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Abstract

In the following we propose a growth model for an economy consisting of firms which
are heterogeneous in technologies and input demands. We show that the growth rate in
this economy depends not only on changes in the aggregate level of capital and labor, but
also on changes in the allocation of these inputs across firms. As the latter effects are
neglected in conventional growth models, they are misleadingly captured by the residual
TFP measure. In contrast, we are able to quantify the influence of these components. Our
empirical analysis, which is based on structural estimation from firm-level data, reveals
that changes in allocation of capital and labor have pronounced effects on GDP-growth for
most European countries. Further, we take cross-country differences in the distributional
effects into account to improve conventional growth accounting exercises. In particular,
we find that they explain additionally up to 17% of growth differences among 19 European
countries. Consequently, allowing for heterogeneity in firm-level technologies and input
demands increases the explanatory power of the inputs.

Keywords: aggregation of production functions, distribution of capital and labor, firm het-
erogeneity, growth accounting, structural stability.
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1 Introduction

In the following we propose a growth model for an economy consisting of firms which are
heterogeneous in technologies and input demands. We show that the growth rate in this
economy depends not only on changes in the aggregate level of capital and labor, but also on
changes in the allocation of these inputs across firms. As the latter effects are neglected in
conventional growth models, they are misleadingly captured by the residual measure, referred
to as total factor productivity (TFP). In contrast, we are able to quantify the influence of
these components by structural estimation from firm-level data. Further, we take cross-country
differences in the distributional effects into account to improve conventional growth accounting

exercises.

Why do some countries grow and others stagnate?! This question initiated the growth
accounting literature, which assigns cross-country differences in growth or income to differences
in physical and human capital as well as the unobservable efficiency with which input factors
are combined. The consensus view in this literature is that only approximately one third of
the cross-country growth or income differences is explained by differences in input factors. The
remaining two thirds are left unexplained and attributed to differences in the unobservable
efficiency which is referred to as total factor productivity (TFP).? In this context, Abramovitz

(1956) refers to TFP as the measure of our ignorance.

The fact that TFP is unobservable and at the same time explains the major part of cross-
country differences triggered tremendous efforts to identify its determinants in recent years.?
However, we show in this paper that the above mentioned growth accounting results have
to be revised if one consistently aggregates over heterogeneous firms. In order to illustrate
the relevance of aggregation for growth models we briefly discuss fundamental results of the

aggregation literature.

'The Science magazine considers this question as one of the 125 “most compelling puzzles and questions
facing scientists today” (Science, 2005).

2See, for example, Caselli (2005), Hall and Jones (1999) or Jorgensen (2005).

3This issue is best summarized by the title of a recent paper by Prescott (1998) “Needed: A Theory of Total
Factor Productivity.”



The pillar of every macroeconomic growth model is an aggregate production function F|,
which relates aggregate capital K and labor L to aggregate output Y, ie., Y = F(K,L).
However, although there exists a well developed microeconomic theory of production for a
single firm, there is no corresponding theoretical foundation for the entire economy. In fact,
the aggregate production function suffers from two types of aggregation problems. The first,
often referred to as the “measurement problem,” involves the aggregation of different types
of capital, labor, and output within a firm into one capital and labor input and one output.
The second is concerned with aggregation of heterogeneous technologies and input demands
across firms into their aggregate counterpart. These problems have been dealt with extensively
in the aggregation literature. Early works by Nataf (1948), Gorman (1953), and a series of
papers by Franklin Fisher (collected in Fisher, 1993)* have shown that in the absence of perfect
competition and perfect factor mobility the aggregate production function F' cannot be linked to
microeconomic production functions unless all firms operate according to identical and constant

returns to scale technologies.

A frequent short-cut that circumvents the problem of aggregation over heterogeneous tech-
nologies is the assumption that the production function of an entire economy complies with
the one of a single representative firm. Although the above theoretical results show that this
link is only possible under very restrictive assumption, it is often applied in theoretical and
empirical analysis due to its simplicity. However, from a practical point of view, growth models
that ignore consistent aggregation over heterogeneous firms will suffer from serious drawbacks:®

they neglect growth effects of (i) changes in the allocation of inputs® and (ii) changes in the

4For a comprehensive survey on aggregation of production functions, see Felipe and Fisher (2003).

SHopenhayn (1992) initiated a literature on the effect of firm heterogeneity on industry dynamics. His
approach was extended, e.g., by Melitz (2003) to analyze the impact of trade liberalization on the aggregate
productivity of an economy. In these models firms are heterogeneous in productivity which is included in a way
such that the impact of the productivity distribution on aggregate demand for inputs is fully determined by the
average productivity. Consequently, under this parsimonious aggregation rule, aggregate output depends on
average productivity and average input demands but not on the allocation of inputs across firms. That is, once
the average productivity level is determined the model yields identical aggregate outcomes as a model based on
a representative firm.

SEmpirical studies document that these changes are substantial in developed and developing countries. For
example, Roberts and Tybout (1997) quantify the rate of labor reallocation among manufacturing firms between
25 and 30 percent.



pattern of economic interactions between firms. Yet, it is reasonable to expect that these fac-
tors affect growth substantially, since they represent changes in growth due to changes in the
market structure. For example, differences in the degree of competition in different industries
as well as different incentives to innovate for small, medium, and large firms are found to af-
fect technological change (see, e.g., Aghion and Griffith, 2005). Where are these effects in the
growth literature? As they are not assigned to the levels of aggregate capital or labor, they are
assigned to the unobserved efficiency. Therefore, they are misleadingly captured by the residual

TFP measure.

In order to assess the impact of changes in the allocation of capital and labor on growth,
we apply the aggregation procedure established by Hildenbrand and Kneip (2005). Our main
result is that the growth rate of aggregate output depends on changes in the levels of aggregate
capital and labor as well as changes in the distribution of capital and labor in the economy.
We quantify the growth effect of each component by means of structural estimation based on
firm-level data. These effects are estimated separately for each of 20 European countries. Our
main findings are that distributional effects are significant in all countries. Further, they are as
large as the corresponding level effects in most countries. Finally, we exploit the information on
the different distributional changes across countries to conduct a growth accounting exercise.
More precisely, we assess the explanatory power of the distributional changes with respect to
cross-country growth differences. It turns out that these effects explain additionally up to 17%.
Accordingly, an aggregation approach that consistently accounts for firm heterogeneity can
help explain the growth path of a single country as well as cross-country growth differences.
Hence, the role of capital and labor in explaining the growth path of a single country or
growth differences across countries is understated if these aggregational issues are not taken

into account.

In the next section, we present our growth model for an economy consisting of heterogeneous
firms. In Section 3, we describe the data, the empirical strategy, and discuss our results. Section

4 presents the growth accounting exercise, whereas the final section concludes.



2 The Model

Assume that in period ¢ each firm j from a heterogeneous population of firms .J; produces
according to a firm-specific production function ftj (+) defined by
Y/ = f (K] L),

where Ytj denotes the output level, Ktj the capital stock and L{ the labor demand.” Further,
we assume that the heterogeneity in production functions ftj, i.e., in technologies and input
demands, can be parametrized by a vector of parameters th . In general, th is unobservable.
Then one can write

Y/ = f(K7, L3, V7). (1)
Hence, technological changes over time translate into changes in the distribution of th across J;.
The function f can therefore, without loss of generality, be regarded as time-invariant and equal
for all individuals. In the simplest scenario, f could be a Cobb-Douglas production function

i1-vy,

. . . . . . I . .
with V// = (V{,,V§,) such that Y/ = V{, - K} ™" - I} . However, in order to establish our

main result at the aggregate level, an explicit parametric specification of f is not required.

