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A B S T R A C T

The notion of “smart city” incorporates promises of urban resilience, referring generally to ca-
pacities for cities to anticipate, absorb, react, respond, and reorganize in the face of disruptive
changes and disturbances. As such, artificial intelligence (AI), coupled with big data, is being
heralded as a means for enhancing and accessing key determinants of resilience. At the same time,
while AI generally has been extolled for contributions to urban resilience, less attention has been
paid to the other side of the equation — i.e., to the ethical, governance, and social downsides of AI
and big data that can operate to hinder or compromise resilience. With particular attention to
relevant institutional dynamics and features, an encompassing and systemic conception of smart
and resilient cities is delineated as a critical lens for viewing and analyzing complex instrumental
and intrinsic aspects of the relationship between AI and resilience. As a broader contribution to the
literature, a set of structural, process, and outcome conditions are offered for engaging and
assessing linkages inherent in the use of AI relative to urban resilience in terms of absorptive
capacity, speed of recovery, over-optimization avoidance, and creative destruction, especially as
regards impacts on relevant practices, standards, and policies.
1. Introduction

Cities are subject to myriad chronic stresses and acute shocks, including recurring natural and man-made perturbations, such as
pandemics, natural disasters, terror attacks, civil wars, industrial accidents, public uprisings, and cyber incidents. Compoundingmatters,
the frequency, intensity, and complexity of extreme events have increased in recent years, particularly as a result of rapid urbanization,
globalization, climate change, and political polarization (Eraydin, 2013). Such issues contribute to greater "uncertainty and dramatic
change at all socio-economic and spatial scales," including within and across cities (Reggiani et al., 2021). Indeed, effects on urban areas
have been of particular concern regarding these kinds of disturbances, especially considering the vital roles that they play in regions as
well as the global arena (Glaeser et al., 2020), including as key determinants of individual and community wellbeing (Vlahov & Galea,
2002).

The need to make cities more resilient in the face of continual and intensifying turbulence and uncertainty is a global priority and a
grand challenge of this century (DesRoches & Taylor, 2018).1 Resilience — referring in a general sense to the capacity of a system to
adapt or absorb change and disturbance, maintaining its constitutive elements and relationships (cf. Holling, 1973) — is key to
achieving long-term sustainability in urban systems and ultimately for ensuring quality of life for both present and future generations
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(Romero-Lankao et al., 2016). Indeed, cities cannot effectively function economically, socially, or politically without being resilient.
Accordingly, there is growing attention to urban resilience (Reggiani et al., 2021) — and an increase in "resilience thinking" more
generally (Folke et al., 2021) — including as applied to “smart” cities.

In this regard, artificial intelligence (AI), comprising a constellation of techniques and technologies working together with big data
“to enable machines to sense, comprehend, act, and learn with human-like levels of intelligence,”2 is seen as a means to promote urban
robustness and resilience (Yigitcanlar et al., 2020). In fact, "crisis analytics" is a burgeoning field that leverages AI-based solutions for
managing all stages of the "crisis lifecycle" — from mitigation and preparedness to response and recovery (Qadir et al., 2016). Along
these same lines, there are a growing number of studies that highlight how AI can enable cities to quickly and efficiently respond to
disasters and crises— i.e., to absorb shocks and maintain continuity of operations, and also to anticipate and prevent disruptions in the
first place (Sharifi et al., 2021; Sun et al., 2020; Bragazzi et al., 2020; Munawar et al., 2022).

However, little attention has been paid to the other side of the coin: how AI can compromise efforts to maintain, enhance, and build
resilient cities (Galaz et al., 2021; Vinuesa et al., 2020; Yigitcanlar et al., 2020). Indeed, technology is always a double-edged sword
(Orlikowski, 1992), and, more often than not, the problems it creates are far worse than the ones it intends to fix (Ellul, 1964). The use of
AI in particular comes part and parcel with an array of social and ethical risks and dangers, such as algorithmic bias and discrimination,
violations of privacy, the disintegration of social connections, and safety hazards (Leslie, 2019). AI systems also tend to be opaque, thus
raising additional concerns about transparency and accountability.

Additionally, discussions about the benefits of AI to cities are often narrowly framed through a technocratic lens (Yu et al., 2018),
considering mainly engineering and operational issues related to efficiency such as speed of recovery and shock absorption (Santos et al.,
2021; Yu et al., 2018). The broader social and institutional complexities and dynamics in which technology is developed, used, and
positioned have been largely neglected (Arafah and Winarso, 2017). The deployment of AI in cities creates different connections be-
tween humans, machines, and the environment, a situation that is contributing to unprecedented risks and vulnerabilities, which can
hinder the path to resilience (Galaz et al., 2021). That is, AI can detract from the resilience capabilities and efforts of cities, especially in
the absence of appropriate governance strategies and institutional arrangements (Galaz et al., 2021; Sharifi et al., 2021). This issue is of
particular concern for cities that are increasingly smart and dependent on AI by definition.

To garner a fuller and more analytically encompassing understanding of resilience in reference to smart cities, we examine related
mechanisms by which AI affects urban resilience. To that end, a brief discussion of relevant theoretical and conceptual dimensions is
next offered, with particular attention to technology and governance issues in relation to resilience, as background for a more focused
account and delineation of relevant analytical matters. Building on this foundation, the following sections turn on four principal di-
mensions of resilience: absorptive capacity, speed of recovery, over-optimization avoidance, and creative destruction (Ostrom, 2009).
These topics represent major definitional and constituent issues in reference to resilience and are employed here as analytical levers for
developing a more in-depth and specific appreciation of resilience in application to the urban context. We engage these dimensions to
delineate further determinant relationships and structures whereby AI is addressed relative to urban resilience, considering implications
and challenges for smart city governance and planning. The concluding section provides a critical reflection and summary of the main
points addressed in the analysis while drawing out implications for a programmatic research agenda and framing questions of resilience
relative to broader policy issues. An important contribution of this work is the development of a comprehensive framework that in-
corporates and lays out the institutionally derived parameters and relationships that define the role of socio-spatio-technological
contextual factors and dynamics for examining smart city resilience. This approach requires looking beyond the typical economic
and technological deterministic features that mark most discussions of AI in contemporary urban settings. As such, the analysis here
contributes to a much needed broader and more in-depth comprehension of the relationship between AI and resilience in general, which
stands as an important priority for research and policy (Vineusa et al., 2020).

