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Abstract 
 
What is a feasible and efficient policy to regulate air pollution from vehicles? A Pigouvian tax is 
technologically infeasible. Most countries instead rely on exhaust standards that limit air pollution 
emissions per mile for new vehicles. We assess the effectiveness and efficiency of these standards, 
which are the centerpiece of US Clean Air Act regulation of transportation, and counterfactual 
policies. We show that the air pollution emissions per mile of new US vehicles has fallen 
spectacularly, by over 99 percent, since standards began in 1967. Several research designs with a 
half century of data suggest that exhaust standards have caused most of this decline. Yet exhaust 
standards are not cost-effective in part because they fail to encourage scrap of older vehicles, 
which account for the majority of emissions. To study counterfactual policies, we develop an 
analytical and a quantitative model of the vehicle fleet. Analysis of these models suggests that 
tighter exhaust standards increase social welfare and that increasing registration fees on dirty 
vehicles yields even larger gains by accelerating scrap, though both reforms have complex effects 
on inequality. 
JEL-Codes: H210, H230, H700, Q500, R400. 
 

 
Mark R. Jacobsen 

UC San Diego / CA / USA 
m3jacobsen@ucsd.edu 

James M. Sallee 
UC Berkeley / CA / USA 

sallee@berkeley.edu 
 

Joseph S. Shapiro 
UC Berkelex / CA / USA 

joseph.shapiro@berkeley.edu 

 
Arthur A. van Benthem 

University of Pennsylvania / USA 
arthurv@wharton.upenn.edu 

 
November 2022 
We thank Akshaya Jha, Ashley Langer, Kyle Meng, Nick Ryan, Boyoung Seo, Hannes Spinnewijn, and Ann 
Wolverton for useful discussions, and participants in seminars at AERE, ASSA, CREATE, ITS Davis, ETH Zurich, 
Georgetown, Grenoble, Harvard, Helsinki, Illinois, Mannheim, LSE, NBER Environmental/Energy, NBER Urban, 
NBER Transportation in the 21st Century, Oxford, the Paris School of Economics, Stanford, the Tinbergen Institute, 
Toulouse, U Auckland, UC Berkeley, UC Davis, UC Santa Barbara-Occasional Workshop, U Chicago, UEA, U 
Hamburg, U Penn, USC, Yale, the World Bank, and ZEW for useful comments; Kipper Berven, Adrian Fernandez, 
Lillian Holmes, Minji Kim, Ray Kim, Kechen Liu, Vivek Sampathkumar, and Katherine Wong for excellent research 
assistance; Alberto Ayala, Rasto Brezny, Andy Burnham, Rob Dawson, John German, Dave Good, Tim Johnson, 
Jarod Kelly, Jim Sidebottom, Allen Lyons, Michael Wang, Tom Wenzel, and Ning Wigraisakda for sharing data and 
explaining institutions; and NSF SES-1850790 and SES-2117158, USDA NIFA-1021396, USDA NIFA-1010175, 
and the Kleinman Center for Energy Policy, the Mack Institute, the Wharton Dean's Research Fund, and Analytics at 
Wharton for generous support. 



1 Introduction

The world has 1.4 billion passenger vehicles (IHS Markit 2022). How should governments

regulate their air pollution? This paper studies the effectiveness and efficiency of air pollution

exhaust standards and counterfactual policies.

Vehicle transportation is one of the world’s largest sources of air pollution. It accounts for

40 percent of total US emissions of two major air pollutants, carbon monoxide and nitrogen

oxides, creates $70 billion in annual pollution-related health and other damages, and causes

37,000 annual premature deaths (National Research Council 2010; Fann et al. 2013; U.S.

EPA 2014b). Globally, air pollution from transportation causes a quarter million deaths

each year (World Bank 2014; Chambliss et al. 2014).

Textbooks describe optimal policy to address pollution—a corrective or Pigouvian tax

equal to the marginal external cost of emissions, or a comparable quantity mechanism (e.g.,

cap and trade). But taxing vehicle air pollution emissions is infeasible because direct mea-

surement of pollution from individual vehicles is imperfect and prohibitively expensive (Veni-

galla 2013). We believe no government has ever directly taxed air pollution from vehicles.1

Instead, the US, EU, Japan, China, Russia, India, Brazil, and most other countries rely

heavily on new vehicle exhaust standards. Exhaust standards set a maximum emission rate

per mile for every vehicle. Some standards also impose fleet-wide average requirements.

Exhaust standards have been controversial for decades due to their large costs and am-

biguous effectiveness. In the 1970s, Ford executive Lee Iacoca claimed these standards

could stop US vehicle production (Kaiser 2003). Congress has issued three requests to the

National Academies of Science to provide advice involving exhaust standards (National Re-

search Council 2001, 2004, 2006). Manufacturers have cheated on these standards, including

the Volkswagen scandal that involved $22 billion in payments – the largest auto settlement

in US history – leading to questions about standards’ effectiveness (Yacobucci 2015).

Little economic research, however, scrutinizes exhaust standards. They are separate from

fuel economy standards, which target gasoline consumption and have been the focus of much

prior literature, reviewed below. We highlight the different patterns and challenges of air

pollution and fuel economy. Thus, existing insights and methods from the fuel economy

literature do not answer the questions we pose here for vehicle air pollution.

This paper helps to fill this literature gap by investigating several questions. How have

vehicle air pollution emission rates changed over time? To what extent have exhaust stan-

1Roadside pollution sensing via infrared beams has substantial measurement error for individual vehicles.
Scheduled emissions tests (“smog check”) when paired with high-stakes incentives can lead to avoidance
behaviors, making taxes based on such tests inaccurate (Stedman et al. 1998; Merel et al. 2014; Oliva 2015).
Gasoline taxes target greenhouse gas emissions but weakly proxy air pollution (Knittel and Sandler 2018).
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dards caused these declines? Are these standards cost-effective? Finally, how might reforms

improve policy, either via targeting the stringency of exhaust standards or introducing com-

plementary policies that accelerate vehicle scrap?

We find striking answers to each question. First, the air pollution emissions per mile of

the US new vehicle fleet has fallen by more than 99 percent since regulation began in the

1960s. This spectacular decrease may exceed that of any other major sector. Used vehicles

follow similar patterns. We conclude that these trends represent genuine, long-term, large

declines in exhaust emission rates of US vehicles. We find much smaller declines for carbon

dioxide (CO2) emissions that fuel economy regulations target.

Second, to assess the impact of exhaust standards on emission rates, we exploit variation

in exhaust standards between California and federal standards and across classes of vehicles,

model years, and pollutants. We find that exhaust standards have caused 50 to 100 percent

of the time-series declines in air pollution emission rates. Equivalently, we find an elasticity

of vehicle emission rates with respect to exhaust standards of 0.5 to 1.0. Several pieces of

evidence support these estimates’ internal validity. Event study graphs show that changes

in emissions align in time with changes in exhaust standards. We obtain qualitatively sim-

ilar results when controlling for potential confounding policies—gasoline prices including

taxes; and standards for smog check (“inspection and maintenance”), fuel economy, gaso-

line hydrocarbons, gasoline sulfur content, and ethanol blending. We obtain similar results

when separately analyzing each set of standards, generally called Tier 0 (model years 1968-

1993), Tier 1 (1994-2003), and Tier 2 (2004-2016). While we find that exhaust standards

do not change basic vehicle attributes (horsepower, fuel economy, etc.), they do lead man-

ufacturers to install cleaner engines. This statistical evidence echoes informal assertions by

engineers and policymakers that exhaust standards, not secular technological innovation or

other forces, account for most decreases in air pollution emission rates from US vehicles.

Third, while the aforementioned regressions suggest exhaust standards are effective, styl-

ized facts suggest that exhaust standards are not cost-effective.2 They do not equate the

marginal cost of abating pollution across vehicles, a necessary condition for cost-effectiveness,

because they only weakly regulate pollution from older vehicles. Emission rates of air pol-

lutants (but not CO2) increase rapidly with age. A majority of air pollution emissions in

a calendar year come from vehicles more than 10-15 years old, which are largely exempt

from exhaust standards.3 Registration fees on the oldest and dirtiest used vehicles could in

2A cost effective pollution policy minimizes the cost of achieving a given pollution reduction, or maximizes
the pollution reduction for a given cost. A pollution policy may increase social welfare yet not be cost
effective—the social willingness to pay for its pollution reduction may exceed its costs, even though other
policies could have achieved that pollution reduction at even lower cost.

3Smog check programs regulate emissions of old dirty vehicles. Most of our data are from areas with
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principle discourage ownership of these vehicles. We build a database containing tax rates

we collected from US state and local governments describing their vehicle registration fees,

motor vehicle taxes, and vehicle property taxes (which we collectively call, “registration

fees”). We find that registration fees are higher for newer, cleaner vehicles, and thus encour-

age ownership of older, dirtier vehicles, thereby exacerbating inefficiencies in fleet turnover.

This echoes the broader idea that a commodity tax system which imposes higher tax rates

on cleaner goods can cause important environmental damages (Shapiro 2021).

Fourth, we develop an analytical and a quantitative model to evaluate counterfactual

policies. The early parts of the paper show regressions analyzing differences in emission

rates; the latter parts of the paper combine those data with formal theoretical models to

clarify remedies for and implications of the patterns in emission rates. An analytical model

with few functional form assumptions provides comparative statics on how counterfactual

policies affect social welfare. We analyze the steady state of a continuum of agents who can

buy new vehicles from competitive manufacturers or repair new vehicles to drive them as

used. Equilibrium used vehicle prices depend on exhaust standards and registration fees,

and also determine scrap rates. Our first result shows that tightening new vehicle exhaust

standards extends the lifetime of used vehicles, which exacerbates inefficiency from consumers

scrapping used vehicles later than is socially optimal. This formalizes the “Gruenspecht

Effect,” which has been informally noted for many environmental policies. Our second

analytical result shows that increasing registration fees on used vehicles can improve social

welfare and complement exhaust standards by correcting the low scrap rate for used vehicles.

The quantitative model estimates gains from counterfactual policies. The quantifica-

tion has a similar basic structure as the analytical model but allows for substitution across

over 500 vehicle types differentiated by manufacturer, age, class, and size. The quantitative

model also accounts for the engineering cost of meeting exhaust standards and fuel econ-

omy standards, Bertrand competition among new vehicle manufacturers, firm expectations,

supply-chain (life cycle) emissions from manufacturing vehicles, and transitional dynam-

ics. We study counterfactual changes to exhaust standards or registration fees. For each, we

determine the equilibrium that results, then calculate the change in pollution emissions, pro-

ducer and consumer surplus, environmental damages, and social welfare. The quantification

uses data and estimates from earlier parts of the paper.

The quantitative model provides several results. Accelerating the roll-out of tighter (Tier

2) exhaust standards by one year increases social welfare by $20 to $30 billion. Policymakers

are debating the importance of delays in stringent global climate policy; while we study

smog check programs, suggesting that older vehicles could account for an even larger share of pollution in
the absence of smog check programs.
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air pollution rather than climate change, we find large consequences of the timing of an

environmental policy. Additionally, we find that the benefits of Tier 2 exhaust standards

(which operated in the 2000s and 2010s) are 10 to 15 times its costs, and that Tier 2’s

measured benefits due to avoided premature mortality are 35 percent larger than those of a

prominent cap-and-trade market for industrial plants from the same period, the NOx Budget

Program (Deschenes et al. 2018). We find larger gains, around $300 billion in present value,

from reforming annual registration fees to reflect the environmental damage of a vehicle’s

age×type. Changing registration fees creates these benefits primarily by encouraging scrap

of old and dirty vehicles. This counterfactual causes scrap of nearly all vehicles aged 25 years

old or more. Echoing the Gruenspecht Effect analytical result, levying such environmental

registration fees only on new vehicles actually creates welfare losses because new vehicle fees

discourage scrap of old vehicles, extending their lifetimes and emissions.

These counterfactuals have complex effects on inequality. Because households in low-

income communities drive older and dirtier vehicles, increasing registration fees for dirtier

vehicles may trade off equity and efficiency. Exposure to aggregate vehicle emissions, for

example because of proximity to highways, is also greater for low-income communities, lead-

ing to a potentially progressive environmental incidence. Transportation is a large source of

pollution in vulnerable communities (Carlson 2018; Apte et al. 2019). Additionally, recycling

revenues from automobile policy substantially influences its regressivity (Bento et al. 2009).

We carefully discuss these channels and their political economy implications.

Three ties connect the paper’s empirical and theoretical sections. First, they answer

complementary parts of the paper’s research questions. The empirical analysis studies effec-

tiveness, while the models analyze cost-effectiveness and efficiency. Second, the regressions

guide model assumptions. For example, the empirical finding that exhaust standards are

effective and (subject to overcompliance) binding motivates corresponding assumptions in

the models, and also motivates the counterfactual analysis of tightening standards. Simi-

larly, the empirical finding that age plays a central role in explaining emissions and that

existing registration fees exacerbate these patterns motivates both the models’ analyses of

age-based registration fees and the models’ overall focus on fleet composition and scrap.

Third, the empirical parts of the paper help assess the properties of the emissions inspec-

tions data that the quantitative model uses extensively and that the analytical model uses

in a back-of-the-envelope quantification.

This paper utilizes the most comprehensive data on vehicle pollution emission rates ever

constructed. It includes a half century of comparable pollution data using the same high-

quality measurement method. These data cover nearly every new US light-duty vehicle

and light-duty truck sold between 1972 and 2020 and many over the period 1957-1971. We

4



believe this is the longest-lasting comparable microdata on pollution emission rates from any

country or sector.4 We supplement these new vehicle records with 65 million used vehicle test

records from three types of tests—used vehicle inspections, official regulatory “in-use” tests,

and roadside remote sensing. Our new vehicle data are national. Our main used vehicle data

are from the state with the most high quality and extensive used vehicle tests in the US,

Colorado, though we corroborate some patterns with additional data from eleven other states

and six other countries. Finally, we use the Leontief Inverse of the US input-output table

combined with plant-level industrial emissions data to account for the emissions embodied

in the manufacturing of new vehicles and the associated supply chain.

This paper builds on several literatures. We provide the first comprehensive analysis of

exhaust standards, which are the centerpiece of US Clean Air Act regulation of transporta-

tion. Landmark papers study Clean Air Act regulation of industry (e.g., Henderson 1996;

Carlson et al. 2000; Greenstone 2002; Walker 2013). Another important literature studies

fuel economy standards, which are separate from exhaust standards (Goldberg 1998; West

and Williams 2005; Goulder et al. 2012; Jacobsen 2013; Anderson and Sallee 2016; Langer

et al. 2017). Analysis of fuel economy standards has developed methods to use the R-squared

from a regression to study imperfect targeting of environmental policy (Jacobsen et al. 2020),

but the primary challenge we highlight for exhaust standards involves fleet composition and

scrap. Existing work largely does not directly analyze exhaust standards’ effects.5

Additionally, this paper provides the first simple sufficient conditions for stricter en-

vironmental policy on new capital to create inefficiency by decreasing scrap. Known as

the Gruenspecht Effect (Gruenspecht 1982), this pattern has been informally lamented for

decades. Many prominent environmental regulations differ by capital vintage, such as the

US Clean Air Act’s New Source Review or energy efficiency construction codes (Gruenspecht

and Stavins 2002; Stavins 2006). Existing work uses regressions to analyze effects of vintage-

differentiated regulations (Bushnell and Wolfram 2012; Bai et al. 2021), or analyzes new-

4For example, emissions data from US manufacturing only have firm-level records generally available back
to 1990, in many cases come from engineering predictions rather than direct measurement, and can fail data
quality tests (Currie et al. 2015). Similarly, regular emissions monitoring from US power plants began in
1980, is quinquennial through 1995, and in many years covers only the largest electricity generating units.

5Prior papers describe standards (Bishop and Stedman 2008) or abatement technologies (Bresnahan and
Yao 1985); summarize engineering estimates of abatement costs (Fowlie et al. 2012; Cropper et al. 2014);
describe model year trends from before versus after standards change using one cross-section of vehicle tests
(Kahn 1996a,b), which does not separate effects of age, model year, and standards; undertake simulations of
vehicle emissions with a few types of vehicles (Mills and White 1978; Innes 1996; Kohn 1996; Harrington 1997;
Walls and Hanson 1999; Fullerton and West 2010; Feng et al. 2013); or compare emissions from electric and
gasoline vehicles (Holland et al. 2016). Several papers analyze used vehicle emissions from smog check tests,
primarily from California, which measure pollution emission rates from used vehicles and require repairs of
the dirtiest vehicles, but those papers do not evaluate exhaust standards (Merel et al. 2014; Knittel and
Sandler 2018; Sanders and Sandler 2020).

5



vehicle purchase fees proportional to CO2 emissions (Adamou et al. 2013; D’Haultfoeuille

et al. 2013). Some papers evaluate programs that encourage retirement of polluting vehicles,

including “Cash for Clunkers” (Busse et al. 2012; Sandler 2012; Li et al. 2013; Hoekstra et al.

2017). More broadly, Barahona et al. (2019) and Gillingham et al. (2022) find that policies

spurring scrap of old vehicles substantially increase social welfare.

We also create the first national data on, and economic analysis of, vehicle property taxes.

Research analyzes property taxes for real estate (e.g., Poterba and Sinai 2008; Cabral and

Hoxby 2015) but many property taxes also apply to vehicles. We create a dataset of vehicle

property taxes and registration fees from US states, cities, counties, and special districts.

In addition, this research provides the first equilibrium model of vehicle markets and scrap

that accounts for air pollution abatement and emissions. Existing frameworks to analyze

fuel economy, economy-wide greenhouse gas emissions, or polluting industrial activity do not

apply directly to air pollution from vehicles (Goldberg 1998; Goulder et al. 2012; Busse et al.

2013; Jacobsen and van Benthem 2015). The model relates to recent industrial organization

papers studying equilibrium trade in used car markets in settings with more general forms

of market power and frictions (Biglaiser et al. 2020; Gillingham et al. 2022).

Finally, this research helps answer the question of why pollution in industrialized coun-

tries is declining. We describe a setting where a specific regulation accounts for most of a

long-term national decrease in pollution emission rates.6 While many countries and sectors

have had large decreases in pollution over time, and most of this decrease reflects cleaner pro-

duction within an industry rather than reallocation across industries, studies have struggled

to assess which economic forces or policies have caused that decline.

The paper proceeds as follows. Section 2 describes policy and technology. Section 3 dis-

cusses the data. Section 4 describes emissions trends. Section 5 estimates effects of exhaust

standards. Section 6 establishes stylized facts on cost-effectiveness. Section 7 describes the

analytical model, Section 8 describes the quantitative model, and Section 9 concludes.

6Following Copeland and Taylor (1994) and Grossman and Krueger (1995), researchers have allocated
economy-wide changes in pollution into changes in total output (“scale”); changes in the share of output
from different industries (“composition”); and changes in pollution emitted per unit of output within a
given industry (“technique”). In many regions, technique accounts for most decreases in pollution from
manufacturing (Levinson 2009; Cherniwchan et al. 2017; Shapiro and Walker 2018; Copeland et al. 2022).
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2 Background on Exhaust Standards

2.1 History of Exhaust Standards

In 1952, chemist A. J. Haagen-Smit discovered that hydrocarbons (HC) and nitrogen ox-

ides (NOx) emissions from vehicles contribute to smog. By 1959, engineers had developed

technology to abate emissions by running exhaust fumes over a catalyst.

Federal regulators have since imposed standards regulating these pollutants and carbon

monoxide (CO). We call these regulations, “exhaust standards.” Others sometimes call

them tailpipe or emission standards. These standards limit the emissions per mile of these

pollutants. We refer to the grams of pollution emitted per mile driven as a vehicle’s emission

rate and the total grams of pollution emitted as emissions. We refer to CO, HC, and NOx as

air pollution, though they are sometimes also called local or criteria pollution, to distinguish

them from global pollutants like CO2. Table 1 summarizes the standards. Appendix A.1

discusses details of standards less directly relevant to our paper.

The 1965 Motor Vehicle Air Pollution Control Act created national standards, called

“Tier 0.” The 1970 Clean Air Act Amendments substantially expanded them.7 Standards

began for CO and HC in 1968 and for NOx in 1972.8 Tier 0 standards periodically tightened

through 1993. These standards essentially required every vehicle to have a catalytic con-

verter by the mid-1970s, though catalytic converters were not broadly viable in the 1960s.

Automakers developed and deployed catalytic converters to comply with exhaust standards.

We focus on federal exhaust standards but the Clean Air Act lets California set its own,

tighter exhaust standards. Other countries and US standards have similar structure.

The 1990 Clean Air Act Amendments required Tier 1 standards, which phased in begin-

ning in 1994 and became binding in 1996.9 A few light-duty trucks could wait until 1997 to

comply. Exhaust standards regulate “light-duty vehicles” and “light-duty trucks”; we refer

to these as cars and trucks. Tier 1 decreased CO and HC standards more for categories of

trucks than for cars, though required similar NOx decreases in emission rates for cars and

trucks. Thus, our analysis of Tier 1 does not focus on NOx since we exploit differences in

stringency between vehicle classes. Tier 2 standards phased in over the years 2004-2009 and

continued through 2016. Tier 3 is being phased in from 2017 through 2025.

These standards have the same general approach but different details. Tier 0 and Tier

7Corporate Average Fuel Economy Standards are enabled by the Energy Policy and Conservation Act of
1975, a separate law from the Clean Air Act.

8All years in this section refer to vehicle model years.
9Only 40 percent of vehicles had to comply with Tier 1 in the 1994 model year and 80 percent in 1995.

Because many vehicles already met Tier 1 standards in 1993, Tier 1 was most binding for the dirtiest vehicles,
which could remain at existing emission levels until model year 1996.
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1 define maximum standards. Each standard requires every vehicle in a class (e.g., trucks

in a certain weight range) to emit less than the standard. Tier 2 and Tier 3 impose fleet-

wide mean standards and tightened the maximum standards. The pollutant used for the

fleet-wide average standard differs across regulations.

These standards use the same test to measure a vehicle’s emission rate, the Federal Test

Procedure. This test specifies the chemical composition of the fuel used in the test, the speed

at every second of a 30 minute test, and is run on a dynamometer, a large treadmill-like

device; Appendix A.2 discusses details.

Before a vehicle may legally be sold, the EPA must certify that the vehicle meets exhaust

standards. In addition to conducting a test, the EPA or manufacturer estimates a “deteri-

oration factor” predicting how emission rates will change during the vehicle’s “useful life,”

which ranges from 50,000 miles and 5 years (whichever comes first) to 150,000 miles or 15

years, depending on the standard. The EPA regulates how manufacturers may determine

deterioration factors. Exhaust standards apply to a new vehicle’s “certification level,” which

equals the test result scaled up by the deterioration factor.

Several years after a vehicle is manufactured, the EPA assesses “in-use” compliance.

Manufacturers conduct emissions tests on samples of vehicles at up to 150,000 miles and the

EPA audits some. If these tests find emission rates above the standard, the vehicle is recalled

and the emissions control system repaired or replaced. Between 1975 and 2008, 80 million

vehicles, or about 16 percent of all vehicles sold, had recalls, though some of these involved

minor reclassifications (U.S. EPA 2008; Department of Energy 2016). Accurately predicting

a new vehicle’s emission rate at 50,000 or 150,000 miles is challenging. In-use tests and

the costs of recalls give manufacturers an incentive to over-comply with exhaust standards.

Industry engineers and regulators we interviewed describe over-compliance, sometimes called

headroom or a safety margin, as typical for this reason.

2.2 Pollution Abatement Technologies

Explaining technologies used to meet these standards helps interpret results; Appendix A.3

provides details. The approach has changed little since the 1970s: expose exhaust to precious

metals inside a catalytic converter, which converts pollution into harmless gases. Because

these metals are catalysts, pollution can react with them without consuming or changing

them. The precious metal palladium primarily abates CO and HC, which have complemen-

tary abatement technologies; rhodium primarily abates NOx; and platinum abates all three.

Under ideal conditions, these reactions eliminate 100 percent of CO, HC, and NOx.

Lead and sulfur render catalytic converters ineffective by coating the catalyst. Our used
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vehicle data begin after model year 1975, when vehicles required unleaded gasoline (Mondt

2000). Nonetheless, catalytic converters decrease in effectiveness over time due to remaining

low levels of sulfur in gasoline, wear of precious metals, or breakdown of complementary

technologies like oxygen sensors.

Would emission rates decline without regulation, due to secular innovation? Engineers

and regulators we interviewed argued that technologies that improve vehicle drivability do

not affect pollution, so automakers would only decrease emission rates due to regulation.

Crandall et al. (1986, pp. 92-93) summarize this view: “There is little evidence to support

the view that emission rates would have fallen significantly without the emissions standards

program.” Innovation may still decrease the marginal cost of controlling vehicle emission

rates over time. Because emissions-related recalls are common and costly, even when pol-

icy is constant, decreasing marginal abatement costs over time give auto manufacturers an

incentive to decrease emission rates even further (additional “overcontrol”), even without

tightening standards, to decrease the rate of unexpected recalls.

One may also wonder whether trends in “green” or “warm glow” preferences for environmentally-

friendly goods could explain changing vehicle emission rates. We believe this is not a major

contributor, in part due to limited consumer information. We have not found anecdotal or

statistical evidence that consumers value or even know their vehicle’s air pollution emissions,

though consumers may have information on fuel economy. Unlike fuel economy, information

on a vehicle’s air pollution is not easy to find and interpret.10

Many environmental policies, including exhaust standards, encourage innovation in abate-

ment technology (Vollebergh 2010; Rozendaal and Vollebergh 2021). The EPA calls exhaust

standards “technology forcing” because they can require technologies which have been proven

in focused settings but may not have had mass development or adoption. Innovation research

finds that the announcement of Tier 0 and Tier 1 standards increased patenting and pub-

lishing of technical papers on relevant abatement technologies (Lee et al. 2010, 2011).

2.3 Other Policies Relevant to Emission Rates

Other environmental policies are relevant to our analysis. Our regressions and quantitative

model account for them. Corporate Average Fuel Economy standards regulate the mean

fuel economy of new vehicles. Fuel economy standards did not change in the periods we

study most closely (Department of Transportation 2014). Federal gasoline excise taxes,

state retail gasoline taxes, and gasoline prices could affect miles traveled or driving behavior.

10Air pollution emission rates are not shown on most leading consumer automotive websites. The EPA
calculates a 1 to 10 “smog rating” for vehicles, which now appears in small font on a vehicle’s fuel economy
sticker. But this rating is not thoroughly explained and was absent for most of our sample period.
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Around ten percent of US counties operate smog check programs, where registration requires

used vehicles to pass emissions inspections. Our data mostly come from areas with smog

check, so our findings that vehicle emission rates rise sharply with age, and our estimates

of the benefits of scrapping old dirty vehicles, might be even larger without smog check.

Some states and cities regulate the chemical content of gasoline to decrease HC, though not

other pollutants (Auffhammer and Kellogg 2011). Colorado, the source of our main data,

has not used gasoline with regulated chemical content (U.S. EPA 2019). Ethanol accounts

for an increasing share of fuel, in part due to policy. Evidence on how ethanol affects

exhaust emission rates is mixed (Hubbard et al. 2014). Governments in 28 states, listed in

Appendix F.1, have registration fees that vary with vehicle characteristics, especially value.

3 Data

3.1 New Vehicle Pollution Data

We obtain test results for each new vehicle type from the Annual Certification Test Results

Report, also called the Federal Register Test Results Report.11 We obtain electronic records

for model years 1979 to 2019 from the EPA and keyed in records for years 1972-1978 from

the Federal Register (1978); see Appendix B.2 for details. Although these data determine

compliance with the Clean Air Act, we are not aware of any economics research using them.

For model years 1957-1971, we obtain data on used vehicles tested in AES (1973), which

applied the Federal Test Procedure to about 1,000 vehicles aged 1 to 14 years old from five

cities. The sample statistically represented the national distribution of vehicle characteristics.

In model years before exhaust standards, emission rates of these vehicles do not appear to

increase with age and are similar to estimates of uncontrolled emission rates. This is sensible

because before exhaust standards, vehicles did not have emissions control systems that could

break down. Hence, for these pre-regulation years, new and used vehicles likely had similar

emission rates. We identify vehicles meeting California standards in AES (1973) as those in

California and vehicles meeting federal standards as those in other states.

3.2 Used Vehicle Pollution Data

Our main used vehicle emission data come from smog check tests in Colorado, which we use

for several reasons. While many states test vehicle emissions, recently only Colorado has used

the highest-quality test, called IM240 (the inspection and maintenance test that lasts 240

11We use “class” to denote cars versus trucks, or weight categories of trucks, and “type” to denote more
detailed classification of vehicles such as manufacturer, size, trim, or engine specifications.
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seconds). This test provides a short version of the Federal Test Procedure and is considered

the “gold standard” of smog check tests for its quality and comparability to the Federal Test

Procedure (Sierra Research 1997; Joy et al. 2004; U.S. EPA 2006); Appendix B.1 discusses

this comparability.12 Most other states only obtain a computer description of the status

of a vehicle’s emissions control system (an “on-board diagnostic test”) and do not measure

exhaust emission rates for most vehicles. Colorado includes about 12basic difference-in

million tests and extensive remote sensing and registration data.13 Appendix B.3 shows that

the Colorado counties have similar driving and emissions patterns to other polluted urban

US counties.

The Colorado data cover calendar years 1997 through 2014. In these years, all Colorado

gasoline vehicles model year 1982 or later are tested biennially, beginning at age four, so

the data cover model year 1982 through 2010. Appendix B.3 describes additional sample

restrictions, such as excluding observations missing key variables.

We take a few steps to limit concerns about avoidance and short-term evasion behavior.

We restrict the Colorado sample to the first test in a sequence, which is less subject to short-

term manipulation concerns. A sequence is a test series for a specific registration, ending in

a vehicle passing (and then able to register) or being sold, traded, or driven unregistered.

Manipulation is arguably more likely after a vehicle fails the first test. We also include

estimates that control for the stringency of the relevant smog check standard. Additionally,

we report sensitivity analyses using remote sensing estimates from a Colorado database with

over 50 million remote sensing readings; from smaller samples taken in 11 states; from 4

other countries; and from heavy duty trucks (e.g., 18 wheelers).