Within the above setup, we define aggregate output Y; in period ¢ as
Vo= [1(.L.V) dGuar. 2)

where K, L, and V are generic random variables corresponding to capital, labor, and unobserv-
able productivity parameters of a randomly chosen firm, respectively, and Gy is the joint
distribution of (K, L, V') across the population J;. Thus, Gxry is the explanatory variable for
aggregate output. However, we do not need to model Gy but only its changes over time,

since our objective is to determine the growth rate instead of the level of aggregate output.

In order to impose a structure on the evolution of the unobservable distribution of V', we
introduce a set of observable firm specific attributes A{ with the corresponding random variable
A, which are expected to be correlated with V: the age of a firm, the region or industry in

which it operates, its ownership structure, and its legal form.

"The model can be extended to the case of multiple capital and labor inputs.



Further, we use A to decompose G kv into the distributions Gy v x4, G axr, and Gy k.
The first is the conditional distribution of V' given (K, L, A), the second is the conditional
distribution of A given (K, L), the third is the joint distribution of (K, L). We write

¥ - / [ / ( /f(K,L,w th,wKLA) th,AmL] dGorr — / ( / JUK. L, A) th,Am) WGoxr, (3)

where f,(K, L, A) is the conditional mean of output Y given (K, L, A) in period ¢. Thus, it is
a regression function of Y on (K, L, A), which can be estimated from a cross-section of firms

in period t.

From (3) we infer that assumptions on changes in Gy |xra, Gajkr, and Gk are required
in order to model output growth. It is easier to model the evolution of a distribution if it is
symmetric, because a symmetric distribution can be well-described by its first few moments,
like its mean and variance. Since the distributions of capital and labor are right-skewed in all
countries, we formulate the model assumptions in terms of log capital k! := log K7 and log
labor I/ := log L] with the corresponding random variables k and . Further, we define k, and
I; as the mean of k and [ across J;, respectively, and oF and o! as the corresponding standard
deviations. In addition, by analogy to Gy|kra, Gakr, and Gy, we define Gy |ja, G ap, and
G, respectively. Moreover, GG, and G, represent marginal distributions of log capital and log
labor, respectively. Finally, let G, denote a component-wise standardized joint distribution of

(k,1), which is defined as a joint distribution of (k,[), where k := ’i‘;f and [ := la%i

In line with the aggregation approach of Hildenbrand and Kneip (2005), we impose the four

following assumptions.

Assumption 1: (“Structural stability”® of Gi;) The component-wise standardized joint distri-

8The concept of structural stability of a distribution relies on an empirical regularity that distributions of
individual variables across large populations of economic agents change very slowly over time. It has been first
noticed by Pareto (1896) and introduced into macroeconomic models by Malinvaud (1993). More precisely,
for a distribution of a certain parametric form, for example, the normal distribution, structural stability holds,
if its normal structure prevails and its entire evolution is captured by changes in its mean and its variance.
However, this concept of structural stability cannot be applied to distributions which are poorly approximated
by a parametric form. In this context, Hildenbrand and Kneip (1999) proposed a nonparametric counterpart
of Malinvaud’s idea. Instead of keeping the parametric structure constant and allowing for changes over time
in few parameters, one can keep these parameters constant and allow the shape of the distribution to vary over
time. This can be achieved by simple transformations of the distribution like centering (constant mean) or
standardizing (constant mean and variance). Accordingly, structural stability as defined by Hildenbrand and
Kneip (1999) holds, if a centered or standardized distribution does not change over two consecutive periods.



bution of log capital and log labor Gy, is approzimately equal for two consecutive periods t and

t=1,0e, GG _ 5

It is important to note that G, refers to a standardized distribution. That is, if Assumption
1 holds, the entire change in GGy; over two consecutive periods is fully captured by the changes

in means and the variances of k} and [.°

In order to impose the assumption on the evolution of G 4 we define k; » as the 7-quantile

of the distribution Gy, and [;,, as the n-quantile of the distribution Gy;.

Assumption 2: The conditional distribution of A given k =k and | = 1, denoted by G a1,

is approximately equal for two consecutive periods t and t — 1, i.e., Gy Ak, = Gi_1,Alk,1,-

Assumption 2 refers to the distribution of A across firms with log capital and log labor in
the same quantile position (1,71) of Gy in period t and ¢t — 1, instead of firms with the same
values of k and [. We employ the former specification since it increases the likelihood that we
condition on the same group of firms in both periods. That is, if Gj; shifts over time due to
a common trend, we refer to the same group of firms in both periods by conditioning on the

quantile position as opposed to conditioning on the same values of k and [.

Note that one is able to verify Assumptions 1 and 2, since G; and G 43 are observable in
firm-level data. We document in the Appendix A that both assumptions are supported by our
data. In contrast, one is not able to falsify the following two assumptions on Gyia as they

concern a distribution of unobservable variables.

Let Ji(k,l, A) denote the subpopulation of firms with capital k, labor [ and attributes A
and V;(k,1, A) denote the mean of V across J;(k,[, A). Further, Gyrjjga denotes the centered

distribution of V' across J;(k, [, A), whereby V corresponds to the centered variable V := V —

9To be more precise, Hildenbrand and Kneip (2005) model the evolution of Gy; in terms of a distribution

k)2 Kl
which is standardized by a full covariance matrix ¥; := <(Uatk2 (Zf)z ), instead of a component-wise stan-
t t

of)? 0
0 (o
as it requires that the correlation between log capital and log labor is does not change significantly over two

consecutive periods. The main advantage of our formulation (see Proposition and Appendix B) is the possibility
to separate growth effects of changes in ¢ from growth effects of changes in o.

dardized one, which uses the matrix ¥, = (( )2 ) Our version of the assumption is more stringent,



Vi(k, 1, A).

Assumption 3: The distribution G(/WA 1s approximately equal for two periods t and t — 1,
e, Gyipa = Gy jja-

Note that Assumption 3 is a very mild assumption since we allow for any form of hetero-
geneity in V' across firms with different capital stocks, labor stocks, or firm characteristics.
Furthermore, we even allow for heterogeneity in V' across firms with the same capital stock,
labor stock, and firm characteristics, as long as changes in Gy 4 are captured by changes in
V(k,1, A). In this case, we assume that V;(k,, A) is additively separable in (k,[) and t. More

precisely,

Assumption 4: V(k,l, A), can be additively factorized by Vi(k,1, A) = o(k, 1, A) + )(t, A),

where the function ¢ is continuously differentiable in k and [.

The above four assumptions allow us to derive a representation of the growth rate of the
economy.

Proposition: (Hildenbrand and Kneip, 2005) If Assumptions 1-4 hold, the growth rate of

aggregate output in the economy, g; := %, s given by
g = Bi(log Ky —log Ky 1) + B (log Ly —log Ly 1) (4)
k k ! !
k(9 — 0t 1 (%t O
Vi-1 ( O'k > + V-1 ( O'Z ) (5)

_.I_

t—1 t—1
+ (effects due to changes in V,_(k, [, A))
+

(second order terms of the Taylor expansion).

