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A B S T R A C T

Mandaue is a crucial city in Cebu island, Philippines as it links other large metropolises and is
highly industrialized. The occurrence of urban heat island (UHI) in Mandaue was already
confirmed by a previous study. In this paper, we aim to determine how UHI in Mandaue could be
improved by mitigations including increasing vegetation, adding open spaces, employing green
roofs and/or a combination thereof. ENVI-met software was utilized to simulate two study sites: M.
C. Briones street and the planned urban development (PUD). To reduce computing load, M. C.
Briones street was further divided into 2 subareas and PUD into 4 subareas. Results of the
simulation indicate that addition of more urban spaces and trees could decrease air temperature by
0.2 �C on average while green roof could decrease air temperature by an average range of 0.2
�C–0.4 �C. When a combination of trees, grasses and green roof is used, air temperature could be
decreased by an average range of 0.1 �C–0.3 �C. Despite these mitigations, thermal comfort index
in Mandaue would still be greater than 26 �C which means that majority of the people would feel
uncomfortable. On the other hand, addition of more urban spaces and trees could decrease surface
temperature by an average range of 0.5 �C–0.8 �C while conversion of building roofs into green
roofs would have no effect. When a combination of vegetation and green roof is employed, surface
temperature could be decreased by an average range of 0.4 �C–1.1 �C.
1. Introduction

The concept of urban heat island or UHI, in which urban areas become warmer when compared with rural areas, was first docu-
mented in the temperate region (Oke, 1973). Decades of research has led to the fundamental understanding of UHI characteristics,
mechanisms of development, and its relationship to anthropogenic heat (Aoyagi et al., 2012; Boehme et al., 2015; Taha, 1997). Using
the principles of UHI formation, mitigation strategies – especially improvements in urban materials and design – have been common
(Santamouris, 2013; Wonorahardjo, 2012). Specific examples include: increasing urban vegetation through parks, gardens and trees
(Onishi et al., 2010; Zhou & Shepherd, 2010); adding urban ponds and rivers (Tominaga et al., 2015); using special pavements (Cortes
et al., 2016; Nakayama & Hashimoto, 2011; Takahashi & Yabuta, 2009; Takebayashi & Moriyama, 2012); using high albedo materials
(Dimoudi et al., 2014; D.; Li et al., 2014), etc.
).
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Fig. 1. Study sites in Mandaue and placement of air temperature sensors (red dots) for model validation. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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Mandaue is one of the most industrialized cities in Philippines and serves as a link between other big cities in Cebu island. It therefore
plays a vital role in tourism, transportation, and commercial activities in the region. The development of UHI in Mandaue was already
investigated by Rejuso et al. (2019) in which built-up areas that are made of urban surfaces, are densely packed and have low normalized
difference vegetation index (NDVI) were found to have higher land surface temperature (LST). Considering these characteristics of UHI
in Mandaue, we investigated in this paper different modifications to the current design of the built-up areas. Increasing vegetation,
which consequently increases NDVI, is a common method to decrease LST due to its cooling and shadow effect (Macarof & Statescu,
2017; Mathew et al., 2017). Adding more open spaces could also mitigate UHI by creating “cold spots” and highly ventilated sections of
built-up areas (Ambrosini et al., 2014; Mathew et al., 2017). The conversion of urban surfaces such building roofs into green roofs is also
effective in reducing both air and surface temperatures as the solar radiation now hits the soil and plants instead of the roof surface
(Mohajerani et al., 2017). Based on these facts, we decided to investigate the effects of increasing vegetation, adding open spaces,
employing green roofs and/or a combination thereof to improve UHI in Mandaue. The main objective of this paper is to determine how
these mitigations could affect meteorological parameters associated to UHI. Specifically, we want to predict how mitigations could
influence air temperature, surface temperature, relative humidity and thermal comfort using scenario tests.

To achieve the goals of the study, ENVI-met software was used for the simulation. ENVI-met is a three-dimensional modelling tool
used to investigate thermal environment including UHI (Ambrosini et al., 2014; Crank et al., 2018; Salata et al., 2016; Tsilini et al., 2015;
Tsoka et al., 2018; Wang & Akbari, 2016; Wang et al., 2016). It utilizes computational fluid dynamics (CFD) to evaluate meteorological
variables important in urban and rural architecture (Ambrosini et al., 2014; Salata et al., 2016). Liu et al. (2018) explained that
compared with other models, mitigation by tropical plants is highly emphasized in ENVI-met model. Likewise, the metanalysis of Tsoka
et al. (2018) on UHI mitigation using cool materials and urban greening also established that nearly 90% of the published studies –
which used ENVI-met as model – analysed during hot weather settings. Thus, the Philippines being in the tropical zone and having warm
climate (Peel et al., 2007), ENVI-met model was deemed fit for our study. In the methods section of this paper, we also explained that the
tree models in the scenario testing were chosen based on actual field observations.