2. Theoretical and conceptual background

In conceptual terms, resilience has been fraught with ambiguity, reflecting a variety of definitions for research relative to application
and disciplinary foci (Irani & Rahnamayiezekavat, 2021). However, while acknowledging this situation, we do not engage the con-
ceptual debates surrounding the term as such but instead draw from them to inform and consider broader implications for smart city
interactions, structures, and dynamics. In any case, we can say that, broadly speaking, resilience refers to the capacity of a system to
absorb or adapt to change and perturbations. While some approaches emphasize the ability to return to an original situation or state
after a disturbance (as in engineering and economics), resilience is not only an outcome or event. Rather, it is a process, and it does not
necessarily lead to replication or reproduction in the pure sense; resilience also can involve structural and operational responses and
adaptability and a capacity for learning to make improvements and corrections over time (Adger, 2000; Simmie & Martin, 2010;
Holling, 1973; Davoudi & Porter, 2012). Note that, as a process, resilience operates under undesirable conditions — risk exposure and
disturbances— across definitions and frames of references, but with positive connotations related to bringing the situation to recovery,
resistance to instability, or progress (Irani & Rahnamayiezekavat, 2021; Dissart, 2003).

“Urban resilience” in particular refers to adaptation and related capabilities in cities as complex systems (Batty, 2008). As such,
calling for an overarching systemic perspective, urban resilience is the ability of cities to withstand change, rebuild after change, and
create new structures, typically referencing the “urban ecosystem” and capacities to maintain system functions after a disturbance
(Alberti et al., 2003; Norris et al., 2008; Chelleri, 2012; Irani & Rahnamayiezekavat, 2021). In this vein, resilient systems must be
2 https://www.accenture.com/us-en/insights/artificial-intelligence-summary-index.
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flexible and robust at the same time, and resilience itself represents an important benchmark for smart city planning and performance
(Santos et al., 2021; Arafah and Winarso, 2017).

Against this backdrop, institutions offer an especially relevant angle for understanding resilience and smart cities. To that end, we
adopt an overarching sociological institutionalist perspective in which institutions refer to both the formal and informal rules that
underlie and shape the behaviors, practices, and interactions that characterize the relationships and processes in question, and in which
institutional capacity is a determinant aspect of urban resilience. From this standpoint, the rules that constitute institutions give col-
lective meaning and value to particular actors and activities, integrating them into larger systems invoking both instrumental and
intrinsic characteristics and dynamics (cf. McNeely, 2012; Drori et al., 2003; Meyer et al., 1987; Powell and DiMaggio 1991). More to the
point, individuals, organizations, and machines are embedded in an institutional context that dynamically frames and affects their
structures and practices. Accordingly, investigation is needed in terms of institutional dynamics and conditions of technological re-
sources and effects to better understand when, where, why, and how resilience leads to robust and adaptive outcomes and effects.

Based on institutionalist arguments, we consider urban resilience as a process relative to systemic interactions affected by and
affecting AI as central to conceptions of the smart city. In particular, given varying institutional structures and dynamics attending
resilience processes (Rodríguez-Pose, 2013), critical relationships and implications are explored for a finer-grained understanding of AI
vis-�a-vis relevant capacities. AI itself is concerned with both understanding and building “intelligent” entities that think and act,
emphasizing in particular machines that can compute how to perform effectively in a wide variety of situations (Russell&Norvig, 2021).
This is obviously a crucial issue in terms of resilience capabilities. AI systems are generally depicted relative to technological expressions
and enactments bound by science, engineering, and mathematics, encompassing “logic, probability, and continuous mathematics;
perception, reasoning, learning, and action; fairness, trust, social good, and safety; and applications that range from microelectronic
devices to robotic planetary explorers to online services with billions of users” (Russell & Norvig, 2021, p. vii). Consequently, AI
technology is part of the institutional apparatus of modern society and the smart city.

2.1. Technology and resilience

In a fundamental sense, we can say that technology is about manipulating nature, involving means by which humans change their
environments or try to exceed their natural capacities (Volti, 2017). While there are variations on the theme, two broad perspectives
have been engaged in conceptualizing technology in general: instrumental and intrinsic. The intrinsic approach refers to issues such as
values, beliefs, and attitudes, whereas the instrumental approach implies more functional behavior. Expressed otherwise, technology
has been interpreted as a neutral instrument for humans to use for positive change rather than as a value-laden object of control
(Orlikowski, 1992), referencing technology as an exogenous versus an endogenous feature of a system. Along these lines, there are a
number of debates over whether to consider technology in the intrinsic sense as something of an agent or actor in its own right as
opposed to principally playing an instrumental role in affecting society. We consider it in broad terms from both viewpoints relative to
urban resilience. However, in connection to urban resilience, instrumental slants on technology have been the most prevalent in the
smart city literature. For example, engineering orientations emphasize the ability of an urban system to bounce back quickly from
disturbances and absorb shocks without significant loss of functionality (Sharfi et al., 2021). The principal focus is on "efficiency,
constancy, and predictability, all attributes at the core of the engineer’s desires for a fail-safe design," stressing a quick and efficient
return to the pre-disturbance state (Holling, 1973). Systems are seen as having a single equilibrium, and maintaining stability near that
state is the primary objective (Salter and Tarko, 2019).

From an instrumental position, technology is a neutral or universal object for humans to use to achieve progress (Feenberg, 2008),
i.e., it is "the embodiment of scientific principles and rational knowledge" that can be used for different purposes, regardless of
social-cultural context (Ahlborg et al., 2019). Instrumental approaches typically invoke technological determinism, positing that “the
uses made of technology are largely determined by the structure of the technology itself, that is, that its functions follow from its form"
(Kline, 2001; Postman, 1993). They also rely on “technological imperatives,” often expressed in needs-based terms due to technological
functional requirements determined, in this case, by corresponding changes in the practical needs of society, thus implying different
structures and practices in keeping with technological determinist models.

However, more technological interactionist models point to the intrinsic ways in which technology shapes and is shaped by societal
interactions, emphasizing the socio-contextual systems in which it is embedded and derives meaning and use. It involves the (reciprocal)
interaction between technological and social change, showing how behavior is affected and sculpted through interactions. Moreover,
human interactions are critical determinant features of these systems. The nature of socialization in an urban setting is obviously central
to recipients and as determinants of resilience effects, and human interactions in this sense are defined within and across various levels
and units of analysis, including the individual. Therefore, these interactions are constituents of system capabilities as contextually
determined, such that urban resilience is associated with the capacity of individuals, communities, organizations, and systems within a
city to survive, adapt, and prosper despite various stressors or disturbances (Irani & Rahnamayiezekavat,2021; Spaans & Waterhout,
2017). Resilience in this sense has been extended to socio-ecological systems that "involve both natural/ecological and human/social
components that interact to affect system dynamics” (Koontz et al., 2015), such as cities. This approach to resilience explicitly captures
social and ecological elements and dynamics (Adger, 2000; Folke, 2006).

