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Abstract 
 
This paper applies fractional integration methods to investigate the behaviour of various pollutants 
(PM10, PM25, SO2 and NO2) in seven Chinese cities (Shanghai, Beijing, Chongqing, Tianjin, 
Shenzhen, Nanjing and Xian) using daily data over the period January 1, 2014 – November 18, 
2022. The results suggest that the steps recently taken by the Chinese authorities to reduce 
emissions and improve air quality have already had some effect: in most cases the air pollutant 
series are in the stationary range, with mean reversion occurring and shocks only having 
temporary effects, and there are significant downward trends indicating a decline over time in the 
degree of pollution in Chinese cities. It is also interesting that in the most recent period the Zero-
Covid policy of the Chinese authorities has led to a further fall. On the whole, it would appear 
that the action plan adopted by the Chinese government is bringing the expected environmental 
benefits and therefore it is to be hoped that such policies will continue to be implemented and 
extended to improve air quality even further. 
JEL-Codes: C220, Q530. 
Keywords: China, pollution, trends, persistence, long-range dependence. 
 
 

Guglielmo Maria Caporale* 
Department of Economics and Finance 

Brunel University London 
United Kingdom – Uxbridge, UB8 3PH 

Guglielmo-Maria.Caporale@brunel.ac.uk 
https://orcid.org/0000-0002-0144-4135 

 
Nieves Carmona-González 

Universidad Francisco de Vitoria 
Madrid / Spain 

 

 
Luis Alberiko Gil-Alana 
University of Navarra 

Pamplona / Spain 
alana@unav.es 

  
 

*corresponding author 
 
 
December 2022 
Luis A. Gil-Alana gratefully acknowledges financial support from the Grant PID2020-113691RB-
I00 funded by MCIN/AEI/ 10.13039/501100011033, and from an internal Project from the 
Universidad Francisco de Vitoria. 



2 
 

1. Introduction 

According to the World Health Organisation (2021), air pollution causes 4.2 million 

deaths each year worldwide. Among the pollutants with the greatest impact are: 

particulate matter (PM10 and PM25), exposure to which causes cardiovascular and 

respiratory diseases; sulphur dioxide (SO2), generated mainly by coal combustion, which 

is especially dangerous when high levels of this gas and of particulate matter (PM10 and 

PM25) are combined: nitrogen dioxide (NO2), which causes acid rain and has very harmful 

effects on agriculture and livestock. 

China's exponential economic growth has been achieved at a high environmental 

cost. In 2013, the pollution level recorded an average of 52.4 (µg/m3) of PM25, ten times 

higher than the limit recommended by the World Health Organisation (2021). It was then 

that the Chinese government decided to prioritize the fight against pollution with an action 

plan focused primarily on controlling coal consumption, prohibiting the construction of 

new coal-fired plants, and investing in renewable and nuclear energy. In addition, the 

circulation of cars with combustion engines was restricted with daily quotas and car 

registration was limited. Most recently, the lockdown measures introduced during the 

Covid-19 pandemic have led to a decrease in economic activity and thus a further fall in 

pollution. 

Research on the dynamics of air pollution is important to assess and forecast the 

concentration of pollutants in order for government to be able to design effective policies 

aimed at improving air quality. The present study analyses the statistical properties of 

PM10, PM25, NO2 and SO2 in seven Chinese cities (Shanghai, Beijing, Chongqing, 

Tianjin, Shenzhen, Nanjing and Xian) over the period 2014-2022 using a fractional 

integration framework which, unlike standard methods based on the I(0) versus I(1) 

dichotomy, allows for both fractional and integer degrees of differentiation. This 
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approach provides useful information the long-memory properties of the series, the 

possible presence of trends and/or mean reversion, the degree of persistence and the 

dynamic adjustment towards the long-run equilibrium. Most importantly, it sheds light 

on whether the effects of shocks are transitory or permanent, which is an essential piece 

of information for designing effective policies to combat air pollution. 

The layout of the paper is the following. Section 2 brieflt reviews the relevant 

literature. Section 3 describes the data and outlines the modelling framework. Section 4 

presents the results. Section 5 offers some concluding remarks. 