We show sensitivity analyses from remote sensing, which uses roadside infrared or ultravi-

olet beams connected to devices that measure pollution concentrations in an exhaust plume.

Remote sensing provides data that is believed to be impervious to manufacturer “defeat

devices” and that is not generally used in economics papers.14 Remote sensing, however, has

substantial measurement error and imperfectly comparable units versus new or used vehicle

tests (Borken-Kleefeld 2013). Appendix Table A1 compares remote sensing and smog check

readings from the same vehicle in essentially the same week. If remote sensing and smog

check data were perfectly comparable, Appendix Table A1 would obtain regression coeffi-

cients and elasticities of one. While matched remote sensing and smog check readings are

12The EPA describes the IM240 test as “the most accurate short test available for use in I/M programs”
(U.S. EPA 1995). Colorado describes it as “arguably the most accurate emissions test currently in use for
replicating the Federal Test Procedure (FTP) that is used to certify new model year vehicles” (AIR 2015).

13Most economic research using data on US used vehicle emission rates uses data from California, but its
data have lower quality; Appendix A.2 provides details.

14Defeat devices typically turn on parts of an emissions control system only when they detect that a vehicle
is undergoing a laboratory driving test. Remote sensing observes vehicles during typical on-road driving.
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strongly correlated, the magnitude of that regression coefficient ranges from 0.000015 to 435,

and the magnitude of the elasticity ranges from 0.01 to 2.98, depending on the pollutant and

specification. None of the 95% confidence regions includes zero or one. We interpret remote

sensing as an important check on the sign and precision of changes in emission rates, but

interpret magnitudes from remote sensing cautiously due to its differences in measurement.

Finally, we report sensitivity analyses from “in-use” tests in California (see Appendix B.5),

which have no direct incentives for vehicle owners so are unlikely to suffer from owner ma-

nipulation. In-use tests apply the Federal Test Procedure to a sample of vehicles several

years old to assess compliance with exhaust standards.

3.3 Other Data Notes

Appendix Table A2 summarizes the samples and coverage of the paper’s datasets. We use

all years to describe emission rate trends and subsets of years to analyze Tiers 0, 1, and 2. In

addition, we use vehicles from model year 1993 and calendar year 2000 to describe fleet-wide

emissions, and test year 2000-2014 data to calibrate the quantitative model. Appendices B.6

and B.7 discuss details including concordances, use of the US input-output table to measure

the emissions from manufacturing vehicles, and the marginal damages of pollution.

Here we summarize emissions from manufacturing vehicles. We use the Leontief Inverse

of the US input-output table, which helps measure the entire supply chain of all goods used

to produce a vehicle. We measure emissions from each industry in the vehicle supply chain

by using plant-level air pollution emissions data from the National Emissions Inventory.

Aggregated, this calculation suggests that manufacturing a new car or truck creates about

$600 in environmental damages due to air pollution in the year 2000, including emissions from

the entire supply chain, which is in the ballpark of numbers that engineers have estimated

from life cycle analyses. These damages fall over time as manufacturing becomes cleaner.

4 Trends in Emission Rates

We first quantify trends in new and used vehicle emission rates. Figure 1 plots mean emission

rates in grams per mile from new US vehicles over model years 1957-2020. The figure shows

the three air pollutants exhaust standards target—CO, HC, and NOx. It also shows CO2,

which fuel economy standards target. The graphs show the mean certification level for

50,000 miles, i.e., the emission rate of a new vehicle scaled up by an engineering calculation

reflecting 50,000 miles. Each y-axis has log scale. Vertical lines show the year before exhaust

standards. The lines with blue squares show the unweighted mean across vehicle types. For
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model years 2000-2015, the lines with hollow red circles show means weighted by fleet size.

Figure 1 shows that the emissions per mile for each air pollutant have fallen by more

than 99 percent since regulation began. CO has fallen by 99.4 percent, HC by 99.7 percent,

and NOx by 99.5 percent. For example, the mean CO emission rate of new US vehicles fell

from 83 grams per mile in the 1960s to 0.5 grams per mile in 2020. Even between 1990 and

2018, these emission rates fell by 75 to 95 percent. Unweighted trends and trends weighted

by fleet size are similar.15 We do not believe previous research has directly used these new

vehicle test results to measure long-term pollution trends.16 The long lifetime of vehicles

in a setting where emissions are rapidly declining implies that at any given moment, older

vehicles are operated alongside newer, cleaner vehicles. This motivates our consideration of

policies targeted to accelerate scrap in Section 7. The changes in emission rates between

model years we document here underpin the quantitative model of Section 8.

For context, between 1990 and 2018, ambient pollution levels (which depend on emissions

from all sources) of CO, NO2, and ozone fell by 20 to 75 percent (U.S. EPA 2018), suggesting

that new vehicles cleaned up faster than other pollution sources. The decrease in emission

rates from new vehicles is more rapid than declines in manufacturing emissions or ambient

water pollution over this period (Shapiro and Walker 2018; Keiser and Shapiro 2019).

Comparing emission rates in Figure 1 and standards in Table 1 shows that emission rates

fall particularly in years when policy tightens. Emission rates are flat before standards begin.

Rates then decline rapidly. Figure 1 reflects the large decreases that standards required in

1975. The CO and HC graphs show flatter lines between 1984 and 1993, when standards

were flat. Emission rates and standards were also flatter between 2007 and 2017.

Figure 1 also shows that CO2 fell less than air pollution. CO2 only fell by 55 percent

between 1957 and 2017 and by 25 percent between 1990 and 2017. The changes in CO2

rates largely occurred in the late 1970s and 2010s, when fuel economy standards tightened.

Between 1982 and 2007, both the CO2 line and fuel economy standards were flat.

Used vehicle emission rates have similar patterns, though they are available for fewer

years and are subject to the challenge of disentangling model year, test year, and age effects.

Appendix C.2 explains how we analyze Colorado smog check data. Appendix Figure A2

15Appendix C.1 discusses data limitations but shows qualitatively similar results for weighted trends before
2000.

16Existing evidence does not definitively show these trends. The EPA uses a simulation model, the MOtor
Vehicle Emission Simulator (MOVES), to calculate annual vehicle emissions. Dividing predicted national
emissions from MOVES by national vehicle miles travelled shows that air pollution emissions per mile have
fallen by 98-99 percent since the 1970s (U.S. EPA 2022). MOVES, however, relies on numerous parameters,
data sources, and calculation modules; its design changes frequently; and its internal processing can be
somewhat non-transparent. Kahn (1996a,b) uses a cross-section of smog check data to calculate decreases
in emission rates of 50-90 percent between the early 1970s and late 1980s, though it is difficult to separate
age and model year effects in the cross section.
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shows that mean used vehicle emission rates for each air pollutant fell by roughly 90 percent

between 1982 and 2010; new vehicle emission rates from Figure 1 fell by similar amounts.

Mean CO2 emission rates of the used vehicle fleet actually increased between model years

1990 and 2005, partly due to the increasing market share of light-duty trucks.

5 Effects of Exhaust Standards on Emission Rates

This section describes effects of Tier 0, 1, and 2 exhaust standards on emission rates. We

use different approaches for each Tier, reflecting relevant regulations and data. One goal is

to understand to what extent exhaust standards caused the trends documented in Section 4.

We focus on estimates in logs, though also report estimates in levels, to facilitate compar-

isons across pollutants and datasets, address outliers, and help interpretation even when

manufacturers over-comply with standards. Appendix D discusses sensitivity analyses.

5.1 Econometrics: Effects of Exhaust Standards on Emission Rates

Tier 0. The following equation analyzes how Tier 0 affected emission rates:

lnEpry = β1lnSpry + ηpr + λy + εpry (1)

We analyze model years 1957-1971. Each observation represents the mean emission rate of

vehicles for pollutant p (CO, HC, NOx, or CO2), in region r (California or federal), from

model year y. CO and HC faced regulation in the 1960s; NOx and CO2 did not. The variables

E and S represent emission rates and standards. The term β1 represents the elasticity

of emission rates with respect to exhaust standards. The pollutant×region fixed effects,

ηpr, address potential confounding from time-invariant differences between vehicles facing

California’s standards versus those facing federal standards, separately by pollutant. Model

year fixed effects, λy, address time-varying emission rates common to vehicles nationally.

Tier 1. For Tier 1, we estimate the following equation:

lnEpicy = β2lnSpicy +X ′picyπ + µpc + νpy + ξpa + εpicy (2)

We analyze model years 1982-2000. We report separate estimates where E represents new

or used vehicle emission rates. An observation represents a reading of pollutant p for vehicle

i in model year y. The main estimates distinguish vehicle class c ∈ car, truck, which are

the most comparable measures of standards. Sensitivity analyses explore more detailed sub-

classes. For estimates of used vehicle emission rates, we include controls X for age fixed
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effects, odometer, and other environmental policies that could affect emission rates—fuel

economy, fuel content, or smog check standards. The regression includes fixed effects for

pollutant×vehicle class, pollutant×model year, and pollutant×age (µpc, νpy, and ξpa). The

coefficient β2 represents the elasticity of emission rates with respect to exhaust standards.

We cluster standard errors by model year×truck type.

Tier 2. After model year 2000, regulations imposed fleet-wide average standards. Hence,

instead of using difference-in-differences across vehicle classes, we analyze the extent to which

new vehicle emission rates predict used vehicle emission rates of the same vehicle:

lnEu
picy = β3lnE

n
picy +X

′

picyζ + νpy + ξpa + εpicy (3)

We analyze model years 2000-2010 because the concordance file linking new vehicle engine

families and used vehicle Vehicle Identification Number prefixes begins in model year 2000

and our Colorado smog check data conclude in model year 2010. Here Eu is the used vehicle

test result of vehicle i, En is the new vehicle emissions test result corresponding to used

vehicle i, and c, y, and X are defined above. The coefficient β3 represents the elasticity

of used vehicle emission rates with respect to new vehicle emission rates. The regression

includes age and model year fixed effects (µpa, νpy), which vary by pollutant.

5.2 Results: Effects of Exhaust Standards on Emission Rates

We start by graphing raw trend data by class. Figure 2 shows the national time series of

exhaust standards (Panels A, C, and E) and new vehicle emissions (Panels B, D, and F).

They cover model years 1982-2010. In each graph, the blue solid line describes cars and

the dashed red line describes trucks. The vertical dashed lines show when car standards

changed; the vertical solid lines show when car and truck standards changed. Each panel

shows a different pollutant. Values are measured in grams of pollution emitted per mile.

Figure 2 reveals close correspondence between standards and emissions, which shows

that exhaust standards cause large decreases in emission rates. For example, in 1984, truck

standards for CO and HC fall abruptly and emission rates do also. In 1996, when Tier 1

rolled out, standards and emissions again move in tandem. A similar pattern occurs for Tier

2 in the mid-2000s.

The main exception here is the decline in NOx truck emissions in model years 1982-1987

that Panel F shows. California gradually tightened truck standards in these years, while

the EPA tightened standards only in 1987. The 1980s new vehicle data do not distinguish

California from federal vehicles, so the 1980 trend in NOx emission rates for trucks may

reflect compliance with California’s standards.
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These graphs also show over-compliance. New vehicle emissions are about half of exhaust

standards. The y-axis scale in Panels D-F is nearly half the scale in Panels A-C. For example,

in 1990, cars and trucks faced CO standards of 10 and 4, but emission rates for these groups

were around 4 and 2. As discussed in Section 2.1, manufacturers over-comply because

compliance is ultimately assessed against used vehicles 5 to 10 years later.

We now turn to regressions focused on each Tier of exhaust standards separately.

Effects of Tier 0 Exhaust Standards (Model Years 1957-1971)

Figure 3 shows annual emission rates over model years 1957-1971 1. Panel A shows vehicles

facing federal standards and Panel B shows vehicles facing California standards. Each line

shows a different pollutant. Federal standards regulated CO and HC in 1968. California

standards regulated CO and HC in 1966. Standards only regulated NOx or CO2 in 1972 and

1978, respectively. The vertical line in each graph shows the year before regulation began.

Figure 3 suggests that exhaust standards decreased emission rates of regulated pollutants.

Before regulation, emission rates of all pollutants were fairly flat. This is consistent with a

limited effect of productivity growth on emission rates. When California’s exhaust standards

began in 1966, CO and HC from California vehicles fell. CO and HC emission rates from

federal vehicles only decreased in 1968, when federal regulation began. The other pollutants,

CO2 and NOx, did not fall when CO and HC standards began, and slightly increased. These

other pollutants may have increased because catalytic converters were not viable in the 1960s,

so manufacturers then responded to exhaust standards with technologies like combustion

modification that can increase NOx and CO2 (National Research Council 1988, 2006).

Table 2 shows regressions corresponding to equation (1). Panel A pools pollutants.

Panels B and C show one pollutant each. Column (1) is a time series estimate comparing

across model years and within each pollutant and region. Columns (2) through (7) provide

difference-in-differences estimates comparing across regions and model years.

Table 2 shows that Tier 0 exhaust standards decreased emission rates. The time se-

ries estimate in column (1) obtains an elasticity of emission rates with respect to exhaust

standards of 0.61 (0.07). Our preferred elasticity estimate is 0.80 (0.08), from the difference-

in-differences estimate of column (2). Other estimates in levels or restricted to California or

federal vehicles are qualitatively similar (columns (3) through (6)).

Effects of Tier 1 Exhaust Standards (Model Years 1982-2000)

Figure 4 shows event study graphs analyzing the roll out of Tier 1 standards between model

years 1990 and 2000. Panels A and B show the change in exhaust standards, Panels C and D
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show the change in new vehicle emission rates, and Panels E and F show the change in used

vehicle emission rates. All these graphs plot differences between trucks and cars by model

year, with values for 1993 normalized to zero.

Figure 4 shows that Tier 1 exhaust standards decreased new and used vehicle emission

rates. Panels A, B, E and F show that used vehicle emission rates and standards change

by similar amounts. Panels C and D show that new vehicle emission rates change less,

consistent with initial firm over-compliance. The new vehicle graphs show some differences

between cars and trucks in model years 1990-1992. This pattern does not appear for used

vehicle emission rates, which matters because used vehicle rates are likely closer to actual

on-road emissions.

Table 3 reports regressions corresponding to equation (2). The pooled time-series esti-

mate in column (1) compares across model years and within categories of cars and trucks.

The difference-in-differences estimate in column (2) adds model year controls, so exploits

changes within class and across model years. Column (3) controls for other policies—fuel

economy standards, smog check standards, each vehicle’s gasoline cost per mile (equal to the

relevant tax-inclusive retail gasoline price divided by the vehicle’s fuel economy), the ethanol

fuel share, and the fuel sulfur content. Column (4) adds model year×truck linear trends.

Column (5) limits the sample to vehicles aged 4 to 6 years. Column (6) restricts the sample

to begin in model year 1990. Column (7) estimates the regression in levels rather than logs.

Panels A through C analyze used vehicles; Panels D through F analyze new vehicles.

Table 3 shows that Tier 1 exhaust standards decrease used and new vehicle emission

rates. The basic difference-in-differences estimate in column (2) is 0.86 (0.08) for used

vehicles and 0.54 (0.05) for new vehicles. Controlling for other environmental policies in

column (3) does not change the estimate.17 The other specifications in columns (4) through

(7) obtain broadly comparable results, though some point estimates are moderately larger

or smaller. Most estimates are precise. Appendix D discusses sensitivity analyses, which

obtain qualitatively similar results.

Effects of Tier 2 Exhaust Standards (2000-2010)

Table 4 evaluates the effects of Tier 2 standards on emission rates, using regressions cor-

responding to equation (3). Columns (1) through (6) repeat the specifications of Table 3.

17One interpretation of these estimates is that even if CAFE standards had not been implemented, tight-
ening exhaust standards would have decreased emission rates per mile substantially. But because a vehicle’s
air pollution emission rates change almost one-for-one with its gasoline consumption, if exhaust standards
had not been implemented, tightening CAFE standards would have decreased emissions per mile to some
extent. In this sense, each policy alone would have been sufficient to decrease emission rates, though the
decrease due to exhaust standards is larger and would have occurred even without CAFE standards.
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Columns (7)-(8) add back the abbreviated tests.

Table 4 shows that new vehicle emission rates strongly predict used vehicle emission

rates. The pooled elasticities in Panel A are generally around 0.5. Most estimates reject

elasticities of both zero and one with 99 percent confidence. Rejecting the null hypothesis

of zero implies that new vehicle emissions tests predict a vehicle’s actual emission rate.

This suggests that even if defeat devices or short-term manipulation occur, enforcement is

imperfect, or abatement technologies deteriorate unexpectedly, new vehicle emissions tests

strongly predict used vehicle emission rates.

Why are many elasticity estimates below one? Panel E of Table 4 for CO2 suggests that

measurement provides an important answer. A vehicle’s fuel economy and associated CO2

emission rate, unlike its air pollution emission rate, does not typically depreciate with age.

Hence, the primary reason why the elasticities in Panel E are below one is measurement

error both within and between new and used vehicle tests. The CO2 elasticities in Panel E

range 0.72 to 0.95; all these estimates are significantly less than one, though most are larger

than the estimates for air pollution in Panels A through D. Because air pollution emission

rates depend on fuel economy and emissions control systems, measurement error may be

more important for air pollution than for CO2.

Binned scatterplot comparisons of new and used vehicle emission rates in Figure 5 show

the tight relationship between new and used emission rates of a vehicle type. Each graph

groups all new vehicles into twenty equal-sized bins, then plots the mean used vehicle emission

rate for each bin plus the linear trend. For all three air pollutants and for CO2, the points

have linear slope, suggesting a constant elasticity of used to new vehicle emissions.

5.3 Discussion: Effects of Exhaust Standards on Emission Rates

This section has described different approaches which find elasticities of emission rates with

respect to standards generally between 0.5 and 1.0, suggesting that exhaust standards have

caused between half and all of the time series decline measured in Section 4. In this sense,

exhaust standards are effective.

How would regulation-induced innovation in abatement technology, discussed in Sec-

tion 2.2, affect interpretation of our estimates? We interpret our regressions as externally

valid to exhaust standards that are not too far beyond the technology frontier. We study

cases where technology developed or proved to be sufficient for compliance. Our estimates

have some external validity to counterfactual delays in the standards that were implemented,

because technology developed to meet these standards. Our estimates may be less exter-

nally valid for substantially more rapid tightening of standards. If standards had tightened
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by 99.5 percent in 1970, for example, the elasticity of emissions with respect to standards

would likely have been lower than we estimated.

Regulation-induced innovation, however, does not change the causal interpretation of our

estimates. One reason is the evidence from Section 2.1 that regulation is the main incentive

to clean up air pollution. Another reason comes from Tier 0. Figure 3 shows that when

Tier 0 begins in the 1960s, California regulated CO and HC in 1966, two years before the

federal government did. California vehicles decreased emission rates in 1966, but vehicles

outside California only decreased emission rates in 1968. California’s regulation shows that

technology was available for vehicles outside California in 1966, but auto manufacturers

waited to install this technology for vehicles outside California until standards required it.

A similar point across vehicle classes applies to subsequent years. Figure 2, for example,

shows that in 1984, CO standards tightened sharply for trucks but not cars, and emission

rates fell sharply for trucks but not cars. If technology alone drove the 1984 improvements in

emission rates, both cars and trucks would have installed it. The 1984 CO truck standards

may have led to innovation in pollution control technology, but auto manufacturers installed

it because standards required it. Finally, California had more stringent standards during the

Tier 2 era that we study using our quantitative model. For example, the California HC stan-

dard for light-duty vehicles was 25-40% below the federal standard, and the NOx standard

was 64-88% lower, suggesting that tighter federal standards would have been technologically

feasible.

The rest of the paper builds on these results. Section 6 uses the data to describe stylized

facts. The analytical and quantitative models of Sections 7 and 8 take from this section that

exhaust standards are effective, assess their efficiency, and analyze counterfactuals.

6 Stylized Facts on Cost-Effectiveness and Age

6.1 Emission Rates Increase with Age

Figure 6 plots mean emission rates and annual driving by model year and age. Panels A

through C show air pollution, Panel D shows CO2, and Panel E shows annual miles traveled.

The y-axes have logarithmic scale. These visually show the extent to which deterioration of

emissions control systems has changed across model years.

The upward-sloping lines in Panels A through C of Figure 6 demonstrate that emission

rates for vehicles form a given model year increase with age. This is unsurprising because

emissions control systems deteriorate with age. The upward shift of the lines for earlier model

years in Panels A through C implies that earlier model years have higher emission rates. The
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age-emissions profile is similar for most groups of model years, though NOx controls may

be deteriorating more gradually. The y-axis scale implies that these effects are proportional

to age. Panel D shows that none of these patterns occur for CO2. The downward slopes in

Panel E imply that older vehicles drive fewer annual miles. This may occur because most

households prefer to drive the newer of two vehicles (Archsmith et al. 2020) or because the

households that own older vehicles have lower driving demand.

Several additional analyses in the Appendix show similar conclusions but with differ-

ent contexts or methods. Appendix Figure A4 shows similar patterns in other states and

countries and for heavy duty trucks. Appendix Figure A5 shows similar patterns but from

regressions including age fixed effects, odometer readings, and vehicle identification number

fixed effects. It shows that a vehicle’s CO2 rates and associated fuel economy do not change

with age, but a vehicle’s air pollution exhaust emission rate increases rapidly with vehicle

age. This difference makes sense—as vehicles age, catalytic converters and other pollution

abatement technologies break down, increasing emissions. But because end-of-pipe pollu-

tion control technologies are not commercially viable for CO2, vehicles have no CO2 control

systems that would break down with age, so a vehicle’s CO2 emission rate does not change

with age.

Does age or odometer account for these patterns? Appendix Figure A5 does control for

odometer, and finds that age independently increases deterioration. Appendix Table A6

shows regression analogues to these graphs, suggesting that both age and odometer readings

independently increase emissions. Deterioration due to mileage occurs in part because even

the low sulfur content in fuel decreases catalytic converter effectiveness. Age may indepen-

dently cause deterioration because variable weather, aging seals and electronics, and failure

of complementary technologies like oxygen sensors and direct injection can decrease catalyst

efficiency. We focus on age since existing registration fees already depend on it. We are not

aware of US fees that directly depend on odometer readings; because age, unlike odometer,

is not susceptible to manipulation; and because taxes that vary only with vehicle age and

type simplify modeling the intensive margin of driving choice.

6.2 Older Vehicles Account for a Large Share of Emissions

Exhaust standards limit used vehicle emission rates through in-use testing, but in-use tests

only apply to vehicles up to 10-15 years old. Exhaust standards are therefore unlikely to

equalize abatement costs across vehicles of different ages, which is a necessary condition

for cost-effectiveness (the equimarginal principle). Intuitively if older vehicles cause a large

share of emissions, exhaust standards will be less cost-effective.
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Figure 7 plots the cumulative distribution of emissions versus vehicle age. The graph

shows a cross-section of vehicles in calendar year 2014 from Colorado smog check data.

Appendix Figure A6 shows similar patterns from a cohort of model year 1993 vehicles and

from Colorado and multi-state remote sensing data.18 This graph shows a smaller emissions

share for the old vehicles in the 1993 cohort, consistent with the idea that model year rather

than aging accounts for the majority of this pattern. The vertical red lines show ages 10 and

15. Each graph shows separate curves for each pollutant.

Figure 7 shows that a large share of air pollution emissions come from vehicles older

than 10 to 15 years. In these data, 70 to 80 percent of air pollution emissions come from

vehicles older than 10 years. Vehicles older than 15 years account for 30 to 50 percent of air

pollution emission but only 10 percent of CO2 emissions. Less CO2 comes from older vehicles

because fuel economy, unlike air pollution, does not change with vehicle age and because fuel

economy standards have changed less than exhaust standards across model years. Although

older vehicles are driven fewer miles per year and are more likely to be scrapped, their air

pollution emission rates are high enough to offset the lower mileage.

Secular trends in vehicle longevity in the US fleet amplify these pollution differences.

Appendix Figure A7 shows large linear trends in the mean age of US vehicles over the last

half century. In 1970, the mean US vehicle was 6 years old; in 2018, mean vehicle age

had doubled to 12 years. This aging likely reflects both improved durability technology for

automakers and increasing new vehicle prices via the Gruenspecht Effect.

6.3 Annual Registration Fees are Higher on Cleaner Vehicles

Exhaust standards mandate clean new vehicles. They do not give consumers an incentive

to scrap dirty old vehicles and do not give manufacturers an incentive to decrease pollution

from aging vehicles. Annual ownership fees that increase with the pollution from a vehicle

would give drivers and auto manufacturers incentives to decrease pollution.

Many states and local governments already impose annual registration fees for vehicles

that vary with a vehicle’s attributes. How do these existing fees vary with emissions?

Figure 8 plots the national mean annual registration fee in dollars for vehicles aged 4 to

18 years. The solid blue line shows the mean annual registration fee; the dashed red line

shows the annual air pollution externality from vehicles on the road in calendar year 2000,

all in 2019 dollars.

Figure 8 shows that dirtier vehicles face lower registration fees. In other words, these

18We show cross-sectional data for 2014 since it is the most recent year when Colorado required smog
check test of vehicles aged 4 and older. The Appendix shows cohort data from 1993 since this is the earliest
model year where we observe tests of four-year old vehicles.
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registration fees implicitly subsidize rather than tax emissions. Owners of 18-year old vehicles

pay $40 less in annual registration fees than the owners of 4-year old vehicles do. But 18-year

old vehicles create about $700 more in air pollution damages than 4-year old vehicles do.

Registration fees decrease in age, while annual externalities increase in age. Modifying this

incentive is a key consideration of the next two sections.

7 Analytical Model

The previous sections show that exhaust standards decrease emission rates and that regis-

tration fees are higher on cleaner vehicles. We now develop a model with few functional form

assumptions to clarify how these standards and fees affect scrap and welfare.

Motivated by the trends, regressions, and stylized facts of Sections 4 through 6, we focus

on differences in policy and emissions between vehicles of different ages and model years.

The quantitative model in Section 8 has heterogeneity within vehicle ages and transition

dynamics; here we focus on the steady state. These models seek to clarify mechanisms by

which exhaust standards affect emissions and to address questions that the previous sections

cannot, such as how different types of exhaust standards and registration fees affect social

welfare.

7.1 Analytical Model Setup

We consider a single vehicle type that can last up to two time periods t. A vehicle is initially

new (n) and becomes used (u) in the next period. Driving new and used vehicles emits

pollution. Manufacturing new vehicles also emits pollution. A measure one continuum of

risk-neutral consumers demands vehicles. Pollution is a pure externality, so consumers ignore

it in making expenditure decisions. Denote the size of the new and used vehicle market as

N and U , respectively, where N + U = 1 in a period, so that there is no outside good.19

Demand reflects consumers’ different taste for new versus used vehicles. We normalize

the value of a used vehicle to 0 and let w denote willingness to pay for a new vehicle,

distributed G(w), which we assume is non-degenerate and continuous with no mass points.

All w are weakly positive, i.e., no consumer prefers a used over a new vehicle at the same

price. We assume the distribution G(·) is the same for all consumers and time periods and

thus abstract from income effects.

19Appendix E.2 derives results allowing for an outside good. The key insights of the model derived here
carry over to that model, with the exception of one comparative static related to the size of the used vehicle
market, which is ambiguous in the case with an outside good.
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New and used vehicle supply have different properties. New vehicle supply comes from

competitive, constant returns manufacturing with marginal cost and thus producer price

ψs. We write the final price to consumers of a new vehicle as ψ = ψs + τ , where τ is

any tax on new vehicles, explained below. The supply of used vehicles reflects consumer

scrap, as follows. A consumer who buys a new vehicle receives a repair cost draw k from

the distribution H(k), which we assume is non-degenerate and continuous with no mass

points. We assume this distribution is the same for all consumers and time periods. In the

next period, this consumer either scraps the vehicle or resells it as used in a competitive,

frictionless resale market at price p. We assume the value of scrap is zero.20

7.2 Analytical Model Equilibrium

A steady-state equilibrium is a used vehicle price p in all time periods such that consumers

choose new versus used vehicle purchases and scrap versus repair to maximize utility, and

supply equals demand for both new and used vehicles.

Utility maximization lets us describe used vehicle supply in more detail. A consumer

who purchases a new vehicle in one period will repair it in the next period if the used vehicle

price exceeds the owner’s repair cost draw (i.e., if p > k) and will scrap it otherwise. Hence,

the share of new vehicles that are repaired and survive as used vehicles equals the cumulative

distribution of repair costs, evaluated at the used vehicle price: H(p). Correspondingly, the

number of used vehicles supplied equals U s = H(p)N . In equilibrium, N = 1−U , so we can

write used vehicle supply as U s = H(p)/(1 +H(p)).

We can also describe used vehicle demand in more detail. The value of a new vehicle to

a consumer is its benefit minus its price, w − ψ plus its expected resale value net of repair

costs. When deciding whether to scrap or repair a vehicle, the owner receives a repair cost

draw. They will repair the vehicle so long as the repair cost k is less than the used vehicle

price; otherwise the vehicle is scrapped. Anticipating this, the ex ante expected resale value

net of costs is H(p) (the probability that a vehicle will be repaired) times (p− k̄), where k̄ is

the expected cost of repair, conditional on repair being optimal.21 Thus, a consumer will buy

a new vehicle at the start of the period if and only if the surplus from a new vehicle exceeds

that of a used, i.e., w−ψ+H(p)(p− k̄) > −p. Equivalently, the demand for used vehicles is

the probability a consumer does not buy a new vehicle, which is Ud = G(ψ−p−H(p)(p−k̄)).

20A uniform scrap value would be capitalized into used vehicle prices, which would shift up the price of all
used vehicles in equilibrium, but this would not impact the sign of our comparative statics. Adding a scrap
value would be equivalent to shifting the distribution of w by a constant, as the scrap value is folded into
the normalized value of a used vehicle.

21The truncated mean k̄ of the repair cost distribution is a function of p: k̄ = 1/H(p)×
∫ p
−∞ kdH(k).
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Equating supply and demand for used vehicles provides the key equilibrium condition,

where p denotes the equilibrium price:

H(p∗)

1 +H(p∗)
= G(ψ − p∗ −H(p∗)(p∗ − k̄)). (4)

The left-hand side of equation (4) describes used vehicles supplied as a function of used

vehicle prices p; the right-hand side describes used vehicles demanded as a function of p.