Intrinsic perspectives also indicate that technology can transform the resilience of a system (cf. Anderies et al., 2004), but addi-
tionally allow for the possibility that the effects can be either positive or negative depending on the particular circumstances at play. For
example, some socio-ecological approaches directly account for the dynamics of technology— i.e., technology as an inherent feature of
a system (Smith & Stirling, 2010). This point is captured in the concept of socio-technological resilience, specifying how technology is
intertwined with people, organizations, and institutions (Amir & Kant, 2018). These systemic approaches offer a more encompassing
258
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view of resilience, suggesting how social-technological-ecological interactions can mitigate and/or perpetuate complex problems
(McPhearson et al., 2021). As such, "society, technology, and the environment” are “co-constituted and co-emergent entities" (Ahlborg
et al., 2019), with resilience understood as an endogenous systems component.

2.2. Governance and resilience

Cities are multifaceted systems in which governance provides an essential basis for resilience, the achievement of which rests on the
active role of technology in urban management and planning processes (Irani & Rahnamayiezekavat,2021). However, one of the main
challenges for governance in relation to resilience, of course, is the connection between technology and its social effects. Governance is
needed to mitigate and avoid the negative implications of technology for resilience (Ahlborg et al., 2019). As an integral component of
governance, institutions — reflecting the "rules of the game" — are particularly important in this regard (Koontz et al., 2015). In fact,
"the city forms a complex ecosystem of places, people, and machinery, bound by institutions" (Feinberg et al., 2021).3 Institutions are
then the key link among social, ecological, and technological systems, thus intimately and intricately intertwined (Folke et al., 1998;
Anderies et al., 2016). System responses and capacities for adaptive action depend crucially on institutions (Adger, 2000), underscoring
the importance of stable economic and social institutions as bases for resilience and sustainable development (Herrfahrdt-P€ahle &
Pahl-Wostl, 2012). "Social rules are the basic constitutive unit of institutional arrangements and, as such, they represent the conceptual
backbone of resilience analysis and design" (Aligica and Tarko, 2014). Accordingly, one cannot consider resilience without considering
institutional factors; they are the key to analyzing resilience.

Moreover, the ability of institutions "to cope with and bounce back from crisis or disaster without system collapse" and appropriately
adapt and innovate over time to ensure resilience over the longer term is a critical concern (Lockhart, 2020). With this in mind,
"institutional resilience" is about managing continuity and change in a way that will not damage the system and lead to waning trust in
the institutional setup (Folke et al., 1998). Institutional resilience is the capacity "of a social system (society, community, organization)
to react and adapt to abrupt challenges (internal or external) and/or to avoid gradually drifting along destructive slippery slopes”
(Aligica and Tarko 2014). Governance strategies for promoting resilience must consider technology choice, use, and control (Smith and
Sterling, 2010); they are essential for institutional legitimacy and trust, which are vital determinants of resilience in both pragmatic and
moral terms as translated in instrumental and intrinsic approaches (Suchman, 1995).

2.3. Analytical matters

Resilience is intrinsic to the smart city concept, with technology being a primary instrumental means to promote it (Kummitha,
2018). AI techniques, including machine learning, natural language processing, computer vision, and robotics, combined with various
sensing mechanisms and big data, constitute the emerging technological foundations of the smart urban landscape, promoting smart
operations and planning to transform the city into a large and complex system that "senses, thinks, and acts" (Chiya and Panfil, 2020).
Such technologies promise to make cities more resilient and sustainable — to add value and vigor to the socio-ecological binomial
(Santos et al., 2021), particularly by intelligently supporting and augmenting activities tied to urban planning and preparedness, as well
as response and recovery efforts. AI is ultimately seen as an instrument for achieving "social good and other desired outcomes and futures
for all humans and non-humans” (Yigitcanlar et al., 2020). However, such aspirations may be exaggerated, especially in light of the
intrinsic social and ethical issues tied to the use of AI, which canmilitate against societal objectives if appropriate institutional levers and
processes are not in place.

Of course, AI is certainly not new. Conceptualizations of "thinking" machines go back centuries (Mayor, 2018). Further, there have
been multiple waves of AI innovations beginning with the birth of symbolic AI in the 1950s (Russell & Norvig, 2021). However, AI
systems have become smarter over time — and, arguably, in this sense, more human-like. Current capabilities of AI include perception
(e.g., audio, visual, textual, and tactile), decision making (e.g., resource allocation), prediction (e.g., disease incidence and weather
forecasting), automatic knowledge extraction and pattern recognition (e.g., facial recognition), interactive communication (e.g., social
robots or chatbots), and logical reasoning (e.g., theory development from premises) (Vineusa et al., 2020). Yet, humans remain superior
to (are smarter than) machines in several areas, including social and emotional intelligence, use and retention of tacit knowledge,
creativity, and inductive reasoning. Thus, AI capabilities may be narrow relative to some human capacities — but they are advancing
quickly. Indeed, we are inching closer and closer to a scenario in which machines would be on par with humans in every possible way.

AI works hand-in-hand with big data, which generally pertains to fast-moving, voluminous data— both structured and unstructured
varieties — that cannot be handled using conventional tools and methods (McNeely & Schintler, 2021a). A plethora of interconnected
systems of human and machine sensors, e.g., aerial vehicles, the Internet of Things (IoT), crowdsourcing and social media platforms, and
mobile devices, are continuously and relentlessly churning out reams of data in and about urban environments. AI systems rely on big
data to build and validate algorithms, referring to sets of rules that are ultimately used and extrapolated by AI to produce outcomes and
recommendations (Schintler and Lee, 2021). AI also is a source of big data, namely in terms of machine-generated bits and bytes of
information that has been processed or transformed using algorithmic tools and methods (Schintler and Fischer, 2018).

From an instrumental perspective, the principal benefit of AI applications is that they promote efficiency. AI is generally capable of
creating, processing, and analyzing informationmuch faster— and in some cases, more effectively and productively— than humans and
organizations, as well as conventional methods and techniques alone. It does this through two related mechanisms: optimization and
3 Emphasis added.
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Fig. 1. Institutional, technological, and environmental societal systems in relation to dimensions and dynamics of robustness and resilience
Source: Authors (original).
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automation. First, AI is by design an optimization problem that uses algorithms to detect and classify patterns and make predictions and
prescriptive suggestions subject to the maximization of some operational performance criteria. Second, new developments in AI are
expanding the range of tasks that can be automated using the technology. More specifically, automation capabilities are no longer
limited to activities that involve routine manual and routine cognitive skills (e.g., moving objects or processing and organizing infor-
mation) but now also those that rely on non-routine skills (e.g., interacting with customers or patients). Accordingly, AI systems operate
to enhance urban resilience by optimizing and automating disaster and crisis planning, preparedness, response, and recovery functions
and endeavors. Furthermore, AI is creating “novel connections between humans, machines, and the living planet" that further amplify
such capabilities through network effects and dynamics (Galaz et al., 2021). In this regard, AI is increasingly integrated with more
traditional networked digital platforms and devices (e.g., the Internet and mobile telephones) to invoke notions of smart and connected
cities and to create new and innovative "social machines" with human-machine (andmachine-machine) interactions, collaborations, and
systems that are capable of sensing, reasoning, judging, and learning in efficient and evermore intelligent ways (Schintler and McNeely,
2019).