The coefficients ﬁfﬁl_, BL,, YF ., and 4!, are defined in terms of partial derivatives of the
regression function fi_1(k,l, A). For s ={k,l} and S ={K,L}, 5; ,, vi_, are defined by

1 _
Bia= o / OuFo1(k,1, A) dGy 1 ga, (6)
t—1
s 1 _ z Bia -
V-1 =3 (5 = 5t-1)0s fr—1(k, 1, A) dG_1 jya — = (s — 5¢—1) exp(s)dGi_1 s (7)
Yia St-1



Remark 1: The proof of a more general result is given in Hildenbrand and Kneip (2005).
The above Proposition differs from the one in Hildenbrand and Kneip (2005) in two aspects.
First, our Assumption 1 relies on a component-wise standardization which makes it possible to
separate growth effects of changes in o* from growth effects of changes in o!. Second, we model
the aggregate relation in terms of the logarithm of aggregate variables, i.e., log K and log L and
not the aggregates of the logarithms of individual variables, i.e., k and [. This distinction yields
different definitions of 4¥ ; and 4/ _; and is essential to compare our model with conventional
growth models, which are based on (the logarithm of) aggregate variables. See Appendix B for

the derivations.

From the above representation we infer that the growth rate g of aggregate output does not
only depend on changes in aggregate capital and aggregate labor (term (4)). It also depends
on changes in the allocation of inputs (term (5)) measured by the standard deviation of log

capital and log labor across firms.

The aggregate coefficients (8% ,7% ;) and (3'_,,~! ;) depend on the derivatives of the
regression function f,_; with respect to k and [, respectively. All other variables in (7) are
observable. The derivatives O f;_1(k,1, A) and O;f;_1(k,l, A) can be estimated using a cross-
section of firms in period t — 1. Hence, they can be estimated independently of each other in
each period. It is important to note that in the estimation of our representation of the growth
rate no time-series model fitting takes place, which would require to include all potential growth
determinants. Our estimation procedure does not require information on the growth rate of
aggregate capital and labor nor the corresponding standard deviations, since the computation of
aggregate coefficents is based on the estimation from a single cross-section of firms. In contrast,
we are able to quantify the growth effect of changes in the distribution of inputs without
specifying an exhaustive model for the aggregate growth rate. We describe the estimation

methodology for these coefficients in more detail in Section 3.2.

Remark 2: Under Assumption 1 coefficients 3% |, and 3!, can be interpreted as elasticities of
aggregate output with respect to aggregate capital and aggregate labor, respectively. Accord-

ingly, ¥ ; and 7!, are elasticities of aggregate output with respect to o* and o', respectively.



One expects 3%, and 3' | to be positive. However, to draw conclusions on the expected sign
of 4% | and 4! ; one needs to impose additional assumptions on the impact of changes in the
market structure on the standard deviation of inputs. For example, if a higher degree of prod-
uct market competition leads to more similarity in firm size, negative v* , and 4! , indicate a
positive relationship between growth and competition. Alternatively, we outlined above that
changes in the standard deviation represent changes in the pattern of economic interactions
between firms. These interactions comprise, for instance, technology spill-overs between firms.
If technology diffusion is stronger among more similar firms, we expect a negative relation

between spill-overs and the standard deviation of inputs and, hence, negative v ; and 7/ _,.

Our theoretical result has an important implication for growth accounting. To illustrate this
point, let us hypothetically claim that all variables in our model other than capital and labor
do not change over time. Then, in a classical growth model, changes in Y would be in part
attributed to changes in K and L. However, a part of the change in Y, which is not captured
by the effect of changes in K and L, would be attributed to changes in aggregate TFP. Such a
conclusion, however, would be misleading, since we assumed that TFP did not change. From
the Proposition we know that it is the effect of changes in the distribution of inputs, which is
erroneously attributed to changes in TFP. Obviously, such a correct conclusion is only possible

in models which allow for input heterogeneity of firms.

3 Empirical Analysis

In this section we structurally estimate the effects of changes in the level and allocation of

capital and labor on growth separately for each of the 20 European countries in our sample.



3.1 Data

The analysis is based on European firm-level data from 2002 until 2004.'° The data stem
from the Bureau van Dijk’s AMADEUS data base. It contains information from firm balance

1'! value added. Capital

sheets and covers all firms in each country. We measure output as rea
and labor are measured as real fixed tangible assets and the real total cost of employees,'?
respectively. Our procedure requires that the firms have non-missing observations in 2003.

Moreover, we only include countries in which data for at least 200 firms are available.

Furthermore, we include a firm’s age and other variables to control for differences in eco-
nomic environment across firms. In particular, we account for industry-specific and region-
specific fixed effects, in that we distinguish sectors by means of two digit NACE codes and
include regional dummies. Moreover, we incorporate dummy variables that capture the own-
ership status of a firm: (i) quoted takes value 1 if a firm is publicly quoted and 0 if not, while
(ii) indepl- indep9 correspond to independence indicators (defined in the AMADEUS data
base) which represent different shareholder structures. Finally, we include gross investment,
measured by the change in the capital stock plus depreciation, which is included as an instru-

ment for the unobservable technology shock in the estimation procedure of Olley and Pakes

(1996).

The descriptive statistics of the variables for each country in 2003 and 2004 are listed in
Table 3.1. The first column indicates that the number of observations used for estimation
varies substantially across countries in our sample. These differences can be attributed to

different filing regulations of individual countries. For example, German companies are not

10We estimate the corresponding coefficients exclusively for 2003. Yet, we need additional observations in
2002 for the Olley and Pakes (1996) estimation procedure and in 2004 for the growth accounting exercise.

1Real variables are obtained by deflating by the national output price deflators. Unfortunately, price deflators
were not available at the industry level for most of the 20 European countries.

12\We define labor in this way in order to account, to a certain extent, for differences in the quality of employees,
i.e., human capital, across firms. These differences are captured by the total cost of employees, as long as firms
that are characterized by the same capital stock, number of employees and the same attribute profile A, (that
is, the same industry, region, age, ownership structure, etc.) but a higher human capital stock pay higher wages.
We emphasize that the qualitative results do not change if we define labor as the number of employees. These
results are available from authors upon request.

10



legally obliged to reveal the information from their balance sheets. Hence, although the full
sample for Germany covers over 800,000 firms in 2003, joint information on value added, fixed
tangible assets and the number of employees is available for only roughly 6,000 German firms.
In contrast, the corresponding information is available for most companies in the Spanish or
[talian sample which contain about 360,000 and 117,000 observations in 2003, respectively.
Analogously, means and variances of the variables differ noticeably across countries. We ob-
serve relatively large firms in Germany, the Netherlands, Austria, Great Britain and Portugal,
whereas the sample covers relatively many small firms in Romania, Spain, Italy, and Sweden.
Accordingly, we also observe analogue differences in the standard deviations. In all, the data
reveals a substantial amount of heterogeneity both across firms within a country as well as

across countries.

3.2 Estimation strategy

The aggregate coefficients 57 and 7, s € {k, [} can be estimated as (suitably weighted) average
derivatives in the regression of value added Y/ on log capital k7, log labor ¥/, and a vector of

firm specific attributes A{, i.e., in the model
Y = fulkl 0, AL Q) + i, (8)

where ¢ is the vector of parameters to be estimated and u] is the error term with F(u]) = 0.