Our main results are comparative statics that describe changes in this equilibrium that

result from changing primitives. Because supply (H(p)/(1 + H(p)) is increasing in p and

demand (G(ψ−p−H(p)(p− k̄))) is decreasing in p, there will be a unique steady state p∗.22

7.3 Analytical Model: Pollution and Policy

We assume the following about pollution, echoing empirical findings from Sections 5 and 6.

A new vehicle creates pollution Φ from production and φn from exhaust. A used vehicle

creates exhaust emissions φu. The difference in externalities between a new and a used

vehicle is ∆ ≡ Φ + φn − φu. Exhaust emissions for a used vehicle exceed exhaust emissions

for a new vehicle at a given time (φu > φn), because tightening exhaust standards cleaned

up new vehicles over time or because emissions control systems deteriorate. If ∆ > 0, a

new vehicle emits more than a used vehicle, after accounting for production and retirement

emissions.

We consider two policies. Exhaust standards ω constrain new vehicle exhaust emissions:

φn ≤ ω. Tighter exhaust standards increase manufacturing costs, so ψs
′
(ω) ≤ 0.23 Reg-

istration fees for new or used vehicles are τn and τu. Revenues are recycled lump-sum to

consumers. With no outside good, only the new-used difference in tax rates τ ≡ τn − τu is

needed for our analysis. We can write the consumer’s price of a new vehicle as ψ = ψs(ω)+τ .

Welfare in the model is private consumer welfare minus costs minus the externality. Costs

include used vehicle repair and new vehicle production. As is standard, the potential for

welfare improvement from policy comes from correcting the market choice (in this case the

share of new vehicles) that prevails when agents ignore externalities. Appendix E.2 shows

the model with an outside good, where the outside good share also influences welfare. Our

22Uniqueness follows from our assumption that the H and G distributions have no mass points, so there
are no flat portions of the supply or demand curve. One exception is if the primitives imply a corner solution
where all vehicles are new. This would occur, for example, if the minimum repair costs are sufficiently high.
These extremes seem to have little practical interest, so we focus on interior solutions.

23Because we describe a steady-state equilibrium, we focus on exhaust standards that cause a constant
shift in vehicle manufacturing costs. If the industry learns over time how to reduce emissions at lower cost,
then a steady-state standard is tightening over time such that the marginal cost remains constant.
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baseline empirical model assumes perfect competition; Appendix F.9 shows results under

imperfect (Bertrand) competition, where welfare also reflects profits.

7.4 Analytical Model Results

Proposition 1. A policy that increases ψ will decrease the scrap rate and increase the market

share of used vehicles. The derivative of scrap with respect to new vehicle prices is

d(1−H(p∗))

dψ
= −h(p∗)

(
1 +H(p∗)

h(p∗)
g(w∗)(1+H(p∗))

+ (1 +H(p∗))2

)
< 0 (5)

where w∗ = ψ − p∗ − H(p∗)(p∗ − k̄) is the marginal type indifferent between used and new

vehicles in equilibrium.

Appendix E.1 shows proofs. On the left-hand side of equation (5), the numerator of the

derivative is the scrap rate and the denominator is the new vehicle price. The right-hand side

of equation (5) evaluates this derivative. Proposition 1 shows that tighter exhaust standards

extend vehicle lifetimes by decreasing scrap. Tighter exhaust standards – a lower ω – increase

production costs ψ. The negative sign of equation (5) shows that higher production costs

decrease equilibrium scrap and thus extend vehicle lifetimes. The mechanism is intuitive.

Increasing new vehicle prices causes higher demand for and thus price p∗ of used vehicles.

For any repair cost draw k, higher used vehicle prices make a consumer less likely to scrap

vehicles.

A simple example may clarify. Imagine a driver who crashes an old car, has it towed to

a repair shop, and must decide whether to repair or scrap it. If exhaust standards are weak,

vehicle production costs and used vehicle values will be relatively low. The cost of repairing

the crashed vehicle is more likely to exceed the vehicle’s value, so the driver is more likely

to scrap the vehicle. If exhaust standards are stringent so that production costs and used

vehicle prices are high, the driver is more likely to find that the vehicle’s value exceeds the

repair cost, and so more likely to repair the vehicle, extending its lifetime.

Proposition 1 also shows that making registration fees higher for new than used vehicles,

as Figure 8 shows happens on average in the US, extends vehicle lifetimes. The same holds

for any new-vehicle tax—higher relative registration fees on new vehicles are equivalent to a

higher τ . The negative sign on the right-hand side of equation (5) shows that this increase

in new vehicle purchase prices decreases scrap and extends vehicle lifetimes.

The Gruenspecht Effect posits that policies increasing the prices of new durable goods will

extend the life of used durables, which often pollute more. We believe Proposition 1 provides

the first formal derivation of it. Gruenspecht (1982) originally considered policy exempting
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old power plants from pollution standards imposed on new plants, but the Gruenspecht

Effect is cited more broadly in discussions of policies affecting power plants, vehicles, home

and building construction, and other durables. (Keohane et al. 1998; Stavins 2006; Bushnell

and Wolfram 2012; Jacobsen and van Benthem 2015; Anderson and Sallee 2016).

Proposition 1 also implies that vehicles survive longer than is socially optimal if and

only if τ > ∆. In other words, the market share of used vehicles is larger than is optimal

if new vehicles are taxed more than their relative pollution damages. The reason is that if

consumers internalized pollution externalities, they would perceive a price difference between

new and used vehicles equal to (ψ+∆)−(p−H(p)(p− k̄)). Because we abstract from outside

goods here, this is equivalent to treating the new vehicle price as ψ+ ∆.24 This leads to the

second result.

Proposition 2. Welfare in a time period is maximized when τ = ∆. If τ > ∆, then moving

to τ ′ where τ > τ ′ ≥ ∆ will increase welfare; if τ < ∆, then moving to τ ′ where τ < τ ′ ≤ ∆

will increase welfare.

This result is intuitive. In this model, registration fees that differ between new and used

vehicles by τ = (Φ +φn)−φu can fully correct the pollution externality.25 Welfare in a time

period is improved if we move the tax rate closer to the fully-corrected benchmark.

Figure 8 shows that existing registration fees are higher for newer and cleaner vehicles.

Section 6 shows that used vehicles have higher emission rates than new vehicles. If emissions

from manufacturing new vehicles are not too large, Proposition 2 implies that flattening

registration fees or changing the sign of the correlation between registration fees and age

would increase welfare.

Intuitively, exhaust standards and registration fees are complementary. If a counterfac-

tual policy makes exhaust standards tighten more rapidly across model years, the gap ∆

between emissions of used and new vehicles grows, and the scrap rate deviates further from

the optimum. Registration fees correcting the scrap rate then remedy a larger distortion,

implying a greater return to taxing the emissions of used versus new vehicles.

To roughly quantify how pollution rates differ by age, we divide the year 2000 fleet into

two categories, new through 9 years old (“new”), and 10 years or older (“used”). Vehicles

9 years and younger accounted for 57% of the fleet and 65% of miles driven. Including

estimated production emissions, the typical “new” vehicle causes $486 of damages per year,

24With an outside good, the same results carry over with one exception. Raising the relative price of
new vehicles induces a Gruenspecht effect in the same way. The only difference is that, while used vehicles
represent a larger share of total vehicle market (i.e., the fleet is older), the total number of used vehicles may
rise or fall because the total vehicle market contracts.

25In this model, this is the optimal fee policy for a given exhaust standard. In a more detailed setting,
miles driven and maintenance could respond to policy, so registration fees would not restore the first-best.
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while “used” vehicles cause $1,364 of damages per year. The difference in damages between

used and new vehicles, δ, is then $878. These calculations are affected by age and model

year because they come from a 2000 cross-section of the fleet, and they take as given the

mileage by model year and empirical scrap rates. Thus, despite being driven less, the typical

used vehicle produces 2.8 times as much pollution as new vehicles. An efficient relative tax

rate would tax used vehicles, whereas existing policy puts a relative tax on new vehicles.

This binary division of the fleet hides variation in damages and taxes through a vehicle’s

life, which the next section explores in detail.

8 Quantitative Model

This quantitative model connects to the paper’s other sections in several ways—its analysis

of cost-effectiveness and efficiency complements the regressions’ analysis of effectiveness; its

assumptions and choice of counterfactuals reflect empirical findings that exhaust standards

are effective and that emissions rates increase with age; the Colorado smog check pollution

data described in Section 3 provide key model inputs; and Propositions 1 and 2 in the ana-

lytical model help guide the discussion of counterfactuals. Some key elasticities here come

from existing evidence—for example, the scrap elasticity comes from our prior work (Jacob-

sen and van Benthem, 2015) and the pollution control cost function comes from engineering

estimates (U.S. EPA, 1999, 2014a).

8.1 Quantitative Model Details

The model setup is as follows. A representative agent serves several roles. She demands

purchase of new vehicles and rental of used vehicles. She also chooses whether to scrap or

repair used vehicles available from the previous time period, and therefore she also serves

as a competitive “supplier” of used vehicles.26 Firms produce new vehicles and engage in

Bertrand or perfect competition. Motivated by the differences in exhaust standards and

emission rates between vehicle classes and ages found in Sections 5 and 6, we allow vehicles

to be differentiated by over 500 combinations of class, size, age, and manufacturer. The

model accounts for evolution of the vehicle fleet over time.27

26We would obtain analytically equivalent results, at the cost of additional notation, from modeling a
representative consumer and used vehicle supplier as separate agents.

27For tractability and data availability, we leave spatial modeling across US counties for future research.
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Agent Utility and Demand

Demand for vehicles (new and used) is derived by assuming that the representative agent

maximizes a constant elasticity of substitution (CES) utility function U(v, x) in period t (t

subscript suppressed) over a composite vehicle v and other goods x, given income M :

max
v,x

U(v, x) = (αvv
ρu + αxx

ρu)
1
ρu − Ω (6)

s.t. evv + exx ≤ M. (7)

Here αv and αx are scale parameters that determine demand at baseline prices, and ρu

represents the elasticity of substitution between vehicles and other goods. Pollution damages

Ω are a pure externality, which the agent takes as given. The agent does not have “green

preferences” leading her to buy cleaner vehicles out of environmental concern. The per-period

prices of the composite vehicle and the composite good are ev and ex.

Demand for the composite vehicle v comes from five sequential CES utility nests: vehicles

versus other goods, class c, size s, age a, and manufacturer m. Within a nest, demand

depends on the per-period cost ec,s,a,m of a differentiated vehicle:

ec,s,a,m = rc,s,a,m + τc,s,a,m + σc,s,a,m. (8)

This cost includes a vehicle rental rate r, which reflects depreciation and repair; vehicle

registration fees τ , with revenues rebated lump-sum; and fuel, insurance, and other operating

costs σ. In equilibrium, rental rates, taxes and other ownership costs are capitalized in

vehicle values. This is a “rental” model of vehicles, so the consumer problem can be solved

in isolation each period. Beliefs about next period vehicle prices influence rental costs r,

which we discuss further below when describing scrap decisions.

Optimizing this problem implies a standard CES demand system where qdc,s,a,m denotes

demand for each vehicle type conditional on prices. When policy changes per-period costs,

the agent reoptimizes vehicle quantities within each nest. Appendix F.3 details this deriva-

tion.

We allow miles driven to vary by vehicle class and age based on data but treat mileage

within vehicle type×age as exogenous. Our counterfactual policies change the cost of owning

a vehicle but not the per-mile operating cost, so we expect their main impact to be on changes

in fleet composition rather than miles traveled.
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New Vehicle Manufacturers

We present results for both where new vehicle manufacturers engage in either Bertrand or

perfect competition. For each class×size, manufacturer m chooses prices p, emissions φ, and

fuel economy f to maximize profits in time period t, subject to exhaust and fuel economy

standards (subscripts m, a = 0 suppressed):

max
pc,s,t,φc,s,t,fc,s,t

∑
c,s=1,2

[(
pc,s,t − Cb

c,s − C
φ
c,s,t(φc,s,t)− C

f
c,s,t(fc,s,t)

)
∗ qdc,s,t(p, f)

]
(9)

Cφ
c,s,t(φc,s,t) = χtζc,s

(
φc,s,0
φc,s,t

− 1

)
+ ξc,s,t (10)

s.t. φc,s,t ≤ φ̄c,s,t (11)

s.t.

∑
s q

d
c,s,t(p, f)∑

s(q
d
c,s,t(p, f)/fc,s,t)

≥ f c,t, c ∈ 1, 2. (12)

In the profit equation (9), Cb
c,s represents per-vehicle production cost at time period t = 0

with emissions and fuel economy levels as observed in the baseline, Cφ
c,s,t is the per-vehicle

cost of controlling exhaust emissions away from the baseline, and Cf
c,s,t is the per-vehicle cost

of improving fuel economy relative to the baseline.

Demand qdc,s,t depends on the vector of prices and fuel economies for all vehicles (p, f).

Any profits are rebated lump-sum to consumers. We model perfect competition using the

limit as
∂qdc,s,t(p,f)

∂pc,s,t
and

∂qdc,s,t(p,f)

∂fc,s,t
go to infinity. In this case the first-order conditions in (9)

reduce to zero profit conditions that also satisfy the exhaust emissions and fuel economy

constraints in (11) and (12).28 In equilibrium, competitive new vehicle prices translate into

per-period costs r and fuel economy translates into per-period operating costs σ.

Equation (10) describes the cost function for controlling exhaust emissions, in years 2002

and beyond, above a baseline level of control applied to vehicles in model year 2000. It

builds on the general convex form in Bovenberg et al. (2008). The term χ < 1 describes the

rate of innovation in pollution control technology. The term ζc,s varies the relative control

cost by vehicle class and size. The residual ξc,s,t comes from the least squares calibration

of χ and ζc,s to match the EPA’s engineering cost estimates for Tier 2 and Tier 3 exhaust

standards (Appendix F.6 provides details). This form and calibration has useful properties—

adding no control above that in the 2000 model year adds no cost beyond that in the 2000

model year; a given level of emissions control becomes cheaper over time; marginal pollution

28Under perfect competition, vehicles are priced so pc,s,t = Cbc,s + Cφc,s,t(φc,s,t) + Cfc,s,t(fc,s,t) plus the

shadow cost of vehicle c, s with respect to the fuel economy constraint in time t, and so φc,s,t ≤ φ̄c,s,t for
each vehicle.
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control costs rise smoothly; it exactly matches EPA’s projected costs in a world where

emissions standards are introduced at the historical rate; and it adapts engineering data from

the EPA’s analyses when applying arbitrary counterfactual exhaust standards. Sensitivity

analyses examine alternative control costs. Motivated by the regressions in Section 5 and

the idea that manufacturers primarily or only change exhaust rates due to standards, we

assume that exhaust standards bind for all manufacturers.

Exhaust standards φ in equation (11) cap exhaust emissions per vehicle, separately by

vehicle class. We calibrate φ to historical data which already includes any over-compliance.

We assume the same over-compliance persists in counterfactuals. Fuel economy (CAFE)

standards require that the harmonic average of fuel economies within a class c ∈ (car, truck)

must exceed f c,t, which is the form of CAFE relevant over most years this model ana-

lyzes. Because fuel economy standards average within a manufacturer×class, firms equalize

marginal compliance costs across vehicles in each class.

Vehicle Scrap Decisions

We refer to the representative agent’s capacity as a competitive supplier of used vehicles

as “vehicle rental suppliers.” Vehicle rental suppliers begin each period with a stock of

used vehicles from the previous period and take as given rental rates ra,t for used vehicles

(subscripts c, s and m suppressed). At the period’s start, each vehicle receives a repair cost

draw ka,t that must be paid to survive, or the vehicle is scrapped. To generate a constant-

elasticity scrap decision, we assume the cumulative distribution of repair cost shocks is

H(ka,t) = 1 − ba(ka,t)γa , where ba is a scale parameter (we calibrate) and γa (we take from

the literature) controls the elasticity of the scrap rate with respect to vehicle value. This

cumulative density corresponds to a probability density h(ka,t) = −baγa(ka,t)γa−1 defined

over the support ka,t ≥ (1/ba)
(1/γa). Vehicle rental suppliers maximize current and expected

rental receipts minus the cost of repairs and new vehicle purchases.

Vehicle rental suppliers expect that rental rates follow E[rc,s,a,m,t+1] = rc,s,a,m,t.
29 With

these expectations, the sequence of used vehicle resale values is (derived in Appendix F.4):

pamax,t = ramax,t

pa,t = ra,t + (1− ya+1,t)
(pa+1,t − k̄a+1,t

1 + δ

)
, a = 1, . . . , amax − 1. (13)

29We do not assume rational expectations about future vehicle rental rates but we do adjust expectations
based on upcoming changes in fuel economy and registration fees. This adjustment happens at a slower
rate than if suppliers had fully forward looking expectations; see Appendix F.7. “Surprises” are possible
along transitions after a policy shock, but once the system reaches a new steady state, this form of naive
expectations will, by definition of the steady state, match fully forward looking expectations.
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Here δ is the per-period discount rate, ya,t is the scrap rate, and k̄a,t is expected expenditure

on repair per vehicle of a given age, which follows from the repair cost density h(ka,t):

k̄a,t ≡ E(ka,t|ka,t < pa,t)

=
b
−1/γa
a γa − baγap1+γaa,t

(1 + γa)
(
1− bapγaa,t

) . (14)

Applying the used vehicle values from (13), vehicle rental suppliers choose the following set

of scrap rates and thus used vehicle supply:

ya,t = ba(pa,t)
γa

qsa,t = qa−1,t−1 ∗ (1− ya,t). (15)

We let γa vary with class and size and choose ba to match scrap rates in the baseline data.

Vehicle rental suppliers also choose how many new vehicles to purchase. Vehicle manu-

facturers sell new vehicles at price p0,t (0 refers to age; t to the time period). Because vehicle

rental suppliers earn zero expected and realized profits in steady state, they purchase new

vehicles until their profits are zero; r0,t equals depreciation between new and one-period old

vehicles adjusted for repair and scrap:30

r0,t = p0,t − (1− y1,t)
(p1,t − k̄1,t

1 + δ

)
. (16)

Because equation 13 shows that p1,t is a function of rental prices and the repair cost density,

new vehicle rental price becomes a function of new vehicle purchase price, used vehicle rental

prices, and the repair cost density.

Equilibrium and Welfare

A competitive equilibrium of this model is a series of vectors of new vehicle prices, used

vehicle rental rates, new vehicle emission rates, and new vehicle fuel economy levels

(pc,s,0,m,t, rc,s,a,m,t, φc,s,0,m,t, fc,s,0,m,t) such that the representative agent maximizes utility (6)

subject to the budget constraint (7); scrap decisions follow equation (15); vehicle manufac-

turers maximize profits as in (9) subject to exhaust and fuel economy standards in (11) and

30Along transition paths additional accounting flows need to be tracked. In particular, the supplier can
experience rental flows that are greater or less than the depreciation it assigns in any given year along a
transition. The timing of changes in accounting profits depends on the depreciation method the supplier
uses to value its capital. Appendix F.9 finds that, over the long run, welfare does not depend importantly
on this choice; the depreciation method influences only the timing of perceived gains and losses.
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(12); and supply of each vehicle equals demand (qsc,s,a,m,t = qdc,s,a,m,t). We solve for equilib-

rium in each time period in sequence, by iteratively applying the exhaust and fuel economy

constraints, and using a globally convergent quasi-Newton algorithm (Broyden’s method;

Appendix F.5 provides details).

We measure the effect of counterfactual policy on social welfare from the equivalent

variation of utility. Exhaust standards and registration fees affect social welfare by changing

vehicle manufacturing, demand decisions, and environmental externalities.

8.2 Data and Parameters

This model analyzes two vehicle classes (car and truck), two sizes (small or large), nineteen

age categories (ages 0 to 37, grouped in two-year bins to reduce the computation) and

seven manufacturers (Ford, General Motors, Chrysler, Toyota, Honda, Other Asian, and

European). There are thus 28 vehicle types per age and 532 (=28*19) vehicle types.

We summarize data and parameters for the quantitative model here; Appendix F.1 and

Appendix Table A7 provide details. We calibrate the model to leading industry data on

vehicle prices and composition for the 2000 U.S. vehicle fleet and follow vehicles through

2020;31 Appendix F.2 discusses how baseline model outputs compare to the data. This period

lets us observe the evolution of emission rates over the following 20 years. We use our life cycle

measure of the emissions from the supply chain of manufacturing a new vehicle. The model

also incorporates age, class, and size specific averages for vehicle miles traveled. We take

the elasticity of the scrap rate with respect to vehicle value from Jacobsen and van Benthem

(2015). We calculate the value of external damages Ω outside the equilibrium algorithm since

it is additively separable.32 We measure pollution damages from the AP3 model (Tschofen

et al. 2019), which accounts for emissions from each US county, atmospheric transport (i.e.,

wind speed and direction), functions relating ambient pollution concentrations to outcomes

like mortality, and the value of a statistical life. Our baseline quantification analyzes perfect

competition among new vehicle manufacturers, though a sensitivity analysis accounts for

market power.33 We discuss sensitivity analyses varying many of these parameters.

31We begin in the year 2000 because it lets us follow vehicle types as they age. This primarily encompasses
the roll out of Tier 2 exhaust standards.

32It is Ωt =
∑
c,s,a,m φc,s,a,m,tvmtc,s,aθqc,s,a,m,t +

∑
c,s,m Φc,s,m,tqc,a,0,m,t, where φc,s,a,m,t indicates per-

mile exhaust emissions, vmtc,s,a denotes vehicle miles traveled, θ are damages per ton of emissions, and
Φc,s,m,t reflects damages from emissions associated with the manufacturing of a new vehicle.

33The baseline quantification assumes perfectly competitive manufacturers because then pollution exter-
nalities provide the only distortion, letting us focus on the welfare effects of alternative policies that are
second-best along a single dimension.
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8.3 Counterfactual Policies

We evaluate two classes of policy.34 The first changes exhaust standards. Actual Tier 2

exhaust standards rolled out over the period 2004 through 2006 then applied through model

year 2016. Data from Section 5 indicates that annual damages from new vehicles decreased

by 77 percent during the roll out of Tier 2 standards. We consider counterfactual policies

that delay or accelerate these improvements by four or eight years. We also consider a

uniform tightening of exhaust standards by 10 percent. We implement these counterfactuals

by changing exhaust standards φc,s,t.

We choose these exhaust standard counterfactuals for several reasons. Tier 2 is the main

set of exhaust standards which changed over the years 2000-2020 where we have best data

coverage. Studying acceleration or delay of these standards lets us measure the annual

value of Tier 2. Policymakers also frequently debate the timing of important environmental

policies. Studying a 10 percent change in exhaust standards helps think about broad general

changes in exhaust standards.

One could think of accelerating Tier 2 as encouraging earlier adoption of abatement

technologies in a scenario where they were available. Some evidence suggests this scenario

is plausible. Increasing catalyst mass (precious metals—palladium, platinum, and rhodium)

is available in any year at additional cost and represents a large component of abatement

costs (U.S. EPA 2014a). Appendix Table A8 shows that 70 to 90 percent of new vehicles

met Tier 2 standards four years early, and 50 percent met Tier 2 standards eight years early.

The share emitting less than half of Tier 2 standards early (i.e., that overcomplied) was

lower. Pinning down the precise technological feasibility of implementing standards four to

eight years early is beyond the scope of this paper, but we believe these counterfactuals are

realistic enough to be relevant.

The second class of counterfactuals covers four possible changes to annual registration

fees. The first adds fees equal to the annual pollution damages of each age×vehicle type.

The second scales these fees to be revenue-neutral. The third imposes fees on new vehicles

only, reflecting lifetime environmental damages. The fourth makes registration fees flat.

We implement these counterfactuals by changing registration fees τ in equation (8). These

counterfactuals hold the path of exhaust standards fixed at their actual, historical value,

34The quantitative model is flexible enough to analyze many other possible types of policies, such as a tax
on vehicle miles travelled (VMT). We have chosen to save VMT taxes and other classes of counterfactuals
for future work, however, for several reasons. Focusing on counterfactual registration fees and property
taxes maximizes coherence and consistency with the rest of this paper. These counterfactuals change vehicle
purchase prices but not per-mile driving costs, which lets us focus the model accordingly. Additionally,
vehicle registration fees and exhaust standards are common and vary substantially across space, time, and
vehicle type/attributes, which suggests that reforms of these policies in the direction of an externality-based
fee system may be politically feasible.
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and recycle registration fee revenue to the representative agent. Welfare gains mirror those

in Proposition 2 in the analytical model.

We study these registration fee counterfactuals for several reasons. Our empirical results

show strong age deterioration, so we focus on a policy targeting vehicle age. State and

local governments charge registration fees that vary with vehicle attributes. The technical,

and perhaps political, ability to consider such policies makes reforms in the direction of

externality-based fees interesting and plausible. A full damage-based type×age fee is the

natural baseline to evaluate even if states are more likely to implement partial versions.

Adding revenue-neutrality to the fee system may further improve political feasibility. Fi-

nally, many existing policies target new vehicles, so restricting fees to those vehicles may be

politically feasible.

8.4 Results

Table 5 shows how counterfactual policies affect several outcomes. Column (1) describes

market surplus, equal to consumer surplus under perfect competition. Column (2) shows the

change in pollution damages. Column (3) shows the change in social welfare, and column (4)

shows the change in tax revenues, all in cumulative billions of 2019 dollars. Columns (5)

through (7) show the percent change in cumulative pollution emissions over the same 20-

year horizon, relative to baseline. Each row considers one counterfactual. Panel A examines

changes in exhaust standards and Panel B examines changes in registration fees.

Counterfactual Exhaust Standards

Table 5, row 1, shows that delaying implementation of Tier 2 exhaust standards by four

years decreases social welfare by $107 billion, or $27 billion per year. Delaying standards

slightly increases market surplus and massively increases pollution damages. A four-year

delay in Tier 2 increases total pollution emissions by five to ten percent. Exhaust standards

generate no tax revenue. Row 2 shows slightly smaller per-year effects for an eight-year delay

in Tier 2. Columns (5) through (7) show that an eight-year delay produces nearly double

the total pollution increase as a four-year delay. Rows 3-4 show that accelerating Tier 2 by

four or eight years increases social welfare by $113 or $175 billion in present value. While

accelerating Tier 2 decreases surplus in the vehicle market somewhat, it decreases pollution

damages by far more. Row 5 of Table 5 describes a more modest 10% improvement in

standards relative to the baseline. This increases welfare by $25 billion over 20 years.

Several benchmarks suggest these magnitudes are economically important. If the bene-

fits of Tier 2 were measured against a value of a statistical life of $10 million, they would
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represent around 2,700 fewer deaths per year. This is an appropriate benchmark because

almost all the monetized benefits of decreasing NOx and VOC emissions are due to avoided

premature mortality (Tschofen et al. 2019). Another benchmark is other recent environmen-

tal policies. An important cap-and-trade market for industrial NOx implemented over this

period, the NOx Budget Program (NBP), prevented an estimated 2,000 premature deaths

per year (Deschenes et al. 2018). Thus, Tier 2 exhaust standards create about 35 per-

cent larger annual health benefits due to avoided premature mortality than this prominent

cap-and-trade market. Comparing columns (1) and (2) of Table 5 suggests Tier 2 has a

benefit/cost ratio of ten to fifteen; this ratio is in line with those of other recent federal air

quality regulations (Keiser et al. 2019). If one took the pollution changes documented for

Tier 0 and Tier 1 in Section 5 and extrapolated the types of numbers estimated here for Tier

2, however, they would likely imply welfare gains from Tier 0 and Tier 1 exhaust standards

in the trillions of dollars.

Counterfactual Registration Fees

We also consider counterfactuals that vary registration fees. Table 5, row 6, shows that mak-

ing registration fees proportional to environmental damages produces a present-value social

welfare gain of $322 billion and produces $1.2 trillion in additional revenue over 20 years,

or $60 billion annually. These counterfactual registration fees have double the welfare gains

from accelerating counterfactual Tier 2 exhaust standards. The environmental registration

fees decrease cumulative vehicle emissions by a third.

This reform heavily taxes the oldest vehicles. Figure 9, Panel A, shows the fee that

this counterfactual imposes for vehicles of each age. These graphs average across vehicle

types within an age. The fee for 0-year old vehicles reflects both exhaust emissions and

air pollution damages from vehicle manufacturing. Vehicles more than 20 years old face an

annual registration fee of over $2,000, which exceeds the resale value of these vehicles.35

The solid line in Figure 9, Panel B, shows that this policy leads households to scrap a third

of 15-year old vehicles, half of 20-year old vehicles, and 90 percent of 25 year old vehicles.

This is an extraordinary change in the fleet of older vehicles. Put another way, most vehicles

aged over 25 and older here have environmental damages exceeding their annual ownership

35Such reforms might affect unregistered driving, though we conjecture that such effects would be mod-
est. The only estimate of unregistered driving rates we could find describes California (U.S Bureau of
Transportation Statistics 2011). Only 1% of all vehicles were unregistered more than 3 months after the
registration deadline, and practically none (0.03%) after more than two years. For comparison, estimates
suggest that over 10 percent of U.S. drivers are uninsured; thus, most uninsured drivers’ vehicles are regis-
tered. While unregistered driving may increase in response to higher registration fees, regulators can also
increase enforcement of vehicle registration requirements, which only requires observing a vehicle’s license
plate.
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cost. The dashed line in Panel B shows the environmental gains due to vehicles of each

age, which has a hump shape that peaks at vehicles of age 24. Younger vehicles have lower

emissions rates. Vehicles age 25 and older pollute more per mile, but there are few such

vehicles in the baseline and they are driven few miles per year.

Row 7 of Table 5 shows a revenue-neutral version of the age×vehicle type registration fee,

which taxes dirty vehicles and subsidizes clean vehicles (a “feebate”). It increases welfare

somewhat less, about $230 billion, because it produces composition changes but not a down-

sizing of the entire fleet, as vehicles remain under-priced on average. Rows 6-7 shed light on

the role of composition versus scale effects. Roughly, the revenue-neutral fee system creates

welfare gains through improved composition. The externality tax improves composition and

also reduces the scale of the market in line with the externality.

