 2291 2191 7.41 8.24 897 080 091 099 021 0.23 0.25
40 25.76  26.30 21.61 9.47 11.21 1229 0.78 091 099 0.16 0.19 0.21
100 26.81 26.23 2240 12.81 15.10 1815 0.73 0.88 098 0.10 0.12 0.14
LASSO for variable selection only. LS for estimation/forecasting.
20 29.22 2342 22.02 7.41 8.24 897 080 091 099 021 0.23 0.25
40 27.84 2774 2214 9.47 11.21 1229 0.78 091 099 0.16 0.19 0.21
100 30.99 29.03 2351 1281 15.10 1815 0.73 0.88 0.98 0.10 0.12 0.14
A-LASSO
20 28.89 23.26 21.82 5.67 6.46 727 069 083 096 015 0.16 0.17
40 27.20 2732 21.77 7.41 9.04 10.18 0.69 085 097 0.12 0.14 0.16
100 29.56 28.30 23.07 10.24 1247 1545 0.67 0.84 097 0.08 0.09 0.12
A-LASSO for variable selection only. LS for estimation/forecasting.
20 29.22 2347 21.89 5.67 6.46 727 069 083 096 015 0.16 0.17
40 2794 27.82 22.06 7.41 9.04 10.18 0.69 085 097 0.12 0.14 0.16
100 30.55 28.83 23.35 10.24 1247 1545 0.67 0.84 0.97 0.08 0.09 0.12
Boosting
20 28.34 23.04 2191 9.56 10.27 10.87 0.85 094 099 031 0.33 0.35
40 26.89 27.07 21.67 16.71 1827 19.17 0.85 0.94 099 033 036 0.38
100 29.37 2798 2278 3575 3890 4231 0.84 093 099 032 035 0.38
Boosting for variable selection only. LS for estimation/forecasting.
20 30.42 23.84 2217 9.56 10.27 10.87 0.85 094 099 031 0.33 0.35
40 31.76 30.33 2282 16.71 1827 19.17 085 094 099 0.33 0.36 0.38
100 45.11 3724 26.01 35.75 3890 4231 084 093 099 032 035 0.38

Notes: This table reports one-step-ahead Mean Square Forecast Error (MSFE, x100), average number of selected variables
(k), True Positive Rate (TPR), and False Positive Rate (FPR). There are k = 4 signals variables out of N observed variables.
The DGP is given by y: = di + py,tyt—1 + E?:I Bjtxj¢ + Tuut, where slopes B¢ = by + Tn; Mjt feature stochastic AR(1)
component 7;; and parameter instabilities in mean bj; given by (14)-(15), intercepts are given by d; = Z?:l Bttt where
parameter instabilities in pj; is given by (16)-(17), and py,¢ is zero in experiments without dynamics, and given by (18) in
experiments with dynamics. u; is given by a GARCH(1,1). See Section 5 of the paper for the detailed description of the
Monte Carlo design. The reported results are based on 2000 simulations. Oracle model assumes the identity of signal variables
is known.
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Table S.20: MC results for methods using light down-weighting in the experiment with
parameter instabilities, no dynamics (p, = 0), and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 25.40 20.77 19.74 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 23.48 25.04 19.67 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 24.02 22.96 20.16 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 26.57 21.21 20.10 3.60 4.89 6.16 0.77 0.96 1.00 0.03 0.05 0.11
40 24.52 25.64 20.21 3.44 4.78 6.08 0.74 0.96 1.00 0.01 0.02 0.05
100 25.14 23.51 20.37 3.31 4.62 5.91 0.69 0.94 1.00 0.01 0.01 0.02
LASSO
20 28.85 22.94 20.77 7.41 8.24 8.97 0.80 0.91 0.99 0.21 0.23 0.25
40 27.70 29.01 22.96 9.47 11.21 12.29 0.78 0.91 0.99 0.16 0.19 0.21
100 31.65 29.71 23.70 12.81 15.10 18.15 0.73 0.88 0.98 0.10 0.12 0.14
A-LASSO
20 28.69 22.83 20.43 5.67 6.46 7.27 0.69 0.83 0.96 0.15 0.16 0.17
40 27.76 28.40 22.33 7.41 9.04 10.18 0.69 0.85 0.97 0.12 0.14 0.16
100 30.86 28.80 22.96 10.24 12.47 15.45 0.67 0.84 0.97 0.08 0.09 0.12
Boosting
20 30.20 23.25 21.11 9.56 10.27 10.87 0.85 0.94 0.99 0.31 0.33 0.35
40 32.30 32.03 24.82 16.71 18.27 19.17 0.85 0.94 0.99 0.33 0.36 0.38
100 47.27 41.29 31.17 35.75 38.90 42.31 0.84 0.93 0.99 0.32 0.35 0.38
B. Light down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 27.14 21.69 21.50 3.55 5.87 9.84 0.64 0.81 0.92 0.05 0.13 0.31
40 25.19 27.59 24.60 3.96 7.89 16.03 0.60 0.80 0.92 0.04 0.12 0.31
100 25.75 26.45 30.79 5.16 12.74 33.88 0.55 0.76 0.92 0.03 0.10 0.30
LASSO
20 27.73 21.95 20.73 7.44 7.89 8.20 0.75 0.84 0.90 0.22 0.23 0.23
40 25.85 26.87 21.56 10.09 10.90 10.97 0.72 0.82 0.88 0.18 0.19 0.19
100 27.71 26.14 22.64 16.16 17.35 17.30 0.68 0.79 0.86 0.13 0.14 0.14
A-LASSO
20 28.20 22.11 20.89 5.78 6.23 6.56 0.66 0.77 0.84 0.16 0.16 0.16
40 27.20 28.14 22.05 8.03 8.84 9.03 0.65 0.77 0.84 0.14 0.14 0.14
100 30.58 28.59 24.38 12.95 14.29 14.53 0.62 0.74 0.83 0.10 0.11 0.11
Boosting
20 29.15 23.77 22.77 11.33 13.39 15.56 0.85 0.93 0.98 0.40 0.48 0.58
40 28.97 30.66 25.06 20.66 24.60 27.10 0.85 0.92 0.96 0.43 0.52 0.58
100 32.51 30.31 26.57 40.13 44.82 47.19 0.82 0.89 0.94 0.37 0.41 0.43