 

2. Literature Review 

Numerous studies have examined the relationship between air pollution levels and health 

effects in China and other countries (e.g. Wenhua et al., 2020; Jing-Shu et al., 2021; Tian 

et al., 2022; Yun et al., 2022; Jianxiang et al., 2022). This paper contributes to another 

branch of literature which focuses on analysing and modelling air pollutants such as 

particulate matter (PM25, PM10), sulphur dioxide (SO2) and nitrogen dioxide (NO2) (e.g. 

Guan-Yu et al., 2022; Middya et al., 2022, and Mei et al., 2023). For instance, Xiang-Li 

et al. (2017) analysed air quality in Beijing from 2014 to 2016 using a novel long short-

term memory neural network extended (LSTME) model, and showed that this 

specification is superior to others to model time series with long-term dependence and to 

capture spatio-temporal correlations and improve predictions. Naveen et al. (2017) 

estimated ARIMA and SARIMA models to study air quality in India, and found that the 

former outperforms the latter. Zhongfei et al. (2016) analysed pollution in four Chinese 

cities from 2013 to 2015 using fractional integration methods and found a high degree of 

persistence. Caporale et al. (2021) applied similar methods to examine the behaviour of 

PM10 in ten European capitals and provided evidence of mean reversion, with shocks only 
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having temporary effects. Gil-Alana et al. (2020) again used the same techniques to 

analyse air pollution in London and found that the seven pollutants considered are 

persistent. 

 

3. Data and Time Series Models 

We analyse the concentration of pollutants in the air using data extracted from the World 

Air Quality Index (WAQI) at https://aqicn.org/map/world/es/. The data have been 

converted using the US EPA (United States Environmental Protection Agency) standard.  

More precisely, the series examined are PM25 (µg/m3), PM10 (µg/m3), NO2 (µg/m3) and 

SO2 (µg/m3) from seven of the most populated Chinese cities: Shanghai, Beijing, 

Chongqing, Tianjin, Shenzhen, Nanjing and Xian. The data are daily and cover the period 

from January 1, 2014 to November 18, 2022.  

The WAQI data are from the following original sources: Shanghai: 

https://sthj.sh.gov.cn/ http://106.37.208.233:20035/emcpublish/ https://china.usembassy-

china.org.cn/embassy-consulates/shanghai/air-quality-monitor-stateair/ (Shanghai 

Environment Monitoring Center - China National Urban air quality real-time publishing 

platform - US Consulate Shanghai Air Quality Monitor) Beijing: 

http://www.bjmemc.com.cn/ (Beijing Environmental Protection Monitoring Center); 

Chongqing: http://www.cepb.gov.cn/ (Chongqing Environmental Protection Bureau 

(Chongqing Main Urban Area Air Quality); Tianjin: http://www.tjemc.org.cn/ (China 

National Urban air quality real-time publishing platform - Tianjin Environmental 

Monitoring Center); Shenzhen: http://www.szhec.gov.cn/,http://meeb.sz.gov.cn/, 

http://gdee.gd.gov.cn/ (Shenzhen Environment Network  - Shenzhen Environment 

Network  - Guangdong Environmental Protection public network); Nanjing: 

http://www.jshb.gov.cn/jshbw/ (Jiangsu Province PM2.5 Air Monitoring Comission); 
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Xian: http://sthjt.shaanxi.gov.cn/, http://xaepb.xa.gov.cn/ (Shaanxi Provincial 

Environmental Protection Office - Xi'an Environmental Protection Agency). 

We estimate the following econometric model: 

        ...,2,1t,ux)L1(,xty tt
d

t10t ==−++= ββ , (1) 

where yt stands for the series of interest, in our case, each of the pollutant for each 

megacity in China; α and β denote the constant and the coefficient on a linear time trend 

respectively, L is the lag operator, i.e., Lxt = xt-1, and ut is a short-memory process which 

is integrated of order 0. In order to allow for some degree of (weak) dependence we 

assume that ut is autocorrelated using the exponential spectral model of Bloomfield 

(1973). This is a non-parametric method, which does not requires specifying a functional 

form and is defined exclusively in terms of its spectral density function, which 

approximates very well the one produced by an AutoRegressive (AR) structure. 

 For the estimation, we use the Whittle function in the frequency domain by 

implementing a testing procedure due to Robinson (1994) and widely used in empirical 

applications of fractional integration (see, e.g., Gil-Alana and Robinson, 1997; Gil-Alana 

and Henry, 2003; Abbritti et al., 2016; etc.). This method is most efficient one in the 

Pitman sense against local departures from the null and it yields allows confidence 

intervals for the values of d. 