—

Hence, according to (6) and (7), once consistent estimates O, f;(k,1, A;¢) of O,f,(k, 1, A; (),

s € {k,l}, are obtained, one can estimate aggregate coefficients by

o Dgen OLRLE A o Eyes OF 1, A o)
t YIS 7 S Y
L S = k)ORF(KL AT o
s = Ll tZ A _%Z(kg—kt)fcg, and (10)
jeJy 7t JEJt
L =R LAY B e
A= =& IR —E—iZui—zt)Lz. (11)
jEJ 7t JEJt

11



"so11pumod weadoInsy (g 103 ©yep SNHAVINY U} JO so1gsiyels aa1pdriosa( T o[qel,

Y JO SUOI[[IWI UI Paje)s aIe sonfea [y

(16'1) ¥%°0 (€eg) 720 (02'8¢) L¥'1  ¢gglsel  (8L°1)0F0 (€g'g) €L0 (LF'Th) 96T 8G0€TT uopomg
(8T'T)¥€0 (L£2) 250 (€2°28) 00T L1609¢  (LO°T) 1€°0 (¢z'2) 670 (€97€) 960 OTPLGE uredg
(672) €8°0 (se'¢z)eze  (86'C2) 19'e  LS9C (0£2) ¥8°0 (82°08) 9T  (G€11)€9T  HOT RIRAO[S
(#1°0) 70°0 (1¢°0) 210 (07'z) 010 0£299  (9T°0) GO0 (¢7°0) 0T°0 (¢eT) 010  ST06Y RIURTIOY
(L1°62) 009  (T6%ST) 07’ 1c  (8F¥8)€e6  L8PT  (29°¢2) 119 (0GLF1)6L61  (06'%8) 966  TSHI resSnyiog
(7S2) 0T'T (e8¥1)28'e  (Peeg)eec  SSITT (¢1°2) 260 (ceer)pe'e (€1°92) 19°C 12601 pue[og
(86'1) 89°0 (29°6) QLT (1zor) ev'1 662FT  (0€°T)¥5°0 (69°6) 62T (26°¢F) Th' 1 1S0TI femioN
(L1'8L)86°LT  (TLGTT)0€°0c (SPLpe) Pege  cLel  (G0'TL)0L9T  (95°60T) 66°61 (£1°62€) ISFE  C9EL | SPUR[IdOUIN
(75°9) 86°T (8e°2) 9¢°1 (ee¥2)86'T  26esL  (29°€) 90T (29°9) 97'1 (16°98) 6€'c  TTILIT Ao
(0T°9%) 8G'TT  (29'86) GLFT  (82°692) 91°6T  9992¢  (6L7€) .98 (9¢'88) ##'¢T  (1¥°€92) €6°ST  6F9IF | urestg jeors)
(86°06T) ¥67¢  (£0°962) 1829 (64°8LL) L&'89  €29L  (GL'88T) ¥1°GF (04°€L2) SL'T9  (0€0%8) 67 1L  9L09 Auewwon
(cev) 121 (6L%) €L°0 (1¥7'29) G0z 6L089T  (80°%) GT'T (16'7) 7L°0 (2L'67) 16T  TPILGT oouRL]
(cz'€) 6L°0 (18%) €L°0 (ce6e) 0.1 szeoe  (98°2) L9°0 (¢e'g) 08°0 (1T°6¢) 0L'T  TO¥CE pueruL{
(0£°0) TT°0 (90°1) 92°0 (18°1) ¥2°0 €808 (¥2°0) 01°0 (L6°0) ¥2°0 (08°1) €20 999/, RTUO)ST
(8L%)8T'T (08°2) L&T (e8°22)86'c  @8L1T  (€6'%) LT'T (¥8°2) 9¢'1 (26'8L)T6'C  9TV0T yreurua (g
(L9°T) 290 (€8°6) 00°C (ope1) 221 66L5T  (1971)29°0 (99°6) 002 (CF#1) 92T ¥6VIT  UP9Z0
(99°0) 81°0 (€07) 820 (FL2) 1€°0 GG6G (65°0) 91°0 (80'%) 9L°0 (€L72) 1€°0 818G eLesmg
(8€°0) €1°0 (65°2) ¢’ T (¥972) 070 298¢ (¢e'0) 210 (LL6) 9¢°T (1872) 0 €6 | "H 23 ®elusog
(89:¢T)91°¢  (0P'1€) 3L 9  (PL€eT)STar  9¢0TT  (T6°€T)C9F  (F0'ge) 149 (F9°€21) 9Tl 08601 wmiseg
(8L°¢r) ¥0'71  (0£°0£1) 028 (P6°€11)88°€c  ¥#981  (12°29) 0T'ST  (8F'281)90°2¢  (9T°GIT) LL'€C  TLOT RLIYSY
woomﬂ ﬁoom.M( woom\w 700Cy moom\N moomV& moom\w €002 \Qpﬁﬁoo

12



Our empirical strategy is focused on the model specification and estimation for f,. However,
our analysis revealed that a regression of yg = log Ytj on (k:i ,l{ ,A{ ) provides a significantly
better model fit and stability of results, as compared to the regression of Y{ on (kf, 1], A]).

Consequently, we estimate derivatives of f, from the model

where 6 is the vector of parameters to be estimated and &/ is the error term with E(g]) = 0. In
doing so, we use the fact that 0, f,(k, 1/, Al; f) = Y7 0,h (K], 1, AL é), if ¢ and 6§ are consistent
estimates of ¢ and @, respectively. Our basic specification for h; is linear in (k,[, A) and can
be estimated using OLS. Further, we analyze the robustness of our results in two ways. First,
we control for possible simultaneity between e/ and (k,[) using the Olley and Pakes (1996)
method. Second, we extend our analysis to a partially linear specification of h;, in which
the relationship between y and (k,[) is modeled nonparametrically. Doing this, we avoid a

parametric misspecification of h;.

The loglinear model

Our basic specification for h, is the loglinear model

yl =00 + 6"k + 6"t + 0, Al + <], (13)

— —

which implies that 0y f,(ki, 1, A)) = 6FY7 and O,f,(k], 17, Al) = 'Y These quantities are

then imputed into (9) - (11), in order to calculate aggregate parameters.

In the simplest case, (13) can be estimated by the OLS method from a single cross-section in
2003. However, the vast literature on estimation of production functions from plant-level data

points out that OLS may suffer from a simultaneity problem. This problem arises if there is a

contemporaneous correlation between the demand for inputs &, l{ and the realization of the

unobservable technology shock contained in 5{. In such a case, estimates 6% and él, and, hence,
Bk and 3' would be biased. There are several approaches to correct for simultaneity between

(ki , lf) and &/ and all of them put additional restrictions on the data. For instance, Olley and

IBNote that in this model, Bk = 0% and Bl =0l
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Pakes (1996) propose a method, which uses changes in firm’s investment decision as a proxy for
the productivity shock. However, only firms with non-missing data for 2002 and 2003 on value
added, capital, labor, and investment can be used for estimation. Depending on the country,
this requirement involves an elimination of up to 70% of the companies from our sample of
firms with non missing data on value added, capital, and labor in 2003. Moreover, the above
method may introduce a sample selection bias, if dropping out of the sample between 2002 and
2003 is non-random. Following the same idea, Levinsohn and Petrin (2003) suggest the use
of intermediate inputs instead of the investment variable as a proxy.!* Finally, as described
in Blundell and Bond (2000), the simultaneity problem in estimation of production function
can also be bypassed by a GMM system estimator, though it requires a long time-series of

cross-sections and is therefore not attractive for our analysis.

Being aware of problems mentioned above, we consistently estimate (13) following Olley and
Pakes (1996) in controlling for both simultaneity bias and sample attrition. The method is based
on a two-step procedure and requires following assumptions: (i) labor is the only input which
contemporaneously responds to a technology shock, (ii) capital stock is predetermined and
hence uncorrelated with a contemporary technology shock, (iii) changes in corporate investment
decisions depend on the contemporaneous technology shock, the age and the capital stock of
a firm, (iv) investments are monotonically increasing in the technology shock for a given value
of age and capital. Under these assumptions, the technology shock can be instrumented as a
function of capital, age, and investment. The estimation of this function is carried out by a

series estimator.