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.19.
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Table S.21: MC results for methods using heavy down-weighting in the experiment with
parameter instabilities, no dynamics (p, = 0), and low fit.

S|

MSFE (x100) TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 25.73 21.33 20.54 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 24.13 25.88 20.30 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 24.32 23.78 21.39 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 26.96 21.99 21.27 3.60 4.89 6.16 0.77 0.96 1.00 0.03 0.05 0.11
40 24.97 26.94 21.24 3.44 4.78 6.08 0.74 0.96 1.00 0.01 0.02 0.05
100 25.37 24.53 21.92 3.31 4.62 5.91 0.69 0.94 1.00 0.01 0.01 0.02
LASSO
20 29.36 24.50 22.54 7.41 8.24 8.97 0.80 0.91 0.99 0.21 0.23 0.25
40 28.65 31.33 26.35 9.47 11.21 12.29 0.78 0.91 0.99 0.16 0.19 0.21
100 33.43 33.27 28.56 12.81 15.10 18.15 0.73 0.88 0.98 0.10 0.12 0.14
A-LASSO
20 29.03 24.10 21.71 5.67 6.46 7.27 0.69 0.83 0.96 0.15 0.16 0.17
40 28.41 29.95 25.16 7.41 9.04 10.18 0.69 0.85 0.97 0.12 0.14 0.16
100 32.16 31.44 26.90 10.24 12.47 15.45 0.67 0.84 0.97 0.08 0.09 0.12
Boosting
20 30.87 25.11 23.05 9.56 10.27 10.87 0.85 0.94 0.99 0.31 0.33 0.35
40 34.93 35.80 30.47 16.71 18.27 19.17 0.85 0.94 0.99 0.33 0.36 0.38
100 53.08 50.82 45.70 35.75 38.90 42.31 0.84 0.93 0.99 0.32 0.35 0.38
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 28.42 24.75 26.11 4.76 8.14 12.61 0.61 0.79 0.91 0.12 0.25 0.45
40 27.52 34.03 37.65 6.62 13.39 23.24 0.58 0.79 0.92 0.11 0.26 0.49
100 30.86 38.49 60.77 11.43 27.74 56.86 0.53 0.76 0.94 0.09 0.25 0.53
LASSO
20 28.54 22.94 21.99 7.70 7.87 8.09 0.72 0.78 0.81 0.24 0.24 0.24
40 27.45 29.40 23.55 12.08 12.51 12.06 0.70 0.77 0.79 0.23 0.24 0.22
100 30.65 28.09 25.98 21.27 23.44 22.90 0.66 0.75 0.79 0.19 0.20 0.20
A-LASSO
20 29.33 23.67 22.61 5.98 6.15 6.41 0.63 0.70 0.75 0.17 0.17 0.17
40 29.45 31.07 24.55 9.60 10.00 9.73 0.62 0.71 0.74 0.18 0.18 0.17
100 33.67 30.61 28.26 16.54 18.45 18.17 0.59 0.70 0.75 0.14 0.16 0.15
Boosting
20 32.30 27.95 26.01 13.04 14.80 16.03 0.87 0.93 0.96 0.48 0.55 0.61
40 32.20 34.57 29.07 22.92 25.20 26.34 0.85 0.90 0.93 0.49 0.54 0.57
100 34.71 33.34 30.36 40.27 42.73 43.68 0.78 0.85 0.89 0.37 0.39 0.40