 

4. Empirical Results 

Table 1 reports the estimated values of d along with the 95% confidence intervals of the 

non-rejection values using Robinson’s (1994) tests under three different specifications; 

more precisely, column 2 displays the estimates obtained under the assumption that α and 

β are both equal to zero, i.e., that there are no deterministic term in the model; column 3 

shows the corresponding results when the model includes an intercept only (i.e., only β is 
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set equal to zero), while column 4 reports the estimates from a model including both an 

intercept and a linear time trend. The coefficients from the specification selected in each 

case on the basis of the statistical significance of the regressors are shown in bold. 

 It can be seen that in almost all cases both the intercept and the time trend are 

significant; the single exception is NO2 in Xian, for which only the intercept is significant.  

TABLES 1 AND 2 ABOUT HERE 

 Table 2 reports the estimated coefficients from the selected models. The values of 

d are all in the interval (0, 0.5), which implies stationary long memory for all the series 

under examination. The corresponding confidence intervals also include values below 0.5 

in the majority of cases. Only for SO2 in Tianjin and Xian in relation are some of the 

values above 0.5.  For PM10 they range between 0.16 (Beijing) and 0.17 (Shanghai and 

Tianjin) to 0.41 in Shenzhen, and for PM25 from 0.10 (Beijing) to 0.141 (Chongqin). For 

NO2 and SO2 the values are more homogeneous across the cities, ranging from 0.20 

(Beijing, NO2) to 0.48 (Xian, SO2). Concerning the time trend coefficients, negative 

trends are found in all cases: for PM10, the biggest coefficient correspond to Xian (-

0.02290), followed by Tianjin (-0.01998) and Nanjing (-0.01990); for PM25, the biggest 

values are those for Nanjing (-0.02608), Tianjin (-0.02563) and Chongqin (-0.02547). In 

the case of NO2 and SO2 the values are generally lower, with the biggest coefficients 

corresponding to Shenzhen (-0.00564, NO2) and Tianjin (-0.01465, SO2). 

TABLES 3 AND 4 ABOUT HERE 

 Next we examine whether the Covid-19 pandemic affected the properties of the 

series. More precisely, we re-estimate the models for a sample ending on 31 December 

2019 and for a longer one ending on November 18, 2022, the latter including the 

pandemic period, and then compare the corresponding estimates. The estimated 

coefficients are reported in Table 3. It can be seen that in the case of the longer sample 
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the estimates of d are in the interval (0, 0.5) and the time trend is significantly negative 

in all cases except for NO2 in Xian Table 4 displays the values of d and β for the two 

subsamples for comparison purposes. The estimated values of d for the full sample are 

only slightly higher. As for the time trend, the corresponding coefficient is lower in the 

majority of cases for PM10, PM25 and SO2 but higher for NO2. This is not a surprising 

result, given the Zero-Covid policy and the strict lockdown measures adopted by the 

Chinese government throughout the pandemic – this has clearly had an impact on mobility 

and economic activity and thus, at least temporarily, reduced the growth rate of gas 

emissions polluting the air. 

 

5. Conclusions 

This paper contributes to the literature on air pollution by applying fractional integration 

methods to investigate the behaviour of various pollutants (PM10, PM25, SO2 and NO2) in 

seven Chinese cities (Shanghai, Beijing, Chongqing, Tianjin, Shenzhen, Nanjing and 

Xian) using daily data over the period January 1, 2014 – November 18, 2022. The chosen 

framework is more general than standard ones only allowing for integer degrees of 

differentiation and is informative about the degree of persistence of the series of interest 

and on the issue of whether the effects of shocks are transitory or permanent, thereby 

providing guidance to policy makers as to the most effective policies to combat air 

pollution.  

 The results suggest that the steps recently taken by the Chinese authorities to 

reduce emissions and improve air quality have already had some effect: in most cases the 

air pollutant series are in the stationary range, with mean reversion occurring and shocks 

only having temporary effects, and there are significant downward trends indicating a 

decline over time in the degree of pollution in Chinese cities. It is also interesting that in 
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the most recent period the Zero-Covid policy adopted to eradicate the Coronavirus has 

led to a further fall, as one would have expected given the tight restrictions imposed on 

economic activity and mobility. On the whole, it would appear that the action plan 

adopted by the Chinese government is bringing the expected environmental benefits; 

therefore, it is to be hoped that such policies will continue to be implemented and 

extended in order to improve air quality even further and to meet the climate targets set 

at the United Nations Climate Change Conferences held in 2021 in Glasgow  and in 

Sharm El Sheikh in 2022 (COP 26 and COP 27 respectively) to secure a more sustainable 

future.  