Table 5, row 8, shows that charging registration fees for new vehicles only, with the

fee equal to lifetime external damages from the vehicle, modestly decrease social welfare,

by $20 billion in present value. This perverse result reflects the power of the Gruenspecht

Effect highlighted in Proposition 1. Although these fees encourage new vehicle buyers to

choose cleaner vehicles, they also increase the price of all vehicles, which decreases scrap and

keeps dirty used vehicles on the road longer. This phenomenon also underscores why the

difference-in-differences regressions of Section 5 imply a mixed review of exhaust standards.

While Section 5 shows exhaust standards decrease emission rates, this model quantification

implies exhaust standards also extend the lifetime of dirtier used vehicles.

Figure 9 shows this example of the Gruenspecht Effect in action. Panel C shows that

the average new vehicle has lifetime pollution damages of about $4,500, though new vehicle

registration fees in this counterfactual vary by vehicle type and this graph shows the average

across types. Charging that externality only to new vehicles decreases purchase of new

vehicles, by over 25 percent.36 Panel D shows that the number of surviving used vehicles

increases, especially vehicles 15-30 years old. The new vehicle fee substantially extends used

vehicle lifetimes, for precisely the dirtiest vehicles.

Table 5, row 9, shows the effect of changing current registration fees to be identical

for all vehicle ages and types. Figure 9, Panel E, shows that this counterfactual decreases

registration fees by up to $50 for vehicles younger than 5 years old and increases them by

up to $30 for older vehicles. This reform increases social welfare by $18 billion in present

value and decreases pollution emissions by around 2 percent. The smaller impact for this

counterfactual versus the externality-based fee in rows 6 and 7 reflects the idea that the

inefficiency of current registration fees is less due to an implicit subsidy to pollution (which

36This relatively elastic response in the first year of policy diminishes in later years as used vintages become
in shorter supply.
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row 9 remedies) and more due to the failure to price externalities (which rows 5 and 6

address).

Appendix F.9 discusses variations in parameters, data, and assumptions about market

power, which produce qualitatively similar results. It also describes how spatially-varying

emissions rates boost the benefit-cost ratio of age-based fees in MSAs, and that bans on

vehicles become cost effective at age 14 in MSAs but only at age 26 in non-MSA areas.

8.5 Inequality, Environmental Justice, and Political Economy

This analysis provides a menu describing the consequences of different policies’ impacts on

pollution, surplus, and social welfare. A full analysis should also consider these policies’

effects on different socioeconomic groups. Incidence is important directly and for assessing

political feasibility. Concern about an equal distribution of environmental quality is a top

priority in some jurisdictions.

The counterfactuals we study affect inequality through several channels. Lower-income

households tend to own older and more polluting vehicles, so increasing registration fees on

dirtier used vehicles could have regressive initial incidence. Panel A of Appendix Figure A11

uses data from the National Highway Travel Survey (U.S. Federal Highway Administration

2001) to show that vehicle owners with household income below $10,000 have a mean vehicle

age close to 12 years, while owners with income above $80,000 have a mean vehicle age of 7

years. Similarly, Panel B shows that vehicle owners with less than a high school degree have

a mean vehicle age of 10.5 years, while owners with a graduate degree have a mean vehicle

age of 7 years. Panel C of the figure displays the distribution of vehicle ages for high and

low incomes in more detail.

Appendix Table A9 shows the change in discounted annualized fees paid across the in-

come distribution for our various policy counterfactuals, accounting for scrap of the oldest

vehicles.37 Under age×type vehicle registration fees, fees go up somewhat more for higher-

income households—they own newer cars so the per-car fee is less, but they own more cars in

total. Overall, however, this fee system is still regressive in that lower-income households pay

more as a fraction of income. A revenue-neutral age×type fee system that returns revenues

on a per-vehicle basis becomes even more regressive, again because higher-income households

own more cars. New-vehicle fees, in contrast, place much of the burden on wealthier groups,

but as shown in Table 5, fail to produce pollution improvements.

Several other factors determine the full incidence of emissions policies. First, reforming

registration fees and exhaust standards affects the resale value of used vehicles. Making

37Our main simulation uses a representative consumer. To account for differential scrap rates by income
group, we augment the model. Details are provided in Appendix F.8.
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registration fees more proportional to pollution will decrease the value of older polluting

vehicles that lower-income households disproportionately own. In the longer run, the lower

rental or ownership costs of older and dirtier vehicles will offset some of the effect of changed

registration fees.

Second, as shown in Table 5, registration fees raise substantial revenue. Overall incidence

depends on how those revenues are redistributed. Registration fees proportional to environ-

mental damages generate $60 billion in annual revenues. Dispersing revenue equally to each

household or through the income tax system could produce progressive outcomes. This is

not relevant for the revenue-neutral registration fees or exhaust standards.

Third, the health impacts of vehicle pollution reduction may disproportionately benefit

low-income households. Similar patterns occur with other corrective taxes (Allcott et al.

2019). Older and dirtier vehicles are disproportionately owned by households that reside

in low-income communities. If these vehicles are disproportionately driven near those com-

munities, or pollute them, increasing registration fees on dirty used vehicles could create

outsize environmental benefits to those communities. Transportation is a leading source of

pollution in vulnerable communities, some of which border major roads (Stuart et al. 2009;

Rowangould 2013; Carlson 2018; Apte et al. 2019). Quantifying where vehicles are driven,

separately by demographic of owner and vehicle attribute, is a complex task we leave for

future research. The net effect of the regressive fee channel and the possibly progressive

pollution channel is ambiguous and may vary with the specific counterfactual.

One other impact on political feasibility is worth noting. The registration fee policies we

analyze increase the cost of owning used vehicles, which can increase new vehicle demand.

Hence, auto manufacturers, a powerful interest group, may support such reforms, particularly

if revenue-neutral. At the same time, exhaust standards increase new vehicle prices and

encourage substitution to used vehicles, so may be expected to receive less support from

auto manufacturers.

What is the broad political feasibility of reforming vehicle registration fees? Only some

states impose registration fees that vary with vehicle value or age. The pattern of these states

does not obviously reflect geography or politics. While it is hard to generalize globally, Japan

does have a national “shaken” registration fee which increases with vehicle age. In general,

we believe that mass increases to registration fees are politically sensitive, but moderate

reforms to fee patterns, particularly revenue-neutral reforms, have political feasibility in

some areas. Our goal is related to that of the optimal taxation literature—to identify the

efficiency and equity of potential reforms, while recognizing that the political feasibility of

these reforms varies.
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9 Conclusions

Vehicle air pollution exhaust standards are arguably among the world’s most important en-

vironmental policies, particularly for transportation. They have been the subject of little

economics research. This contrasts with fuel economy standards, a separate set of regula-

tions that influential economics research has studied carefully. It likewise contrasts with the

influential research on the US Clean Air Act’s regulation of industry.

This paper examines US exhaust standards over the last half century. We first document

vast declines of over 99 percent in air pollution emissions per mile from new US vehicles

since exhaust standards began in the 1960s. Panel data regressions using various time pe-

riods, datasets, and research designs find that exhaust standards have caused most of that

downward emissions trend. Several stylized facts, however, suggest that these standards are

not cost-effective because they do not tightly regulate emissions from older vehicles. Addi-

tionally, registration fees and property taxes are lower on older and dirtier used vehicles. An

analytical model highlights the “Gruenspecht Effect,” which policy debates have informally

mentioned for decades but has not been rigorously derived before—environmental standards

and other policies raising the price of new, clean capital counterproductively extend the

lifetime of used, dirty capital. The analytical model also suggests potential efficiency gains

from increasing registration fees on old dirty vehicles. A quantitative model finds present-

value net benefits in the hundreds of billions of dollars from setting annual registration fees

equal to the pollution damages of a vehicle age×type. Using externality-based registration

fees appears to have larger benefits than further tightening standards, though both produce

substantial gains. In sum, we conclude that vehicle exhaust standards have been remarkably

effective, but they have left room for improvement in cost effectiveness, and feasible policy

reforms can thus generate large welfare gains.

Given the enormous decreases in pollution from passenger transportation this paper doc-

uments, do additional reforms have economically important magnitudes? Although pollution

used to be an even worse problem, the 37,000 annual US deaths mentioned at the beginning

highlight that pollution is still costly.

We conclude with several areas we believe are important for future work. First, how

important are issues in this paper for ongoing fleet composition trends? Although electric

vehicles represent less than 1 percent of the US fleet today, industry forecasts suggest electric

vehicles may constitute half the fleet in the year 2050 (Cage 2022). Thus, while the transition

to electric vehicles will require most of the twenty-first century, policymakers in regions with

a clean electric grid will face a trade-off between clean new electric vehicles and polluting

older gasoline vehicles. The question of how policy should deal with legacy pollution at
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that stage will mirror the questions we analyze here. Anticipating that transition may

inform policy for electric vehicles today. In addition, this paper shows steady downward

trends in emission rates even for gasoline vehicles. While we quantify effects of varying past

policy reforms, what are potential welfare gains from current or future additional reforms?

Continuing deterioration of emissions control systems with age suggests that in the future

when vehicles are cleaner, older used gasoline vehicles may continue emitting the majority

of pollution. Such analysis would require projection or imputation of many of the data used

in the quantitative model, but are relevant to future policy.

Second, are the environmental benefits of removing the most polluting older vehicles con-

centrated in low-income communities? While making annual registration fees better reflect

pollution damages can create large environmental benefits, it can also create concerns about

environmental justice because vulnerable communities may pay a larger share of those fees.

At the same time, if vehicle air pollution disproportionately affects vulnerable communities,

cleaning it up can improve the equity of overall environmental outcomes.

Third, to what extent should the kinds of policies we study differ across space? Driv-

ing in exurbs, suburbs, and city centers creates different levels of externalities, including

congestion and pollution damages. Many European cities have addressed these issues with

low-emission zones that restrict driving to relatively clean vehicles. Appendix F.9 highlights

these policies in a simple framework, but studying such questions in more detail requires

models emphasizing spatial differentiation.

Fourth, do the ideas and findings here generalize to other countries? Because most

middle- and low-income countries use exhaust standards with stringency set years behind

the US, the ideas advanced here are potentially relevant to China, India, Mexico, and many

other countries. Testing whether our findings generalize to other countries would be valuable.

Fifth, what are the magnitude, environmental, and welfare consequences of “leakage”

due to policies encouraging scrap of polluting old vehicles? For example, suppose the US

implemented some reforms we analyze; how would these reforms affect exports of old US

vehicles to Mexico, and how would such exports affect welfare in both countries? If Mexico

implemented such reforms, one could ask a similar question for Mexico’s used vehicle ex-

ports to Central America. Davis and Kahn (2010) study these questions for NAFTA and

California’s smog check policies but one could ask similar questions for exhaust standards

and registration fees in broader settings.

Finally, how externally valid are our findings to other types of environmental policy?

For example, we find that pollution emission rates have declined precipitously and that en-

vironmental policy is the leading cause. Aspects of those findings also appear to apply to

electricity generation, industrial air pollution, and municipal water pollution (Shapiro 2022).
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The Gruenspecht Effect is relevant for drinking water treatment, coal-fired electricity gener-

ation, and industrial water pollution regulation (Stavins 2006). Our quantitative model finds

that while tightening pollution standards can produce welfare gains, revising tax instruments

to reflect environmental damages can produce larger welfare gains; this broad conclusion of

the relative efficiency of taxes over standards is a common theme in environmental economics.
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Figures and Tables

Figure 1: Mean Pollution Emission Rates of New US Vehicles, 1957-2020
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Notes: Y-axes have logarithmic scale. Graphs use full sample of new vehicle test data and AES (1973).

For Panels A-C, model years 1957-1971 are means of a sample of used vehicles given an FTP test. Model

years 1972-2020 are from certification test records for 50,000 miles. Model years 1972-4 received an earlier

version of the FTP test (“FTP72”). We concord FTP72 to FTP values, separately by pollutant, using ratios

for all vehicles in AES (1973). Vertical line depicts year before exhaust standards began. CO2 data are

sales-weighted fleet-wide averages. CO2 data converted from mile per gallon data, from U.S. EPA (1973) for

1957-1975 and U.S. EPA (2021) for 1975-2020. We splice the two CO2 series to have the same mean in 1975.

Weights for CO, HC, and NOx in the red lines with circles are the frequency of each vehicle in Colorado

remote sensing data.
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Figure 2: Exhaust Standards and Emission Rates, Cars Versus Trucks
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Notes: Dashed vertical lines show years when standards change for cars only; solid vertical lines show years

when standards change for both cars and trucks. Each panel uses full sample, restricted to model years

1982-2010. Panels D through F show certification levels, equal to raw test results scaled up by deterioration

factors for 50,000 miles. Appendix A.1 explains details. Beginning in 1988 for NOx and 1994 for other

pollutants, standards distinguish sub-groups of trucks based on weight; graphs show weighted means of

standards across these groups, with weights equal to the proportion of each vehicle from model year 1993 in

Colorado smog check test data.
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Figure 3: Event Study Graphs for Tier 0 Exhaust Standards, 1957-1971

(a) Vehicles outside California, model years 1957-1971
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Notes: Graphs use full sample from AES (1973). All emission rates are in grams per mile, scaled to equal

100 in 1967 (Panel A) or 1965 (Panel B).
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Figure 4: Event Study Graphs for Tier 1 Exhaust Standards, 1990-2000
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Notes: Graphs use model years 1990-2000 from new vehicle tests (Panels C and D) or Colorado smog check

data (Panels E and F). Emissions are measured in grams per mile. In panels A and B, each class×model year

is weighted by its share in the 1993 Colorado smog check test data. Panels C and D show certification levels

for 50,000 miles. New vehicle emission rate data are unusable for 1994-1995 (see Appendix B.2). Reference

year is 1993. Standard errors are clustered by model year×truck type.
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Figure 5: Used Versus New Emission Rates for Tier 2 Exhaust Standards, 2000-2010
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(c) Nitrogen oxides (NOx)
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Notes: Graphs show binned scatter plots. Graphs use new vehicle tests and Colorado smog check data.

Graphs exclude small share of observations with zero pollution readings.
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Figure 6: Used Vehicle Emission Rates and Miles Traveled, by Model Year and Age
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Notes: Figures use full sample from Colorado smog check data. Points represent mean emission rates in a

given model year×age cell, averaged across all vehicles in the data. Y-axes have logarithmic scale.
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Figure 7: Cumulative Share of Fleet Emissions from Each Vehicle Age
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Notes: Each line shows the cumulative distribution for total pollution emissions from each age. Vertical

lines at ages 10 & 15 show when exhaust standards stop applying. Pollution for a vehicle equals the emission

rate times miles driven. Miles equals change in vehicle odometer since the previous test, divided by years since

the previous test. For a vehicle’s first test, decimal years equals age. Data from 2014 Colorado inspections.

Figure 8: Annual Pollution Externalities, Property Taxes, and Vehicle Age
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Notes: Graph measures market shares of VIN prefixes using calendar year 2000 Colorado inspections to

calculate the mean externality and tax by age. Vehicle values are from the National Automobile Dealers

Association used retail prices. Currency in 2019$. Property taxes are weighted across regions by population.
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Figure 9: Model-Based Estimates: Levels of Counterfactual Registration Fees and Effects on
Fleet Composition and Pollution Damages
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Notes: Panels B, D, and F show the model-based estimates of the impact of counterfactual policies on

the calendar year 2000 fleet and environmental damages. Currency values are in 2019$, deflated using the

Consumer Price Index for urban consumers.
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Table 1: Federal Exhaust Standards

Mean Mean

Policy Model years CO HC NOx CO HC NOx
Limit Pollutant

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Uncontrolled  -1967 90.0 8.200 3.40 90.0 8.200 3.40 — —

Tier 0 1968-1971 34.0 4.100 — 34.0 4.100 — — —

1972-1974 28.0 3.000 3.10 28.0 3.000 3.10 — —

1975-1976 15.0 1.500 3.10 20.0 2.000 3.10 — —

1977-1978 15.0 1.500 2.00 20.0 2.000 3.10 — —

1979 15.0 1.500 2.00 18.0 1.700 2.30 — —

1980 7.0 0.410 2.00 18.0 1.700 2.30 — —

1981-1983 3.4 0.410 1.00 18.0 1.700 2.30 — —

1984-1987 3.4 0.410 1.00 10.0 0.800 2.30 — —

1988-1993 3.4 0.410 1.00 10.0 0.800 1.50 — —

Tier 1 1994-1996 3.4 0.250 0.40 10.0 0.250 0.85 — —

1997-2000 3.4 0.250 0.40 5.2 0.250 0.85 — —

NLEV (8 states) 1999-2000 3.4 0.250 0.40 5.2 0.250 0.85 0.075 NMOG

NLEV 2001-2003 3.4 0.139 0.40 5.2 0.250 0.80 0.075 NMOG

Tier 2 2004-2006 3.4 0.125 0.40 3.4 0.139 0.40 0.070 NOx

2007-2016 3.4 0.100 0.14 3.4 0.100 0.14 0.070 NOx

Tier 3 2017-2025 4.2
+

4.2
+

0.030 NMOG+NOx

Light-duty vehicles Light-duty trucks

0.16
+

0.16
+

Notes: CO is carbon monoxide, HC is hydrocarbons, NOx is nitrogen oxides, NMOG is non-methane organic

gases. All numbers are for gasoline vehicles, measured in grams per mile by the Federal Test Procedure. See

Appendix A.1 for details. Columns (5) through (7) show mean standards across truck types, with weights

equal to the proportion of each vehicle from model year 1993 in Colorado smog check data. For policies

that impose a fleet-wide mean limit, columns (2) through (7) show the limit for the highest bin. +Tier 3

standards apply at 150,000 miles, whereas earlier policies apply at lower mileage. Tier 3 has a combined

NMOG+NOx standard, which is phased in and reaches 0.030 in model year 2025. Uncontrolled emissions are

calculated based on emission rates and estimates from vehicles before emissions controls. Sources: National

Commission on Air Quality (1981); Bresnahan and Yao (1985); Davis (1997); U.S. EPA (2016).
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Table 2: Effects of Tier 0 Exhaust Standards on Vehicle Emissions

(1) (2) (3) (4) (5) (6) (7)

Exhaust standard 0.61*** 0.80*** 0.97*** 0.62*** 0.90*** 0.59*** 0.82***

(0.07) (0.08) (0.18) (0.08) (0.09) (0.12) (0.18)

N 105 105 105 60 60 45 45

Exhaust standard 0.48*** 0.46** 0.76*** 0.52*** — 0.52*** —

(0.07) (0.18) (0.18) (0.07) — (0.07) —

N 30 30 30 15 — 15 —

Exhaust standard 0.76*** 0.22 0.52* 0.71*** — 0.71*** —

(0.11) (0.20) (0.28) (0.13) — (0.13) —

N 30 30 30 15 — 15 —

Fixed effects:

 Pollutant × region X X X X X X X

 Model year — X X — X — X

Levels — — X — — — —

California only — — — X X — —

Federal only — — — — — X X

Panel A. Carbon monoxide and hydrocarbons (CO and HC)

Panel B. Carbon monoxide (CO)

Panel C. Hydrocarbons (HC)

Notes: Dependent variable is the emission rate in grams/mile from AES (1973). Regressions are in logs

except where otherwise noted. Robust standard errors are in parentheses. Before standards began, “exhaust

standards” are defined to equal the unconstrained emission rate from Table 1. Asterisks denote p-value <

0.10 (*), <0.05 (**), or <0.01 (***).
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Table 3: Effects of Tier 1 Exhaust Standards on Used and New Vehicle Emission Rates

(1) (2) (3) (4) (5) (6) (7)

Exhaust standard 2.02*** 0.86*** 1.01*** 0.39*** 1.15*** 0.88*** 1.34***

(0.12) (0.08) (0.09) (0.13) (0.13) (0.11) (0.13)

N 17,165,695 17,165,695 16,874,083 17,165,695 3,352,360 13,379,341 17,165,695

Exhaust standard 2.03*** 0.81*** 0.77*** 0.45*** 1.02*** 0.77*** 1.34***

(0.14) (0.07) (0.09) (0.17) (0.12) (0.09) (0.13)

N 8,568,269 8,568,269 8,422,458 8,568,269 1,670,269 6,675,107 8,568,269

Exhaust standard 2.02*** 1.09*** 2.20*** 0.23 2.44*** 1.97*** 1.47***

(0.14) (0.22) (0.25) (0.22) (0.35) (0.33) (0.13)

N 8,597,426 8,597,426 8,451,625 8,597,426 1,682,091 6,704,234 8,597,426

Exhaust standard 1.29*** 0.54*** 0.52*** 0.36*** — 0.35*** 0.29***

(0.10) (0.05) (0.06) (0.07) — (0.12) (0.01)

N 17,039 17,039 17,039 17,039 — 11,111 17,039

Exhaust standard 1.36*** 0.54*** 0.54*** 0.33** — 0.35*** 0.29***

(0.09) (0.06) (0.07) (0.14) — (0.12) (0.01)

N 8,522 8,522 8,522 8,522 — 5,557 8,522

Exhaust standard 1.25*** 0.53*** 0.49*** 0.34*** — 0.35 0.22***

(0.11) (0.05) (0.05) (0.07) — (0.30) (0.01)

N 8,517 8,517 8,517 8,517 — 5,554 8,517

Fixed effects

 Truck × pollutant X X X X X X X

 Model yr. × pollutant — X X X X X X

 Age × pollutant X X X X X X X

Odometer X X X X X X X

CAFE standards — — X — — — —

Smog check stds. — — X — — — —

Gasoline cost per mile — — X — — — —

Ethanol share — — X — — — —

Sulfur content — — X — — — —

Model yr. × truck trend — — — X — — —

Ages 4-6 — — — — X — —

Model yrs. 1990-2000 — — — — — X —

Levels — — — — — — X

Panel B. Carbon monoxide (CO), used vehicles

Panel C. Hydrocarbons (HC), used vehicles

Panel A. Carbon monoxide and hydrocarbons (CO and HC), used vehicles

Panel D. Carbon monoxide and hydrocarbons (CO and HC), new vehicles

Panel E. Carbon monoxide (CO), new vehicles

Panel F. Hydrocarbons (HC), new vehicles

Notes: Dependent variable is the emission rate in grams/mile. Independent and dependent variables are

in logs except where otherwise noted. Estimates use model years 1982-2000, except for column (6). Panels

A-C use the Colorado inspection data; Panels D through F use the new vehicle inspection data. Odometer

includes linear and squared odometer and odometer terms. New vehicle data in Panels D through F lacks age,

odometer, and controls for other policies besides CAFE. Standard errors are clustered by model year×truck

type. Asterisks denote p-value <0.10 (*), <0.05 (**), <0.01 (***).
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Table 4: Assessment of Tier 2 Exhaust Standards: Do New Predict Used Vehicle Emission
Rates?

(1) (2) (3) (4) (5) (6) (7) (8)

New vehicle emission rate 0.67*** 0.50*** 0.49*** 0.49*** 0.48*** 0.74*** 0.21*** 0.39***

(0.01) (0.02) (0.02) (0.02) (0.02) (0.06) (0.01) (0.05)

N 216,933 216,918 216,918 216,918 106,965 216,918 9,757,515 9,757,515

New vehicle emission rate 0.59*** 0.58*** 0.60*** 0.58*** 0.58*** 0.76*** 0.16*** 0.51***

(0.02) (0.02) (0.02) (0.02) (0.03) (0.06) (0.01) (0.06)

N 72,311 72,306 72,306 72,306 35,655 72,306 3,252,505 3,252,505

New vehicle emission rate 0.81*** 0.61*** 0.51*** 0.60*** 0.49*** 0.96*** 0.35*** 1.25***

(0.03) (0.03) (0.03) (0.03) (0.03) (0.08) (0.01) (0.06)

N 72,311 72,306 72,306 72,306 35,655 72,306 3,252,505 3,252,505

New vehicle emission rate 0.67*** 0.34*** 0.36*** 0.34*** 0.33*** 1.16*** 0.20*** 1.36***

(0.02) (0.03) (0.03) (0.03) (0.03) (0.10) (0.01) (0.09)

N 72,311 72,306 72,306 72,306 35,655 72,306 3,252,505 3,252,505

New vehicle emission rate 0.95*** 0.87*** 0.84*** 0.87*** 0.84*** 0.79*** 0.77*** 0.72***

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01)

N 72,311 72,306 72,306 72,306 35,655 72,306 3,252,505 3,252,505

Age, model year FE — X X X X X — —

Truck indicator — X X X X X — —

Odometer — X X X X X — —

CAFE standards — — X — — — — —

Smog check standards — — X — — — — —

Gasoline cost per mile — — X — — — — —

Ethanol share — — X — — — — —

Sulfur content — — X — — — — —

Model year × truck trend — — — X — — — —

Ages 4-6 — — — — X — — —

Levels — — — — — X — X

Include abbreviated tests — — — — — — X X

Panel B. Carbon monoxide (CO)

Panel C. Hydrocarbons (HC)

Panel D. Nitrogen oxides (NOx)

Panel E. Carbon dioxide (CO2)

Panel A. Carbon monoxide (CO) and hydrocarbons (HC) and nitrogen oxides (NOx)

Notes: Dependent variable is the used vehicle emission rate in grams/mile. Regressions are in logs except

where otherwise noted. Regressions use model years 1982-2000 of new vehicle tests and Colorado smog check

data. Columns (1) through (7) use the observations which completed all 240 seconds of the smog check test

(Appendix B.3 describes details). New vehicle emission rate is certification level for 50,000 miles. Estimates

correspond to the specification of Table 3, column (1), except where otherwise noted. Smog check standard

is not defined for CO2. Standard errors are clustered by VIN prefix. Asterisks denote p-value <0.10 (*),

<0.05 (**), <0.01 (***).
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Table 5: Model-Based Estimates: Effects of Counterfactual Exhaust Standards and Registra-
tion Fees

= (1) - (2) CO HC NOx
(1) (2) (3) (4) (5) (6) (7)

1. Delay Tier 2 by four years 8.2 115.3 -107.2 0.0 8.1 4.6 10.3
2. Delay Tier 2 by eight years 13.3 198.2 -184.9 0.0 15.8 8.1 17.8
3. Accelerate Tier 2 by four years -9.9 -122.8 112.9 0.0 -6.3 -4.7 -10.8
4. Accelerate Tier 2 by eight years -20.7 -195.2 174.5 0.0 -9.7 -7.5 -17.1
5. Tighten standards 10 percent -2.3 -27.0 24.7 0.0 -1.4 -1.0 -2.4

6. Age×type fee -170.6 -492.5 321.9 1,167.5 -42.3 -42.7 -24.6
7. Age×type fee, revenue neutral -113.9 -343.7 229.7 0.0 -33.2 -33.5 -15.7
8. New vehicle fee -16.5 3.2 -19.7 399.6 1.7 1.8 -0.3
9. Flat registration fee -3.2 -20.7 17.5 0.0 -1.9 -1.9 -1.1

Panel A. Counterfactual Exhaust Standards

Panel B. Counterfactual Registration Fees

Percent change in 
cumulative emissions

Change in 
market 
surplus

Change in 
pollution 
damages

Total change 
in social 
welfare

New tax 
revenue  

Notes: Policies start in calendar year 2000 and effects are calculated over 20 years. Values in columns (1)

through (4) are in billions of $2019. Values in columns (5) through (7) are percent changes. Social welfare

is defined as consumer + producer surplus – pollution damages, which equals welfare for a social welfare

function that abstracts from distribution. As we assume perfect competition among vehicle manufacturers,

market surplus equals consumer surplus. The main text describes each counterfactual policy.
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Appendix

A Background Material on Standards, Tests and Tech-

nology (Section 2)

A.1 Exhaust Standards: Additional Details

Evaporative Emissions. Tier 1 introduced evaporative emission standards, which come
from gasoline evaporation due to ambient temperature fluctuations, vaporized gasoline dur-
ing regular driving, evaporation from a hot vehicle in the hour after it is turned off, per-
meation once some components of the engine system are saturated with fuel, and refueling
while gasoline is pumped (Manufacturers of Emissions Controls Association 2010). Because
evaporative test methods have changed over our sample and only target HC from evapora-
tion (not from exhaust, and not for CO or NOx), and since our remote sensing and smog
check data do not record evaporative emissions, we do not analyze them. Pollution control
systems for evaporative emissions are separate from control systems for exhaust emissions.

Engine Families. An “engine family” describes the exact configuration of engine and
abatement technology in a vehicle, and does not map one-to-one to make and model. Each
vehicle also has an “evaporative family” describing the abatement technologies used to con-
trol evaporative emissions in the vehicle. If an engine family violates exhaust standards,
vehicles with that engine family are recalled. Between model years 1990 and 2015, the num-
ber of engine families in a given year ranged from about 200 to 700, and the average model
year had over 400 different engine families. Although the precise definition of a “model”
depends on how different trims and extensions are included, between model years 1990 and
2015, the number of manufacturer×model pairs in a model year ranged from 150 to 400,
with over 200 in the average model year. So on average, each model has two different engine
families.

Other Pollutants. Exhaust standards use several different measures of HC. Tier 0
regulated total HC. Tier 1 added limits on non-methane HC, since methane is a HC that
does not easily form ozone pollution, and since a key reason to regulate HC is to decrease
ozone. The National Low Emissions Vehicle Program (NLEV), Tier 2, and Tier 3 regulate
non-methane organic gases (NMOG), which includes non-methane HC emb compounds –
alcohols and aldehydes – which form ozone but which the traditional method of measuring
HC excludes. Based on mean levels, non-methane HC are 90 percent of total HC and non-
methane organic gases are 94 percent of total HC (Mondt 2000; U.S. EPA 2003). NLEV,
Tier 2, and Tier 3 added restrictions on emissions of particulate matter and formaldehyde,
which we do not analyze since most of our data do not measure them.