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.19.
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Table S.22: MC results for methods using no down-weighting in the experiment with param-
eter instabilities, no dynamics (p, = 0) and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 | 100 200 500 | 100 200 500
Oracle
20 9.45 797 T7.78 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 8.64 9.06 7.48 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 8.84 8.71  8.03 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 9.58 8.15 7.83 4.87 5.87 721 095 1.00 1.00 0.05 0.09 0.16
40 8.81 9.18 7.64 4.81 5.84 718 094 1.00 1.00 0.03 0.05 0.08
100 9.15 9.04 8.17 4.94 5.89 723 092 099 1.00 0.01 0.02 0.03
LASSO
20 10.43 8.39 8.04 9.38 10.10 1097 0.92 097 1.00 0.29 0.31 0.35
40 9.70 9.48 779 12,75 1523 1692 091 097 1.00 0.23 0.28 0.32
100 9.81 9.49 836 1847 2295 2996 089 097 1.00 0.15 0.19 0.26
LASSO for variable selection only. LS for estimation/forecasting.
20 10.97 8.58  8.08 9.38 10.10 1097 0.92 097 1.00 0.29 0.31 0.35
40 10.77 10.18 810 12.75 1523 1692 091 097 1.00 0.23 0.28 0.32
100 11.50 11.15 9.07 1847 2295 2996 089 097 1.00 0.15 0.19 0.26
A-LASSO
20 10.67 8.40 8.00 7.33 8.04 8.77 0.84 094 099 020 021 0.24
40 10.34 9.94 782 10.04 12.23 13,57 085 095 099 0.17 0.21 0.24
100 10.85 10.58 8.77 14.60 1858 2451 084 095 099 0.11 0.15 0.21
A-LASSO for variable selection only. LS for estimation/forecasting.
20 10.92 8.51  8.06 7.33 8.04 8.77 084 094 099 020 021 0.24
40 10.84 10.16 8.02 10.04 12.23 13,57 085 095 099 0.17 0.21 0.24
100 11.39 11.00 9.05 14.60 1858 2451 084 095 099 0.11 0.15 0.21
Boosting
20 10.46 8.41 8.08 10.80 11.48 12.00 094 098 1.00 0.35 0.38 0.40
40 10.14 9.70 7.86 18.77 20.49 21.64 094 098 1.00 038 041 044
100 10.52 9.93 843 38.21 4229 46.34 093 098 1.00 0.34 0.38 042
Boosting for variable selection only. LS for estimation/forecasting.
20 11.13 8.78 811 10.80 11.48 12.00 094 098 1.00 0.35 0.38 0.40
40 11.72 10.80 8.33 18.77 2049 21.64 094 098 1.00 0.38 041 044
100 16.59 13.42 982 3821 4229 46.34 093 098 1.00 0.34 0.38 0.42

Notes: See notes to Table S.19.
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Table S.23: MC results for methods using light down-weighting in the experiment

parameter instabilities, no dynamics (p, = 0), and high fit.

with

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.
Variable selection is based on original (not down-weighted) data.
Forecasting stage is Least Squares on selected down-weighted covariates for all methods
Oracle
20 8.32 6.36 5.89 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 7.66 7.63 5.87 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 7.93 7.06 6.03 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCMT
20 8.55 6.59 6.05 4.87 5.87 7.21 0.95 1.00 1.00 0.05 0.09 0.16
40 7.92 7.96 6.21 4.81 5.84 7.18 0.94 1.00 1.00 0.03 0.05 0.08
100 8.42 7.48 6.20 4.94 5.89 7.23 0.92 0.99 1.00 0.01 0.02 0.03
LASSO
20 10.15 7.25 6.27 9.38 10.10 10.97 0.92 0.97 1.00 0.29 0.31 0.35
40 10.21 9.44 7.24 12.75 15.23 16.92 0.91 0.97 1.00 0.23 0.28 0.32
100 11.52 10.48 8.44 18.47 22.95 29.96 0.89 0.97 1.00 0.15 0.19 0.26
A-LASSO
20 10.14 7.20 6.19 7.33 8.04 8.77 0.84 0.94 0.99 0.20 0.21 0.24
40 10.20 9.20 6.83 10.04 12.23 13.57 0.85 0.95 0.99 0.17 0.21 0.24
100 11.19 10.25 8.00 14.60 18.58 24.51 0.84 0.95 0.99 0.11 0.15 0.21
Boosting
20 10.37 7.37 6.33 10.80 11.48 12.00 0.94 0.98 1.00 0.35 0.38 0.40
40 11.32 10.23 7.66 18.77 20.49 21.64 0.94 0.98 1.00 0.38 0.41 0.44
100 17.03 13.79 9.79 38.21 42.29 46.34 0.93 0.98 1.00 0.34 0.38 0.42
B. Light down-weighting in both the variable selection and estimation/forecasting stages.
OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.
Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
oCcMT
20 9.08 6.86 6.45 4.90 7.16 11.03 0.82 0.90 0.96 0.08 0.18 0.36
40 8.67 8.88 7.45 5.73 9.85 18.14 0.80 0.90 0.96 0.06 0.16 0.36
100 9.03 8.97 9.58 7.86 16.24 37.95 0.77 0.88 0.96 0.05 0.13 0.34
LASSO
20 9.58 6.91 6.30 9.39 9.64 9.50 0.90 0.96 0.98 0.29 0.29 0.28
40 9.09 8.62 6.59 13.42 13.95 13.51 0.89 0.95 0.98 0.25 0.25 0.24
100 9.64 8.57 7.07 21.04 22.73 22.37 0.86 0.94 0.97 0.18 0.19 0.18
A-LASSO
20 9.63 6.83 6.29 7.39 7.73 7.57 0.83 0.92 0.96 0.20 0.20 0.19
40 9.56 8.89 6.68 10.71 11.28 11.04 0.83 0.92 0.97 0.18 0.19 0.18
100 10.62 9.33 7.58 16.71 18.52 18.55 0.82 0.91 0.97 0.13 0.15 0.15
Boosting
20 9.92 7.70 7.11 12.18 13.93 15.85 0.93 0.98 1.00 0.42 0.50 0.59
40 10.20 9.64 7.84 21.78 25.40 27.53 0.94 0.98 0.99 0.45 0.54 0.59
100 10.99 9.80 8.25 41.38 45.75 47.72 0.92 0.97 0.99 0.38 0.42 0.44