On the other hand, the use of AI comes with various social, legal, and ethical challenges, downsides, and dangers that can detract and
diminish efforts to maintain, build, and enhance urban resilience (Shackelford& Dockery, 2020). Algorithmic decisionmaking is “prone
to errors, biases, and false logic or mistaken assumptions,” also raising issues in relation to privacy, transparency, and accountability,
particularly since the rules embedded in AI are often known only to the developers or owners of related systems (Anderson et al., 2018).
Such problems can undermine key determinants of community resilience, including “community capacity, social and human capital,
knowledge inclusion, participation, social innovation, and social equity” (Arafah & Winarso, 2017). Additionally, questions of values
and other intrinsic aspects of AI technology are inextricably linked to problems like algorithmic bias, invasions of privacy, and safety
hazards, as well as the formal and informal rules for ameliorating or fixing these problems in the first place. Finally, while emergent
forms of social organization involving both humans and machines as active participants are making cities more intelligent, they at the
same time pose different and complex risks and vulnerabilities that can potentially threaten and compromise urban resilience (Galaz
et al., 2021).

Such issues lead us to a broad consideration of the relationship of technology to individuals, organizations, and society and how they
affect each other. Accordingly, we operationalize the concept of urban resilience in reference to AI by identifying characteristics
associated with institutional dynamics. Emphasis is placed on various aspects of resilience as they relate to one another to allow us to
unpack the complex institutional relations and layers of AI interactions that are central to understanding resilience and the city. In
addition, while institutions conventionally have been understood as constraints and rules that humans devise to shape social interaction
(North, 1996), machines now often are considered to have the ability to fulfill that role (Bridges, 2016). In fact, in the sense that it
embodies a set of rules codified as algorithms, AI itself can be understood as an institution (Napoli, 2014), performing regulatory
functions, constraining and facilitating behaviors, actions, and preferences of individuals and organizations (Katzenbach, 2011). As
such, AI is sometimes referred to as a "code of law" (Lessig, 2006).

It is in this vein that questions of governance arise. As discussed, institutions are sets of rules that give meaning to and regulate social
activity in a patterned way, and institutionalization is a process by which those rules become legitimated and trusted (and taken for
granted). Institutionalized rules define related patterns of "appropriate" activities and strategies and constitute their purposes and
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legitimacy, ultimately facilitating trust, which is crucial for resilience (Suchman, 1995). Through this lens, the city is seen as an
increasingly integrated socio-spatio-technological system around institutionalized rules that affect the units within them, and cities tend
to select and engage legitimated strategies from the wider institutional context. The forms of activities and mechanisms by which
decisions are made and resources distributed and mobilized in cities are shaped, at least in part, relative to those prescribed in the
institutional context and broader system, and to forms of interactions and socialization that are being engendered by AI. They also may
be challenging and replacing existing social and institutional mechanisms over time (Koutroumpis & Lafond, 2018). Therefore, the
perspective employed here invokes AI and resilience not merely in terms of instrumental goal-oriented activities. Rather, the depiction
of AI and resilience in terms of adaptive capacities and practices is grounded in the view that their roles and activities are subject to
institutionally defined rules and governance procedures. In this same sense, the city itself is a systemic and institutional actor.

Our analysis is organized around four principal dimensions that capture the essential dynamics, strategies, and relationships that
define resilience: absorptive capacity, speed of recovery, over-optimization avoidance, and creative destruction (Ostrom, 2009). The first two
dimensions are key aspects of robustness, whereas the latter two capture longer-term adaptability and resilience in cities. Taken
together, these features offer an integrated strategy for addressing resilience as a critical characteristic of smart cities. We engage them
as analytical tropes for examining how institutional relations and dynamics impact technological interactions relative to contextually
specified approaches to resilience. The analytical problem here lies in the separation between ideas about technological instrumentalism
and those based on intrinsic institutional constructions involved in relevant interactions. The idea of urban resilience in this sense is
based on an image of the city as a systemic societal entity in which the institutional and technological environment shapes and is shaped
by individual and organizational structures, relationships, and actions, and, ultimately, robustness and resilience, as depicted in Fig. 1.
Again, emphasis here is on the instrumental and intrinsic nature of AI systems and how they work in tandem with and as institutions
themselves to shape and affect the robustness and resilience of a city.

3. Absorptive capacity

The capability of a city to withstand shocks without a significant loss of functionality — i.e., to maintain stability and continuity in
the presence of uncertainty and turbulence and to effectively recover from a disruptive event— requires planning and preparedness. To
this end, cities must develop rules and protocols for coping with crises and disasters should they occur and to mitigate related threats in
the first place. However, this is a daunting task. Not only is the degree of turmoil in the world increasing, disruptions also are becoming
more complex, involving multiple interrelated economic, social, spatial, and technological systems within and across cities in intricate
and dynamic ways that contribute to and compound uncertainty and risk (Reggiani et al., 2021).

In light of these circumstances, it is increasingly recognized that urban resilience planning and preparedness must adopt an
encompassing, systemic, participatory, and long-term orientation and vision to effectively craft strategies for avoiding and attenuating
shocks in cities and systems of cities (Eraydin, 2013). While a range of technical andmultidisciplinary tactics can be applied to analyzing
urban subsystems, identifying critical vulnerabilities, and assessing policy and operational interventions to address the demands of
resilience planning, instrumental and intrinsic concerns across the board can be viewed relative to elements of rational and commu-
nicative anticipatory strategies.

Capacities for rational planning are not only encumbered by increasing uncertainty, change, unrest, and complexity, they also are
constrained by information overload. Indeed, the volume of information and data is expanding exponentially and much more quickly
than the ability to acquire, store, process, and analyze it (Schintler & McNeely, 2021). In this context, the share of inaccurate and
irrelevant data compared to useable and trustworthy data is growing, contributing to significant amounts of "data smog" (Shenk, 1997).
This problem is exacerbated in magnitudes of order during a crisis or disaster, as witnessed in recent pandemics, thus adding noise and
imperfections to historical archives of events, making it more difficult for cities to learn from and develop valid and appropriate models
based on prior experiences. In general, the ability of conventional planning methods and human and organizational input to grapple
with such challenges is often insufficient. Because of this, rational planning might be viewed as "super-human" and, consequently, cities
often are forced to "satisfice" or "muddle through" problems in an incremental fashion (Lindblom, 1959), which is suboptimal for
resilience planning (Eraydin, 2013).