9 
 

References 

 
Abbritti, M., L.A. Gil-Alana, Y. Lovcha and A. Moreno (2016), Term Structure 
Persistence, Journal of Financial Econometrics 14, 2, 331-352. 
 
Caporale, G.M., Gil-Alana, L.A. & Carmona-González, N. (2021) Particulate matter 10 
(PM10): persistence and trends in eight European capitals. Air Quality, Atmosphere and 
Health 14, 1097–1102. https://doi.org/10.1007/s11869-021-01002-0 
 
Gil-Alana, L.A., & Henry, B. (2003), Fractional integration and the dynamics of the UK 
unemployment, Oxford Bulletin of Economics and Statistics 65, 2, 221-239. 
 
Gil-Alana, L.A., & Robinson, P.M. (1997). Testing of unit roots and other nonstationary 
hypothesis in macroeconomic time series, Journal of Econometrics 80, 2, 241-268. 
 
Gil-Alana, L.A., Yaya, O.S. & Carmona-González, N. (2020) Air quality in London: 
evidence of persistence, seasonality and trends. Theoretical and Applied Climatology 
142, 103–115 https://doi.org/10.1007/s00704-020-03305-1 
 
Guan-Yu L., Yi-Ming L., Chuen-Jinn T., Chia-Ying L. (2022) Spatial-temporal 
characterization of air pollutants using a hybrid deep learning/Kriging model incorporated 
with a weather normalization technique, Atmospheric Environment 289, 119304, 352-
2310, https://doi.org/10.1016/j.atmosenv.2022.119304. 
 
Jianxiang S., Wenjia C., Xiaotong C., Xing C., Zijian Z., Zhiyuan M., Fang Y., Shaohui 
Z. (2022) Synergies of carbon neutrality, air pollution control, and health improvement a 
case study of China energy interconnection scenario, Global Energy Interconnection 5, 
Issue 5,  531-542. https://doi.org/10.1016/j.gloei.2022.10.007.  
 
Jing-Shu Z., Zhao-Huan G., Zhi-Yong Z., Bo-Yi Y., Jun M., Jin Jing, Hai-Jun ., Jia-You 
L., Xin Zhang, C. Y. L., Hong W., Hai-Ping Z., De-Hong P., Wen-Wen B., Yu-Ming G., 
Ying-Hua M., Guang-Hui D., Ya-Jun C. () Long-term exposure to ambient air pollution 
and metabolic syndrome in children and adolescents: A national cross-sectional study in 
China, Environment  International 148, 106383 
https://doi.org/10.1016/j.envint.2021.106383 
 
Mei C., Yongxu C., Hongyu Z., Youshuai W., Yue X. (2023) Analysis of pollutants 
transport in heavy air pollution processes using a new complex-network-based model, 
Atmospheric Environment 292, 19395, https://doi.org/10.1016/j.atmosenv.2022.119395. 
 
Middya AI, Roy S. (2022) Pollutant specific optimal deep learning and statistical model 
building for air quality forecasting, Environmental Pollution 301, 118972. 
https://doi.org/10.1016/j.envpol.2022.118972. 
 
Naveen V., Anu N. (2017) Time series analysis to forecast air quality indices in 
Thiruvananthapuram District, Kerala, India. Journal of Engineering Research and 
Application 7(6), 66-84.  https://doi: 10.9790/9622-0706036684 
 
Robinson, P.M. (1994) Efficient tests of nonstationary hypotheses. Journal of the 
American Statistical Association 89, 1420-1437. 

https://doi.org/10.1007/s11869-021-01002-0
https://doi.org/10.1007/s00704-020-03305-1
https://doi.org/10.1016/j.gloei.2022.10.007
https://doi.org/10.1016/j.envint.2021.106383
https://doi.org/10.1016/j.atmosenv.2022.119395
https://doi.org/10.1016/j.envpol.2022.118972


10 
 

 
Tian F., Hongwen C., Jianzheng L. (2022) Air pollution-induced health impacts and 
health economic losses in China driven by US demand exports, Journal of Environmental 
Management 324, 116355, https://doi.org/10.1016/j.jenvman.2022.116355. 
 