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value

of X\ in the set under consideration. See notes to Table S.19.

S.30



Table S.24: MC results for methods using heavy down-weighting in the experiment with
parameter instabilities, no dynamics (p, = 0), and high fit.

S|

MSFE (x100) TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 7.91 6.32 6.10 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 7.40 7.65 6.03 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 7.57 7.09 6.34 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 8.22 6.64 6.43 4.87 5.87 7.21 0.95 1.00 1.00 0.05 0.09 0.16
40 7.72 8.23 6.65 4.81 5.84 7.18 0.94 1.00 1.00 0.03 0.05 0.08
100 8.21 7.58 6.80 4.94 5.89 7.23 0.92 0.99 1.00 0.01 0.02 0.03
LASSO
20 9.89 7.60 6.91 9.38 10.10 10.97 0.92 0.97 1.00 0.29 0.31 0.35
40 10.24 9.92 9.00 12.75 15.23 16.92 0.91 0.97 1.00 0.23 0.28 0.32
100 12.37 11.55 11.10 18.47 22.95 29.96 0.89 0.97 1.00 0.15 0.19 0.26
A-LASSO
20 9.90 7.39 6.61 7.33 8.04 8.77 0.84 0.94 0.99 0.20 0.21 0.24
40 10.04 9.46 7.93 10.04 12.23 13.57 0.85 0.95 0.99 0.17 0.21 0.24
100 11.57 10.91 10.03 14.60 18.58 24.51 0.84 0.95 0.99 0.11 0.15 0.21
Boosting
20 10.20 7.76 6.96 10.80 11.48 12.00 0.94 0.98 1.00 0.35 0.38 0.40
40 11.65 11.19 9.66 18.77 20.49 21.64 0.94 0.98 1.00 0.38 0.41 0.44
100 18.88 16.42 14.32 38.21 42.29 46.34 0.93 0.98 1.00 0.34 0.38 0.42
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 9.45 7.68 7.75 6.13 9.41 13.54 0.77 0.88 0.95 0.15 0.30 0.49
40 9.45 10.73 11.24 8.65 15.43 24.74 0.75 0.88 0.96 0.14 0.30 0.52
100 11.01 13.30 18.51 14.90 31.53 59.32 0.72 0.87 0.97 0.12 0.28 0.55
LASSO
20 9.43 7.14 6.75 9.60 9.72 9.68 0.88 0.93 0.95 0.30 0.30 0.29
40 9.34 9.18 7.44 14.94 15.48 14.97 0.88 0.93 0.94 0.29 0.29 0.28
100 10.26 9.13 8.22 24.43 27.51 27.76 0.84 0.92 0.94 0.21 0.24 0.24
A-LASSO
20 9.52 7.24 6.84 7.52 7.72 7.68 0.81 0.89 0.91 0.21 0.21 0.20
40 9.95 9.59 7.70 11.90 12.41 12.03 0.82 0.89 0.92 0.22 0.22 0.21
100 11.25 9.93 8.93 18.88 21.51 21.81 0.79 0.89 0.93 0.16 0.18 0.18
Boosting
20 10.54 9.01 8.24 13.62 15.18 16.29 0.94 0.98 0.99 0.49 0.56 0.62
40 11.06 10.80 9.23 23.63 25.76 26.79 0.94 0.97 0.98 0.50 0.55 0.57
100 11.74 10.77 9.64 41.11 43.39 44.34 0.90 0.95 0.97 0.37 0.40 0.40