Fleet-Wide Average. In 1999, eight Northeast states voluntarily applied tighter stan-
dards, called the National Low Emissions Vehicle (NLEV) program. Other states joined in
2001. NLEV, Tier 2, and Tier 3 limit the sales-weighted fleet-wide mean of each manufac-
turers’ vehicles’ emissions. These standards limit different pollutants— NLEV limits mean
NMOG; Tier 2 limits fleet mean NOx; and Tier 3 limits fleet mean NOx plus NMOG (Table
1).
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If a fleet-wide standard limits only one pollutant, why do auto manufacturers limit all
pollutants? The answer reflects how regulators calculate the fleet-wide average. The EPA
first certifies the CO, HC, and NOx emission rates for each engine family. NLEV, Tier 2,
and Tier 3 then define several bins. Each bin specifies the maximum emission rate for each
pollutant that a vehicle in that bin may emit. For example, under Tier 2, a vehicle may only
qualify for bin 2 if its NMOG emission rate is below 0.01, if its CO rate is below 2.1, and if
its NOx rate is below 0.02. The EPA calculates the fleet-wide average based on the threshold
values of the bin in which a vehicle is categorized, not over the certified emissions level for
an individual vehicle (Federal Register 1995, p. 52748). Under these regulations, for each
pollutant, the standard of the highest bin is the maximum standard for the regulation. This
is the value shown in Table 1.

Mileage and Age Values for Standards. Each exhaust standard specifies regulated
mileage and age levels. Standards refer to these values as “intermediate life” or “full useful
life.” These values are used for calculating deterioration factors, conducting in-use tests,
and determining recalls. In-use tests exclude vehicles with broken emissions control systems,
though systematic failure of such systems can justify recalls.

The exact mileage and age values differ across standards. Under Tier 0, cars only faced
standards for 10 years or 50,000 miles (whichever comes first), and trucks only faced stan-
dards for 10 years or 100,000 miles. Under Tier 1 and NLEV, cars and trucks faced an
intermediate life standard at 50,000 miles and a full useful life standard at 100,000 miles.
The full useful life standards were twenty to fifty percent higher than the intermediate life
standards in order to reflect the greater mileage.

Some Tier 2 bins impose intermediate standards at age 5 years or 50,000 miles. All bins
face standards at the full useful life. By default, the Tier 2 full useful life applies to 10 years
or 120,000 miles. Tier 2 gives manufacturers the option to be exempt from the intermediate
useful life standards, but then for the full useful life to apply at 150,000 miles. Under Tier
3, all cars and trucks face standards at 15 years or 150,000 miles, whichever comes first.

Defining Categories of Trucks. Many exhaust standards differ by vehicle type. Light-
duty cars and trucks include vehicles with gross vehicle weight below 8,500 pounds and
payload capacity up to 4,000 pounds. The difference between car and truck depends on the
vehicle’s purpose and design. Sport utility vehicles, minivans, and passenger trucks qualify
as trucks. Several standards distinguish categories of trucks, sometimes called LDT1, LDT2,
LDT3, and LDT4, based on a vehicle’s curb weight or gross vehicle weight.1

This paper focuses on US cars and trucks. Heavy-duty vehicles and other countries have
their own exhaust standards. Tier 2 began regulating medium-duty passenger vehicles, which
have a gross weight value rating of 8,500 pounds or greater. To increase comparability over
time and across data sets, we exclude medium-duty vehicles from the analysis.

California Exhaust Standards. The Clean Air Act allows the California Air Resources
Board (CARB) to set its own exhaust standards and allows other states to adopt California’s
standards. Between 2004 and 2014, thirteen other states adopted California standards.2

They are sometimes known as “Section 177 states,” since Section 177 of the Clean Air Act

1Curb weight is the weight of a vehicle with standard equipment but no passengers or cargo. Gross vehicle
weight is a vehicle’s weight with standard equipment, passengers, and cargo.

2The thirteen states are Connecticut, Delaware, Maine, Maryland, Massachusetts, New Jersey, New
Mexico, New York, Oregon, Pennsylvania, Rhode Island, Vermont, and Washington.
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allows other states to adopt California’s standards, or “CARB states.”
Apart from the analysis of Tier 0, we do not separately analyze standards in California due

to data limitations. Appendix A.2 discusses the lower quality of used vehicle emission rate
data for California. Used vehicles driven in California may also be either vehicles originally
certified to California standards, or vehicles originally certified to federal standards but then
imported into California. Vehicle Identification Numbers do not always identify whether a
vehicle was originally certified to California or federal standards. Additionally, new vehicles
may be certified to either or both federal and California standards.

International Standards. To assess the global relevance of this paper, we reviewed
exhaust standards for the 20 largest countries measured by GDP or population (30 countries
total). All the industrialized and middle-income countries in this group apply US, EU, or
national exhaust standards. Only three of the thirty countries, all low-income, appear to
have no standards: Bangladesh, Ethiopia, and the Democratic Republic of Congo. Globally,
some low-income countries have exhaust standards, though many do not. Some countries
impose standards with a lag. For example, Europe currently uses Euro 6 standards, while
Nigeria, Pakistan, and the Philippines all impose earlier versions of the European standards.

A.2 Test Details

The FTP test also goes by the acronyms FTP75, EPA75, and CVS75. It is also used
to determine a vehicle’s official city fuel economy (California Air Resources Board 2002;
Thompson et al. 2014). The mechanics of an FTP test are fairly straightforward. Levels
of each pollutant are measured through a hose attached to the vehicle’s exhaust pipe. The
vehicle is tested on a chassis dynamometer, with mean speed of 30 miles per hour and
maximum speed of 57 miles per hour.

Before an FTP test, a vehicle is shut off for 24 hours, so the first part of an FTP test
measures emissions from an unheated engine (a “cold start”). The cold start is increasingly
important. Catalysts are most effective once heated to several hundred degrees Fahrenheit,
which takes time after a vehicle is turned on.

In-use tests are FTP tests conducted 5-15 years after a vehicle is manufactured, to assess
compliance with exhaust standards. Two government agencies conduct in-use tests—the
EPA, to determine compliance with federal standards; and CARB, to determine compliance
with California standards. To obtain samples of vehicles for in-use tests, the EPA randomly
chooses vehicle owners, emails them a letter requesting to use their vehicle for a specified
amount of time, and offers compensation.

Regulators have added three other new vehicle tests for highway driving, aggressive driv-
ing, and air conditioning. The three new tests are called “Supplemental FTP” tests. Tier
1 in 1994 added a “cold CO” test conducted at 20◦F. These are not applied across most of
our sample and are less comparable with our used vehicle data, so we do not analyze them.

The text mentions that Colorado has higher-quality used vehicle emissions data than
other states. Most states use on-board diagnostic (OBD) tests, in which a monitor is con-
nected to a vehicle’s computer that checks the function of its control systems, but does not
actually measure the physical concentration of exhaust emissions. Besides Colorado, only
California has required exhaust tests for most vehicles over most of the period 2000-2020,
including vehicles manufactured after model year 1996, when vehicle OBD systems became

A3



mandatory. California uses the Acceleration Simulation Mode, in which an engine is oper-
ated at a constant speed (e.g., 2500 rotations per minute). This test misses acceleration,
deceleration, and breaking. California’s test is also reported in a different scale than FTP
or IM240 (parts per million rather than grams per mile), decreasing comparability. Avail-
able methods for comparing between these scales require several calibrated parameters and
nonlinear equations, which introduce measurement error.

A.3 Abatement Technologies

Several innovations since the 1970s have increased catalytic converters’ effectiveness (Palucka
2004). One involves maintaining a more precise ratio of fuel to oxygen in the engine, which
has been accomplished using carburetors (1970s), single-point fuel injection (1980s), multi-
point fuel injection (1990s), sequential fuel injection (2000s), and direct fuel injection (2010s).

A second innovation makes catalytic converters heat more quickly when a vehicle starts,
since catalysts must have temperatures above 500◦F to function fully. A third set of inno-
vations has applied precious metals onto increasingly thin and durable materials, including
to spherical beads (1970s), honeycomb-like ceramic materials (1980s), roughly-textured ma-
terials (1990s), and most recently using precision manufacturing techniques to apply layers
of precious metal in ways that prevent the metals from agglomerating over time. Increasing
the volume and mass of the precious metals also improves abatement.

One counterproductive innovation has been the sale of after-market defeat devices. These
are illegal but appear to be more common for diesel pickup trucks bypassing diesel particulate
filters. The EPA increased enforcement against these after-market devices in 2020.

In the paper, we model the cost of reducing emissions at a given point in time as an
increase in marginal cost. This is consistent with costs being due primarily to increases in
the quantities of precious metals, which is a good depiction of the Tier 2 era. That said,
there certainly are fixed costs, but we note that these are not tied to a single model and thus
would be unlikely to affect product choice or entry/exit of particular models. Rather, the
fixed costs are at the firm, or even industry level, because when engineers figure out better
catalytic converter designs, the innovations can be deployed broadly across all vehicles that
share a manufacturing and design platform.

B Data for Reduced Form Analysis (Section 3)

B.1 Comparability of New and Used Vehicle Tests

Several studies and reviews provided a new vehicle FTP test and a used vehicle IM240 test
to the same vehicle on the same day or otherwise very close in time (U.S. EPA 1992; CARB
1993; Kelly 1994; U.S. EPA 1995; Bishop et al. 1996; Sierra Research 1997; AIR 1999). Each
study reports the relationship between FTP and IM240 emission rates, separately for the
three main pollutants (CO, HC, and NOx), both as a regression coefficient (with standard
error) and R-squared. Most of the individual studies use around 100 vehicles, though in total
the studies we reviewed include about 2,000 vehicles. Pooling across studies and weighting
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each by its sample size, the coefficient and R-squared for comparing FTP versus IM240 are
0.97 and 0.73 for CO; 1.23 and 0.86 for HC; and 0.82 and 0.82 for NOx.

B.2 New Vehicle Emissions Data

In most years, the new vehicle emissions data list vehicle types tested, plus other vehicle
types with the same engine and abatement technology but which are not directly tested.
Because the EPA certifies emission rates and deterioration factors to be the same within an
engine family×emission control system, we link the certification levels for all vehicles to the
mean reporting certification levels within the same group.

Different years’ data distinguish these groups with slightly different criteria. In model
years 1971 to 2000, vehicles are grouped by manufacturer. In model years 1971-1977, ve-
hicles are also grouped by engine family. In model years 1978-1984, vehicles are further
subdivided by evaporative family. In model years 1985-1995, vehicles are divided by engine
family×emission control system combination. In model years 1996-2000, vehicles are also
divided by evaporative family×emission control system combination. Beginning in 2001,
manufacturers group engine, fuel, and abatement technology into “durability” and “test”
groups. “Engine family” is here synonymous with “test group.” When possible, we create
separate observations for California- and federal-certified test results for each vehicle, though
this categorization changes over years. Model names listed within groups sometimes contain
unabbreviated test vehicle model names, in which case we impute a duplicate observation for
a model. Imputed models are assigned the other characteristics (e.g., engine displacement
and horsepower) equal to the mean of those of the test vehicles in their groups.

The data include several test procedure categories that are minor variants of the FTP
(e.g., California-certified versus standard gasoline, or a test performed at a specified tem-
perature versus ambient temperature).3 For years when the test procedure is listed, we
further separate our imputed emissions data by procedure. A small share of tests report
non-methane hydrocarbon and non-methane organic gases; we convert these to total hydro-
carbons using the conversion ratios discussed in the main text. If a vehicle does not report a
certification level for 50,000 miles, we impute it as the reported certification level for another
distance times the median ratio of that certification level to the 50,000 certification level,
where the median is calculated from all vehicles reporting both certification levels.

The new vehicle and associated data report many vehicle attributes. Unfortunately,
however, most innovations discussed in Appendix A.3 that improved the performance of
catalytic converters, like rapid catalyst heating and catalyst application methods, are not
reported in any systematic vehicle-level data that we know exists. Most of the new vehicle
data report whether a vehicle is a car or truck. We generally group vehicle class by these
categories, though some analyses use these further sub-categories. For model years before
1988, we estimate the truck type of a vehicle using test weight thresholds. For model years
1988 and beyond, we determine truck types by linking it to Colorado smog check data. We

3We include the test procedures CVS 75 and later (without canister load) plus Federal or California 2
or 3 day test procedures. Formally, this includes EPA test procedure numbers 2, 21, 25, 31, 35, 51, and 52.
This is only relevant after model year 1998, when other procedures (such as the Supplemental Federal Test
Procedures) appear.
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match across these data using make, model, drive type, trim, displacement, horsepower, and
similar variables.

Model years 1972-4 used an earlier design of the FTP test (FTP72). We inflate emissions
for these years by the mean ratio of the standard FTP test to values for the earlier (FTP72)
test (AES 1973). Model year 1971 used a different version of the FTP test (FTP71), which
we do not have a way to concord to the alternative versions of the test (FTP72 and FTP75),
so we exclude the 1971 new vehicle emissions data.

The FTP data for test years 1994 and 1995 reports raw test results but not deterioration
factors or certification levels. They also have a smaller sample than surrounding years,
different mean raw test results, and a disclaimer that the EPA is “not able to provide the
normal report format.” Hence, we largely exclude new vehicle data from these years.

The five cities covered in the older 1957-1971 model year data are Chicago, Houston, Los
Angeles, St. Louis, and Washington, DC. We use the data in the AES national sample.

In several parts of the paper, to convert miles per gallon data to grams of CO2 per mile,
we use the standard emission rate of 19.37 pounds CO2 per gallon gasoline from the Energy
Information Agency, and the conversion rate of 453 grams per pound.

B.3 Used Vehicle Emissions Data: Colorado Smog Check

We obtain these data from the Colorado Department of Public Health and the Environment.
The analysis sample imposes several restrictions. We exclude observations with missing

odometer, missing values for CO, HC, or NOx emissions, or a vehicle identification number
(VIN) that is not the standard 17 digits. We clean reported odometer readings following
Knittel and Sandler (2018). We winsorize pollution readings at the 99.9th percentile.

A vehicle which appears to be especially clean in the first part of an IM240 test is allowed
to complete the test before the full 240 second test is complete, a process Colorado calls “Fast
Pass.” The Colorado data then report an imputed value for the emission rate that Colorado
regulators estimate would have been recorded in a complete 240-second test. In recent
years, a randomly-chosen set of vehicles are required to complete the full 240 second test, a
sub-sample we use in estimates with recent years of data.

We exclude some Colorado data with lower quality or limited comparability. Colorado
vehicles model year 1981 and earlier undergo a low-quality test (two-speed idle), which we do
not analyze. Colorado also provided smog check data for calendar years 1995-6 and 2015-6,
but we do not use them. The 1995-6 data appear to use different methods for measuring
CO. In 2015-6, vehicles aged 4 through 9 years are exempt from tests. Colorado’s current
contractor began managing the program in 1995, which is the first year Colorado began
using a more stringent (“enhanced”) smog check program (Air Pollution Control Division
2013). The measure of annual externalities in Figure 8 winsorizes the annual externality at
the 99.9th percentile.

In these and other used vehicle data, we define a vehicle’s age as the year when pollution
was measured (i.e., its test year) minus its model year.

How representative are the Colorado data? They come from counties with similar driving
and emissions patterns to other polluted urban counties. All Colorado counties with smog
check data are in “nonattainment” Clean Air Act status for ozone pollution, meaning they
have high ambient ozone levels and strict regulations, including this vehicle smog check
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program. Out of 3,000 US counties, only 265 were in ozone nonattainment in the year
2014, though those 265 counties account for 44 percent of the US population. Compared
to other ozone nonattainment counties, these Colorado counties have moderately higher
vehicle NOx and VOC emissions per square mile, but lower vehicle miles traveled (VMT) and
population density.4 Statistically, these Colorado counties are indistinguishable from other
ozone nonattainment counties along each of these dimensions individually, and marginally
indistinguishable in a joint test (F-statistic of 1.98, p-value of 0.099). Perhaps unsurprisingly,
compared to attainment counties, which are cleaner and less urban, the Colorado smog check
counties have significantly higher emissions, driving, and population density.

Colorado requires tests of vehicles registered to addresses in nine counties in and north
of Denver—Boulder, Broomfield, Denver, Douglas, and Jefferson counties, and some parts of
Adams, Arapahoe, Larimer, and Weld counties. Colorado began testing vehicles registered
in the Northern Colorado counties of Larimer and Weld only in November 2010.

B.4 Used Vehicle Emissions Data: Remote Sensing

Colorado’s remote sensing program, called RapidScreen or CleanScreen, began in calendar
year 2004 and is managed by Colorado’s Department of Public Health and the Environment
(Hawkins et al. 2010; Opus Inspection 2016; Klausmeier 2017). Colorado’s remote sensing
records cover calendar years 2009 to 2016 and include over 50 million observations. If a
vehicle receives two or more clean remote sensing readings, it is exempted from the standard
smog check test. About a third of Colorado vehicles are thereby exempted from smog check
tests. We include estimates correcting for potential selection caused by the exempt vehicles.

The Colorado data include each vehicle’s VIN, which the remote sensing system identifies
by photographing a vehicle’s license plate and using administrative records to link to the
VIN. The data report CO and CO2 in percentages and HC and NOx in parts per million
(ppm). We convert these values to grams of pollution per mile using average conversion rates
from Bishop and Haugen (2018), Table 3, and EPA fuel economy ratings.

We also use several additional remote sensing samples collected from the Fuel Efficiency
Automobile Test (FEAT) (Bishop et al. 1989). We obtain measurements from the FEAT
Reports data (http://www.feat.biochem.du.edu/light_duty_vehicles.html, accessed
on 3/2/2017 for US data and 12/8/2020 for multi-country and heavy duty truck data).
FEAT emits an infrared beam from a device on one side of the road, which is then read by
a receiver on the opposite side of the road. In the leading method, an infrared beam detects
CO, CO2, and HC, and an ultraviolet beam detects NOx (Bishop and Haugen 2018). Some
detectors measure only nitric oxide, a component of NOx, which we include with NOx data
for comparability.

We report sensitivity analyses using a multi-state remote sensing sample that includes
many FEAT collection events.5 Appendix B.4 describes details. A collection event is a
city where researchers collected data in a particular year. FEAT’s data on vehicles come
from devices located ten inches above ground, so they measure emissions from light-duty

4Comparisons in this paragraph use data from the year 2014, a year for which many of these data are
available, using data from the EPA’s National Emissions Inventory.

5The multi-state remote sensing sample includes data from Arizona, California, Illinois, Maryland, Ne-
braska, Nevada, Oklahoma, Pennsylvania, Texas, Utah, and Washington.
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vehicles and light-duty trucks but not heavy-duty trucks (which have higher tailpipes). In
analyses of control system deterioration, we exclude remote sensing observations of very old
age categories with less than 50 observations per age category.

We also report patterns of vehicle emissions, age, and deterioration from a multi-country
remote sensing sample using FEAT data from Monterrey, Mexico; Auckland, New Zealand;
Rotterdam, The Netherlands; Toronto, Canada; Melbourne, Australia; and Milan, Italy.
This represents all FEAT data from countries which include information on the vehicle’s
model year, which is needed to measure the vehicle’s age.

Most remote sensing data measure each pollutant as the percent of total gas. For compar-
isons with FTP or IM240 values, we convert these units to grams per mile, using conversion
rates from Bishop and Haugen (2018). A reasonable share of raw remote sensing data have
negative values (e.g., due to measurement error, they resemble a normal distribution around
a small number, which has some mass below zero), and correspondingly a reasonable share of
the translated data have negative grams/mile values. To avoid excluding these values from
analysis, we generally work with remote sensing data in inverse hypersine values, rather than
in logs. In either raw percent or transformed, we winsorize the remote sensing data at the
0.5th and 99.5th percentile to address outliers.

Finally, our sensitivity analysis uses measurements of emissions from heavy duty trucks
collected from the Port of Los Angeles and from a highway weigh station in Northern Califor-
nia from the On-Road Heavy-Duty Vehicle Emissions Monitoring System (OHMS) (Bishop
et al. 2015). OHMS is a tent with a collection pipe where heavy-duty trucks drive slowly,
then sensors process the exhaust plume.

Appendix Table A1 compares remote sensing to Colorado smog check data. In 65,000
cases, we observe an individual vehicle (a 17-digit Vehicle Identification Number) in the
remote sensing data, and then observe the same vehicle in the smog check data the following
week. We allow a one-week lag between the data to avoid the possibility that a smog check
caused a vehicle to be repaired, which could make the remote sensing value differ from the
smog check reading. If the remote sensing and smog check data gave identical results, these
matched pairs of observations would have the same value.

Appendix Table A1 finds that remote sensing and smog check values are very strongly
correlated. The t statistics from regressing one measure on the other range from 8 to over
100. In this sense, remote sensing strongly co-moves with smog check tests.

At the same time, the units have different scales. Panel A regresses the remote sensing
reading on the smog check reading for the same pollutant. The correlation between the two
readings in inverse hypersines is 0.10 (0.003) for CO, though is 0.53 and 2.98 for HC and
NOx. Panel B shows that when we reverse the variables, so smog check is the dependent
variable and remote sensing the explanatory variable, these correlations range from 0.01 to
0.16. These values are all far from one. If we analyze these relationships in levels (g/mile)
rather than inverse hypersine, these relationships become even further from one. Ultimately,
these comparisons suggest that remote sensing data are strongly associated with smog check
inspection data, but comparing units between the two types of measurement is difficult.
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B.5 Used Vehicle Emissions Data: In-Use Tests

Our “in-use” test data cover model years 2004 through 2014, were conducted in calendar
years 2008 through 2017, cover vehicles 0 to 6 years old, and include about 10,000 obser-
vations. We obtain these data from the California Air Resources Board (CARB). We keep
observations which we can match to fuel economy data, and set the fuel economy of each
vehicle in a test group equal to the test group mean. We winsorize the pollution values at
the 99.9th percentile. While we only use these in one sensitivity analysis, they may represent
a combination of vehicles certified to California and federal standards, so could have more
measurement error than other data.

B.6 Emissions from Manufacturing

The quantitative model incorporates estimates of the pollution from manufacturing vehicles.
We calculate these rates using input-output tables, following Lyubich et al. (2018).

We use the 2002 benchmark tables after redefinitions from the Bureau of Economic
Analysis (BEA) (U.S. Bureau of Economic Analysis 2020).6 We utilize three BEA tables:
the make table, use table, and import matrix. The use table describes the dollar inputs of
each commodity, including imports, required to produce a dollar output of each industry. We
subtract imports from the use table to produce a domestic use table, describing the domestic
inputs required to produce an output. We combine the make and use tables to produce an
input-output table. We then calculate the Leontief Inverse, equal to (I − A)−1, where I is
the identity matrix and A is the input-output table. This Leontief Inverse represents the
dollars of domestic inputs required to produce a dollar of output in each industry, including
direct inputs to an industry, inputs to that input, inputs-to-inputs-to-inputs, etc., including
the entire value chain (also sometimes called the entire life cycle, supply chain, or footprint).

To measure emissions from each input industry, we use data from the 2002 National
Emissions Inventory (U.S. EPA 2014b). We calculate emissions from each NAICS industry,
and concord this to BEA industries using a concordance file for the year 2002 from the
BEA. We measure the emissions per dollar of output for each industry by dividing the NEI
industry emissions totals by the gross output of each industry from the input-output files.

To measure emissions from each output industry, we multiply the emission rate of each
input industry by its input share in the Leontief Inverse. Summing these values across all
input industries gives a measure of the tons of pollution emitted per dollar of output in
each industry. Multiplying this by the gross output of each industry gives an estimate of
the short tons of each pollutant emitted to produce the entire year 2002 output of each
industry, including emissions from the entire domestic value chain of each industry. We
focus on these values for two industries—light-duty vehicles (NAICS and BEA code 336111)
and light trucks and utility vehicles (NAICS and BEA code 336112).

To measure emissions per vehicle manufactured, we link these emissions data to the
number of vehicles manufactured in the year 2002, obtained from the US. Federal Reserve
(Federal Reserve Bank of St. Louis 2021). Dividing an industry’s total emissions by the

6The BEA publishes many versions of the table; the version “after redefinitions” has processing to improve
the quality of the relationship between input use and product categories, and this version is commonly used
for life cycle analysis and calculating the Leontief Inverse.
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number of vehicles manufactured gives an estimate of the tons of pollution emitted per
vehicle manufactured. We multiply emissions of each pollutant by the damage rates used
in the rest of the paper (in $2019) to measure pollution damages per vehicle manufactured
(details in Section F.1 below). This calculation obtains an estimate of $605 in damages per
light-duty vehicle manufactured and $595 in damages per light-duty truck manufactured.
We summarize this as an estimate of $600 in pollution damages per vehicle manufactured.

An alternative is to use engineering calculations of the emissions required for different
materials used to produce a vehicle. The GREET Model, managed by Argonne National
Laboratory (part of the U.S. Department of Energy), is probably the leading such engineering
model. Using GREET, we calculate damages of $827 per vehicle in the year 2019 ($2019).
While this number is not identical to the $600 value we obtain from the input-output table,
given the numerous differences between engineering models and input-output tables, it is
notable that the two approaches give estimates with the same order of magnitude.7

The quantitative model also uses an estimate of the trend in emissions per vehicle manu-
factured. We calculate this trend by comparing emissions and real revenue from US industry
between 2002 and 2017, then measuring the two-year time step. We use these years since the
National Emissions Inventory occurs every few years and since the economic census takes
place in years ending in 2 and 7. To measure these trends, we obtain data on industrial
emissions from the National Emissions Inventory. We measure the 2002-2017 trend for each
of the three pollutants on which we focus (CO, NOx, HC). We weight the trend across pollu-
tants by each pollutant’s marginal damages. We measure the trend in the value of sales from
industry (defined here to include manufacturing, utilities, and mining) from the Economic
Census, and deflate it by the GDP deflator. The resulting ratio of industrial pollution in
2017 to 2002 is 0.5694, and of real industrial output is 1.0695. Finally, we calculate the
implied decrease in pollution per dollar output per two-year time period in the model as
8.06 percent, calculated from the equation (0.5694/1.0695)(1/(15/2)) − 1.

B.7 Other Data

We obtain data on the attributes of each VIN prefix using a set of files purchased from
an industry vendor, typically called a VIN decoder. These files indicate the fuel economy,
retail price, weight, horsepower, torque, and unique engine identifier associated with each
VIN prefix, among other characteristics.8 For model years 2000 and later, the VIN decoder
identifies the engine families for each VIN prefix, which is distinct from and does not map

7Specifically, GREET and our calculation using input-output tables reflect many differences. GREET
describes emissions in 2019, while the input-output table reflects emissions in the year 2002. The input-
output table includes all inputs while GREET includes only the most important inputs. The input-output
table includes the entire supply chain while GREET focuses only on a few steps down the chain. The
input-output calculation uses observed emissions for the year 2002, while GREET uses a combination of
modeled engineering emission factors from different years and observed emissions from the National Emissions
Inventory. GREET performs most calculations in physical units, while input-output tables perform most
calculations in monetary units. GREET calculates emissions from vehicle scrap and manufacturing, while
input-output tables calculate emissions from manufacturing only, and include scrap only to the extent that
it occurs in the value chain supporting vehicle manufacturing.

8A VIN prefix is the first eight digits of the VIN plus digits ten and eleven. This uniquely identifies the
manufacturer, vehicle attributes, model year, and code of the plant that manufactured it.
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one-to-one with the vendor’s proprietary engine identifier. We link these engine families to
new vehicle FTP test results. We calculate the new vehicle FTP emissions for each VIN
prefix as the mean for all engine families and tests linked to it.

We also need to identify the exhaust standards that apply to vehicles in most of these
datasets. Colorado’s smog check data identify the class of each vehicle (car or weight cat-
egories of trucks). For other data, we link each vehicle’s VIN prefix to the Colorado smog
check data to determine each vehicle’s class.9

The quantitative model calculates the environmental externality from each vehicle by
year. To measure a vehicle’s emissions per mile, we use its Colorado smog check results. To
calculate annual miles traveled, we use the change in odometer readings since the previous
smog check divided by decimal years elapsed or, for a vehicle’s first test, since its model year.
To measure damages, we use county-specific estimates of the marginal damages of NOx and
VOC emissions from ground level sources, estimated from the AP3 model (Tschofen et al.
2019).10 They exclude CO, so we take a national value of CO marginal damages from
Matthews and Lave (2000). We use the Bureau of Labor Statistics Consumer Price Index
for urban consumers to express all currency values in 2019 real dollars.

In the sensitivity analysis using selection correction models, we use Colorado vehicle
registration data, which we obtained for calendar years 2005-2013. We merge this data with
Colorado smog check and remote sensing results that are usable for each registration date.
Smog check results can be used for registration for up to 24 months, while remote sensing
results are valid for up to 12 months. 11

Some regressions use additional data to control for potential confounding variables. We
measure gasoline prices per million British Thermal Units (BTU) from the State Energy
Database System (SEDS), then convert to price per gallon of gasoline using annual data on
BTU per barrel from the Energy Information Administration’s Monthly Energy Review. We
measure the ethanol share from SEDS as fuel ethanol (excluding denaturant) for transporta-
tion divided by the sum of ethanol and motor gasoline, all measured in BTUs. We measure
the annual sulfur content of fuel as sulfur dioxide emissions from highway vehicles, according
to the EPA’s summaries of the National Emissions Inventory (U.S. EPA, 2014b), divided by
the FHWA’s Highway Statistics report of highway use of gasoline by state×year in gallons.
The gasoline price, ethanol, and sulfur data represent the calendar year of the test.

C Additional Empirical Results: Trends (Section 4)

C.1 Fleet-Weighted New Vehicle Emission Trends

Figure 1 in the main text shows mean emissions of all new US vehicles, averaged across
vehicle types. For model years 2000-2015, where we have a concordance between emissions
data identifier codes and VIN prefixes, those graphs also show fleet-weighted emission rates,

9In the Colorado data, the regulatory class for a VIN prefix varies infrequently across individual vehicles.
We take the modal regulatory class for a VIN prefix. Some of our analyses compare between car and truck
rather than across weight categories of truck, since the car/truck distinction is more consistently measured.

10They do not report values for Broomfield County, Colorado, which was created from four other Colorado
counties; we calculate this value as the mean of the other four counties it was created from.

115 CCR 1001-13, Reg 11, Motor Vehicle Emissions Inspection Program

A11



where the weights are the share of each VIN prefix in the Colorado remote sensing data.
The CO2 data underlying Figure 1 are the weighted average across models, where weights
equal the sales of models.

The air pollution microdata underlying Figure 1 report the emissions rate for an “engine
family” or similar aggregate; Appendix A.1 provides additional background on engine fami-
lies. Engine families have complex links with vehicle models or Vehicle Identification Number
(VIN) prefixes. Some models and VIN prefixes have many different possible engine families,
and some engine families correspond to many different possible VIN prefixes, and for model
years before 2000 we are not aware of any concordances linking these different identifiers.
The similarity of the weighted and unweighted series in Figure 1 in years after 2000 provides
one piece of evidence that weighting does not substantially change these trends.