Semiparametric model
In order avoid a misspecification of the relationship between y and (k,1, A) we model h; semi-

parametrically and include an interaction term

i = b+ BE(k]) 4+ Bi(E) + OKL] + 0,41 + <, 14

14They motivate their choice by weaker data requirements and argue that an adjustment in intermediate inputs
is likely to have better properties as an instrument for a technology shock than an adjustment in investment.
Interestingly, the approach of Levinsohn and Petrin (2003) requires even more firms to be eliminated from our
sample due to the very large number of firms with missing data on the use of materials.
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where k¥ and Al are differentiable in k and I, respectively. We model h¥ as a quadratic splines
function with D* knots d} < d§ < --- < d,. Defining basis functions b¥(k) = max{0, k — d}}?,
we obtain h¥(k) = 0%k + 0k? + Zgl 05 ;b (k). Analogously, we model hl as hi(l) = 0}l +
0L1% + ZiD_ll 0% ;bi(1). All coefficients in (14) can be estimated by the OLS method. Accordingly,
Oufi(kl, 1, AD) can be estimated as

/\ Dk
Ok 11, Af) = (0% + 205k] + 06 + 23" 05 max{0, k] — df}) 17,
=1

—

Similarly, one obtains 3, f,(k, i, Al) = (8 + 2041 + 6"k + 232 6 max{0, ) — d'})Y{. The
optimal number of knots and their position is obtained by the minimization of the Mallows’ C,
criterion (see Mallows, 1973) using the knot deletion method as described by Fan and Gijbels
(1996, p. 42).15

Statistical significance of the aggregate coefficients

Confidence intervals for the aggregate coefficients as well as standard errors of the estimates
are determined by bootstrap. For i.i.d. bootstrap resamples (Y/*, k/*, 1%, A?*), the distribution
of (3F — 8%) is approximated by the conditional distribution of (65 — 8F) given (Y7, k17, Al),
where Bt’“* is the estimate of 3 based on the bootstrap sample. We asses the significance of 3
on the basis of the 95% confidence interval, [Bf — 40.9755 Bf — G 025], where ¢ is the a-quantile
of the distribution of (Af* — Bf‘) Analogously, we compute confidence intervals for !, v*, and
A}, Distributional effects are statistically significant, if the condifence interval for v or 4! does
not include zero. The consistency proof of such a naive bootstrap in the context of average

derivative estimation can be found in Hérdle and Hart (1992).

15Knot deletion is an iterative procedure. We start with a large number DF of initial knots for k, i.e.,
¥ < df <. < dt i, which divide the domain of £ into int_ervals [dF, d¥ ',1] with approximately equal number
of observations. Similarly, we determine the corresponding D' initial knots for I. In step 0, we estimate (14) by

the OLS method and obtain D = D* + D! estimated spline coefficients é’g’l, . ,03 Dk79l3 1o~ 792’ i with the

corresponding t-values, t := é/ SE(@) At step 1, we delete the knot with the lowest absolute t-value at step 0
and reestimate (14) using D — 1 knots. We repeat this process D times until no knots are left. At each step
r, 0 < r < D, we compute the residual sum of squares RRS, = Z;l L (€ 7)2. Finally, we choose the model with
the lowest Value for Mallows’ C,, defined by C, := RSS, + 3(D +6+n4 — r)ao, where n 4 is the number of

attributes in A7 and 6y is the estimated standard deviation of &/ at the 0" model.
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3.3 Empirical results

In the following we present the results for the estimation of 3, 3!, ¥, and 7. We report
results based on the OLS estimation of (13) in Table 3.3. The first two columns of the table
reveal that, as expected, changes in the levels of aggregate capital and labor have a positive
significant effect on growth in all countries. Further, the capital coefficient appears to be higher
for transition than for developed countries. Overall, the estimated aggregate output elasticities
with respect to aggregate capital and labor, i.e., ﬁk and Bl, are comparable with those obtained
by other studies.'® More interestingly, we find that distributional effects of capital or labor,
associated with v¥ and 4!, are significant at 1% level in all countries. These coefficients are
displayed in the last two columns of Table 2. Further, the distributional effects of capital are
negative and higher (in absolute value) than the corresponding level effects associated with 3.
As for distributional effects of labor, they turn out to be negative and significant at 1% level
for all countries except from Austria, Czech Republic, Portugal and Slovakia. For Portugal
they are positive and significant at the 5% level. Summing up, distributional effects of capital
and labor, which have been overlooked in the growth literature so far, are statistically and

economically significant.

We investigate the robustness of this finding by controlling for potential simultaneity and
misspecification of the functional form. Table 3.3 reports the estimation results according to
the Olley and Pakes (1996) method. Overall, the estimates are similar to the OLS estimates but
exhibit higher standard errors. We infer that the simultaneity problem is of less importance in
our sample. In particular, ¥ is still negative and significant for all countries. Moreover, apart
from Germany and Romania, the distributional effects of capital are again stronger (in absolute
value) than the corresponding level effect. The distributional effects of labor are negative and
significant in 13 out of 20 countries. The results for the semiparametric estimation are reported

in Table 3.3. We observe that the estimates of 3% exceed the corresponding OLS estimates

16Recall that under this specification B’“ = 6% and Bl =4l Hence, we can compare our estimates with those
obtained in studies on production function estimation from the firm-level data, e.g., Olley and Pakes (1996),
Levinsohn and Petrin (2003), and Blundell and Bond (2000).
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country B’“ Bl Ak A
Austria 0.151 (0.016) 0.788 (0.025) -0.190 (0.034)* -0.037 (0.054)
Belgium 0.140 (0.006) 0.749 (0.008) -0.293 (0.020)* -0.250 (0.030)*
Bosnia & H. | 0.212 (0.011) 0.581 (0.015) -0.351 (0.039)* -0.166 (0.036)*
Bulgaria 0.234 (0.009) 0.639 (0.010) -0.268 (0.027)* -0.190 (0.063)*
Czech R. 0.140 (0.004) 0.811 (0.007) -0.183 (0.011)*  0.035 (0.026)
Denmark | 0.116 (0.004) 0.747 (0.006) -0.181 (0.012)* -0.149 (0.024)*
Estonia 0.185 (0.008) 0.715 (0.009) -0.278 (0.019)* -0.210 (0.029)*
Finland 0.147 (0.002) 0.778 (0.003) -0.299 (0.014)* -0.090 (0.011)*
France 0.111 (0.001) 0.854 (0.002) -0.232 (0.005)* -0.038 (0.007)*
Germany 0.136 (0.007) 0.803 (0.011) -0.130 (0.017)* -0.107 (0.037)*
Great Britain | 0.132 (0.003) 0.783 (0.004) -0.248 (0.010)* -0.057 (0.016)*
Italy 0.131 (0.002) 0.732 (0.002) -0.179 (0.004)* -0.058 (0.007)*
Netherlands | 0.119 (0.007) 0.832 (0.010) -0.171 (0.017)* -0.158 (0.035)*
Norway 0.091 (0.003) 0.804 (0.006) -0.210 (0.011)* -0.123 (0.018)*
Poland 0.152 (0.006) 0.774 (0.009) -0.213 (0.012)* -0.077 (0.021)*
Portugal 0.130 (0.017) 0.818 (0.022) -0.170 (0.032)* 0.132 (0.060)*
Romania 0.252 (0.003) 0.667 (0.004) -0.241 (0.008)* -0.319 (0.010)*
Slovakia 0.156 (0.013) 0.743 (0.020) -0.193 (0.037)*  0.136 (0.086)
Spain 0.115 (0.001) 0.841 (0.001) -0.181 (0.003)* -0.103 (0.006)*
Sweden 0.148 (0.001) 0.766 (0.002) -0.351 (0.008)* -0.089 (0.012)*

Bootstrapped standard errors are given in parentheses. Asterisks denote statistical significance
of distributional effects at the 5% level.