United Nations Climate Change Conference (COP 26) (2021). 
https://www.un.org/en/climatechange/cop26 
 
United Nations Climate Change Conference (COP 27) (2022). https://unfccc.int/cop27 
 
World Air Quality Index (WAQI). https://aqicn.org/map/  
 
Wenhua Y., Dian Caturini Sulistyoningrum, Danijela Gasevic, Rongbin Xu, Madarina 
Julia, Indah Kartika Murni, Zhuying Chen, Peng Lu, Yuming Guo, Shanshan Li (2020) 
Long-term exposure to PM2.5 and fasting plasma glucose in non-diabetic adolescents in 
Yogyakarta, Indonesia, Environmental Pollution 257,113423. 
https://doi.org/10.1016/j.envpol.2019.113423. 
 
World Health Organization (2021). Ambient (outdoor) air pollution. 
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-
health 
 
XiangLi, LingPeng, Xiaojing Y., ShaolongCui,Y., ChengzengY. and TianheChi (2017). 
Long short-term memory neural network for air pollutant concentration predictions: 
Method development and evaluation. Environmental Pollution 231, Part 1, 997-1004. 
https://doi.org/10.1016/j.envpol.2017.08.114 
 
Yun Hang, Xia Meng, Tiantian Li, Tijian Wang, Junji Cao, Qingyan Fu, Sagnik Dey, 
Shenshen Li, Kan Huang, Fengchao Liang, Haidong Kan, Xiaoming Shi, Yang Liu 
(2022) Assessment of long-term particulate nitrate air pollution and its health risk in 
China, iScience 25, Issue 9, 104899, https://doi.org/10.1016/j.isci.2022.104899. 
 
Zhongfei C., Barros C.P., Gil-Alana, L.A. (2016) The persistence of air pollution in four 
mega-cities of China, Habitat International 56, 103-108, 
https://doi.org/10.1016/j.habitatint.2016.05.004. 
 
 
 
  

https://doi.org/10.1016/j.jenvman.2022.116355
https://www.un.org/en/climatechange/cop26
https://aqicn.org/map/
https://doi.org/10.1016/j.envpol.2019.113423
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://doi.org/10.1016/j.envpol.2017.08.114


11 
 

Table 1: Estimates of the differencing parameter 

PM10 

Series (original) No terms An intercept An intercept and a 
linear time trend 

SHANGHAI 0.29   (0.26,   0.32) 0.21   (0.18,   0.24) 0.17   (0.14,   0.21) 

BEIJING 0.25   (0.21,   0.28) 0.19   (0.16,   0.22) 0.16   (0.12,   0.20) 

CHONGQING 0.44   (0.40,   0.48) 0.35   (0.31,   0.39) 0.35   (0.30,   0.39) 

TIANJIN 0.29   (0.26,   0.32) 0.22   (0.19,   0.25) 0.17   (0.12,   0.21) 

SHENZHEN 0.48   (0.45,   0.51) 0.40   (0.37,   0.44) 0.41   (0.37,   0.45) 

NANJING 0.37   (0.34,   0.41) 0.28   (0.26,   0.31) 0.27   (0.24,   0.31) 

XIAN  0.34   (0.32,   0.38) 0.29   (0.26,   0.33) 0.29   (0.26,   0.33) 

PM25 

Series (original) No terms An intercept An intercept and a 
linear time trend 

SHANGHAI 0.31   (0.28,   0.34) 0.23   (0.19,   0.25) 0.21   (0.16,   0.24) 

BEIJING 0.24   (0.21,   0.27) 0.16   (0.13,   0.19) 0.10   (0.05,   0.13) 

CHONGQING 0.49   (0.46,   0.53) 0.40   (0.37,   0.44) 0.41   (0.37,   0.45) 

TIANJIN 0.28   (0.26,   0.31) 0.18   (0.16,   0.21) 0.11   (0.08,   0.15) 

SHENZHEN 0.48   (0.44,   0.51) 0.39   (0.36,   0.43) 0.39   (0.35,   0.42) 

NANJING 0.38   (0.36,   0.41) 0.28   (0.26,   0.32) 0.26   (0.22,   0.29) 

XIAN  0.41   (0.38,   0.44) 0.35   (0.32,   0.38) 0.34   (0.31,   0.37) 