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.19.
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Table S.25: MC results for methods using no down-weighting in the experiment with param-
eter instabilities, dynamics (p, # 0) and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 | 100 200 500 | 100 200 500
Oracle
20 71.12 58.20 56.40 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 63.61 70.96 55.02 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 66.03 64.88 57.06 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 73.07 58.80 56.68 1.42 2.98 4.70 0.33 0.69 097 0.00 0.01 0.04
40 66.35 72.43 55.54 1.21 2.74 457 028 064 097 0.00 0.00 0.02
100 68.44 67.14 56.98 0.95 2.35 434 022 056 095 0.00 0.00 0.01
LASSO
20 73.84 59.94 57.08 5.93 6.89 7.78 060 0.76 092 0.18 0.19 0.21
40 66.91 72.86 56.78 7.97 8.83 9.74 055 074 091 0.14 0.15 0.15
100 68.42 67.93 58.04 11.53 1192 13.20 0.51 0.68 0.88 0.10 0.09 0.10
LASSO for variable selection only. LS for estimation/forecasting.
20 78.11 61.46 57.65 5.93 6.89 7.78 060 0.76 092 0.18 0.19 0.21
40 73.10 76.36  58.19 7.97 8.83 9.74 055 074 091 0.14 0.15 0.15
100 81.43 75.12 59.74 11.53 1192 13.20 0.51 0.68 0.88 0.10 0.09 0.10
A-LASSO
20 76.99 61.24 57.30 4.44 5.26 6.17 049 065 084 0.12 0.13 0.14
40 71.31 74.88 57.13 6.27 7.06 8.01 047 065 084 0.11 0.11 0.12
100 76.78  73.62  59.39 9.23 10.01 11.54 045 063 0.85 0.07 0.08 0.08
A-LASSO for variable selection only. LS for estimation/forecasting.
20 78.37 61.85 57.46 4.44 5.26 6.17 049 065 084 0.12 0.13 0.14
40 72.62 76.09 57.54 6.27 7.06 8.01 047 065 084 0.11 0.11 0.12
100 79.39 75.11  59.88 9.23 10.01 11.54 045 063 085 0.07 0.08 0.08
Boosting
20 75.75  59.22  56.60 8.88 9.45 10.07 0.72 083 094 030 0.31 0.32
40 72.17 75.07 56.44 16.72 1737 1796 0.72 0.83 094 035 035 0.36
100 81.563 74.23 59.21 3731 3947 41.08 0.70 0.81 094 034 036 0.37
Boosting for variable selection only. LS for estimation/forecasting.
20 82.82 62.55 58.10 8.88 9.45 10.07 0.72 083 094 030 0.31 0.32
40 89.34 8231 60.27 16.72 1737 1796 0.72 0.83 094 035 035 0.36
100 121.55 99.11 67.65 37.31 39.47 41.08 0.70 081 094 034 0.36 0.37

Notes: See notes to Table S.19.
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Table S.26: MC results for methods using light down-weighting in the experiment with
parameter instabilities, dynamics (p, # 0), and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 70.52 56.93 54.94 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 63.14 70.04 53.63 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 65.81 62.90 55.96 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 72.41 57.50 55.25 1.42 2.98 4.70 0.33 0.69 0.97 0.00 0.01 0.04
40 64.73 72.12 53.91 1.21 2.74 4.57 0.28 0.64 0.97 0.00 0.00 0.02
100 67.42 65.12 56.39 0.95 2.35 4.34 0.22 0.56 0.95 0.00 0.00 0.01
LASSO
20 78.05 62.09 57.07 5.93 6.89 7.78 0.60 0.76 0.92 0.18 0.19 0.21
40 72.33 78.90 61.20 7.97 8.83 9.74 0.55 0.74 0.91 0.14 0.15 0.15
100 83.09 76.07 60.36 11.53 11.92 13.20 0.51 0.68 0.88 0.10 0.09 0.10
A-LASSO
20 77.67 62.15 56.48 4.44 5.26 6.17 0.49 0.65 0.84 0.12 0.13 0.14
40 71.81 77.83 59.15 6.27 7.06 8.01 0.47 0.65 0.84 0.11 0.11 0.12
100 79.93 74.82 59.36 9.23 10.01 11.54 0.45 0.63 0.85 0.07 0.08 0.08
Boosting
20 83.76 62.29 58.20 8.88 9.45 10.07 0.72 0.83 0.94 0.30 0.31 0.32
40 89.89 84.96 66.42 16.72 17.37 17.96 0.72 0.83 0.94 0.35 0.35 0.36
100 125.04 107.40 80.23 37.31 39.47 41.08 0.70 0.81 0.94 0.34 0.36 0.37
B. Light down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
oCcMT
20 73.26 59.08 58.15 1.44 3.24 7.10 0.29 0.54 0.81 0.01 0.05 0.19
40 64.80 73.72 62.87 1.39 3.91 11.00 0.24 0.51 0.80 0.01 0.05 0.20
100 68.23 67.63 74.07 1.46 5.49 23.08 0.20 0.45 0.79 0.01 0.04 0.20
LASSO
20 75.31 59.36 56.52 6.25 6.67 7.18 0.57 0.66 0.74 0.20 0.20 0.21
40 67.42 73.14 57.89 9.60 9.98 10.05 0.53 0.63 0.71 0.19 0.19 0.18
100 72.69 68.91 61.31 18.55 20.22 19.46 0.50 0.61 0.70 0.17 0.18 0.17
A-LASSO
20 77.82 60.15 57.26 4.86 5.23 5.71 0.47 0.57 0.67 0.15 0.15 0.15
40 71.49 75.18 59.38 7.62 8.07 8.26 0.45 0.57 0.65 0.15 0.14 0.14
100 81.80 74.79 65.52 14.83 16.53 16.18 0.44 0.55 0.66 0.13 0.14 0.14
Boosting
20 83.69 66.02 65.35 10.96 13.10 15.35 0.74 0.86 0.94 0.40 0.48 0.58
40 82.56 90.80 70.49 20.91 24.35 26.80 0.74 0.84 0.90 0.45 0.52 0.58
100 93.38 84.61 77.12 40.85 44.87 47.02 0.69 0.78 0.85 0.38 0.42 0.44