Table 2: Estimated values of aggregate coefficients based on OLS production function estima-
tion.

in most countries. In contrast, Bl are comparable to the OLS counterparts. At least one of
the distributional effects, i.e., 7% or 4!, is significant in all countries apart from the Czech
Republic and Slovakia. Interestingly, accounting for a more flexible functional form yields
positive significant distributional effect of capital in Denmark, Italy and Norway. In contrast,
7* is negative significant for eleven countries. Besides, the distributional effects of capital are
smaller than the ones resulting from the loglinear model. As opposed to previous models, they
are also lower than the corresponding level effects. As for distributional effects of labor, they
are significantly negative in ten countries and significantly positive in Portugal. Summing up,
the importance of the distributional effects, which are the main focus of this paper, is robust

to simultaneity and parametric misspecification.
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country B’“ Bl Ak A
Austria 0.165 (0.067) 0.795 (0.087) -0.240 (0.127)* -0.010 (0.062)
Belgium 0.159 (0.029) 0.715 (0.009) -0.298 (0.057)* -0.184 (0.037)*
Bosnia & H. | 0.266 (0.076) 0.509 (0.020) -0.195 (0.86)* -0.260 (0.068)*
Bulgaria 0.286 (0.042) 0.560 (0.017) -0.304 (0.062)* -0.089 (0.072)
Czech R. | 0.111 (0.045) 0.752 (0.014) -0.124 (0.051)*  0.029 (0.040)
Denmark 0.121 (0.039) 0.760 (0.008) -0.166 (0.053)* -0.095 (0.017)*
Estonia 0.185 (0.020) 0.685 (0.012) -0.209 (0.025)* -0.080 (0.034)*
Finland 0.156 (0.017) 0.763 (0.005) -0.282 (0.035)* -0.067 (0.013)*
France 0.119 (0.009) 0.829 (0.003) -0.228 (0.018)* -0.031 (0.008)*
Germany 0.117 (0.038) 0.744 (0.016) -0.081 (0.035)* -0.020 (0.044)
Great Britain | 0.155 (0.035) 0.782 (0.005) -0.285 (0.067)* -0.038 (0.019)*
Italy 0.163 (0.017) 0.705 (0.003) -0.173 (0.018)* -0.061 (0.007)*
Netherlands | 0.180 (0.031) 0.758 (0.013) -0.213 (0.041)* -0.051 (0.034)
Norway 0.064 (0.007) 0.835 (0.008) -0.109 (0.012)* -0.059 (0.006)*
Poland 0.123 (0.046) 0.741 (0.011) -0.164 (0.065)* -0.091 (0.032)*
Portugal 0.126 (0.051) 0.832 (0.041) -0.236 (0.101)*  0.007 (0.062)
Romania 0.147 (0.044) 0.629 (0.006) -0.101 (0.030)* -0.252 (0.014)*
Slovakia 0.158 (0.053) 0.682 (0.028) -0.186 (0.072)*  0.234 (0.135)
Spain 0.121 (0.010) 0.817 (0.002) -0.173 (0.015)* -0.063 (0.007)*
Sweden 0.154 (0.007) 0.759 (0.002) -0.353 (0.018)* -0.070 (0.012)*

Bootstrapped standard errors are given in parentheses. Asterisks denote statistical significance
of distributional effects at the 5% level.

Table 3: Estimated values of aggregate coefficients based on the Olley and Pakes (1996) method.

The negative impact of changes in the standard deviation of inputs in most countries sup-
ports the intuition outlined in Remark 2. First, under the assumption that a higher degree
of product market competition among firms is associated with more similarity in firm size,
i.e., smaller standard deviations of capital and labor, we find a positive relationship between
competition and economic growth. This positive relation is also found in the literature, for

instance, by Nicoletti and Scarpetta (2003).

Second, changes in the distribution of inputs capture changes in the pattern of economic
interactions between firms. In particular, the literature on economic growth emphasizes the
importance of technology spill-overs among firms in developed economies. A standard assump-

tion in the literature is that technology spill-overs are more likely between firms that are more

18



country Bk ok Yk !

g gl

Austria | 0.171 -0.095 (0.045)% -0.212 (0.061)*
Belgium | 0.142 -0.097 (0.018)* -0.231 (0.041)*
(0.057)
(0.053)

Bosnia & H. | 0.240 -0.340 (0.057)*  0.109 (0.077)
Bulgaria 0.295
Czech R. 0.257
Denmark 0.174
Estonia 0.187

(0.030) (0.035)
(0.011) (0.014)
(0.047) (0.040)
(0.036) (0.041) -0.095 (0.053)* -0.050 (0.087)
(0.025) (0.020) -0.024 (0.039)  0.067 (0.038)
(0.015) (0.013)  0.038 (0.022)* -0.220 (0.034)*
(0.016) (0.020) -0.119 (0.025)* -0.109 (0.043)
Finland | 0.160 (0.010) (0.010) -0.095 (0.017)* -0.090 (
France 0.119 ( ) ( ) -0.059 (0.006)* -0.024 ( )
Germany | 0.178 (0.013) 0.815 (0.016) -0.006 (0.020) -0.100 (0.044)
Great Britain | 0.211 (0.008) (0.009) -0.066 (0.012)* -0.125 (0.021)*
Ttaly 0.153 (0.007) (0.006) -0.027 (0.021) -0.063 (0.013)
Netherlands | 0.170 (0.019) (0.022) -0.002 (0.038) -0.115 (0.050)
(0.010) (0.011)  0.060 (0.016)* -0.050 (0.027
(0.017) (0.017) -0.130 (0.031)* -0.024 (0.033
(0.058) (0.074)  -0.045 (0.037)  0.149 (0.084)
(0.009) (0.008) -0.264 (0.018)* -0.206 (0.014)*
(0.060) (0.053) -0.082 (0.089)  0.141 (0.103)
(0.004) (0.003) (0.009)
(0.004) (0.005) (0.014)

Norway 0.141
Poland 0.156
Portugal 0.231
Romania 0.209
Slovakia 0.309
Spain 0.164
Sweden 0.173

¥ — —

-0.001 (0.006) -0.142 (0.009)*
-0.095 (0.008)% -0.047 (0.014)*

Bootstrapped standard errors are given in parentheses. Asterisks denote statistical significance
of distributional effects at the 5% level.

Table 4: Estimated values of aggregate coefficients based on the semiparametric specification.

similar in terms of the inputs they use in the production process.'” Accordingly, an increase in
the standard deviation of capital or labor corresponds to less intensive technology spill-overs

and, hence, to lower growth rates.