NO2 

Series (original) No terms An intercept An intercept and a 
linear time trend 

SHANGHAI 0.37   (0.34,   0.40) 0.33   (0.29,   0.37) 0.32   (0.29,   0.36) 

BEIJING 0.31   (0.28,   0.34) 0.24   (0.22,   0.27) 0.20   (0.17,   0.24) 

CHONGQING 0.39   (0.36,   0.43) 0.30   (0.27,   0.35) 0.28   (0.24,   0.33) 

TIANJIN 0.39   (0.36,   0.42) 0.33   (0.30,   0.36) 0.32   (0.29,   0.35) 

SHENZHEN 0.37   (0.34,   0.40) 0.29   (0.26,   0.33) 0.27   (0.24,   0.31) 

NANJING 0.38   (0.35,   0.41) 0.31   (0.28,   0.34) 0.30   (0.27,   0.34) 

XIAN  0.39   (0.35,   0.42) 0.34   (0.31,   0.38) 0.34   (0.31,   0.38) 

SO2 

Series (original) No terms An intercept An intercept and a 
linear time trend 

SHANGHAI 0.45   (0.42,   0.49) 0.40   (0.37,   0.43) 0.40   (0.36,   0.43) 

BEIJING 0.36   (0.33,   0.39) 0.32   (0.30,   0.35) 0.32   (0.29,   0.35) 

CHONGQING 0.47   (0.44,   0.51) 0.37   (0.35,   0.40) 0.38   (0.35,   0.42) 

TIANJIN 0.53   (0.50,   0.55) 0.45   (0.43,   0.48) 0.47   (0.45,   0.51) 

SHENZHEN 0.46   (0.44,   0.49) 0.36   (0.34,   0.38) 0.30   (0.27,   0.34) 

NANJING 0.46   (0.41,   0.49) 0.37   (0.35,   0.40) 0.37   (0.33,   0.42) 

XIAN  0.52   (0.49,   0.56) 0.48   (0.45,   0.51) 0.48   (0.45,   0.52) 

In brackets the 95% confidence intervals. In bold the coefficients from the selected models. 
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Table 2: Estimates of the differencing parameter 

PM10 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.17   (0.14,   0.21) 57.1150   (33.05) -0.00733   (-8.06) 

BEIJING 0.16   (0.12,   0.20) 84.8698   (20.65) -0.01268   (-5.99) 

CHONGQING 0.35   (0.30,   0.39) 89.7351   (19.90) -0.01488   (-6.03) 

TIANJIN 0.17   (0.12,   0.21) 104.2458   (27.07) -0.01998   (-9.91) 

SHENZHEN 0.41   (0.37,   0.45) 84.7741   (16.82) -0.01460   (-4.88) 

NANJING 0.27   (0.24,   0.31) 103.3665   (23.29) -0.01990   (-8.59) 

XIAN  0.29   (0.26,   0.33) 132.5406   (15.98) -0.02290   (-5.26) 

PM25 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.21   (0.16,   0.24) 122.7524   (29.09) -0.01368   (-6.16) 

BEIJING 0.10   (0.05,   0.13) 155.8180   (45.59) -0.02450   (-13.70) 

CHONGQING 0.41   (0.37,   0.45) 170.3506   (18.84) -0.02547   (-4.76) 

TIANJIN 0.11   (0.08,   0.15) 164.0128   (52.19) -0.02563   (-15.44) 

SHENZHEN 0.39   (0.35,   0.42) 141.6770   (18.00) -0.02179   (-4.81) 

NANJING 0.26   (0.22,   0.29) 161.2983   (31.40) -0.02608   (-9.77) 

XIAN  0.34   (0.31,   0.37) 182.0665   (17.67) -0.02377   (-4.24) 

NO2 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.32   (0.29,   0.36) 25.1219   (15.09) -0.00404   (-4.46) 

BEIJING 0.20   (0.17,   0.24) 27.7491   (24.70) -0.00489   (-8.48) 

CHONGQING 0.28   (0.24,   0.33) 29.6515   (24.72) -0.00267   (-4.27) 

TIANJIN 0.32   (0.29,   0.35) 30.1383   (15.87) -0.00542   (-5.26) 

SHENZHEN 0.27   (0.24,   0.31) 32.7553   (24.77) -0.00564   (-8.º8) 

NANJING 0.30   (0.27,   0.34) 31.8203   (19.47) -0.00521   (-6.03) 