Algorithmic solutions can help address such problems and reinvigorate planning as a rational process. As a matter of fact, AI systems
are, by design, rational agents, purposively programmed to systematically and efficiently sense, analyze, and depict the world and to act
and solve problems according to a specified set of goals (Parkes&Wellman, 2015). For example, AI algorithms can comb through troves
of structured and unstructured historical data (e.g., regarding natural disasters) to discern and classify patterns and relationships, and
connect massive amounts of data points to assess risk and vulnerabilities in ways not possible with traditional methods (Qadir et al.,
2021). Moreover, predictive AI analytics are ideally suited for anticipating complex events and their effects on urban communities (e.g.,
pandemics or extreme weather) (Syifa et al., 2019; McNeely, 2021), addressing analytical challenges posed by the multiplicity and
variability of parameters involved in modeling such occurrences (Yu et al., 2018). Also, AI can be used as a tool for assessing the efficacy
of rules and strategies for coping with shocks (Qadir et al., 2016), including in an automated fashion (Munawar et al., 2022). Although
more conventional approaches (e.g., dynamic systemsmodeling) bear similar benefits, the instrumental point here is that AI systems can
more swiftly and systematically process and analyze data and identify and solve problems related to difficulties of rational resilience
planning.

Another advantage that typically is posited regarding AI over traditional analytical and computational tools is that it minimizes
uncertainty through optimization mechanisms similar to those in the human brain. For instance, deep neural learning — a complex
machine learning model that comprises multiple interconnected and parameterized layers — is programmed to minimize noise and
uncertainty in the learning process (Walchover, 2017). At the same time, however, AI can contribute to and magnify ambiguity in
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various ways (Wu & Shang, 2020), which can cloud, complicate, and corrupt the potential for rational planning. In particular, un-
certainty arises in situations where the data used for developing an AI system are imperfect or incomplete, or the nuances of the problem
being analyzed (including social rules and values) are not adequately understood or captured in the model in the first place. This is the
essence of algorithmic bias. In fact, allowing machines “to take charge of unclear or even harmful processes and structures” is dangerous
because they “may calculate an optimal solution for the wrong problem or target" (Wu & Shang, 2020).

The outcomes of modeling and analysis of urban risks and vulnerabilities (and instrumental rationality) are subsequently used as
constraints to the decision-making activities, where communicative planning is a necessary and salient feature of the process (Eraydin,
2013). The communicative ideal is characterized as an "inclusive critical discussion, free of social and economic pressures, in which
interlocutors treat each other as equals in a cooperative attempt to reach an understanding on matters of common concern" (Habermas,
1984). Discrepancies between diverse needs and preferences, particularly in situations where value conflicts and moral challenges are
present, are another source of uncertainty with the use of AI, raising a host of ethical concerns and challenges (Wu & Shang, 2020).
However, AI detracts from capacities for dealing with such issues, especially since its use contributes to information asymmetries and
power imbalances that contradict the egalitarian principles of communicative rationality. One serious concern in this regard involves
the opaqueness of AI systems, which is particularly problematic in the case of deep learning, where there are countless possibilities for
architecture design, including the selection of algorithms, parameterization schemes, and data for training and testing (Schintler and
Lee, 2021). Compounding matters, “Big Tech” companies are playing an increasing role in designing, implementing, and managing AI
systems in cities (Galaz et al., 2021). Commercial AI systems often are strategically developed as "black boxes," particularly for pro-
prietary reasons and to preserve data confidentiality. Also, as mentioned, with rapid developments in AI, such systems are gaining more
agency, autonomy, and authority in an intrinsic sense, putting humans at a disadvantage or replacing them, such that decision making
on important matters is handed over to "code-driven tools" (Anderson et al., 2018). Accordingly, rather than human planners operating
as knowledge mediators and brokers to help frame problems and develop solutions with public input, machines are increasingly playing
this role.

A related matter pertains to digital divides. Some cities, and individuals and communities within cities, have relatively low (or no)
access to AI technology and, moreover, lack the skills and knowledge to engage such technologies in productive ways (Galaz et al.,
2021). In fact, vast swaths of the population do not have access, broadly defined, to related technology nor capacities for its safe and
ethical use, thus disenfranchising and creating more societal asymmetries in privilege, voice, and power (Anderson et al., 2018; McNeely
& Schintler, 2021b). Indeed, digital divides have been widening over time. As the capabilities of AI technology accelerate and expand,
some cities and regions are falling further behind while others are progressing, to the extent that some analysts have framed the problem
as a futile situation (Schintler & McNeely, 2019).

4. Speed of recovery

Even when faced with similar types and levels of turbulence, some urban areas recover more quickly than others (Lockhart, 2020).
To respond effectively to related events, a city must have the right information at the right time and the right location. However, many
incidents are highly fluid, where conditions change abruptly and unexpectedly, and related dynamics and effects can vary from one area
to another, creating challenges for urban disaster and crisis response and restoration efforts.

Data-driven algorithmic approaches can help address such problems and, thus, are instrumental in enabling cities to return rapidly to
equilibrium (Sharifi et al., 2021). AI analytics combined with geo-temporal big data provide the means for real-time surveillance,
advancing capacities for location- and time-specific situational awareness. In this respect, standard planning methods and data sources
(e.g., official government records) may fall short, especially since they tend to summarize and analyze information at fixed and extended
durations (e.g., years or months) and in spatial aggregates (e.g., administrative boundaries). Geo-temporal big data, on the other hand,
tend to have high velocity, streaming in on a continuous basis and with a precise geographic resolution, in some cases down to specific
latitude and longitude coordinates. Such data, coupled with AI classification, pattern recognition, and predictive analytics, support the
development of early warning systems, which are vital for sensing and anticipating vulnerabilities and risks before and during dis-
ruptions (Arslan et al., 2017). Moreover, geo-temporal big data and related AI analytics used for non-emergency purposes, can be
applied during a crisis or disaster to address emergent informational and computational needs and demands. For example, COVID-19 led
to the use of wastewater analytics for tracking the novel coronavirus in urban communities, overcoming the limitations of epidemio-
logical instruments and indicators not tailored to the nuances of the pandemic (Larsen & Wigginton, 2020).