4 Growth Accounting

We exploit the economic signficance of the distributional effects outlined above to refine con-

ventional growth accounting exercises. That is, we explore whether cross-country growth dif-

1"Theoretical models by Basu and Weil (1998) and Acemoglu and Zilibotti (2000) show that international
technology diffusion is stronger if firms employ more similar capital-labor ratios in production. An empirical
evidence in favor of this result is provided by Keller (2004).
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ferences can be explained by differences in changes in the allocation of capital and labor. Their
explanatory power depends on the cross-country heterogeneity in v¥ and ! as well as in the

growth rates of the standard deviations of the inputs.

To measure the success of a model in explaining cross-country growth differences we follow
the tradition of variance decomposition. That is, analog to Caselli (2005), we compute the

explanatory power of the changes in the aggregate input levels as

51— varlon) (15)

var(g)
where

Gt = Btil(log K; —log Kt—l) + 31%71(10% L; — log Et—l)-

The residual of this indicator, 1 — S1, is the explanatory power of changes in TFP. However,
we know from the Proposition that part of the residual changes should not be associated to
changes in the production technology (TFP), but instead, to changes in the higher moments
of the distribution of capital and labor across firms. Accordingly, our approach which takes

firm-level heterogeneity in the inputs into account leads to a different growth accounting model:

var(ga.)

S2 = ,
var(g)

(16)

where
. _ _ . _ _ of — ok ol — ol

Go4 = ﬁffl(l()g Ky —log K;-1) + ﬁLl(lOg Ly —log Ly—1) + ’3/571 (Tf) + ”%4 (tal—t_l>

In addition to the estimated aggregate coefficients growth accounting requires data on the
growth rate of aggregate output, aggregate capital, aggregate labor and the standard deviations
of log capital and log labor. Since the estimation of coefficients relies on data in 2003 (corre-
sponding to t — 1) we focus on growth rates from 2003 to 2004. All of the required information
is available in the AMADEUS data base. However, the computation of aggregate output and
inputs from the cross-section of firms yields implausibly high growth rates of these variables
(see Table 3.1). Therefore, we employ information on aggregate growth rates from the standard

cross-country data sets. In particular, we employ Penn World Tables and follow Caselli (2005)
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in measuring output as real GDP per capita in PPP and computing the aggregate capital

stock from the corresponding investment series using the perpetual inventory method and by

assuming yearly depreciation rate of 6%. Since aggregate labor in 2004 is not available in Penn

World Tables, we measure aggregate labor as total number of employees from the Eurostat data

base. Obviously, the information on the standard deviations of log capital and log labor has to

be obtained from the firm-level data base. Unfortunately, required aggregate data for Bosnia

and Herzegovina are not available and we are forced to omit this country in our analysis. The

growth rates of the variables employed in the growth accounting exercise are reported in Table

4.
country gos log Koa log Lot  %ha—%l  Ta—0by
Kos Los ‘753 903
Austria 2.14 -1.31 0.57 -2.46 -1.89
Belgium 2.46  3.52 0.65 0.61 -0.76
Bosnia & H. - - - -5.14 -6.20
Bulgaria 5.02 10.02 2.59 -0.62 -1.38
Czech R. 3.10 4.73 -0.28 -0.43 2.33
Denmark 1.71 2.22 0.00 0.79 -1.00
Estonia 7.73 -0.54 0.25 1.24 0.48
Finland 3.47  2.75 0.41 -3.33 -0.22
France 1.97  5.03 0.05 0.46 0.38
Germany 1.66 1.13 0.42 1.22 0.27
Great Britain 2.75  1.93 1.00 1.52 0.56
Italy 1.09 0.28 0.37 3.78 10.14
Netherlands 1.23  2.25 -1.42 -0.21 1.79
Norway 220 9.26 0.47 0.83 1.39
Poland 531  6.36 1.31 -0.28 0.66
Portugal 0.38 1.26 0.09 0.22 3.50
Romania 8.68 1.64 0.39 -5.42 1.86
Slovakia 3.50 9.25 0.27 -10.04 -4.29
Spain 1.61 1.95 3.42 0.06 -0.92
Sweden 3.58 -1.27  -0.57 1.61 1.04

Table 5: Growth rates in 2004 (in %) used in the growth accounting exercise.

We derive S1 and S2 based on the three different estimators outlined in the last section. In

particular, we find that the aggregate capital and labor explain 28% of the cross-country growth

differences based on the OLS estimates (Siors = 0.28), 29% based on the Olley and Pakes
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(1996) method (S1pp = 0.29), and 40% based on the semiparametric model (Sigp = 0.40).
These results are consistent with the corresponding findings in the conventional growth account-
ing literature. If we additionally take the distributional effects into consideration, we are able to
explain an additional 17%, 13%, and 6% of the growth differences across countries, respectively
(82015 = 0.45, S2pp = 0.42, 825p = 0.46). Recall that, our aggregate coefficients are not es-
timated by fitting changes in aggregate levels and standard deviations to output growth rates,
but are computed from a structural estimation based on firm-level data. Hence, in contrast to
standard goodness-of-fit measures, the explanatory power could drop if we additionally account
for distributional effects. This would be the case if the changes in o* and o' were negatively
correlated with omitted factors that explain GDP-growth. Consequently, distributional effects
of capital and labor across firms help explain a significant part of variation in growth across

the 19 European countries.

We analyze the robustness of the above result in two different ways. First, we redo the
growth accounting exercise by excluding one country at a time. We repeat this procedure
for all countries. Doing this, we obtain very similar results as the ones from the unrestricted
sample. Second, we extend the sample period to 2002-2004, which virtually does not change
our results. In all, the growth accounting results are robust to variations in the cross-section

as well as in the time-series dimension.

Overall, we conclude that accounting for distributional effects of capital and labor helps
explain an additional 6-17% of the cross-country variation in output growth among the 19
European countries. Thus, a growth accounting model which is based on the correct treatment
of firm heterogeneity improves the explanatory power of the production inputs and reduces the

relevance of the residual TFP measure.

5 Conclusion

In this paper, we propose a growth model to examine the effect of distributional changes of

capital and labor on economic growth. We show that the growth rate of an economy depends
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not only on changes in the aggregate level of capital and labor, but also on changes in the
allocation of these inputs across firms, which we measure by standard deviations of capital and
labor. Our empirical analysis, based on European firm-level data, reveals that changes in the
allocation of capital and labor have pronounced effects on GDP-growth in almost all of the 20
European countries. This striking result revises the rather unimportant role of capital and labor
distributions in explaining income and growth differences across countries as documented, for
instance, by Caselli (2005). Moreover, it suggests that conventional TFP measures misleadingly
capture growth effects stemming from changes in the standard deviations of capital and labor.
In fact, our framework allows us to assess the explanatory power of higher moments of the
input distributions and, therefore, reassess the explanatory power of TFP. In this regard, we
refine conventional growth accounting exercises by controlling for cross-country differences in

aggregate input levels and input allocations.

Our empirical results reveal that distributional effects from firm-level heterogeneity in the
inputs are statistically and economically significant in almost all countries. In particular, we
find that higher standard deviations in labor and capital have negative effects on output growth.
This finding is consistent with a positive relationship between competition and growth if more
competition is associated with more similarity in firm size and, hence, lower standard deviations
in capital and labor among firms. Our findings are also consistent with the fact that if firms are

getting similar, the technology spill-overs are more intensive, which promotes economic growth.

Finally, in a growth accounting exercises we show that distributional effects of capital and
labor help explain an additional 6-17% of cross-country growth differences among the 19 Eu-

ropean countries.