XIAN  0.34   (0.31,   0.38) 23.9029   (16.16) ----- 

SO2 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.40   (0.36,   0.43) 10.0719   (12.69) -0.00282   (-5.95) 

BEIJING 0.32   (0.29,   0.35) 14.3549   (11.55) -0.00440   (-6.65) 

CHONGQING 0.38   (0.35,   0.42) 20.8013   (18.56) -0.00619   (-9.78) 

TIANJIN 0.47   (0.45,   0.51) 45.0644   (14.99) -0.01465   (-7.10) 

SHENZHEN 0.30   (0.27,   0.34) 10.8917   (23.01) -0.00298   (-11.94) 

NANJING 0.37   (0.33,   0.42) 20.5965   (18.26) -0.00629   (-9.97) 

XIAN  0.48   (0.45,   0.52) 23.7084   (13.17) -0.00690   (-5.43) 

 

 



13 
 

Table 3: Estimates of the differencing parameter. Data ending in December 2019 

PM10 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.17   (0.13,   0.22) 57.0081   (27.83) -0.00721   (-4.47) 

BEIJING 0.12   (0.07,   0.16) 86.8226   (22.95) -0.01505   (-5.18) 

CHONGQING 0.32   (0.27,   0.39) 90.9524   (19.96) -0.01903   (-5.29) 

TIANJIN 0.14   (0.11,   0.19) 109.7628   (27.71) -0.02768   (-8.90) 

SHENZHEN 0.39   (0.35,   0.44) 83.2822   (16.31) -0.01546   (-3.58) 

NANJING 0.27   (0.23,   0.32) 107.8249   (19.80) -0.02623   (-6.25) 

XIAN  0.30   (0.26,   0.35) 137.8271  (13.54) -0.02973   (-3.74) 

PM25 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.21   (0.17,   0.25) 86.8226   (22.95) -0.01505   (-5.18) 

BEIJING 0.08   (0.04,   0.13) 158.7923   (41.04) -0.02843   (-9.49) 

CHONGQING 0.39   (0.34,   0.44) 170.8021   (18.88) -0.02991   (-3.91) 

TIANJIN 0.11   (0.07,   0.15) 167.5794   (43.37) -0.03042   (-9.98) 

SHENZHEN 0.38   (0.34,   0.42) 139.3782   (17.14) -0.01813   (-2.67) 

NANJING 0.27   (0.23,   0.32) 162.4977   (25.92) -0.02700   (-5.59) 

XIAN  0.33   (0.29,   0.37) 182.2097   (16.20) -0.02464   (-2.75) 

NO2 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.30   (0.26,   0.34) 24.2204   (13.87) -0.00280   (-1.98) 

BEIJING 0.19   (0.15,   0.23) 27.8750   (21.13) -0.00486   (-4.84) 

CHONGQING 0.26   (0.21,   0.32) 29.2520   (23.95) -0.00175   (-1.87) 

TIANJIN 0.32   (0.29,   0.36) 30.1523   (13.40) -0.00524   (-2.88) 

SHENZHEN 0.27   (0.23,   0.32) 32.9484   (21.25) -0.00576   (-4.82) 

NANJING 0.28   (0.23,   0.32) 31.0066   (18.03) -0.00430   (-3.23) 

XIAN  0.34   (0.31,   0.38) 25.3447   (15.59) ----- 

SO2 

Series (original) d   (95% band) Intercept (t-value) Time trend (t-value) 

SHANGHAI 0.38   (0.34,   0.42) 10.2685   (11.57) -0.00375   (-4.91) 

BEIJING 0.32   (0.29,   0.35) 16.0851   (10.41) -0.01505   (-5.18) 

CHONGQING 0.36   (0.32,   0.41) 21.8638   (17.41) -0.00952   (-9.29) 

TIANJIN 0.47   (0.44,   0.51) 47.5048   (12.77) -0.0245   (-5.96) 

SHENZHEN 0.28   (0.23,   0.33) 11.5569   (21.06) -0.00412   (-9.71) 

NANJING 0.36   (0.31,   0.42) 21.1994   (15.88) -0.00791   (-7.26) 

XIAN  0.47   (0.44,   0.51) 23.6099   (11.60) -0.00898   (-4.47) 
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Table 4: Comparisons across samples 