Real-time AI predictive analytics coupled with big data enable "on-the-fly" assessments and understandings of how conditions during
a disruption change vis-�a-vis rules in place and how related strategies should be adapted on the spur of the moment. In this respect,
"nowcasting,” which uses AI to make predictions of the present, very near future, and very recent past, is especially beneficial. For
instance, such tools have been used in recent pandemics for the ongoing evaluation and adjustment of non-pharmaceutical in-
terventions, such as shutdowns, travel bans, quarantines, and social distancing (Oliver et al., 2020). Finally, AI-based prescriptive
analytics can perform quick optimization to support agile decisionmaking, e.g., to expeditiously pinpoint neighborhoods that most need
immediate assistance or to identify the best routes to reach those locations in the aftermath of a natural disaster (Munawar et al., 2022).

Yet, AI also can jeopardize a city's efforts to recover swiftly from a disruption or catastrophe. Algorithmic bias, which produces
distorted and imprecise outcomes — and, thus, is a source of misinformation — can have detrimental impacts by obfuscating and
slowing down decision-making processes. However, even if the model is constructed properly, its application can still lead to inter-
pretation bias,” in which an "AI-systemmight be working as intended by its designer, but the user does not fully understand its utility, or
tries to infer different meanings that the model might not support," e.g., through misalignment of values (Galaz et al., 2021). Moreover,
as mentioned, AI tends to contribute to outcomes and decisions that misrepresent and disfavor women, minorities, and other
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disadvantaged individuals and communities (Anderson et al., 2018). Accordingly, biases embedded in and engendered by AI analytics
for urban response and recovery can lead to ineffective (and unfair) solutions, e.g., where particular areas do not receive proper
attention in time or at all.

Additionally, AI itself is vulnerable to disruptions (e.g., security breaches) that can corrupt decision making during and following a
disturbance (Galaz et al., 2021). This situation has become increasingly problematic given that related systems are deeply entrenched in
complex networks within and across cities. In addition to dismantling access to such tools during a crisis, nefarious agents can hack and
reprogram the rules embedded in AI systems to advance their own political, economic, or other interests and motivations. As such, AI
systems themselves, in their instrumental guise, can be weapons. Note that here we are not referencing "killer robots," per se. (We will
leave that to the realm of science fiction for the time being.) Rather "AI is creating a world where reality can be manipulated in ways we
do not appreciate," mainly through the use of AI-generated media such as “deepfakes” (a fusion of "deep learning" and "fake") as well as
material objects (Anderson et al., 2018). For example, during the coronavirus pandemic, hackers have tampered with facial recognition
systems, using a myriad of AI techniques to alter images and videos and even to create special masks to serve their own intents and
purposes (Atrakchi& et al, 2021). Cyber-security policies and strategies aim tomitigate cyber vulnerabilities, but, frankly, related efforts
have been somewhat ineffective. Specifically, it is a “spy-versus-spy” problem in which the “good guys” and the “bad guys” are in a
perpetual loop to outwit each other.

During a disruption, two-way communication between urbanmanagement officials and the public is of the essence. Lack of operative
communication can lead to "inadequate, ineffective, or delayed actions" (Sharifi et al., 2021). In this regard, cities have come to rely
heavily on social media platforms. However, in addition to and over and beyond internal digital divides which preclude some parts of
the population from accessing, using, and benefitting from such fora, online social networks have become infiltrated with "social bots,”
i.e., AI-enabled software agents — and their presence in digital media is far from trivial.4 While bots can play a beneficial role by
distributing automated messages to the public, they also are notorious for spreading misinformation and disinformation, thereby
negatively impacting communication efforts. Moreover, the growing presence of AI agents (machines) in networks of various types is
catalyzing new social and organizational dynamics marked by turbulence and instability, where systems are perpetually pushed in and
out of equilibrium. The use of algorithmic trading in financial markets and its effects on chaotic dynamics in such systems (e.g., "flash
crashes") is a classic example. In this way, then, bots can detract from urban resilience and robustness by compromising a city's ability to
maintain continuity, which also can slow down speed of recovery.

5. Over-optimization avoidance

The problem of over-optimization also can compromise urban resilience. In general, an organization or system exclusively designed
for maximizing efficiency may be susceptible to vulnerabilities and unexpected ambiguities.5 More specifically, "the performance and
robustness of optimized designs with respect to the uncertainty" they were designed to address are “accompanied by extreme sensitivity
to additional uncertainty that is not included in the design" (Carlson & Doyle, 2002: 1424). In fact, the optimization process itself can
contribute to "black swans," unforeseen events with potentially severe consequences (Carlson& Doyle, 2002). A central problem is that,
"as systems become increasingly optimized and efficient, they also become more brittle and vulnerable to undesirable" regime changes,
creating "abrupt, unwanted, and sometimes irreversible changes" (Galaz et al., 2021). Accordingly, AI systems designed to maximize
robustness (i.e., short-term resilience) can compromise resilience over a longer-term horizon (Yardi, 2020), a problem which is
particularly problematic if efficiency is prioritized over redundancy and diversity, two factors critical to the long-term survival of a
system like a city (Galaz et al., 2021).

As a practical matter, one of the dangers in this regard is that urban managers and planners may use “off-the-shelf” software
developed for other purposes (e.g., business intelligence), which is a potentially troublesome practice since intrinsic values and related
interests, framings, and motivations in different contexts may not be aligned. For example, private sector interests may be more in
keeping with efficiency in terms of optimizing profits and rates of return on investment (especially in the short-term), rather than social
values (Schintler, 2021) and societal sustainability (Arogysaswamy, 2020). Accordingly, commercial AI systems may be not only
over-optimized for the present but also mis-optimized by being grounded in principles that are incongruent with efforts to promote
urban resilience. Again, this underscores the importance of contextual specification and treating resilience as a sustained and
long-lasting process, and for ensuring that the appropriate values are reflected and advanced in resilience planning, analytically and
otherwise (Eraydin, 2013).