We spent considerable effort constructing our own concordance for years before 2000
between the new vehicle emissions data and Wards Automotive Yearbooks sales data. It is
difficult to construct this link accurately. Vehicle types in the new vehicle sales data and the
emissions have different descriptions. An identification code in the emissions data typically
requires a many-to-many match with vehicle types in the sales data. The differences occur
for many reasons. For example, the data may refer to different vehicle trims of a given make
and model without any clear relationship; vehicles with the same underlying engineering
(sometimes called “badge engineered”) may have different model names across datasets;
vehicles with multiple fractional corporate parents (e.g., a brand might have multiple owners,
which change over time) may be listed with different make; and the distinction between model
and trim is fuzzy and differs across datasets and years.

Despite these strong caveats, using our effort at constructing this concordance, Appendix
Figure A1 shows fleet-weighted averages for new vehicle emissions over the model years 1981
to 2015. The average is weighted by Wards sales data. We identified the emission rate
for 50 to 80 percent of sold vehicles in a given model year. The sales-weighted data show
more year-to-year volatility than the unweighted data, which partly reflects differences in
match rates across model years. At the same time, the weighted and unweighted series have
extremely similar patterns overall, and in most years are within a few percent of each other.
Broadly, these results echo those of the main text and suggest that weighted and unweighted
fleet averages have similar levels and trends.

C.2 Used Vehicle Emission Trends

Section 4 of the main text summarizes trends in emission rates from used vehicles. This
appendix provides details.

Estimating emissions trends for used vehicles involves some challenges. The evolution of
emission rates with age may vary by model year, which makes it complex to distinguish age
from model year, even if the sample includes age fixed effects. The used vehicle data begin
in model year 1982 since vehicles from before model year 1982 are exempt from the higher-
quality (IM240) emission test. We report an additional trend using only the vehicles ages 4 to
6 years old and with odometer between 40,000 and 60,000 miles, which are more comparable
to the new vehicle data. We also separately report the 25th percentile of emissions by model
year, which helps address both the effects of outliers and Colorado’s remote sensing policies
(CleanScreen). If CleanScreen exempts a third of vehicles from inspections, then the median

A12



Colorado vehicle would be about the 25th percentile of Colorado inspections.
Appendix Figure A2 shows that used vehicles followed qualitatively similar patterns to

new vehicles in Figure 1. Mean used vehicle emission rates for each air pollutant fell by
90 percent between model years 1982 and 2010; new vehicle emissions from Figure 1 fell
by similar amounts. Trends for vehicles ages 4-6, or for the 25th percentile of emissions,
are similar, though levels are lower in all model years. The used vehicle data suggest that
CO2 emission rates actually increased slightly. Used vehicles also suggest some patterns
coincident with exhaust standards, for example, a steeper slope in 1995-1996 when Tier 1
became binding, and a flatter slope after 2007. In the 1980s and 1990s (though less in the
late 2000s), the used vehicle data show more of a steady downward trend in years when
exhaust standards did not change. This time series makes it unclear whether this is due
to confounding of age, model year, and test year effects, to measurement error, or to true
improvements in abatement technology and its durability.

Comparing Table 1 and Appendix Figure A2 also shows that in model years before 1995,
average used vehicle emission rates are close to standards, and in some years above them. In
model year 1990, for example, Table 1 shows that the standards for CO were 3.4 and 10 for
cars and trucks, while Appendix Figure A2 shows that the associated mean emissions for all
vehicles was around 10. Used vehicle smog check tests include vehicles with broken emissions
control systems, while standards and in-use tests exclude them. For example, although the
model year 1990 exhaust standards for CO are 3.4 and 10, a model year 1990 vehicle can pass
a Colorado smog check inspection with an emission rate up to 15. Nonetheless, these patterns
are consistent with EPA and related reports from the late 1970s and 1980s showing mean
emission rates of used vehicles that are close to or exceed the relevant exhaust standards
in that earlier time period (Mills and White 1978; Jones 1980; Lorang 1984; Crandall et al.
1986; Manufacturers of Emissions Controls Association 1995).12

D Additional Empirical Results: Effects of Exhaust

Standards on Emission Rates (Section 5)

This section discusses alternative estimates of how Tier 0, Tier 1, and Tier 2 exhaust stan-
dards have affected emission rates.

The beginning of Section 5.2 from the main text discusses graphs in Figure 2 showing new
vehicle exhaust standards and new vehicle emission rates spanning Tier 0, Tier 1, and Tier
2. Appendix Figure A3 shows versions of these graphs for smog check and remote sensing
data. Those used vehicle data suggest qualitatively similar patterns, though with smoother
adjustment potentially in part due to the greater measurement error in used vehicle tests
and the complication of separating test year, model year, and age effects.

For the analysis of Tier 1, Appendix Table A3 shows estimates using different specifications—
excluding the phase-in model years 1994 and 1995, specifying the dependent variable as

12In the largest such study, which included 2,000 FTP tests on vehicles from model years 1975-1980, over
half of vehicles in all cities outside California violated the relevant federal standard for one or more pollutants
(U.S. EPA 1980). In this time period, carburetors designed to abate CO led to rough idling, and adjustments
by mechanics, dealers, or owners to address the rough idling dramatically increased CO (UPI 1976).
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emissions per gallon (one way to control for fuel economy standards), distinguishing sep-
arate categories of trucks, accounting for selection into the sample due to remote sensing,
and directly estimating effects on remote sensing emissions from both the Colorado and the
multi-state remote sensing samples. All these estimates are precise. Most magnitudes of the
estimates using the smog check samples in columns (1) through (6) are between 0.5 and 1.0.

Appendix Table A3, columns (5) and (6), shows estimates that address selection into
inspection tests due to Colorado’s remote sensing program. In recent calendar years, a third
of vehicles receive clean remote sensing readings (CleanScreen) and are exempted from smog
check tests. Column (5) reports OLS estimates where each observation is a vehicle that
registered in the calendar years for which we have Colorado state registration data. The
dependent variable is the mean smog check test reading for a registered vehicle which has an
associated smog check reading for that registration. Column (6) reports a Heckman selection
model using the sample of column (5), and including vehicles that received a CleanScreen
pass but did not have smog check tests. As an instrument in the selection equation, we use
the number of times a vehicle passed the CleanScreen road-side monitoring devices. This is
arguably a good instrument for selection, since selection is based on whether a vehicle has
two or more clean CleanScreen readings, and not on any kind of average. Hence, the more
often a vehicle happens to pass the remote sensing devices, the more likely the vehicle is
to pass CleanScreen and the less likely the vehicle undergoes a smog check inspection. The
selection results in column (6) are close to the OLS results in column (5) using the same
sample, which is one piece of evidence that CleanScreen selection does not bias our main
estimates.

As noted earlier, the magnitudes for remote sensing are unfortunately not comparable
to the numbers for the new and used vehicle smog check tests, but most remote sensing
estimates are precise.

Appendix Table A4 analyzes mechanisms for exhaust standards to affect emission rates.
Each table entry summarizes a separate regression corresponding to equation (2). Comparing
Rows 1 and 2 shows that controlling for engine family fixed effects attenuates estimates by a
third. This suggests that two thirds of the effects of standards on emission rates is within an
engine family—auto manufacturers improved pollution abatement technology across model
years while keeping the identical engine brand, stroke, etc. One third of the effects of
standards on engines come from replacing dirtier with cleaner engines. Rows 3-8 show
little evidence that standards affect vehicle attributes like horsepower or torque. We find
some effects on vehicle prices, though they diminish in magnitude and precision with trend
controls.

Section 5.2 from the main text analyzes how Tier 2 affects emission rates. Appendix
Table A5 obtains qualitatively similar estimates from sensitivity analyses using in-use tests,
Colorado remote sensing data, and the multi-state remote sensing sample. As discussed in
Section 3.2, the units of the remote sensing tests are less comparable and obtain varying
magnitudes, but the signs are in the expected direction and the remote sensing estimates
are precise.
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E Analytical Model: Proofs and Outside Good (Sec-

tion 7)

E.1 Proofs

Proposition 1. We first demonstrate that an increase in ψ will lead to an increase in the
equilibrium price of used vehicles p∗. This increase in equilibrium price is associated with an
increase in equilibrium quantity of used vehicles because the change to ψ shifts the demand
for used vehicles and affects a movement along the used vehicle supply curve.

To obtain the result, we use implicit differentiation on the equilibrium condition (equation
(4)), using w∗ = ψ − p∗ −H(p∗)(p∗ − k̄) for brevity:

∂

∂p∗

(
H(p∗)

1 +H(p∗)

)
dp∗ =

∂

∂p∗
g(w∗)

∂w∗

∂p∗
dp∗ +

∂

∂p∗
g(w∗)

∂w∗

∂ψ
dψ (F.1)

For the left-hand side of equation (F.1), see that:
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To analyze the right-hand side of equation (F.1), we first calculate intermediate results.
The truncated mean of repair costs k̄ depends on the used vehicle equilibrium price. Its
derivative is:
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The derivative of the expected used vehicle resale value net of repair costs H(p∗)(p∗ − k̄)
with respect to price is:

∂
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= H(p∗), (F.4)

The second line substitutes in equation (F.3).
These results allow us to calculate the derivative of w∗ with respect to p∗:

∂w∗

∂p∗
=

∂

∂p∗
(ψ − p∗ −H(p∗)(p∗ − k̄(p∗))) = −1−H(p∗).
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Substituting equation (F.2) for the left-hand side of (F.1), substituting (F.4) into the
right-hand side and noting that ∂w∗/∂ψ = 1, yields the desired comparative static:

h(p∗)

(1 +H(p∗))2
dp∗ = −g(w∗)(1 +H(p∗))dp∗ + g(w∗)dψ (F.5)

dp∗

dψ
=

1 +H(p∗)
h(p∗)

g(w∗)(1+H(p∗))
+ (1 +H(p∗))2

> 0. (F.6)

The sign follows because the functions are all distributions and hence weakly positive.
We have now shown the first part of the result, p∗ rises in ψ. The repair rate is H(p∗) and

the scrap rate is 1−H(p∗). The repair rate rises in ψ because H ′(p) = h(p) > 0. Conversely,
the repair rate declines in ψ, at rate −h(p)dp/dψ. The used vehicle market share U rises in
ψ because U = H(p)/(1 + H(p)), the derivative of which is positive, as shown in equation
(F.2).

Proposition 2. Our steady state framework describes situations in which prices and
scrap rates are constant over time. The proposition is specific about welfare in a time period
because welfare may vary across time periods if the externalities change over time. To clarify
this in the derivation here, we use t to denote the time period, allowing only the externality
to potentially vary over time, consistent with the steady-state interpretation of the model.

Social welfare from vehicles Wt in a period t is private benefits from the new vehicle (the
integral of w over those who choose a new vehicle), minus the cost of new vehicles (new
vehicle market share times ψ), minus the cost of used vehicles (used vehicle market share
times average repair costs, conditional on the vehicle being repaired), minus the externality
(the used vehicle share times emissions of used vehicles plus the new vehicle share times
emissions of new vehicles). In steady state, the stock of used vehicles is the same each
period, so changes in the stock do not appear in the welfare expression.

We define social welfare along these lines as a function of w′, the cutoff value above which
an agent ends up with a new vehicle, and below which the agent ends up with a used vehicle.
To describe the optimum, we assume the planner can directly choose w′. For any w′, there
is an implied repair rate that determines a cutoff repair cost below which all vehicles are
repaired, denoted k′. Thus, w′ determines k′ and hence average repair costs k̄. Specifically:

(1−G(w′))H(k′) = G(w′).

Rearranging yields:

H(k′) =
G(w′)

1−G(w′)

1 +H(k′) =
1

1−G(w′)
(F.7)

Implicit differentiation shows:

h(k′)dk′ =
g(w′)

(1−G(w′))2
dw′

dk′

dw′
=
g(w′)

h(k′)

1

(1−G(w′))2
> 0. (F.8)
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The total repair costs of used vehicles can be written in two distinct but equivalent ways.
Here we write it as the integral over the repair cost distribution from the minimum (0) up
to the endogenously determined cutoff (k′) times the size of the new vehicle market:

K = (1−G(w′))

∫ k′

0

kdH(k).

Social welfare in period t is thus written:

Wt =

∫ ∞
w′

wdG(w)− (1−G(w′))ψ − (1−G(w′))

∫ k′

0

kdH(k)

−G(w′)φut − (1−G(w′)(Φ + φnt ).

The first order condition is:

dWt

dw′
=− g(w′)w′ + g(w′)ψ + g(w′)

∫ k′

0

kdH(k)− (1−G(w′))k′h(k′)
dk′

dw′

− g(w′)φut + g(w′)(Φ + φnt ) = 0. (F.9)

Simplify the first-order condition (F.9) by dividing through by g(w′) and moving w′ to the
left-hand side and denoting the solution value of w′ by ws for “social” optimum:

ws = ψ +

∫ k′

0

kdH(k)− (1−G(w′))

g(w′)
k′h(k′)

dk′

dw′
+ Φ + φnt − φut . (F.10)

Substitute equation (F.8) and use the definition of k̄ to rewrite equation (F.10) as:

ws = ψ +H(k′)k̄ − (1−G(w′))

g(w′)
k′h(k′)

g(w′)

h(k′)

1

(1−G(w′))2
+ Φ + φnt − φut . (F.11)

Simplify and substitute equation (F.7) to yield:

ws = ψ +H(k′)k̄ − (1 +H(k′))k′ + Φ + φnt − φut . (F.12)

Rearranging equation (F.12) yields:

ws = ψ − k′ −H(k′)(k′ − k̄) + Φ + φnt − φut .

The private market outcome is described by a cutoff value w∗, with w > w∗ choosing a
new vehicle and others choosing used, where w∗ = p− ψ + τ −H(p)(p− k̄), and the cutoff
repair cost k′ is equal to p, which satisfies the equilibrium quantity condition.

Thus, when τ = Φ + φnt − φut , the private market will solve:

w∗ = ψ + τ − p−H(p)(p− k̄)

= ψ − p−H(p)(p− k̄) + Φ + φnt − φut .

The benchmark fee thus causes the private market to choose an equilibrium cutoff value
w∗ that equals ws, the social optimum in period t. The remainder of the result states that
moving towards this welfare maximizing point raises welfare, which is true by concavity of
the welfare function.
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E.2 Analytical Model with an Outside Good

The main model presented in the paper allows for no substitution to an outside good. This
abstracts from some potential patterns of substitution. In this section, we describe and
analyze a version of the analytical model that includes an outside good. Our main results
persist in this version of the model.

Setup. Some changes are required to adapt the model to account for an outside good.
The original model normalizes the utility of the used vehicle to zero. Here we normalize the
utility of the outside good to zero.

We also describe a simple set of preferences to reflect this addition and maintain tractabil-
ity. We assume that an agent whose utility of the new vehicle is w has utility from the used
vehicle equal to z(w) = zw, where 0 < z < 1. This is a strong assumption, but intuitive.
The main implication is monotonic sorting—agents with the highest level of w purchase a
new vehicle, those with a middle range purchase a used vehicle, and those with the lowest
w choose the outside good.

We also need to specify taxes separately for used and new vehicles, because not only the
relative tax matters. We denote τu the tax paid by the buyer on used vehicles, and τn the
tax paid by the buyer on new vehicles.

The assumption of a competitive, constant marginal cost new vehicle supply means that
the buyer’s price of a new vehicle is ψ + τn. Because ψ is fixed, an increase in the tax rate
on new vehicles fully passes on to buyers. The equilibrium buyer’s price of used vehicles is
denoted p+τu, with p being the price received by sellers. Because p is an equilibrium object,
pass-through of a tax on used vehicles depends on the shape of supply and demand.

Supply. The owner of a new vehicle repairs the vehicle if and only if their repair cost k
is below the equilibrium (seller) price p, the probability of which is H(p). The used vehicle
supply is thus the size of the new vehicle market in equilibrium times the repair rate, or
NH(p). Supply is perfectly elastic in the new vehicle market and the outside good.

Demand. Consumers are indexed by their preference w. A consumer with preference w
chooses between a new vehicle, a used vehicle, or the outside good. Our assumption that a
consumer with new vehicle utility w has used vehicle utility zw ensures a monotonic sorting,
where the w distribution will be partitioned with the highest values choosing a new vehicle,
a middle range choosing used, and a bottom range choosing the outside good. We restrict
our attention to cases where all three choices have some market share.

We can thus describe the equilibrium by the cutoff values that form the boundaries of the
partition. Denote the lowest type who buys a used vehicle as w. This consumer is indifferent
between the outside good and a used vehicle, so w is defined by:

0 = zw − p− τu

w =
p+ τu
z

.

Denote the highest type that buys a used vehicle as w. This consumer is indifferent between
a new and used vehicle:

w − ψ − τn +H(p)(p− k̄) = zw − p− τu

⇒ w =
(τn − τu) + (ψ − p)−H(p)(p− k̄)

1− z
.
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The partition is summarized in Appendix Figure A8, which shows the payoffs from each
choice as a function of w, for a given p. The values of a new car and a used car are shown
as two lines with w on the x-axis and payoffs (in dollars) on the vertical axis. The used
car value has a slope of z and a y-intercept at −p − τu, which would be the payoff for an
agent with zero valuation of the used good. The new car line starts off at a lower intercept,
−ψ − τn +H(p)(p− h) but rises at a faster slope, equal to 1.13

Agents make the vehicle choice, including the outside good, with the highest payoff. For
an agent with w < w, the best choice will be the outside good (payoff of 0), because both
used and new vehicles have a negative payoff. Individuals with w < w < w will prefer a used
car. Because the slope of the new car payoff is steeper, for a sufficiently high w individuals
will have w > w and will thus prefer a new car.

Market shares. The size of the new vehicle market is 1 − G(w). The size of the used
vehicle market is G(w)−G(w).

Equilibrium. The equilibrium requires that p is such that used vehicle supply ((1 −
G(w))H(p)) equals used vehicle demand G(w) − G(w). This equilibrium condition can be
written equivalently as follows, where w and w are on opposite sides of the equation, which
facilitates differentiation below:

H(p)−G(w) = (1 +H(p)G(w). (F.13)

Comparative statics. There remains one endogenous price in the model, p. In equi-
librium, all agents make the optimal choice of new, used, or outside good, and repairs are
made whenever k < p. The new vehicle market clears at price ψ + τn, and the outside good
market clears at price 0. The equilibrium price p clears the market for used vehicles.

We are interested in how changes in τn and τu affect the market, noting that a change
in ψ has the same effects on the market as a change in τn. The results from the model are
summarized in Appendix Table E.1. Derivations of the results are included below.

Table E.1: Comparative Statics Summary for Model with Outside Good

Variable Outcome
O U N p H(p)

τn (or ψ) + ? - + +
τu + - + - -

In this model, an increase in the new vehicle price (from either ψ or τn) causes the overall
vehicle market to shrink. Equivalently, the outside good share rises. The quantity of new
vehicles shrinks. The price of used vehicles rises, which means that the repair rate increases.
An increase in the new vehicle price has an ambiguous effect on the size of the used vehicle
market. Intuitively, used vehicles are a larger share of a smaller market, and this can lead
to an increase or a decrease in total size, depending on which of those factors dominates.

13For a sufficiently high tax on used vehicles, or a sufficiently expensive minimum repair cost, an equilibrium
exists with no used vehicles and the diagram would be qualitatively different. Our attention is limited to
cases where there are some used vehicles and some selection to the outside good.
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An increase in the used vehicle tax causes the overall size of the vehicle market to shrink
(equivalently, the outside good share rises). The used vehicle market shrinks. The new
vehicle market expands. The price of a used vehicle falls, so the repair rate declines.

How do these results compare to the model with no outside good? In that model, Propo-
sition 1 says that an increase in the new vehicle price ψ increases the used vehicle market and
hence decreases the new vehicle market, increases the repair rate, and decreases the equilib-
rium used vehicle price. These results are the same with the outside good, but the effect on
the absolute size of the used vehicle market is ambiguous. Used vehicles are a larger share
of the total vehicle market, but the market shrinks so the absolute size is ambiguous. This
adds nuance to the Gruenspecht effect discussed in the main text. With an outside good,
raising the price of new durables lowers the equilibrium scrap rate and makes used durables
a larger fraction of the market. But the total number of used durables in the market could
nevertheless decline, if the market shrinks enough.

Similarly, an increase in the relative tax on new vehicles τ = τn − τu decreases the scrap
rate and increases the market share of used vehicles. With an outside good, increasing the
relative tax on new vehicles can come from either an increase in τn or a decrease in τu. Either
case decreases the scrap rate and increases the relative share of used vehicles as a fraction
of the total vehicle market. As noted above, the effect of an increase in τn on the absolute
magnitude of used vehicles is ambiguous, whereas the effect of a decrease in τu is not. This
is the only difference in comparative statics between the two versions of the model.

Proposition 2 from the main text pertains to welfare. In the case with two tax rates and
an outside good, a broader set of welfare results are possible. If one tax rate is set equal to
marginal damages (say τn = φnt ), then the welfare maximizing value of the other tax equals
marginal damages, and moving that tax toward marginal damages improves welfare.

To sign the comparative statics above, we first show that the used vehicle price rises with
an increase in the new vehicle tax (dp/dτn > 0) and that the price will fall with an increase
in the used vehicle tax (dp/dτu < 0). We then totally differentiate the cutoff values w and
w. Given the signs of dp/dτn and dp/dτu, we rearrange those derivatives to yield clear signs.

For purposes of notation, write the equilibrium condition in equation (F.13) as A = B,
where A = H(p) +G(w) and B = (1−H(p))G(w). Then, implicit differentiation yields:

∂A

∂p
dp+

∂A

∂τu
dτu =

∂B

∂p
dp+

∂B

∂τu
dτu.

Rearranging:

dp

dτu
=

∂A
∂τu
− ∂B

∂τu
∂B
∂p
− ∂A

∂p

. (F.14)

Likewise, for τn the same steps yield:

dp

dτn
=

∂A
∂τn
− ∂B

∂τn
∂B
∂p
− ∂A

∂p

. (F.15)

Equations (F.14) and (F.15) have the same denominator. The two terms in the denomi-
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nator are:

∂B

∂p
= (1−H(p))g(w)

∂w

∂p
− h(p)G(w)

= (1−H(p))g(w)

(
1

1− z
(−1−H(p))

)
− h(p)G(w)

= −(1−H(p))(1 +H(p))
g(w)

1− z
− h(p)G(w)

∂A

∂p
= h(p) + g(w)

∂w

∂p
= h(p) +

g(w)

z

Combining yields the denominator for either comparative static, which is negative:

∂B

∂p
− ∂A

∂p
= −(1−H(p))(1 +H(p))

g(w)

1− z
− h(p)G(w)− h(p)− g (w)

z

= − (1−H(p))(1 +H(p))
g(w)

1− z︸ ︷︷ ︸
(+)

−h(p)(1 +G(w))︸ ︷︷ ︸
(+)

− g(w)

z︸ ︷︷ ︸
(+)

< 0.

The numerator for equation F.14 (the τu case) is:

∂A

∂τu
− ∂B

∂τu
=
g(w)

z
+ (1−H(p))

g(w)

1− z
> 0.

Thus, dp/dτu < 0 because the numerator and denominator of (F.14) are both negative. The
numerator for equation F.15 (the τu case) is:

∂A

∂τn
− ∂B

∂τn
= 0− (1−H(p))

g(w)

1− z
< 0.

Thus, dp/dτn < 0 because the numerator and denominator of F.15 have opposite signs.
With these effects on price signed, we can derive the market size effects by differentiating

the market size expressions, recognizing that the cutoff values w and w will change, both
because of direct effects and because of the impact of the tax on p.

Used vehicle taxes. An increase in the tax on used vehicles will increase the outside
good share (shrink the total vehicle market):

dO

dτu
=
dG(w)

dτu
=
g(w)

z

(
1 +

dp

dτu

)
> 0

It also positively affects the new vehicle market share:

dN

dτu
=
d(1−G(w))

dτu
=
g(w)

1− z

(
1 +

dp

dτu
+H(p)

dp

dτu

)
> 0

The effect on the used vehicle market size is just the difference of these two effects, so
the used vehicle market size must decline.
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New vehicle taxes: An increase in the tax on new vehicles will increase the size of the
outside good (shrink the total vehicle market):

dO

dτn
=
dG(w)

dτn
=
g(w)

z

(
∂p

∂τn

)
> 0

An increase in the tax on new vehicles will decrease the size of the new vehicle market.
This must be true because the overall vehicle market shrinks, and the repair rate H(p) rises
because dp/dτn > 0. The effect of a tax on new vehicles on the overall size of the used vehicle
market is ambiguous. The tax shrinks the overall size of the vehicle market, but increases
the fraction of vehicles that are used.

F Quantitative Model: Additional Details (Section 8)

This appendix provides detail supporting the quantitative model and shows results from
a range of additional counterfactuals. The appendix begins by providing a list of data
sources and parameters needed for the analysis (F.1) and how baseline model outputs line
up with the data (F.2). It then provides detail on several aspects of model specification,
namely: how the utility function described in the text resolves into the demand specification
(F.3), explains how our assumption about agent beliefs about price changes translates into
used vehicle prices (F.7), our solution algorithm (F.5), calibration of the model to the initial
period (F.6), and the model mechanics regarding vehicle depreciation (F.7). We then offer an
extension of the representative agent model, calibrated using vehicle ownership divided over
income groups, to characterize the likely distributional implications of policy counterfactuals
(F.8). Lastly, we report a variety of sensitivity analyses (F.9).

F.1 Data for Quantitative Model

This c (summarized in Appendix Table A7), assumptions, and extrapolations used to con-
struct the quantitative model. The final input data for the model is for two-year age bins
a = 0, 1, . . . , 18, where age bin 0 corresponds to 0-1 year old vehicles, age bin 1 corresponds
to 2-3 year old vehicles, etc.

Many data and parameters described here are primitives (i.e., they do not change in
equilibrium) that we assign to a vehicle based on some combination of vintage, age and class.
These include annual vehicle miles traveled, fuel economy, scrap elasticities and damages per
ton. Scrap rates, vehicle prices and vehicle quantities are equilibrium objects. We use data
on vehicle prices and quantities to calibrate the initial fleet.

Vehicle miles traveled (VMT). The data source for vehicle miles traveled is the
Colorado emissions smog check dataset (Colorado Department of Public Health and Envi-
ronment 2016). The quantitative analysis uses data from test year 2014, which gives us raw
VMT data for the widest age range—vehicles aged 4-32 years. We tabulate average VMT
by age by class and size. The cutoff used for size is the median curb weight for each vehicle
class (3,000 lbs. for cars and 4,000 lbs. for trucks). We assume that VMT for 0-3 year old
vehicles equals VMT at age 4, as these newer vehicles are exempt from emissions testing and
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therefore not observed in the Colorado data. Likewise, we assume that VMT for vehicles
ages 33-37 equals VMT at age 32.

Vehicle prices. Data on vehicle prices are from NADA (National Automobile Dealers
Association 2012). This dataset contains used vehicle resale values for vehicles between 1
and 19 years old. We extrapolate prices for new vehicles (assuming that the depreciation rate
between 0 and 1 year old vehicles equals that between 1 and 2 year old vehicles) as well as for
20-37 year old vehicles. The latter extrapolation is performed as follows. We use pricing data
for 19 year old and 27 year old vehicles from the 2019 Kelley Blue Book (KBB) (Kelley Blue
Book Co. 2019). For each of the 28 make-class-size combinations in the quantitative model,
we select the model that appears in most model-year by age by calendar-year combinations,
except if it was a sports car (such vehicles are not representative). We exclude vehicles
for which the KBB does not go back to model year 1992, unless there is no vehicle in the
KBB data that goes back that far in time (this applies to 3 out of 28 categories, for which
the earliest model year is 1993 or 1995). We use the “buy from private party” option as
this seems most relevant for old vehicles. We use “fair value” for a middle-of-the-road trim,
without added options, in “good” (the most common) condition. After collecting resale
values for the 19 year old and 27 year old vehicles, we took the ratio of the average prices,
which indicates 37.7% depreciation between ages 19 and 27. We then extrapolate the NADA
price data by setting a fixed (calibrated) annual depreciation percentage for ages 27-37 and
a linear interpolation of the depreciation percentage between age 19 (for which we observe
prices in the NADA data) and the assumed percentage for age 27 (based on the KBB data).
The calibrated depreciation for ages 27-37 is -4.2% annually.

Vehicle quantities. We use Wards Automotive Yearbooks data on the composition
of new vehicle sales by size, class and manufacturer (Wards Intelligence 2002). We then
calibrate the quantity of new vehicles sold (i.e., apply a scaling factor) such that the resulting
magnitude of the total (new and used) fleet equals the total fleet size from the Wards
Automotive Yearbook 2002 (which reports vehicle quantities for the year 2000). The total
fleet size in the year 2000 is 221 million vehicles. Finally, holding the total quantity of vehicles
of each class, size, manufacturer and age fixed, we adjust the light-duty truck share to match
the average car v. truck profile over the period 2000-2014 using data from the Federal Reserve
Bank of St. Louis (2014). This adjustment adds realism to model estimates, as the share of
trucks has risen sharply over the last several decades and not adjusting for this trend would
lead to an overstated used truck fleet (and, therefore, overstated emissions damages).

Inflation. We use the Consumer Price Index for all items in U.S. city average, all urban
consumers, not seasonally adjusted (U.S. Bureau of Labor Statistics 2021).

Scrap elasticities. We take elasticties of vehicle scrap with respect to the used vehicle
resale value from Jacobsen and van Benthem (2015). We take their estimate by class, size
and age category (1-8 years old vs. 9+ years old). These elasticities for the younger age
category are -0.758, -0.979, -0.816 and -0.617 for small cars, large cars, small trucks and large
trucks, respectively. For the older age categories, the elasticities are -0.514, -0.500, -0.811
and -1.018. These elasticities are treated as fixed parameters. Combined with equilibrium
prices, they result in scrap rates that are endogenous outcomes of the model.