PM10 

Series d (- Dec. 2019)  d (- Nov. 2022)  β (- Dec. 2019)  β (- Nov. 2022)  
SHANGHAI 0.17   (0.13,   0.22) 0.17   (0.14,   0.21) -0.00721   (-4.47) -0.00733   (-8.06) 
BEIJING 0.12   (0.07,   0.16) 0.16   (0.12,   0.20) -0.01505   (-5.18) -0.01268   (-5.99) 
CHONGQING 0.32   (0.27,   0.39) 0.35   (0.30,   0.39) -0.01903   (-5.29) -0.01488   (-6.03) 
TIANJIN 0.14   (0.11,   0.19) 0.17   (0.12,   0.21) -0.02768   (-8.90) -0.01998   (-9.91) 
SHENZHEN 0.39   (0.35,   0.44) 0.41   (0.37,   0.45) -0.01546   (-3.58) -0.01460   (-4.88) 
NANJING 0.27   (0.23,   0.32) 0.27   (0.24,   0.31) -0.02623   (-6.25) -0.01990   (-8.59) 
XIAN  0.30   (0.26,   0.35) 0.29   (0.26,   0.33) -0.02973   (-3.74) -0.02290   (-5.26) 

 PM25 

SHANGHAI 0.21   (0.17,   0.25) 0.21   (0.16,   0.24) -0.01505   (-5.18) -0.01368   (-6.16) 
BEIJING 0.08   (0.04,   0.13) 0.10   (0.05,   0.13) -0.02843   (-9.49) -0.02450   (-13.70) 
CHONGQING 0.39   (0.34,   0.44) 0.41   (0.37,   0.45) -0.02991   (-3.91) -0.02547   (-4.76) 
TIANJIN 0.11   (0.07,   0.15) 0.11   (0.08,   0.15) -0.03042   (-9.98) -0.02563   (-15.44) 
SHENZHEN 0.38   (0.34,   0.42) 0.39   (0.35,   0.42) -0.01813   (-2.67) -0.02179   (-4.81) 
NANJING 0.27   (0.23,   0.32) 0.26   (0.22,   0.29) -0.02700   (-5.59) -0.02608   (-9.77) 
XIAN  0.33   (0.29,   0.37) 0.34   (0.31,   0.37) -0.02464   (-2.75) -0.02377   (-4.24) 

 NO2 

SHANGHAI 0.30   (0.26,   0.34) 0.32   (0.29,   0.36) -0.00280   (-1.98) -0.00404   (-4.46) 
BEIJING 0.19   (0.15,   0.23) 0.20   (0.17,   0.24) -0.00486   (-4.84) -0.00489   (-8.48) 
CHONGQING 0.26   (0.21,   0.32) 0.28   (0.24,   0.33) -0.00175   (-1.87) -0.00267   (-4.27) 
TIANJIN 0.32   (0.29,   0.36) 0.32   (0.29,   0.35) -0.00524   (-2.88) -0.00542   (-5.26) 
SHENZHEN 0.27   (0.23,   0.32) 0.27   (0.24,   0.31) -0.00576   (-4.82) -0.00564   (-8.º8) 
NANJING 0.28   (0.23,   0.32) 0.30   (0.27,   0.34) -0.00430   (-3.23) -0.00521   (-6.03) 
XIAN  0.34   (0.31,   0.38) 0.34   (0.31,   0.38) ----- ----- 

 SO2 

SHANGHAI 0.38   (0.34,   0.42) 0.40   (0.36,   0.43) -0.00375   (-4.91) -0.00282   (-5.95) 
BEIJING 0.32   (0.29,   0.35) 0.32   (0.29,   0.35) -0.01505   (-5.18) -0.00440   (-6.65) 
CHONGQING 0.36   (0.32,   0.41) 0.38   (0.35,   0.42) -0.00952   (-9.29) -0.00619   (-9.78) 
TIANJIN 0.47   (0.44,   0.51) 0.47   (0.45,   0.51) -0.02245   (-5.96) -0.01465   (-7.10) 
SHENZHEN 0.28   (0.23,   0.33) 0.30   (0.27,   0.34) -0.00412   (-9.71) -0.00298   (-11.94) 
NANJING 0.36   (0.31,   0.42) 0.37   (0.33,   0.42) -0.00791   (-7.26) -0.00629   (-9.97) 
XIAN  0.47   (0.44,   0.51) 0.48   (0.45,   0.52) -0.00898   (-4.47) -0.00690   (-5.43) 

In brackets the 95% confidence intervals.  
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