AI optimization based on past challenges and experiences also can inadvertently create previously nonexistent vulnerabilities as well
as unanticipated uncertainty (Aligica and Tarko, 2014; Salter & Tarko, 2019), placing additional stress and strain on a city. Generally
speaking, optimization and related decision making based on historical data make for a risky affair, especially without appropriate
technical solutions and ample consideration of the particular circumstances at hand. Indeed, the real world is constantly in flux, and
crises may occur at any moment. In fact, "during turbulent times in particular, predictions based on historical data are easily distorted"
(Wu& Shang, 2020). Thus, an AI system that blindly optimizes efficiency based on prior crises and disasters can work to the detriment of
a city’s resilience.
4 https://www.npr.org/sections/coronavirus-live-updates/2020/05/20/859814085/researchers-nearly-half-of-accounts-tweeting-about-
coronavirus-are-likely-bots.
5 This situation is the idea behind Highly-Optimized-Tolerance (HOT), a mathematical theory initially developed by Carlson and Doyle (2002) and

later applied in relation to ecological resilience (Anderies and Janssen, 2013).
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Somewhat paradoxically, a focus on maximizing efficiency also contributes to under-optimization — or in machine learning
parlance, “underfitting” —which also can diminish urban resilience. That is, in doing so, an AI system may fail to properly consider and
incorporate the distinct factors and dynamics inherent to a given city or region. An understanding and consideration of local norms,
values, practices, and other contextual artifacts is necessary for fostering urban resilience (Anderson & de Tollenaere, 2020). On the
other hand, tailoring an AI system to the specific social, institutional, and environmental characteristics of an urban area can contribute
to the problem of "overfitting." Thus, the model may perform well for the community for which it was developed but, if transferred and
applied to another place without being re-contextualized, can be ineffective and even dangerous (Galaz et al., 2021), an issue generally
referred to as “transfer context bias” (Ahlborg et al., 2019). Of course, AI systems are not "generalists"; that is, they do not embody
general-purpose intelligence that can be effectively applied from one location, situation, or time to another without compromising
performance. Instead, they are specialists relevant to particular domains, depending on the data and information they have learned. This
is the distinction between Artificial General Intelligence and Artificial Narrow Intelligence, respectively.

The distributional effects of over-optimization are compounded by the fact that cities are linked together locally and globally through
vast and intricate economic, infrastructural, and social networks — both physical and virtual (Sassen, 2013). As already noted, AI is
increasingly woven into these webs, with smart cities in particular deeply dependent upon networked AI systems of one type or another
(Anderson et al., 2018). Accordingly, if AI is optimized for one city, it can have negative ramifications for other cities and could, for
example, lead to "cascading failures" (Aligica and Tarko, 2014). Complicating matters is that the networks in which AI is embedded tend
to be vulnerable in the first place. In particular, many large-scale networks (e.g., critical infrastructure or online social networks) possess
scale-free properties that have evolved organically via self-organizing dynamics or by human design (Schintler et al., 2005). While
highly efficient, a scale-free topology is extremely susceptible to shocks and disruptions and to widespread and interdependent failures
(Schintler et al., 2004). All of this again highlights the dangers of over-optimization and emphasizes the need for a systemic and dynamic
approach to urban resilience planning (Eraydin, 2013).

6. Creative destruction

Longer-term resilience, which is marked by adaptive capacity, self-organization, and transformation, is a function of "creative
destruction" (Aligica and Tarko, 2014), i.e., a "perpetual process in which old modes of production and methods are discarded" and
"more efficient methods take their place" (Lockhart, 2020).6 Accordingly, innovation is required to transform rules in ways that ensure
"better planning and preparation for future events" and shifts to better equilibria (Sharifi et al., 2021). Indeed, a disruptive event can be a
catalyst for productive and innovative change geared toward enhancing resilience, as seen with the coronavirus pandemic which has
accelerated the trend toward smart cities and automation and digitalization more broadly for that purpose. However, in order for a city
or region to innovate in the first place, it must have the capacity to learn, particularly to cope with and adapt to new conditions and
dynamics (Folke et al., 2002). In this regard, institutionalized learning and the ability to nurture a productive culture for systemic
innovation are crucial (Cooke et al., 1997). Regions evolve and adapt based on learning processes that are fed with information and
knowledge, among other things (Camagni & Capello, 2017), with AI being particularly apropos in this respect, as it is a source of in-
telligence and also is wired to learn (as in machine learning). However, from a more intrinsic perspective, this point also leads to
fundamental questions: What is AI learning? Is it learning the “right” things? What should it learn with respect to facilitating resilience?
As previously discussed, training an AI system to maximize efficiency or in reference to particular situations and contexts is, on the one
hand, necessary. At the same time, this approach is fraught with technological and societal challenges, complications, and even dangers.

It is in this regard that questions of social justice and diversity are of particular note. Social justice and diversity are key elements
linked to societal adaptations and assessments of innovation and resilience as embedded social processes. As such, they are especially
pertinent to social, economic, and political agenda relative to institutional dynamics in today’s increasingly AI-driven world (Vineusa
et al., 2020). However, even in the face of efforts to design AI systems with social justice objectives in mind, current trajectories reflect
scenarios in which historic and structural inequalities continue to perpetuate, especially in the absence of rules ensuring that AI yields
equitable outcomes and decisions (Anderson et al., 2018). In fact, digital technologies have already deepened inequality among and
within cities for decades (Sassen, 2013). However, strategies aimed at protecting individuals, groups, or communities from problems
associated with AI — which can occur through various means, e.g., job automation, privacy violations, and algorithmic bias and
discrimination — have been argued as stifling innovation.7 Of course, related issues arise in regard to what kind of innovations are
valued relative to societal effects and consequences. Frankly, AI can contribute to inequality in various ways and can be interpreted as
suppressing innovation accordingly. For example, assumptions about homogeneity are often made in AI, particularly in relation to
individual preferences and intentions and to attributes of a community (Wu & Shang, 2020), such that it has the potential to contribute
to mean reversion, i.e., a convergence of "averages" over time, which can further inhibit innovation.

7. Concluding remarks

In many ways, resilience is a cornerstone of existence in today's world — and for the future— and must be understood in a broader
institutional context shaped by social, political, and economic forces. From this perspective, resilience is most appropriately
6 Initially introduced by Schumpeter.
7 https://theconversation.com/ai-developers-often-ignore-safety-in-the-pursuit-of-a-breakthrough-so-how-do-we-regulate-them-without-blocking-

progress-155825.
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conceptualized as the product of various interactive factors and processes, as summarized in Table 1 and highlighted in relation to the
use of AI for urban management and planning. While from an operational perspective AI has prospects to promote resilience, the social
and ethical issues and risks that come part and parcel with its use, along with profound changes occurring in cities as systemic actors, are
increasingly woven into its social and organizational fabric, pointing to a number of instrumental and intrinsic provocations regarding
AI and urban resilience.