Scrap rates. We calculate scrap rates by age, class and size from vehicle registration
data from R.L. Polk & Company (2009), used in Jacobsen and van Benthem (2015). Scrap
rates for one year old vehicles (not observed in the data) are assumed equal to scrap rates
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for two year old vehicles of the same class and size. We also do not observe scrap rates for
vehicles ages 32-37 years, so we assume their scrap rates are equal to the scrap rates of 27-31
year old vehicles of the same class and size. These scrap rates are taken as initial starting
points for the baseline simulation; changes to scrap rates depend on the scrap elasticity and
equilibrium prices.

Fuel economy. Fuel economy data for new vehicles in the year 2000 come from the U.S.
Department of Energy and aggregated to the make by class by size level (U.S. Department
of Energy 2022). We use data on realized fuel economy of the fleet by model year to calcu-
late fuel economy ratings to model years older than 2000 (National Highway Traffic Safety
Administration 1978, 2014). From this, we observe that the fuel economy of new vehicles
was almost flat for the period 1982-2000. For model year 1963 (corresponding to the oldest
possible age in our model for the 2000 fleet, 37 years old) to 1982, we compute a trend in an-
nual fuel economy, separately for cars and trucks (0.9735 and 0.9797, respectively). We then
assign a vehicle’s fuel economy rating based on when it was produced, using the estimated
trend only for vehicles produces before 1982.

We measure Corporate Average Fuel Economy Standards for cars and trucks from the
National Highway Traffic Safety Administration (2011) (CAFE Standards 1978-2010) and
the U.S. EPA (2010) (CAFE Standards 2011-2016). For model years 2017 and beyond,
we assume CAFE standards for cars and trucks increase linearly at the rate observed over
2000-2014.14

Finally, we use curvature parameters to calibrate the fuel economy cost functions as
described in Appendix F.6. To represent baseline values beginning in model year 2000,
we use an estimate of the costs of fuel economy using engineering data from the National
Research Council (National Research Council 2002). Their costs can be approximated closely
with a quadratic function in fuel economy.

Pollution per mile. The pollution data in the model are averages of CO, HC and NOx

emissions per mile by age, class and size from the Colorado smog check data. We use data
for the vehicle fleet observed in calendar years 2000, 2002, . . . , 2014 consistent with our
two-year age bins.

Because the Colorado smog check data end in calendar year 2014, we extrapolate emission
rates for calendar years 2015 and beyond. We do this using a combination of age deterioration
factors (i.e., a given model year becomes dirtier as it ages) and model year improvement
factors (i.e., every subsequent model year has lower new vehicle emission rates). We estimate
the age deterioration factor using a regression of log pollution rates on age and VIN prefix
fixed effects. We plot the age fixed effects and fit a linear relationship for ages 4-19. For
vehicles age 20 and older, the relationship is flat, and we assume no further deterioration
as a result. See Appendix F.6 for detail on calibration of emissions functions beyond the
2000-2014 time period. We estimate the vintage improvement factor for new vehicles as the
average rate of decline in new vehicle emission rates over the period 2014-2020; see Appendix
B.2 for details.

We also extrapolate emissions for unobserved model years in the 2000, 2002, . . . , 2014
emissions data. The raw pollution data for the 2000 fleet describe vehicles aged 4-18 years.15

14These differ from the actual fuel economy standards over the years 2017-2021 but we make a long-term
assumption that standards will progress steadily at historical rates.

15Colorado smog check inspections are required for 4-year old vehicles and for vehicles with model year
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We extrapolate down to ages 2-3 using emission rates for 4-5 year-old vehicles in the 2002
fleet, and down to ages 0-1 using emission rates for 4-5 year-old vehicles in the 2004 fleet.
We extrapolate up to ages 19-25 using the exponential annual deterioration factor calculated
as (emissions for 18-year-old vehicles/emissions for 4-year-old vehicles)1/14, which combines
age deterioration effects and vintage improvement effects. For vehicles aged 26 years and
older, we use a more conservative linear extrapolation based on the pollution deterioration
between age 18 and age 25.

Pollution damages per ton. The pollution damages for HC and NOx are taken from
Tschofen et al. (2019), weighted across counties by population. For CO, the damages are
from Knittel and Sandler (2018).

Vehicle property taxes. We created a database with vehicle property tax rates using
a variety of state and local sources. Most of these tax rates come from state government
websites, though the relevant division of the government varies by state (typically the state
department of revenue, department of motor vehicles, or state law), and in some cases we
corresponded directly with staff to clarify rates. Tax rates can vary at the county, special
district, school district, or city level. We take an unweighted mean of the tax rates over the
geographies within a county to aggregate up to the county level. Names of these registration
fees vary by state and county—they can be called vehicle excise fees, vehicle personal property
tax, vehicle ad valorem tax, or just a motor vehicle tax. Some states apply percentages that
vary with vehicle age. In total, twenty-eight states have such registration fees.16

Other parameters. The quantitative model has several other parameters. We use
an annual discount rate of 3.0%, which is one of the two standard discount rates used by
the EPA and National Highway Traffic Safety Administration in their impact analysis for
environmental regulation. We take GDP for the year 2000 from the U.S. Bureau of Economic
Analysis: $10.25 trillion ($15.22 trillion in $2019) (U.S. Bureau of Economic Analysis 2020).
We assume a GDP growth rate of 0.5% per year, chosen to match the growth rate in total
vehicle miles traveled between 2000 and 2014 reported in the Highway Statistics (Highway
Statistics 2017). We use the gasoline price in the year 2000, obtained from the U.S. EIA:
$1.51 in $2000 ($2.24 in $2019) (U.S. Energy Information Administration 2015). We assume
an autonomous rate of improvement in fuel economy technology of 1.8% per year (Knittel
2011). Vehicle demand elasticities are taken from Jacobsen and van Benthem (2015). The
values are ρt,s,a = 0.5 for all manufacturer nests, ρt,s = 0.575 for all age nests, ρt = 0.55 for
both size nests, and ρv = 0.5 for the car/truck nest.17 The highest-level utility parameter
determines the substitution between vehicles and other goods. Our central case value for this
parameter implies an aggregate elasticity of demand for vehicles (including gasoline cost) of
0.75. The corresponding value used for ρu is -0.33.

In the counterfactuals that accelerate Tier 2 by eight years, the first year of the policy
change is 2000, making 2008 standards apply in 2000, 2010 standards apply in 2002, etc.

≥ 1982. So in the calendar year 2000 fleet, we mostly only observe emissions for vehicles aged 4-18 years.
16The 28 states are Alabama, Arizona, Arkansas, California, Colorado, Connecticut, Indiana, Iowa,

Kansas, Kentucky, Louisiana, Maine, Massachusetts, Michigan, Minnesota, Missouri, Mississippi, Montana,
Nebraska, Nevada, New Hampshire, North Carolina, Rhode Island, South Carolina, Virginia, Washington,
West Virgina, and Wyoming.

17These values are calibrated to an average own-price elasticity of -2.4 (Austin and Dinan 2005) and
approximate the substitution patterns seen in the new vehicle source data in that study.
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F.2 Model Fit

The quantitative model incorporates vehicle emissions rates for CO, HC, and NOx taken
from the full sample of Colorado smog check data, corresponding to that displayed in Figure
6 in the main text. Transformations of the emissions data to create a comprehensive model
of age- and time-based depreciation factors to project out of sample, and to match vehicle
definitions and age bins in the quantitative model, mean that assessing fit is an important
check. Panels A and B of Appendix Figure A9 plot the emissions per mile of CO and HC
in the quantitative model against the original Colorado smog check data. Each point is an
age, class (passenger car or light truck) and vintage bin. The data line up closely along
the diagonal with small average deviations. Vehicle quantities in the national sample used
in the quantitative model appear slightly skewed toward more polluting vehicle sizes than
in Colorado (somewhat more points appear to the right of the diagonals than to the left)
though the effect is small in magnitude.

Next, we compare cumulative emissions by age in the quantitative model to those in the
Colorado data. Here we expect some, though perhaps not major, differences: vehicle class
and age shares in the quantitative model come from data on national sales and scrap rates
of all vehicles, while Colorado may have a distinct fleet composition. Panel A of Appendix
Figure A10 shows the cumulative distribution of emissions by pollutant and vehicle age in
the quantitative model while panel B reproduces Figure 7 for Colorado from the main text
and is provided for comparison. The patterns nationally and in the Colorado sample are
similar; with the quantitative model calibration reflecting a national fleet with a somewhat
greater fraction of driving and pollution occurring in vehicles less than 10 years old.

F.3 Demand

We assume that agent utility follows a standard constant elasticity of substitution (CES)
form. We show here that this functional form for utility produces demand curves for each
vehicle type that depend on per-period costs e, as well as a set of scale parameters and CES
substitution parameters.

Maximizing utility (6) subject to the budget constraint (7) from the main text yields
demand:
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The associated price of one unit of utility (the CES composite or ideal price index) is
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(G.2)

The consumer buys M/e∗ units of composite good. From (G.1) and (G.2), demand for

A26



composite vehicles, or demand for other goods, relative to demand for composite good, is

v(ev, ex,M)
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=
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αve

∗
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At each level, the representative agent minimizes the cost of the given amount of the
composite good:

min
ci

n∑
i=1

eici s.t. Q =
( n∑
i=1

αiq
ρ
i

) 1
ρ

for i = 1, . . . , n, where Q is the (given) amount of the composite good demanded. Solving
this yields the following solution for nest 5 (and analogous solutions for nests 4, 3 and 2):

vc,s,a,m
vc,s,a

=

(
αc,s,a,mec,s,a
ec,s,a,m

) 1
1−ρc,s,a

, m = 1, . . . , 7 (G.3)
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The solution to the problem in nest 1 is described in equation (G.1).
We now solve for demands in all nests, given prices, parameters, and income. We solve

for the demand ratios and ec,s,a at nest 5, then for nest 4, etc. Using the ev, ex obtained for
nest 1 above and total income M , one can now solve for the level of nest 1 demand v and x.
Finally, the solutions for the levels of demand at the sub-nests can be calculated using the
earlier obtained demand ratios. We denote demand at the finest nest by qdc,s,a,m ≡ vc,s,a,m.

We calibrate scale parameters α as functions of prices, quantities, and ρu, as follows:

1. Set ec,s,a = 1 for all c, s, a.18

2. Determine vc,s,a given ec,s,a, observed vehicle demands vc,s,a,m, and the relationship∑
m ec,s,a,mvc,s,a,m = ec,s,avc,s,a.

3. Calculate αc,s,a,m by rearranging equation (G.3).

F.4 Derivation of Used Vehicle Pricing Equation (13)

This appendix explains how our assumption of “no change” beliefs about rental rates trans-
lates into a set of used vehicle values. First consider the suppliers’ problem for vehicles that
are entering age amax. The suppliers enter period t with qamax−1,t−1 of these vehicles and
solve:

18Total expenditure on the composite good vc,s,a is uniquely determined by the demands and prices of the
specific goods, but units for vc,s,a are arbitrary. Hence we can define units so ec,s,a = 1.
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max
pamax,t

Hamax(pamax,t)
(
ramax,t − k̄amax,t

)
Where Hamax is the survival probability applied to the endowment of qamax−1,t−1 vehicles

and k̄amax,t is expected repair expenditure. Future periods do not enter this maximization
problem since vehicles are scrapped with certainty after age amax. The solution is to choose
a cutoff value for repair pamax,t = ramax,t. Applying the repair cost density h(·) the quantity
of vehicles supplied is:

qsamax,t = qamax−1,t−1 ∗ (1− bamax(pamax,t)γamax )

The second term inside the parentheses is the scrap rate, yamax,t = bamax(pamax,t)
γamax

Now consider vehicles entering age amax − 1 at time t. The suppliers enter period t with
qamax−2,t−1 of these vehicles and choose a cutoff pamax−1,t such that they only repair vehicles
with a repair cost draw below this cutoff. They take rental rates ramax−1,t and E[ramax,t+1] as
given and maximize rental income this period, plus potential rental next period, less repair
expenditures. When E[ramax,t+1] = ramax,t, the cutoff from above (pamax,t) also serves as a
continuation value for the decision problem on vehicles of age amax− 1. Similarly, the cutoff
for age amax − 1 vehicles is the continuation value in the age amax − 2 decision. This makes
us use “p” to represent the repair decision cutoffs since in equilibrium they equal the price
or asset value of used vehicles.

F.5 Equilibrium Solution Algorithm

Because producer decisions about new vehicles depend on used-vehicle prices, which in turn
depend on the new market, we take a nested iterative approach. All conditions must be
satisfied in equilibrium. The model is exactly identified—the unknowns include 532 vehicle
prices (the outside good price is normalized to one), 28 fuel economies, and 28 exhaust
emission rates, with one equation per unknown.19 The following steps are computationally
efficient:

1. Given new vehicle prices pc,s,0,m,t and fuel economy levels fc,s,0,m,t, solve for rental rates
rc,s,a,m,t so qsc,s,a,m,t = qdc,s,a,m,t for all a > 0. This involves iterating over the demand
system and scrap versus repair decisions. The solution is a vector of 504 used vehicle
rental rates, one per vehicle type.

2. Given used vehicle rental rates and list of which fuel economy constraints bind, solve
the profit maximization problem in equation (9). This yields 28 new-vehicle prices
pc,s,0,m,t and fuel economy levels fc,s,0,m,t. We assume the exhaust constraints (11) bind
on each vehicle and enter the cost function in equation (10).

19Analytical results for equilibrium existence and uniqueness have not been established for this class of
models, so the analysis assesses equilibrium uniqueness numerically, using a broad range of starting values
and alternative algorithms including a simple Newton’s method.
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3. Given the new vehicle demand quantities for each manufacturer and fleet, update the
vector of which 14 fuel economy constraints bind. If a constraint was non-binding but
is being violated, make it bind. If a constraint was binding but its Lagrange multiplier
is negative, make it non-binding.

Solution begins by guessing a vector of binding fuel economy constraints and iterating
between solving nests 0 and 1 until convergence. We use Broyden’s method, a globally
convergent quasi-Newton algorithm, to solve for the prices equating supply and demand in
each nest. Once new and used vehicle prices are found so both markets clear, constraints in
nest 2 are evaluated. If changes are made to the vector of binding constraints, the model
re-solves the lower nests. This process continues until all equilibrium conditions are satisfied
and no changes occur in nest 2. Equilibria are calculated for every two-year time period in
sequence.

F.6 Calibration

Scale parameters. We calibrate the scale parameters α as described in Appendix F.3. We
choose the scale parameter ba to match baseline scrap rates in the data and to set γa.

Fuel Economy Cost Function. Equation (12) describes CAFE standards for each
manufacturer’s cars and trucks. The consumer also cares about fuel economy through gaso-
line costs in (8). We use CAFE standards from 2000, our base year. Year 2000 CAFE
standards applied separately to each manufacturer and vehicle class, without possibility of
trading between classes or manufacturers. Hence, we express CAFE standards as a threshold
for the harmonic average fuel economies of each manufacturer’s car and truck fleets.

The cost function for fuel economy in equation (9) is:

Cf
c,s,t(fc,s,t) = κ1c,s,t(fc,s,t − f̃c,s,t) + κ2c,s(fc,s,t − f̃c,s,t)2

where f̃c,s,t is baseline fuel economy observed in our data. We calibrate values of the pa-
rameters κ1c,s,t and κ2c,s. The calibration of κ1c,s,t follows from the first-order conditions of the
producer problem. Specifically, at the profit-maximizing point the value of an additional
unit of fuel economy to producers (which we assume they set equal to the slope of cost given
in κ1c,s,t) equals the willingness to pay for fuel economy by consumers plus the shadow value
of fuel economy under pre-existing CAFE standards. For demand, we assume willingness to
pay for a marginal improvement in fuel economy reflects the discounted stream of savings on
gasoline. For the shadow value of CAFE standards we use estimates from Jacobsen (2013).
To calibrate the second derivative of the fuel economy cost function, κ2c,s, we use the coef-
ficient on fuel economy squared from a regression of engineering cost on fuel economy and
fuel economy squared with the vehicle design data reported in National Research Council
(2002).

Exhaust Emissions Cost Function. We calibrate the exhaust cost function (10) to
minimize the sum of squared differences between the costs of exhaust standards in our model
and those described in the Tier 2 and Tier 3 Regulatory Impact Analyses (U.S. EPA 1999,
2014a). The analyses report additional costs from Tier 2 and Tier 3 (combined and fully
phased in) between $90 for small cars and $414 for large trucks.
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Calibrated values of ζc,s from equation (10) reflect costs ranging from $5.26 (small cars)
to $23.69 (large trucks) for a ten percent reduction in emission rates. The calibrated value
of χ is 0.985. Allowing χ to vary with (c, s) does not substantially improve the fit.

The term ξc,s,t in equation (10) reflects the calibration residual. Including it means
that our baseline exactly matches the costs from the regulatory impact analyses; ζc,s and χ
determine deviations in cost when exhaust policy deviates from the baseline.

It may be informative to compare the abatement technology assumptions in equation
(10) against other approaches in the literature. The structure here follows that in Bovenberg
et al. (2008). This is related to an approach used in much macro-climate change research,
which assumes greenhouse gas emissions equal output, times a trend in emissions intensity,
times the secular long-term trend in emissions intensity (Nordhaus 2013). Our approach fits
historic data on emissions and costs, and thus also includes the residual term ξc,s,t and the
actual emissions data φc,s,t rather than simply the trend.20

Pollution. Baseline pollution emission rates evolve as follows. We use raw emissions data
from Colorado smog check described in Section 3.2 to measure emission rates for calendar
years 2000 through 2014. Emissions for time steps beyond 2014 (t = 8 in our notation) are
calibrated as:

φp,a,t|t > 8 = agefactorp,aφp,0,t−a (G.4)

where φp,0,t−a are emissions of the vehicle when it was new and agefactorp,a captures de-
terioration of emissions with age. Calibrated values of agefactorp,a reflect annual rates of
deterioration (increase) in CO, HC and NOx of 3.6%, 5.6% and 4.0% through age 19, and
zero thereafter.

When a ≥ t performing this computation requires inferring new-vehicle emissions before
2000. To do this we apply:

φp,0,t|t < 1 =
φp,1−t,1

agefactorp,1−t
(G.5)

Finally, for vehicles produced after 2014 we use new-vehicle emissions data through 2020
and apply agefactorp,a as above. In some sensitivity analyses we run the model past 2020,
and there we extrapolate new vehicle emissions using observed improvements between 2014
and 2020.

F.7 Other Model Mechanics

Calculating model dynamics. When the model algorithm moves between time periods, it
calculates a new equilibrium as described in Section 8.1, with updated exogenous parameters
(e.g., income growth) but also given the fleet from the previous period’s equilibrium. The
fleet evolves so qa,t = (1− ya,t)qa−1,t−1.

20Economy-wide models of air pollution can use one of several alternative models—production may gener-
ate potential pollution, and then abatement decreases actual emissions relative to the potential; or pollution
abatement takes an endogenously-chosen share of productive factors, while goods production uses the rest;
or firms have a separate production function for pollution, which uses abatement investments as an input. If
goods production is Cobb-Douglas in standard inputs and in pollution, then these alternative interpretations
of pollution abatement are analytically equivalent (Copeland and Taylor 2003; Shapiro and Walker 2018).

A30



Depreciation. Counterfactual policies affect the value of existing used vehicles in ways
that the vehicle rental suppliers do not expect. The timing of when changes in capital value
enter the supplier’s accounting method (and so are returned to households) influences the
pattern of welfare effects. In the long run, any deferred changes in asset value must eventually
appear, but discounting means the choice of accounting method could affect social welfare
conclusions.

We assume new vehicle purchases and repairs are immediately fully depreciated:

πt =
18∑
a=0

(
(ra,t − k̃a,t)qa,t

)
− p0,tq0,t

Here, accounting profits for the vehicle rental supplier equal rental income minus spending
on repairs and replacements. Profits will then be positive when the fleet is shrinking and
negative when the fleet is growing. With a shrinking fleet, for example, vehicles from previous
periods still bring in rental income, but some baseline expenditures to repair and replace
them are no longer being made. Appendix F.9 discusses alternative approaches to computing
depreciation.

Accounting for Expected Changes in Fuel Economy and Emission Rates

While the core of the model reflects simple steady-state expectations about used vehicle
prices (i.e., vehicle suppliers assume future used vehicle values will match current ones), we
can allow some sophistication in the form of adjustments to expectations based on attributes.
Specifically we account for expected increases in future rental rates due to improving fuel
economy and emission rates over time:

E[rc,s,a,m,fut.] =

rc,s,a,m,cur. + υ ∗ (τ ∗ vmt ∗ (φj,cur. − φj,fut.) + pgas ∗ vmt ∗ (1/fj,cur. − 1/fj,fut.)) (G.6)

Here fut. refers to future, cur. to current, and υ ∈ [0, 1] controls how much of the difference
between current and future attributes of vehicle j the supplier expects to be reflected in future
rental values. The true value (if the supplier had rational expectations) is intermediate since
both demand and supply will shift.

The value of υ affects the time path of accounting profits for the supplier. A low value
of υ means that the supplier has positive surprises in the future when vehicles rent for more
than expected, since they have better fuel economy and lower emissions than current versions
of the same vehicle. In an accounting sense, too much depreciation is charged early on and
so offsetting rents appear later. At the same time, low values of υ also mean that more
scrap will occur in the short run, since suppliers expect future used values to stay low, so
additional pollution gains occur. The main analysis uses a value of υ = 0.5 and Appendix
F.9 shows that welfare results aggregated over time are not sensitive to this choice.

F.8 Quantitative Model: Effects by Income Group

We apply data on the distribution of vehicles by income group to consider the likely incidence
of our counterfactual registration fee policies across the income spectrum. Vehicle choice
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data by age and income from the 2001 NHTS (U.S. Federal Highway Administration 2001),
chosen to line up with our central policy counterfactuals, appear in Panel C of Appendix
Figure A11.21 The highest income bin in the sample (annual income greater than $80,000
per household) appears in green, with a distribution of choices sharply skewed toward newer
vehicles. Households from the lowest income bins (less than $20,000 annual income) are
shown in red, and own vehicles from a much older section of the age distribution.

Appendix Table A9 presents registration fee payments at the baseline and under our
central set of policy counterfactuals. Row 1 shows how baseline fees assessed in proportion
to vehicle value (the fixed component of registration fees is assumed unchanged throughout)
increase with income. Higher income households own newer, more valuable, vehicles, and
more of them. We note that the incidence of existing fees (even when considering only the
portion proportional to vehicle value) is regressive as a fraction of income.

Next, we compute the hypothetical fees that households in each income bin would pay if
a pollution based fee varying with vehicle age and type were assessed and no re-optimization
occurred: that is, the incidence if all households were to keep their baseline vehicle choice
as in the 2001 NHTS. Reading row 2 from left to right, there are two competing effects:
higher income households own more vehicles and so pay more fees, but they also own newer
vehicles and so the pollution-based fees per vehicle are smaller. The effect of the increasing
number of vehicles (average vehicles per household appears at the bottom of the table for
reference) dominates through the 40-50k income bin, meaning higher income households pay
slightly more pollution-based fees even though their per-car fees are lower. At higher levels
of income the two effects cancel nearly exactly. The values shown are the annualized cost of
all fees expected over 20 years of the counterfactual: payments in any individual year decline
over time with improvements in pollution control and also reflect the transition path as older
vehicles are removed from the economy. Overall, the fees assessed across income groups are
similar in absolute terms, ranging from $170 to $205, making them sharply regressive as a
fraction of income.

Row 3 makes use of our equilibrium counterfactual, where households scrap the majority
of vehicles older than age 24 and thus avoid paying many of the highest fees. To consider
the incidence of fees by income group we need to reassign vehicles that remain in the coun-
terfactual equilibrium back into income bins, such that aggregate vehicle choice matches the
modeled outcome and such that the fraction of households in each bin remains fixed. Among
the set of allocations that satisfy these requirements we take the simple, and we think neu-
tral, approach of reallocating vehicles such that the changes for each income group are kept
in proportion to the baseline choices for that group.22 For example, a group that tends to
split its demand between middle-aged and old vehicles will switch most of their demand to
middle-aged vehicles after the policy shock. A group that tends to own new, middle-aged,
and old vehicles relatively equally would shift their demand from old to a combination of
new and middle-aged.

The incidence of policy shown in row 3 shifts with scrap: Because lower income groups
own more of the oldest cars to start with, they also do most of the vehicle scrap in response

21We further disaggregate by vehicle class and size in the analysis that follows.
22Mathematically this amounts to solving for two vectors, weights on vehicles and weights on income

groups, such that when the weights are multiplied by baseline choices we arrive at a new matrix of choices
satisfying the constraints on income bins and aggregate vehicle choices.
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to fees: total fees paid fall 35% when accounting for equilibrium effects (i.e. between rows 2
and 3 for the lowest income group). Higher income groups also see fees fall: they substitute
from middle-aged cars (which are now mostly owned by the lower income groups) into the
newest vehicles and see fees paid fall 26%. Incidence remains regressive as in row 2, but not
quite as sharply regressive after accounting for differential scrap rates.

Rows 4 through 6 investigate the remaining registration fee counterfactuals we examine in
Section 8. With a revenue-neutral structure (where pollution-based fee revenue is dispersed
equally to each vehicle registration) the wealthiest households gain relative to the baseline
due to their large number of vehicles per household. The pollution-based fee raises large
amounts of revenue and so alternative recycling structures, for example dispersing revenue
equally to each household or through the income tax system, would produce very different
and potentially progressive outcomes. New-vehicle fees in row 5 place much of the burden
on wealthier groups, but as we discuss in the main text, they fail to produce pollution
improvements. A simple flattening of fees in row 6 amounts to a more modest version of the
revenue-neutral system in row 4 in terms of distributional outcomes.

F.9 Quantitative Model: Sensitivity Analyses

Alternative Elasticities, Baselines, and Policies

Appendix Table A10 reports a range of sensitivity analyses. Panel A repeats baseline results
for the eight year delay of Tier 2 and the age×type registration fee from Table 5.

Panel B evaluates the Tier 2 delay counterfactual under four alternative elasticities.
Rows 3 and 4 assume 50% lower and higher elasticities of scrap with respect to vehicle resale
value. Rows 5 and 6 assume 50% lower and higher elasticities of substitution between vehicle
vintages, i.e., how easily consumers substitute between vehicles of different vintages. Results
are similar in all four cases; the exhaust standard delay changes the age profile of the fleet
only slightly, and so changing parameters that control flexibility along this dimension has
little effect.

Panel C investigates alternative baselines. Rows 7 and 8 assume CAFE standards are
more stringent and that income grows more rapidly, while row 9 assumes that the ratio
of miles traveled for new versus old vehicles is 5 (our data in the main analysis assume
a ratio of 3.4). More stringent CAFE standards imply somewhat longer vehicle lifetimes,
slightly slowing the damage done from a delay in exhaust standards and therefore reducing
the (discounted) total damage change. Faster income growth and the alternative VMT
schedule imply a slightly newer VMT-weighted fleet, somewhat increasing the present value
of pollution damage from the counterfactual delay.

Panel C, row 10 allows for Bertrand competition among new vehicle producers. This
adds a pre-existing distortion to the economy: market power reduces new vehicle sales and
the overall number of vehicles, and it lengthens vehicle lifetimes. We calibrate elasticities
such that markups from the producer problem are 25% in the baseline. Our first order
conditions for firms include equilibrium effects in the current period. This allows the used
vehicle market to adjust in response to new-vehicle price decisions, but it abstracts from the
effects of current-period price decisions on future-period used markets. This myopia parallels
the consumer problem. Implicitly, dynamic competition and other features of competition
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outside our model are assumed to be captured in the 25% markup and insensitive to the
policy counterfactuals. In the context of the counterfactual exhaust standard delay in row
10, the longer lifetimes associated with imperfect competition imply that vehicles will take
longer to work through the fleet, slightly reducing discounted harms. Row 11 considers a
higher gasoline price, and row 12 considers an internal discount rate of 7% instead of 3%.
The welfare results in row 12 are still discounted at 3% to provide a useful comparison for
the table; it is the way market participants and asset values are constructed inside the model
that differs. Welfare effects remain relatively stable across these scenarios: the welfare cost
of delaying Tier 2 is -$185 billion in the main estimate, and in the sensitivity analyses this
ranges from -$175 billion to -$202 billion.

Panel D evaluates the age×type registration fee counterfactual under alternative elas-
ticities controlling flexibility in the age profile. Since this policy counterfactual operates
directly on vehicle age we expect more sensitivity to the elasticities than in Panel B above:
more elastic scrap in row 14 increases the utility of counterfactual policies since it lowers the
cost of altering the fleet. Similarly, larger elasticities of substitution in row 16 predict larger
welfare gains from age× type registration fees; when people more easily substitute across
vehicle ages the gains from a registration fee policy are larger. Sensitivity appears largest to
vintage substitution, with the high case implying about 60% greater net welfare gains.

Panel E investigates alternative baselines, now comparing effects of the age×type regis-
tration fee in different settings. Alternative trajectories of CAFE standards or income growth
(rows 17 and 18) have little effect on the welfare gains, most of which are coming early in the
simulated period. Under the alternative VMT schedule in row 19 (which makes older vehi-
cles driven relatively less, and so less important to overall pollution) the system of age×type
registration fees produces 11% smaller welfare gains. Bertrand competition among new ve-
hicle producers (row 20) creates a pre-existing distortion which is now partially corrected by
the age×type registration fee policy; it performs somewhat better in this environment since
it now addresses both a market power distortion and the pollution externality. In row 21,
the 50% higher baseline gasoline price reduces available welfare gains because the age×type
tax is smaller relative to baseline ownership costs. Put another way, the higher gasoline
price means that some of the switching away from used vehicles (which have slightly worse
fuel economy) and especially used light trucks has already happened. Finally, row 22 shows
internal discount rates have relatively small impact; this is due to the disproportionate share
of fees that fall early in the simulated time period.