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.19.
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Table S.27: MC results for methods using heavy down-weighting in the experiment with
parameter instabilities, dynamics (p, # 0), and low fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 72.79 59.16 58.12 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 65.52 72.42 55.93 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 68.21 66.30 59.58 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
ocMT
20 73.97 59.17 58.39 1.42 2.98 4.70 0.33 0.69 0.97 0.00 0.01 0.04
40 65.17 74.75 56.44 1.21 2.74 4.57 0.28 0.64 0.97 0.00 0.00 0.02
100 67.99 67.30 60.42 0.95 2.35 4.34 0.22 0.56 0.95 0.00 0.00 0.01
LASSO
20 80.87 65.88 61.66 5.93 6.89 7.78 0.60 0.76 0.92 0.18 0.19 0.21
40 74.94 84.03 67.45 7.97 8.83 9.74 0.55 0.74 0.91 0.14 0.15 0.15
100 87.60 82.88 67.29 11.53 11.92 13.20 0.51 0.68 0.88 0.10 0.09 0.10
A-LASSO
20 79.28 65.12 60.40 4.44 5.26 6.17 0.49 0.65 0.84 0.12 0.13 0.14
40 73.62 82.19 63.90 6.27 7.06 8.01 0.47 0.65 0.84 0.11 0.11 0.12
100 82.74 80.16 65.32 9.23 10.01 11.54 0.45 0.63 0.85 0.07 0.08 0.08
Boosting
20 86.81 66.63 64.18 8.88 9.45 10.07 0.72 0.83 0.94 0.30 0.31 0.32
40 95.81 93.48 79.66 16.72 17.37 17.96 0.72 0.83 0.94 0.35 0.35 0.36
100 137.08 132.36 110.70 37.31 39.47 41.08 0.70 0.81 0.94 0.34 0.36 0.37
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 76.61 65.05 70.36 2.36 5.34 10.42 0.33 0.57 0.83 0.05 0.15 0.36
40 68.62 89.48 91.60 3.06 8.73 19.57 0.28 0.56 0.84 0.05 0.16 0.41
100 73.35 84.91 135.48 4.89 18.08 50.16 0.24 0.52 0.86 0.04 0.16 0.47
LASSO
20 78.58 63.08 61.22 6.96 7.24 7.48 0.56 0.62 0.67 0.24 0.24 0.24
40 73.58 81.56 64.87 12.75 13.18 12.59 0.55 0.63 0.66 0.26 0.27 0.25
100 79.59 76.53 71.00 23.96 30.35 29.40 0.51 0.63 0.68 0.22 0.28 0.27
A-LASSO
20 81.67 64.87 62.93 5.43 5.63 5.92 0.47 0.52 0.59 0.18 0.18 0.18
40 77.83 83.55 68.45 10.15 10.48 10.14 0.47 0.55 0.59 0.21 0.21 0.19
100 88.18 83.33 76.36 18.88 23.75 23.15 0.44 0.56 0.62 0.17 0.22 0.21
Boosting
20 95.53 78.91 76.84 12.82 14.59 15.85 0.79 0.87 0.92 0.48 0.56 0.61
40 93.10 102.34 81.95 23.02 25.03 26.08 0.75 0.82 0.86 0.50 0.54 0.57
100 99.90 92.87 88.76 40.74 42.87 43.61 0.66 0.73 0.78 0.38 0.40 0.40