Appendix A

Empirical verification of Assumption 1

We aim to analyze whether the standardized joint distribution of log capital and log la-

23



bor, i.e., G, changes sufficiently slowly over time, so that it can be regarded as approx-
imately equal for 2003 and 2004. In order to answer this question, we apply a nonpara-
metric kernel-based test of closeness between two distribution functions as proposed by Li
(1996). Under the null hypothesis that two distributions are equal, the test statistic T,
which relies on the integrated squared difference between Gyg; 5 and Gygy jy, has a stan-
dard normal distribution. However, the asymptotic distribution of 7" under the null hy-
pothesis has a slow rate of convergence to the the standard normal distribution. In or-
der to account for this finite sample bias, we perform the bootstrap procedure to approx-
imate the distribution of 7. We repeat the following procedure B = 500 times: Out of
the pooled sample { (k3003 2003): - - - » (2665, 12868° ); (F2004: L200a): - - - » (K64", 12364 )} two samples
(B0, ..., (K m2oos ['m2008) and {(k™1, 171, ..., (k""2004 ["m2001) are randomly drawn with re-
placement. Then, based on the new samples the test statistic 7;" is computed. The empirical
distribution of 7" under the null hypothesis is then estimated from the sample {77, ..., T5}. The
consistency of the bootstrap in this context is proven by Li et al (2007). Moreover, bandwidth
parameters used for testing were obtained through the Sheather and Jones (1991) method.

Assumption 1 is well supported by the Amadeus data. The test results for 20 countries are
given in Table 5. They indicate that changes in G from 2003 to 2004 can be indeed regarded
as statistically insignificant for 17 out of 20 countries in our sample. We reject equality of

Gagoz i and Goggy j only for Finland, Italy, and Romania.

Empirical verification of Assumption 2

Recall that we denote by k;, the 7-quantile of the distribution G;; and by [;, the n-quantile
of the distribution G;. We analyze whether for all 0 < 7 < 1 and 0 < 7 < 1 the conditional
distribution of attributes given k = k; and [ = [, i.e., G, 1, changed significantly from 2003
to 2004.

In our analysis A{ contains company age, industry and regional dummies, independence
indicators and a dummy for being publicly quoted. Since among these variables solely the

age of a company age is a continuous variable, while verifying Hypothesis 2, we concentrate
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country test stat. emp. p-value as. p-value
Austria -1.741 0.950 0.959
Belgium -0.454 0.591 0.675
Bosnia & H. -2.069 0.976 0.981
Bulgaria 0.047 0.456 0.481
Czech R. -1.659 0.922 0.951
Denmark 0.259 0.310 0.398
Estonia -1.231 0.856 0.891
Finland 3.973* 0.001 0.000
France -0.193 0.502 0.577
Germany 1.343 0.057 0.090
Great Britain 1.512 0.077 0.065
Italy 12.522* 0.000 0.000
Netherlands -1.966 0.951 0.975
Norway -0.565 0.696 0.714
Poland -1.970 0.975 0.976
Portugal -1.889 0.970 0.971
Romania 3.161* 0.013 0.001
Slovakia -0.892 0.733 0.814
Spain -1.067 0.823 0.857
Sweden 1.562 0.072 0.059

Asterisks denote that changes in the (coordinate-wise) standardized joint distribution of log
capital and log labor from 2003 to 2004 were statistically significant at the 5% level.

Table 6: Empirical verification of Assumption 1 using the Li (1996) test for equality of distri-
butions.
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on the evolution of the conditional distribution of age, i.e., Gagelx,1,- We study the evolution
this distribution for (7,7) € {(0.1,0.1), (0.25,0.25), (0.5,0.5), (0.75,0.75), (0.9,0.9)}.'® In order
to assess the significance of changes in Gyge|r,1, from 2003 to 2004 we perform the nonpara-
metric Kolmogorov-Smirnov test, the results of which are given in Table 5. We conclude that
changes over time in Gygejr,1, are not significant at none of the above quantile positions for
ten countries. Moreover, for Bosnia and Herzegovina, France, Germany, Norway, Portugal, and
Slovakia changes in Ggge,1, are significant at only one quantile position. Finally, only in the
Czech Republic, Ttaly, Romania, and Spain, changes in Gyge|x,1, are significant for most quantile

positions.
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Appendix B

Derivation of the aggregate relation in terms of log K and log L

Let 2 = (kJ,1J)’ denote the observable firm-specific explanatory variables with the correspond-
. (07)*  off . e
ing mean vector ;. Further, ¥, = u l denotes the covariance matrix of x] across
2
Oy (o)
Ji. According to Hildenbrand and Kneip (2005) the growth rate g; of the aggregate response

variable is given by

g = B (T — Ty1) + tr[A_1 (72,2 — 1) + other effects, (17)
o . . 0 Oty
where I is the identity matrix, 3;,_, = (8 ;, 3" ;) is a vector and A;_; = 0 o is a
01 O
matrix of coefficients. Under coordinate-wise standardization (in Assumption 1) ¥, is replaced
- () . o

by ¥; = and the first two rhs terms in (17) simplify to

0 (o))

k(T _ T L7 T v (O =08 L 0L 01
Bia(ke = kea) + B 1 (b — ba) + 67 (———) + 1 (——), (18)
Ot—1 Ot-1
where
1 _ _
=5 [ 0= FeOufis(b 1 A) G
Y1

and

1 _ _
8y = v /(l —l—1)Oifie1 (K, 1, A) dGy_q jua.

t—1
For the sake of comparability with conventional growth models, we are interested in a rela-

tionship like (17) but in terms of changes in aggregate levels K and L rather than in terms
of aggregate log levels k and [. More specifically, we want to arrive at a relationship for the

growth rate containing
BF (log Ky —log K, 1) + B!, (log L, — log L;_1).
We start'® with the definition of log K.

log K; = log [/Kth,K] = log [/exp(k)thvk] (19)

Y The derivation for log L; can be carried out analogously.
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For two periods t and ¢ — 1 Assumption 1 (Structural stability of Gy,;) implies
k

o _ _
Grorn (= (kb = Fia) + ) = Gua(k).
Ot—1
Hence, we can rewrite (19) by
_ o'k _ _
log K; = log [/exp (Ukt (k—ki—1) + kt> thfl,k}
t—1
_ O'k _
= ki +log [/exp( kt (k — kt,1)>th,17l}
Ot—1
Now, we define a function ¢ from R, to R such that
k o T
q(c") := log [/GXP (0’“ (k — kt—1)>th—1,k]-
t—1

By the definition of ¢ we have ¢(c¥) = log K; —k; and simple algebra yields ¢(¢* ,) = log K;_; —
k,_1. From these properties of ¢ it follows that

]%t — ]%t—l = log Kt — log [_(t—l — [Q(Uf) — Q(Uf_l)].
Further, by the first order Taylor approximation of g(a*) at oF | we obtain

W0f) ~ (o) +0ma(0)] s - (0F — b y)

of_
1

= qlof,) + R /(k’ — k1) exp(k)dGy1 5 - (0f — 0f1).
01841

Consequently,

k3 7 k > > ﬁtk—l 7 Uf - Uf—1
By (= For) = By (log K — log Ky1) = - [ (k= Koy exp(k) G (ak—)

t—1 t—1

Doing analogous derivations for log L;, we obtain

g = B (logK, —logK, )+ B_ (log Ly —log L;_1)
k_ -k 11
+ ”ytk,l(%) + ”yﬁ,&%) + other effects,
Ot O¢—1

where
" v B .
Yieg = Opq — I /(k' — k1) exp(k‘)th_Lk
t—1
and
! . B .
V-1 = 5t—1 - _E /(l - lt—l) GXP(l)th—l,z.
t—1
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