Panel F considers alternative counterfactual policies. Row 23 assumes that the marginal
cost of emissions reductions is five times as high as in the baseline. This could reflect
increased prices of precious metals used as catalysts. Net benefits fall from $25 billion
in the baseline (Table 5) to $15 billion. Row 24 considers a scaled-down version of the
age×type fee in row 2, now set at only 10 percent of damages. The smaller fee in row 24
produces a benefit-cost ratio of 19, primarily since marginal costs of distorting the vehicle
age profile are increasing in the size of the distortion and row 24 describes a scaled-down
policy. This relatively small policy could also be regarded as a better-targeted version of
“flattening” existing registration fee structures and it generates economically large benefits.
Row 25 examines a used vehicle fee that conditions on age only. The age-based registration
fee in row 25 obtains a welfare gain that is 95% as large as the age×type registration fee in
row 2. Put another way, almost all the benefits of this fee are due to differentiation between
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vehicle ages, rather than vehicle types. Finally, row 26 considers a flattening of registration
fees starting from a higher baseline tax rate (0.68% versus 0.31% in the central case). Larger
baseline fees mean that flattening the structure will have a larger effect: We find it scales
approximately linearly with the starting fee rate and now leads to an approximately 4%
reduction in emissions.

Alternative Depreciation Approaches and Expectations

We also investigated two approaches to computing depreciation which differ from that of
Section F.7. One alternative immediately credits capital gains and charges capital losses. In
this alternative, profits in time period t equal rental income less expected depreciation, which
includes expected scrap and repairs and is equal to zero by equation (13), plus unexpected
appreciation or depreciation between time periods due to the policy. The other alternative
uses a schedule of depreciation for the original capital that is determined at vehicle purchase
and then held fixed. Repair spending is depreciated immediately. The fixed depreciation
schedule could reflect, for example, a pre-determined set of payments to a bank made to cover
the original vehicle purchase. In this setting a reduction in rental rates (e.g., associated with
a pollution tax) results in a sequence of losses since rental income falls short of the pre-
determined payments each year as a given vehicle continues to age. The loss resulting from
the policy shock will be more spread out than in case 2 above.

Experimentation found that the main depreciation approach and the first alternative
produced similar results, while the second alternative increases the discounted welfare gain
(over 20 years) from the age×type registration fee by about a fourth. This is because the
third depreciation method allows much of the cost of policy (most of which is added new
car purchases) to be deferred. We use the main depreciation method both for its simplicity
and because it provides a conservative estimate of potential welfare gains. The welfare gains
across the three methods should converge as the time horizon expands: reassuringly we find
that over a 60 year time horizon the modeled welfare costs fall within 10% of one another.

We also investigated alternative choices of the υ parameter from equation (G.6) governing
expectations around fuel economy and emission rates. We experimented with values between
0 and 0.6; values >0.6 can imply negative price expectations in some periods and prevent
the model from converging. Welfare gains from the age×type registration fee over a 20-year
horizon range from $327 to $316 billion, bracketing the central case estimate of $322 billion.
From this we take that the model-based estimates over time are not especially sensitive to
this choice about expectations.

Spatially-Varying Damages and Low-Emissions Zones

The aggregate model we consider offers limited insight into spatial differences in pollution
and policy, but we consider some variants of the model here that suggest important patterns.
First, we run the model with two re-calibrations where damages are held either at the average
for counties that are part of an MSA (denser, more urban counties) or for counties not in
any MSA (the remainder of the U.S.). Damages in MSA counties are 3.5 times higher than
damages in non-MSA counties following the estimates in Tschofen et al. (2019). Because
most of the population resides in MSA counties, the main estimates in Table 5 come much
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closer to the “MSA” re-calibration.
In our main analysis the counterfactual policy of assessing registration fees equal to age

by type specific aggregate damages produces a benefit-cost ratio of 2.9. When assigning the
somewhat higher damages in MSA counties the benefit-cost ratio rises to 3.0. If all counties
had non-MSA level damages, it falls to 2.4. Note that both the taxes, and benefits, assigned
in the non-MSA counterfactual are much smaller.

The differences become more stark when considering coarse policies assigning high fees
(independent of damages) to vehicles over a particular age. This counterfactual is similar in
spirit to the “low emissions zone” policies present in many cities in Europe.23 To approximate
a discrete policy of this type we consider counterfactuals with a large, fixed registration fee
that begins at a set age.24 In our main analysis, age cutoff policies become cost effective
beginning at age 16: that is, a ban on vehicles 16 and over is (just) cost effective. Bans
on vehicles age 20 and older have large benefit-cost ratios and are similar to some of our
main counterfactuals. When applying the level of damages present in MSA counties, bans
on vehicles age 14 and older become cost effective. The even higher damages present in
city centers, or the most densely populated counties, would likely take this pattern further.
In contrast, using damages from counties not part of any MSA, bans by age are only cost
effective when placed for vehicles age 26 and older.
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Appendix Figures and Tables

Figure A1: Mean Pollution Emission Rates of New US Vehicles, Weighted and Unweighted
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Notes: Blue solid line shows unweighted trend reprinted from Figure 1. Red dashed line shows the subset

of Wards data for which we could accurately identify the emission rate, weighted by sales.

A41



Figure A2: Mean Air Pollution Emission Rates of Colorado Used Vehicles
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(d) Carbon dioxide (CO2)
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Notes: Blue solid line shows full sample from Colorado smog check tests. Restricted sample limits the

sample to 4 to 6 year old vehicles with 40,000 to 60,000 miles in model years 1991-2010. The 25th percentile

line is estimated from quantile regressions. Graphs show fitted values for model year fixed effects plus a

constant from regressions. Full sample regressions include age fixed effects and a linear odometer control.
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Figure A3: Exhaust Standards and Emission Rates, Cars Versus Trucks

(a) Exhaust standards: CO
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Figure A3: Exhaust Standards and Emission Rates, Cars Versus Trucks

(g) Colorado remote sensing: CO
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Notes: Each panel uses full sample, restricted to model years 1982-2010. See text for explanation of mileage and age at which these standards apply, and

for comparing different measures of HC over model years. Beginning in 1988 for NOx and 1994 for other pollutants, graphs show weighted means across

truck types, with weights equal to the proportion of each vehicle from model year 1993 in Colorado smog check data. Graphs show fitted values for model

year plus a constant (for cars) or plus model year interacted with truck indicator plus a constant (for trucks) from regressions that also control for age fixed

effects. Dashed vertical lines show years standards change for cars only; solid vertical liens show years when standards change for both cars and trucks.

A
44



Figure A4: Emissions by Age, Separately by Country, State, and for Heavy-Duty Trucks

(a) By country: carbon monoxide (CO)
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(b) By country: hydrocarbons (HC)
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(c) By country: nitrogen oxide (NO)
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(d) By country: carbon dioxide (CO2)
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Figure A4: Emissions by Age, Separately by Country, State, and for Heavy-Duty Trucks (Continued)

(e) By state: carbon monoxide (CO)
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(f) By state: hydrocarbons (HC)
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(g) By state: nitrogen oxide (NO)
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(h) By state: carbon dioxide (CO2)
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Figure A4: Emissions by Age, Separately by Country, State, and for Heavy-Duty Trucks (Continued)

(i) Heavy duty trucks
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Notes: Graphs use roadside remote sensing data from Zhang et al. (1995), Bishop et al. (1997), and Xie et al. (2005). The value for the lowest age

group in each category is normalized to 100. Graphs group ages 1 and earlier (including model years after the observed driving year) into age 1.
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Figure A5: Air Pollution but Not CO2 Increases with Vehicle Age
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Notes: Graph shows age fixed effects αa from a regression including vehicle fixed effects µi and controls

for odometer and odometer squared o: Euit =
∑
j αj1[ageit = j] + γ1oit + γ2o

2
it + µi + εit. Regression uses

Colorado 240-second sample.
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Figure A6: Cumulative Share of Fleet Emissions from Each Vehicle Age, Alternative Estimates

(a) 2014 fleet, Colorado remote sensing
0

.2
5

.5
.7

5
1

C
u
m

u
la

ti
v
e
 s

h
a
re

 o
f 
p
o
llu

ti
o
n

0 4 8 12 16 20 24 30
Age (Years)

Carbon monoxide (CO) Hydrocarbons (HC)

Nitrogen oxides (NOx)

(b) 2014 fleet, multi-state remote sensing
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(c) 1993 cohort, Colorado inspections
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Notes: Each line shows the cumulative distribution for total pollution emissions from each age. Each

pollutant is a separate line. Vertical lines at ages 10 and 15 show when exhaust standards stop applying.

Pollution for an individual vehicle equals the emission rate measured in an individual test times miles

driven. Miles driven is calculated as the change in a vehicle’s odometer since the last test for that Vehicle

Identification Number divided by the number of decimal years since the last test for that Vehicle Identification

Number. For a vehicle’s first test, this value of years is assumed to equal the vehicle’s age. In Panels A and

B, we assume that the number of times each vehicle passes a remote sensing detector is proportional to the

vehicle’s miles driven, so each value equals the share of total emissions detected by remote sensing that come

from each age group.
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Figure A7: US Mean Vehicle Age, by Calendar Year

6
8

1
0

1
2

U
S

 M
e
a
n
 V

e
h
ic

le
 A

g
e
 (

Y
e
a
rs

)

1970 1980 1990 2000 2010 2018
Calendar Year

Passenger Cars Light Trucks

Notes: Data from Davis and Boundy (2021).

Figure A8: Schematic of Choice with an Outside Good

Notes: Figure depicts the payoff to the three options of outside good, used vehicle, and new vehicle as a

function of w. For w < w, the outside good (value 0) will have the highest payoff. Between w and w, the

used vehicle has the highest value. If w > w, the new vehicle will be chosen.
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Figure A9: Quantitative Model Calibration Versus Emissions by Age and Class
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Notes: Figures compare the quantitative model calibration to the full sample from Colorado smog check

data. Points represent mean emission rates in a given model year×age×vehicle class cell, averaged across all

vehicles in the data. Axes have logarithmic scale.

Figure A10: Cumulative Emissions: Quantitative Model Versus Colorado Sample

(a) Quantitative Model
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(b) Colorado Smog Check Data
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Notes: Figure compares cumulative emissions in the quantitative model (calibrated to the national vehicle

age profile) to that in the Colorado smog check data.
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Figure A11: Vehicle Age Across Demographic Groups

(a) Average Vehicle Age by Income
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(b) Average Vehicle Age by Education Level

7
8

9
10

11
Ve

hi
cl

e 
Ag

e 
(Y

ea
rs

)
< 

hi
gh

 s
ch

oo
l d

eg
re

e
Hi

gh
 s

ch
oo

l g
ra

du
at

e
Vo

ca
tio

na
l/t

ec
hn

ica
l t

ra
in

in
g

So
m

e 
co

lle
ge

, b
ut

 n
o 

de
gr

ee
As

so
cia

te
s 

de
gr

ee
Ba

ch
el

or
s 

de
gr

ee
So

m
e 

gr
ad

ua
te

 s
ch

oo
l, 

no
 d

eg
re

e
G

ra
du

at
e 

sc
ho

ol
 d

eg
re

e

Education of household respondent

(c) Vehicle Age Distribution by Income Group

0
.0

2
.0

4
.0

6
.0

8
.1

Fr
ac

tio
n 

of
 v

eh
ic

le
s 

at
 a

ge

0 6 12 18 24 30 36
Age

Income >80k Income <20k

Notes: Data from National Household Travel Survey 2001 (U.S. Federal Highway Administration 2001).

Income measure is total income across all household members (HHINCTTL). Education measure represents

the education level of the household respondent (HHR EDUC).
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Table A1: Colorado Remote Sensing Versus Smog Check

Carbon 

Monoxide (CO)

Hydrocarbons 

(HC)
Nitrogen Oxides 

(NOx)

(1) (2) (3)

Panel A: Regress remote sensing on smog check (inverse hypersine)

Smog check 0.0989426*** 0.5273313*** 2.9836975***

(0.0028322) (0.0150110) (0.0338312)

Panel B: Regress smog check on remote sensing (inverse hypersine)

Remote sensing 0.1600617*** 0.0138776*** 0.0277832***

(0.0050490) (0.0003593) (0.0003623)

Panel C: Regress remote sensing on smog check (g/mi)

Smog check 0.0100927*** 4.5860504*** 434.9084140***

(0.0007075) (0.5802705) (25.1872745)

Panel D: Regress smog check on remote sensing (g/mi)

Remote sensing 0.1407309*** 0.0000597*** 0.0000151***

(0.0107362) (0.0000052) (0.0000009)

Notes: Data includes 65,327 observations. Each observation represents the mean pollution for a 17-digit

VIN (an individual vehicle) in a particular week and year. To be in the sample, a VIN must appear in the

Colorado remote sensing data in a given week and the Colorado smog check data the following week; this

matched observation is used in the analysis. Standard errors clustered by 17-digit VIN. Asterisks denote

p-value < 0.10 (*), <0.05 (**), <0.01 (***).

Table A2: Datasets and Samples

Sample

New 

vehicle 

tests

Older 

tests 

(AES 

1973)

Colorado 

smog check

Colorado 

remote 

sensing

Multi-state 

remote 

sensing In-use

(1) (2) (3) (4) (5) (6)

Panel A: Characteristics of full sample

 Model years Full 1972-2019 1957-'71 1982-2010 1984-2017 1982-2016 2004-'14

 Calendar (test) years Full 1972-2019 1972 1997-2014 2009-2016 1988-2015 2004-'17

 N Full 32,985 851 11,670,943 49,322,100 1,146,026 10,720

 Type of test Full FTP FTP IM240
Rapid-

Screen
FEAT FTP

Panel B. Number of observations in each sample

 N 1982-2000 9,120 — 8,612,261 11,329,026 823,621 —

 N 2000-2010 7,761 — 3,667,890 33,538,516 295,890 7,861

 N 1993 cohort 520 — 652,195 432,286 44,151 —

 N 2000 fleet 734 — 591,245 0 61,669 —

 N 2014 fleet 960 — 854,035 6,324,084 5,875 —

Main data Data used for sensitivity analyses

Notes: FTP is federal test procedure, IM240 is inspection and maintenance test for 240 seconds. The year

listed for fleet sample (’90, ’00, etc.) refer to calendar (test) year when a dataset measures emissions, not to

model years. Some figures and tables use subsets of the indicated sample in cases where the variable(s) of

interest are not available in observations (e.g., data distinguishing truck types are only available for model

years 1982-2010).
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Table A3: How Do Tier 1 Exhaust Standards Affect Vehicle Emissions? Sensitivity Analyses

(1) (2) (3) (4) (5) (6) (7) (8)

Exhaust standard 0.81*** 0.83*** 0.96*** 0.62*** 0.71*** 0.74*** 0.13*** 0.32***

(0.07) (0.07) (0.08) (0.05) (0.10) (0.10) (0.04) (0.07)

N 17,066,835 14,378,345 16,193,779 17,066,835 1,825,361 2,968,700 20,969,068 649,340

Exhaust standard 0.75*** 0.77*** 0.83*** 0.64*** 0.63*** 0.66*** 0.09*** 0.28***

(0.07) (0.06) (0.07) (0.05) (0.08) (0.08) (0.02) (0.07)

N 8,518,949 7,175,846 8,082,646 8,518,949 911,107 1,484,350 10,484,534 324,670

Exhaust standard 1.05*** 1.02*** 1.80*** 0.57*** 1.22*** 1.25*** 0.61*** 0.72***

(0.17) (0.16) (0.18) (0.09) (0.24) (0.25) (0.20) (0.10)

N 8,547,886 7,202,499 8,111,133 8,547,886 914,254 1,484,350 10,484,534 324,670

Main estimates X

Exclude 1994-5 X

Emissions per gallon X

Truck type disaggregate X

Registration data X

Selection correction X

Colorado remote sensing X

Multi-state remote sensing X

Panel A. Carbon monoxide and hydrocarbons (CO and HC)

Panel B. Carbon monoxide (CO)

Panel C. Hydrocarbons (HC)

Notes: The dependent variable is the emission rate. Each observation is an individual vehicle. Emission

rates and standards are in logs in columns (1) through (6) and inverse hyperbolic sine for columns (7) and

(8). Columns (1) through (6) use model years 1982-2000 of Colorado inspections data. Main estimates in

column (1) correspond to column (1) of Table 3. See paper text for details of other estimates. Standard

errors are clustered by model year × light duty truck (LDT) type. In column (8), fixed effects differ by

remote sensing study. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***).
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Table A4: Effects of Tier 1 Exhaust Standards on Intermediate Outcomes and Mechanisms

(1) (2) (3) (4)

Effects of exhaust standards on …

1. Used vehicle emissions 0.75*** 0.52* 1.90*** 1.55

(0.10) (0.27) (0.36) (0.94)

2. Used vehicle emissions: 0.42*** 0.38** 1.17*** 1.40***

 Within-engine changes (0.08) (0.16) (0.23) (0.39)

3. Miles per gallon 0.03 -0.03 0.07 -0.15

(0.05) (0.11) (0.17) (0.33)

4. Vehicle retail price -0.18** -0.03 -0.52* 0.07

(0.08) (0.16) (0.27) (0.49)

5. Curb weight -0.02 0.03 -0.07 0.11

(0.07) (0.15) (0.23) (0.45)

6. Horsepower -0.08 -0.13 -0.23 -0.29

(0.07) (0.12) (0.23) (0.40)

7. Torque -0.03 -0.05 -0.06 -0.03

(0.10) (0.21) (0.33) (0.64)

8. Engine displacement -0.02 -0.02 -0.02 0.05

(0.10) (0.22) (0.33) (0.67)

Model year × truck trends — X — X

Carbon monoxide (CO) Hydrocarbons (HC)

Notes: Data cover model years 1990-2000. Rows 1-2 use Colorado inspection data. Rows 4-8 use new

vehicle data. Standard errors clustered by model year×truck type have p < 0.10, 0.05, or 0.01 (*, **, ***).

Table A5: Tier 2: Do New Vehicle Emissions Predict Used Vehicle Emissions? Other Data

(1) (2) (3) (4) (5) (6)

New vehicle emissions 0.637*** 0.630*** 0.107*** 0.092*** 0.504*** 0.397***

(0.015) (0.015) (0.003) (0.003) (0.011) (0.011)

N 7,839 7,839 36,313,589 36,313,589 296,657 296,657

New vehicle emissions 0.791*** 0.771*** 4.296*** 4.713*** 0.849*** 0.173***

(0.055) (0.057) (0.098) (0.113) (0.054) (0.061)

N 7,765 7,765 36,354,100 36,354,100 296,999 296,999

New vehicle emissions 0.623*** 0.582*** 9.210*** 7.821*** 0.886*** 0.627***

(0.043) (0.046) (0.267) (0.305) (0.020) (0.026)

N 7,793 7,793 36,328,110 36,328,110 296,795 296,795

Age — X — X — X

Model year FE — X — X — X

Panel A. Carbon monoxide (CO)

Panel B .Hydrocarbons (HC)

Panel C. Nitrogen oxides (NOx)

In-use tests Colorado remote sensing Multi-state remote sensing

Notes: See Table 4 notes. Columns (1) and (2) use logs, columns (3) through (6) use inverse hypersine.

Standard errors clustered by VIN prefix. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***).
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Table A6: Used Vehicle Emissions, by Age and Model Year

(1) (2) (3) (4) (5) (6)

Age 0.018** 0.029** 0.023* 0.023*** 0.031*** 0.022***

(0.008) (0.013) (0.013) (0.003) (0.004) (0.004)

Model Year -0.138*** — — -0.135*** — —

(0.006) — — (0.003) — —

Age ×Model Year 0.000 0.000 0.000 — — —

(0.001) (0.001) (0.001) — — —

Odometer — — 0.110*** — — 0.109***

— — (0.009) — — (0.008)

N 11,474,087 11,474,087 11,474,087 11,474,087 11,474,087 11,474,087

Age 0.019** 0.103*** 0.093*** 0.038*** 0.049*** 0.036***

(0.009) (0.017) (0.016) (0.004) (0.006) (0.006)

Model Year -0.174*** — — -0.159*** — —

(0.006) — — (0.005) — —

Age ×Model Year 0.002** -0.004*** -0.005*** — — —

(0.001) (0.001) (0.001) — — —

Odometer — — 0.180*** — — 0.151***

— — (0.011) — — (0.009)

N 11,616,611 11,616,611 11,616,611 11,616,611 11,616,611 11,616,611

Age -0.048*** 0.079*** 0.071*** 0.024*** 0.033*** 0.024***

(0.008) (0.015) (0.015) (0.004) (0.005) (0.005)

Model Year -0.176*** — — -0.120*** — —

(0.007) — — (0.006) — —

Age ×Model Year 0.006*** -0.003*** -0.004*** — — —

(0.001) (0.001) (0.001) — — —

Odometer — — 0.125*** — — 0.100***

— — (0.009) — — (0.009)

N 11,634,349 11,634,349 11,634,349 11,634,349 11,634,349 11,634,349

Age 0.000 -0.006*** -0.006*** 0.003*** 0.000 0.001

(0.004) (0.001) (0.001) (0.001) (0.000) (0.000)

Model Year 0.010** — — 0.012*** — —

(0.004) — — (0.002) — —

Age ×Model Year 0.000 0.000*** 0.000*** — — —

(0.000) (0.000) (0.000) — — —

Odometer — — -0.008*** — — -0.005***

— — (0.001) — — (0.001)

N 11,669,895 11,669,895 11,669,895 11,669,895 11,669,895 11,669,895

VIN FE — X X — X X

Panel A. Carbon monoxide (CO)

Panel B .Hydrocarbons (HC)

Panel C. Nitrogen oxides (NOx)

Panel D. Carbon dioxide (CO2)

Notes: Estimates include full sample of Colorado smog check data. Model year is re-centered around 1981

(=raw model year – 1981). Standard errors are clustered by model year×truck type. All emission rates in

logs. Asterisks denote p-value < 0.10 (*), <0.05 (**), <0.01 (***).
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Table A7: Data and Parameters in the Quantitative Model

Parameter input Symbol Sources Value(s)

Scrap elasticities γa Jacobsen and van Benthem (2015) (-0.50, -1.02)
Pollution damages θ Tschofen et al. (2019) $1,045 (CO)

Knittel and Sandler (2015) $15,047 (HC)
$35,566 (NOx)

Discount rate δ U.S. Environmental Protection Agency 3.0% per year
GDP growth rate — U.S. Environmental Protection Agency 0.5% per year
Autonomous fuel economy Knittel (2011) 1.8% per year

improvement rate
Vehicle demand elasticities ρ Jacobsen and van Benthem (2015) See Section F.1
Pollution reduction χ, ζc,s U.S. Environmental Protection Agency See Section F.6

cost parameters
Fuel economy κ1c,s, κ

2
c,s National Research Council (2002) See Section F.6

cost parameters

Data input Sources Value(s)

Vehicle miles traveled vmtc,s,a Colorado Dept. Public Health and Environment —
Vehicle prices pc,s,a,m,t National Automobile Dealers Association —

Kelley Blue Book
Vehicle quantities qc,s,a,m,t Wards Intelligence —

Federal Reserve Bank of St. Louis
Inflation — U.S. Bureau of Labor Statistics —
Scrap rates yc,s,a,m,t R.L. Polk & Company —
Fuel economy fc,s,0,m,t U.S. Department of Energy —

National Highway Traffic Safety Administration
U.S. Environmental Protection Agency

Pollution per mile φc,s,a,m,t Colorado Dept. Public Health and Environment See Section 3
U.S. Environmental Protection Agency

Pollution from manufacturing Φc,s,m,t U.S. Bureau of Economic Analysis See Section B.6
National Emissions Inventory

Vehicle registration fees τc,s,a,m,t Jacobsen et al. (2021) —
Household vehicle characteristics — U.S. Federal Highway Administration See Figure A7
GDP (2000) M U.S. Bureau of Economic Analysis $15.22 trillion
Gasoline price (2000) pgas U.S. Energy Information Administration $2.24/gallon

Notes: In column 2, — indicates values used in the quantitative model but not in equations in this paper. In column 4, — indicates

values in the paper’s replication files but not easily summarized in one value here. Dollar values in $2019.
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Table A8: Technology and Timing of Exhaust Standards

Year t Year t-4 Year t-8 Year t Year t-4 Year t-8

(1) (2) (3) (4) (5) (6)

 Cars HC: 0.125 1.00 0.84 0.53 0.88 0.47 0.02

 Trucks HC: 0.139 1.00 0.86 0.44 0.75 0.25 0.02

Trucks NOx: 0.40 1.00 0.96 0.85 0.97 0.66 0.29

 Cars HC: 0.100 1.00 0.91 0.67 0.91 0.69 0.23

 Cars NOx: 0.14 1.00 0.93 0.65 0.99 0.60 0.21

 Trucks HC: 0.10 1.00 0.83 0.40 0.79 0.32 0.06

 Trucks NOx: 0.14 1.00 0.66 0.43 0.98 0.26 0.09

Panel A: Tier 2 (2004)

Panel B: Tier 2 (2007)

Compliance Overcompliance

Notes: “Compliance” describes the share of vehicle types with emission rate less than the standard for the

indicated standard year, class, pollutant and model year. Tier 2 began in 2004 but its standards tightened in

2007. Overcompliance describes the share of vehicle types with emission rate less than 50% of the standard

for the indicated standard year, class, pollutant, and model year. Year t indicates the year of implementation

listed in each row (1996, 2004, or 2007); Years t-4 and t-8 describe four and eight years earlier. Table shows

only the pollutants and vehicles where a Tier changes standards (e.g., Tier 1 did not change CO standards

for cars).

Table A9: Quantitative Model-Based Estimates: Incidence of Fees by Income Group

Income bin:  <10k 10-20k 20-30k 30-40k 40-50k 50-60k 60-70k 70-80k >80k

1. Baseline 6.5 7.8 10.0 11.9 13.7 15.5 16.7 18.1 20.2

At baseline vehicle choice:
2. Age x type fee 175.0 170.7 185.7 196.0 204.5 201.9 199.6 200.3 201.4

At equilibrium vehicle choice:
3. Age x type fee 114.0 112.4 122.1 135.1 141.6 143.5 144.7 146.8 149.4
4. Age x type fee, revenue neutral 28.0 19.1 15.1 12.1 4.7 -3.8 -10.0 -15.2 -25.0
5. New vehicle fee 11.2 14.5 24.2 32.8 40.9 50.2 57.0 67.0 87.0
6. Flat registration fee 3.9 3.0 1.9 1.3 0.5 -0.6 -1.3 -2.2 -3.5

Number of vehicles per household 1.36 1.48 1.69 1.90 2.07 2.20 2.29 2.38 2.53
Fraction of households in income bin 0.04 0.10 0.13 0.14 0.12 0.11 0.08 0.07 0.21

Panel A. Baseline fees per household

Panel B. Changes per household when counterfactual registration fees are applied

Panel C. Notes for interpretation

Notes: Annualized fees are in 2019 dollars and expressed as the discounted sum of fees paid over 20 years,

divided by 20. Baseline fees shown include only payments proportional to vehicle value; fixed charges per

vehicle are not included.
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Table A10: Quantitative Model-Based Estimates: Sensitivity Analyses

= (1) - (2) CO HC NOx

(1) (2) (3) (4) (5) (6) (7)

1. Delay Tier 2 by eight years 13.3 198.2 -184.9 0.0 15.8 8.1 17.8
2. Age×type fee -170.6 -492.5 321.9 1,167.5 -42.3 -42.7 -24.6

3. 50% lower scrap elasticity 13.1 199.6 -186.5 0.0 15.9 8.2 17.9
4. 50% higher scrap elasticity 13.5 196.8 -183.3 0.0 15.7 8.0 17.7
5. 50% lower vintage substitution 13.3 197.6 -184.2 0.0 15.8 8.1 17.7
6. 50% higher vintage substitution 13.2 198.4 -185.1 0.0 15.8 8.1 17.8

7. More stringent CAFE standards 12.6 188.0 -175.4 0.0 15.0 7.6 16.8
8. Faster income growth 13.8 204.4 -190.6 0.0 16.2 8.3 18.2
9. Alternative VMT schedule 13.4 215.5 -202.2 0.0 17.9 9.2 19.2
10. Imperfect competition 15.7 199.5 -183.8 0.0 15.9 8.2 17.9
11. Higher gasoline price 13.6 201.2 -187.6 0.0 16.0 8.2 18.0
12. Higher internal discount rate 14.3 196.2 -181.9 0.0 15.7 8.0 17.6

13. 50% lower scrap elasticity -170.5 -475.7 305.3 1,185.3 -41.3 -41.5 -23.4
14. 50% higher scrap elasticity -170.1 -497.4 327.3 1,162.8 -42.4 -43.1 -25.1
15. 50% lower vintage substitution -143.0 -376.4 233.4 1,286.3 -32.0 -32.1 -18.6
16. 50% higher vintage substitution -187.7 -558.3 370.6 1,101.1 -47.7 -48.4 -28.4

17. More stringent CAFE standards -169.7 -493.5 323.8 1,168.7 -42.3 -42.6 -24.6
18. Faster income growth -171.5 -493.3 321.8 1,178.8 -42.1 -42.6 -24.5
19. Alternative VMT schedule -164.4 -449.9 285.5 1,189.5 -39.2 -39.9 -22.9
20. Imperfect competition -164.7 -492.4 327.7 1,168.4 -42.1 -42.5 -24.6
21. Higher gasoline price -161.1 -451.0 289.9 1,212.5 -39.2 -39.5 -22.2
22. Higher internal discount rate -182.1 -496.1 314.0 1,162.7 -42.8 -43.2 -24.7

23. 10% exhaust improvement, higher cost -11.5 -26.8 15.3 0.0 -1.4 -1.0 -2.3
24. Small (10%) age-type registration fee -5.3 -98.4 93.1 156.2 -9.8 -9.5 -4.2
25. Age-based registration fee -180.9 -487.9 307.0 1,162.6 -41.7 -42.2 -24.5
26. Flat registration fee (from 0.68% base) -7.9 -45.9 38.0 0.0 -4.2 -4.2 -2.5

Panel F. Alternative policies

Panel D. Alternative elasticities, age×type fee

Panel E. Alternative baselines, age×type fee

Change in 
market 
surplus

Change in 
pollution 
damages

Total change 
in social 
welfare

New tax 
revenue  

Percent change in 
cumulative emissions

Panel A. Baseline case

Panel B. Alternative elasticities, delay eight years

Panel C. Alternative baselines, delay eight years

Notes: Values in are in billions of $2019 discounted to the base year. Social welfare is defined as consumer

+ producer surplus – pollution damages, which equals welfare for a social welfare function that abstracts

from distribution. See paper text for details of each case. The smaller registration fee in row 24 is 10% of

that in the baseline case in row 2.
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