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.19.
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Table S.28: MC results for methods using no down-weighting in the experiment with param-
eter instabilities, dynamics (p, # 0) and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 | 100 200 500 | 100 200 500
Oracle
20 24.00 1941 18.95 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 21.15 23.30 18.31 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 21.99 2140 1941 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 24.81 19.49 19.01 3.12 4.47 5.67 0.72 095 1.00 0.01 0.03 0.08
40 22.09 2343 18.44 2.95 4.30 556 0.68 094 1.00 0.01 0.01 0.04
100 23.15 21.76 19.43 2.65 4.08 5.35 0.62 092 1.00 0.00 0.00 0.01
LASSO
20 25.72  20.13 19.29 7.69 8.33 9.09 0.80 091 098 0.22 0.23 0.26
40 22.85 2445 19.02 1043 11.58 1236 0.77 090 098 0.18 0.20 0.21
100 23.89 2340 1993 1534 1647 1796 0.74 0.88 097 0.12 0.13 0.14
LASSO for variable selection only. LS for estimation/forecasting.
20 27.02 2043 19.45 7.69 8.33 9.09 0.80 091 098 0.22 0.23 0.26
40 25.01 25,78 19.50 10.43 11.58 1236 0.77 0.90 0.98 0.18 0.20 0.21
100 28.70  26.47 20.79 1534 16.47 1796 0.74 0.88 097 0.12 0.13 0.14
A-LASSO
20 26.60 20.23 19.30 5.93 6.57 738 069 083 095 0.16 0.16 0.18
40 24.32  25.23 19.13 8.15 9.28 10.25 0.69 084 096 0.14 0.15 0.16
100 27.38 25.67 20.57 1224 13.71 1543 0.67 0.84 096 0.10 0.10 0.12
A-LASSO for variable selection only. LS for estimation/forecasting.
20 27.12  20.54 19.39 5.93 6.57 738 069 083 095 0.16 0.16 0.18
40 25.11  25.85 19.33 8.15 9.28 10.25 0.69 084 096 0.14 0.15 0.16
100 28.52 26.45 20.78 1224 13.71 1543 0.67 0.84 096 0.10 0.10 0.12
Boosting
20 26.38  20.05 19.09 9.80 10.35 10.87 0.85 093 098 0.32 0.33 0.35
40 25,53 25.18 1888 17.81 1876 19.25 0.86 0.93 099 0.36 0.38 0.38
100 28.53 25.15 20.30 38.06 40.82 43.14 0.84 093 098 035 037 0.39
Boosting for variable selection only. LS for estimation/forecasting.
20 28.08 21.12 19.65 9.80 10.35 10.87 0.85 093 098 0.32 0.33 0.35
40 29.29 2699 20.08 17.81 1876 19.25 0.86 0.93 099 0.36 0.38 0.38
100 41.52 33.76 23.16 38.06 40.82 43.14 084 093 098 035 037 0.39

Notes: See notes to Table S.19.
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Table S.29: MC results for methods using light down-weighting in the experiment with
parameter instabilities, dynamics (p, # 0), and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Light down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 22.56 17.49 16.67 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 19.91 21.49 16.31 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 20.96 19.27 17.06 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 23.56 17.70 16.91 3.12 4.47 5.67 0.72 0.95 1.00 0.01 0.03 0.08
40 20.99 22.01 16.59 2.95 4.30 5.56 0.68 0.94 1.00 0.01 0.01 0.04
100 22.01 19.73 17.06 2.65 4.08 5.35 0.62 0.92 1.00 0.00 0.00 0.01
LASSO
20 26.19 19.18 17.56 7.69 8.33 9.09 0.80 0.91 0.98 0.22 0.23 0.26
40 24.13 25.30 19.13 10.43 11.58 12.36 0.77 0.90 0.98 0.18 0.20 0.21
100 28.73 25.71 19.47 15.34 16.47 17.96 0.74 0.88 0.97 0.12 0.13 0.14
A-LASSO
20 26.17 19.32 17.23 5.93 6.57 7.38 0.69 0.83 0.95 0.16 0.16 0.18
40 24.11 25.29 18.36 8.15 9.28 10.25 0.69 0.84 0.96 0.14 0.15 0.16
100 28.13 25.12 19.09 12.24 13.71 15.43 0.67 0.84 0.96 0.10 0.10 0.12
Boosting
20 27.07 19.48 17.95 9.80 10.35 10.87 0.85 0.93 0.98 0.32 0.33 0.35
40 28.63 26.09 20.36 17.81 18.76 19.25 0.86 0.93 0.99 0.36 0.38 0.38
100 42.00 35.22 25.62 38.06 40.82 43.14 0.84 0.93 0.98 0.35 0.37 0.39
B. Light down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 24.02 18.30 17.89 2.70 4.46 8.04 0.57 0.79 0.92 0.02 0.06 0.22
40 21.65 22.98 19.61 2.66 5.22 12.12 0.53 0.77 0.92 0.01 0.05 0.21
100 22.84 21.35 23.79 2.63 6.81 24.20 0.47 0.73 0.92 0.01 0.04 0.21
LASSO
20 25.30 18.80 17.47 7.92 8.43 8.74 0.76 0.87 0.92 0.24 0.25 0.25
40 22.67 23.39 18.29 11.97 12.37 12.39 0.75 0.85 0.91 0.22 0.22 0.22
100 24.68 22.46 19.48 21.49 23.42 22.67 0.71 0.82 0.90 0.19 0.20 0.19
A-LASSO
20 25.77 18.87 17.52 6.22 6.68 7.03 0.67 0.79 0.88 0.18 0.18 0.18
40 23.96 23.95 18.66 9.51 10.03 10.18 0.67 0.79 0.87 0.17 0.17 0.17
100 27.88 24.45 20.88 17.13 19.23 18.89 0.65 0.78 0.88 0.15 0.16 0.15
Boosting
20 28.83 22.29 21.92 11.58 13.52 15.62 0.85 0.94 0.98 0.41 0.49 0.58
40 29.18 30.14 23.81 21.48 24.84 27.09 0.86 0.93 0.97 0.45 0.53 0.58
100 32.82 28.94 26.13 41.24 45.22 47.15 0.82 0.90 0.96 0.38 0.42 0.43