As noted, appropriate governance and institutional levers— standards, policies, systems, processes, structures, and rules—must be
devised and implemented to ensure that the legitimate and trustworthy use of AI for urban management and planning. To help inform
the formulation, implementation, and assessment of relevant rules, protocols, and mechanisms, as well as the ongoing use of AI for
managing disruptions in urban areas, a significant priority is the construction of reliable and suitable metrics and evaluation bench-
marks. In this regard, policy analysis and related assessments must move beyond sole consideration of the individual risks and benefits of
AI also to address higher-order impacts on communities, cities, and systems of cities in relation to resilience and sustainability.
Furthermore, governance and oversight efforts must be woven throughout the entire AI lifecycle, from the inception of systems and
applications to their final deployment and use (Dankwa-Mullan et al., 2021), since actions taken at each stage can ultimately have a
bearing on resilience — for better or worse. Finally, while there is a need for top-down approaches to governance (e.g., regulatory and
legal frameworks), bottom-up processes also should be considered, as rules that are established by users in a system like a city “are better
known, understood, and perceived as being legitimate” (Anderies et al., 2004). Thus, they may be more effective, especially since they
are contextualized relative to the particular resilience dynamics, conditions, and needs of a community and local context (Moraci et al.,
2018).

However, a host of challenges arise in relation to governance given the complexity of urban systems and of resilience itself. One issue
concerns the involvement of multiple stakeholders, including government, industry, and users within cities and all over the world, each
having different and often competing views and logics (Shackelford & Dockery, 2020). Complex tradeoffs also are apparent, a principal
one being obvious tensions between efficiency and resilience. Moreover, varying temporal, spatial, and organizational scales within and
across cities further complicate matters. For example, urban management strategies and governance are local. However, as highlighted,
cities are interconnected relative to internal and external systems, including the rest of the world, even more so in this era of global-
ization, again pointing to the need for a relatively coordinated yet flexible governance framework. Another complicating factor in terms
of governance, as mentioned, is private sector interests. For example, the increasing presence of the aforementioned Big Tech companies
in smart cities are of particular note, especially since they largely set their own rules regarding the development and use of AI systems
(Arogyaswamy, 2020). Additionally, a point that must be stressed is that institutional change — e.g., in terms of regulatory reform or
cultural shifts — is generally slow relative to the speed at which technology develops and should be a principal consideration in
long-term resilience planning which, again, poses its own set of challenges. As we emphasize, AI and urban resilience are systemic in
nature, and strategies should be devised accordingly and considered relative to institutional structures and dynamics.

A polycentric approach to institutions offers an adaptive form of governance that can help address some of the issues and challenges
raised here (Koontz et al., 2015). A polycentric system encompasses multiple decision-making units, each of which can devise and
enforce rules within some specified domain of authority (Ostrom, 2009) and is viewed as attuned to the particular milieu of a
Table 1
Resilience dimensions, mechanisms, and impact.

Dimension Mechanism Impact

Absorptive Capacity Information Overload Management Promotes Rational Planning
Algorithmic Bias Increases Uncertainty/Hinders Rational Planning
Unreliable Outcomes
Lack of Transparency
Lack of Transparency and Accountability Hinders Communicative Planning
Increasing Machine (Decreasing Human
Agency, Autonomy, and Authority
Digital Divides

Speed of Recovery Optimization Promotes Quick, Efficient and “Smart” Decision-Making
Automation/Efficiency Maximization
“Nowcasting,” Smart Sensing, Real-time
Prescriptive Analytics
Algorithmic Bias and Discrimination Contributes to Wrong or Unfair Outcomes and Decisions
AI as a Weapon (“bots,” “deepfakes”)
Automation/Natural Language Processing/Robotics (“bots”) Hinders/Promotes Communication

Over-Optimization Avoidance Efficiency Maximization (Efficiency Maximization) Optimizes Short-Term Resilience -Robustness
Efficiency Maximization (“HOT”) Impedes Long-Term Resilience
Value Misalignment
Lack of Contextualization
Networked AI Contributes to Vulnerabilities—e.g., “Cascading Failures”

Creative Destruction Machine Learning Promotes Learning, Adaptation and Innovation
Algorithmic Bias Reduces Diversity/Stifles Innovation
Reversion to the Mean
Lack of Contextualization
Governance of AI Increases Diversity/Promotes Innovation
Governance of AI Stifles Innovation

265



L.A. Schintler, C.L. McNeely Journal of Urban Management 11 (2022) 256–268
community and promoting a diversity of perspectives (Salter & Tarko, 2019). In a polycentric system, institutions are characterized as
"dynamic, adaptive, and flexible," rather than as "static, rule-based, formal, and fixed organizations with clear boundaries" (International
Institute for Sustainable Development IISD, 2006, p. 6). As such, a polycentric institutional structure optimally facilitates innovation and
socio-cultural adaptions and, further, enhances absorption capacity and speed of recovery by minimizing channels of communication
(Aligica and Tarko, 2014; Salter & Tarko, 2019).

Interestingly, at least by design, blockchain can be viewed as the essence of a polycentric institutional framework (Murtazashvili &
Weiss, 2021). In fact, blockchain might be more aptly referenced as an institution than a technology (Davidson et al., 2016). Blockchain
is essentially a decentralized, distributed, and immutable ledger that records transactions between parties directly without third-party
involvement. Each transaction is vetted and authenticated by powerful AI algorithms running across all the blocks and users, where
consensus across the nodes is required to establish a transaction's legitimacy. Blockchain has other benefits for a polycentric institutional
framework, the most important one being that it reduces uncertainty and, consequently, facilitates trust, which is crucial for resilience.
In fact, blockchain is touted as a technology for closing the "trust gap." Also, the network structure of blockchain is distributed, which
means that it is almost immune from catastrophic failures unlike other topologies (e.g., scale-free), although intrusions and unautho-
rized alterations do occur on the blockchain (Alkhalifah et al., 2020). Considering all this, is blockchain the golden key to urban
resilience, or is it just a mirage in this regard? This is an open question. In any case, it is important to emphasize that blockchain runs on
algorithms and, therefore, all the ways in which AI compromises urban resilience may apply as well. The same point applies to other
forms of AI-enabled governance approaches, such as Explainable AI (XAI), which is presented as a way to enlighten the public about the
inner workings of AI algorithms, including how and why they are being used, and to facilitate transparency and accountability.
However, XAI raises its own set of ethical issues and related challenges McDermid et al., 2021).

In addition to mitigating the ethical and social downsides of AI through the use of appropriate governance and institutional stra-
tegies, there is a need to forge collaborative arrangements between humans and machines in a cohesive and legitimate fashion to
facilitate urban resilience. In this regard, we must take stock of their relative capabilities, particularly to foster intelligence amplification
and to understand the complexities that attend human intelligence versus machine intelligence models. Ultimately, trust and legitimacy
are the name of the game at the end of the day, especially in anticipation of bringing humans into proper focus in this picture and
creating a situation where "humans and machines dance together” (WEF, 2019) — all of which pushes us ahead to the next wave of
disruptive technological and institutional change.
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