Notes: Light down-weighting is defined by by values A = 0.975,0.98,0.985,0.99,0.995, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.19.
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Table S5.30: MC results for methods using heavy down-weighting in the experiment with
parameter instabilities, dynamics (p, # 0), and high fit.

MSFE (x100) k TPR FPR
N\T 100 200 500 100 200 500 100 200 500 100 200 500
A. Heavy down-weighting in the estimation/forecasting stage only.

Variable selection is based on original (not down-weighted) data.

Forecasting stage is Least Squares on selected down-weighted covariates for all methods

Oracle
20 22.63 17.95 17.60 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
40 20.11 22.00 16.96 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
100 21.16 20.03 18.07 4.00 4.00 4.00 1.00 1.00 1.00 0.00 0.00 0.00
oCcMT
20 23.80 18.25 18.07 3.12 4.47 5.67 0.72 0.95 1.00 0.01 0.03 0.08
40 21.21 22.96 17.54 2.95 4.30 5.56 0.68 0.94 1.00 0.01 0.01 0.04
100 22.03 20.58 18.22 2.65 4.08 5.35 0.62 0.92 1.00 0.00 0.00 0.01
LASSO
20 26.58 20.54 19.16 7.69 8.33 9.09 0.80 0.91 0.98 0.22 0.23 0.26
40 24.86 27.18 21.73 10.43 11.58 12.36 0.77 0.90 0.98 0.18 0.20 0.21
100 29.96 28.74 22.70 15.34 16.47 17.96 0.74 0.88 0.97 0.12 0.13 0.14
A-LASSO
20 26.36 20.34 18.52 5.93 6.57 7.38 0.69 0.83 0.95 0.16 0.16 0.18
40 24.35 26.76 20.27 8.15 9.28 10.25 0.69 0.84 0.96 0.14 0.15 0.16
100 28.82 26.94 21.71 12.24 13.71 15.43 0.67 0.84 0.96 0.10 0.10 0.12
Boosting
20 27.41 20.74 19.96 9.80 10.35 10.87 0.85 0.93 0.98 0.32 0.33 0.35
40 30.45 28.48 24.59 17.81 18.76 19.25 0.86 0.93 0.99 0.36 0.38 0.38
100 45.93 41.56 35.80 38.06 40.82 43.14 0.84 0.93 0.98 0.35 0.37 0.39
B. Heavy down-weighting in both the variable selection and estimation/forecasting stages.

OCMT uses down-weighted variables for selection as well as for forecasting using Least Squares.

Remaining forecasts are based on Lasso, A-Lasso and Boosting regressions applied to down-weighted data.
OCMT
20 24.68 20.32 21.63 3.48 6.45 11.17 0.57 0.78 0.92 0.06 0.17 0.37
40 23.01 26.11 28.93 4.22 9.97 20.43 0.53 0.77 0.93 0.05 0.17 0.42
100 25.04 26.90 43.11 5.93 19.43 50.99 0.48 0.75 0.94 0.04 0.16 0.47
LASSO
20 26.02 19.95 19.30 8.61 8.94 9.12 0.75 0.82 0.86 0.28 0.28 0.28
40 24.25 25.95 20.82 14.79 15.35 15.03 0.75 0.82 0.86 0.30 0.30 0.29
100 26.43 24.51 22.72 25.76 32.55 32.34 0.70 0.82 0.87 0.23 0.29 0.29
A-LASSO
20 26.54 20.46 19.71 6.75 7.01 7.26 0.66 0.74 0.80 0.20 0.20 0.20
40 25.83 26.71 21.76 11.79 12.30 12.13 0.67 0.76 0.81 0.23 0.23 0.22
100 29.49 26.52 24.51 20.25 25.56 25.44 0.64 0.77 0.83 0.18 0.22 0.22
Boosting
20 32.67 26.84 26.03 13.25 14.91 16.09 0.87 0.94 0.97 0.49 0.56 0.61
40 32.71 34.24 28.06 23.43 25.41 26.41 0.86 0.91 0.94 0.50 0.54 0.57
100 35.07 31.87 30.31 41.00 43.13 43.90 0.80 0.87 0.91 0.38 0.40 0.40

Notes: Heavy down-weighting is defined by by values A = 0.95,0.96,0.97,0.98,0.99, 1. For this set of exponential
down-weighting schemes we focus on simple average forecasts computed over the individual forecasts obtained for each value
of A in the set under consideration. See notes to Table S.19.
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