2. Methods of analysis

2.1. Study area

Mandaue has twenty-seven administrative divisions called barangay and one city administered area called planned urban devel-
opment 1 (hereinafter referred to as “PUD”). Fig. 1 shows the two sites within Mandaue City selected for ENVI-met analysis: site A –

along M. C. Briones street between barangays Tipolo and Guizo, and site B – PUD. A section along M. C. Briones street was chosen
because it represents a typical urban setup having a busy street system with different types of establishments along it. Meanwhile, PUD
was chosen based on its unique characteristic of being a planned area and being excluded in the city zoning rules. In its current state,
PUD still has open spaces which could change depending on property developers and city plans. In this study, the transformation of these
open spaces was also simulated.
2.2. ENVI-met simulation

The Area Input File for simulation of sites A and B in ENVI-met were first created using QGIS, including geometrical data of the
buildings, roads, and existing vegetation. The simulation of each study site in ENVI-met would require heavy computing because of its
large size. To reduce computing load significantly, site A was divided into 2 subareas (subarea 1 and 2) while site B was divided into 4
subareas (subarea 1, 2, 3, and 4). Site A subareas 1 and 2 were 526� 464 meters (m) and 529� 481 m respectively with 130 buildings
in total ranging from 2 to 24 m in height. Site B subareas 1, 2, 3, and 4 were 490� 390 m, 560� 380 m, 460� 340 m and 560� 310 m
respectively with 249 buildings which range from 2 to 30 m in height. Simulation day was set on September 26, 2019 due its maximum
heat index of 40 �C in Metro Cebu for that year. Initial ENVI-met settings used in the scenario simulations are presented in Table 1.
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Table 1
Input parameters used to initialize the ENVI-met simulation.

Category Values

Start time 3:00 Local Time
Total simulation 15 h
Boundary condition Simple Forcing
Wind speed at 10 m above ground 6 m/s
Wind direction (0:N, 90:E, 180:S, 270:W) 33.75
Roughness length 0.01
Atmospheric temperature min ¼ 25 �C;max ¼ 30 �C
Relative humidity at 2 m above ground min ¼ 25%;max ¼ 94%

Table 2
Settings used in scenario tests.

Element ENVI-met ID Description

Roads and pavements 0000ST asphalt road
0000 PG concrete pavement gray
0000 PL concrete pavement light
0000PD concrete pavement dark

Green roof 01AGSS green and sandy loam substrate
Grass 0100XX average dense
Tree – model 1 01PLDM palm, large trunk, dense
Tree – model 2 01SLDM spherical, large trunk, dense
Tree – model 3 01SSDM spherical, medium trunk, dense
Tree – model 4 01SLDL spherical, large trunk, dense
Tree – model 5 01SMDS spherical, medium trunk, dense

Table 3
Scenarios tested for site A – M. C. Briones street and site B – PUD in Mandaue.

Site, scenario Code Description

A, scenario 1 siteAsc1 Existing layout and urban condition; 130 buildings.
A, scenario 2 siteAsc2 Ten buildings were replaced with open spaces and 282 trees (model 3) were added along the sidewalk spaced every 10 m.
A, scenario 3 siteAsc3 Similar to site Asc1 1 but building roofs were modified into green roofs.
B, scenario 1 siteBsc1 Existing layout and urban condition; 249 buildings.
B, scenario 2 siteBsc2 Building roofs were modified into green roofs, 39 trees (combination of tree models 1, 4, and 5) and grasses were added.

Fig. 2. Scenario simulations for site A –M. C. Briones street. Scenario 1 (sc1) – existing layout; scenario 2 (sc2) – 10 buildings were removed and 282
trees were added; scenario 3 (sc3) – building roofs were modified into green roofs. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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Adapting the methods of Baloloy et al. (2020), boundary conditions used as ENVI-met input were derived from Dark Sky (through
darksky.net) which is a weather database based on the Global Forecast System of the National Oceanic and Atmospheric Administration
(Salimbeni et al., 2020) and has been widely used as weather data source (Willbur et al., 2019). In order to closely mimic the actual
characteristics of each study sites, the types of urban elements including road and pavements, building height, building roof, and
vegetation were set in ENVI-met based on field observations. Table 2 shows the specific urban elements chosen for the simulation and its
corresponding details. Surface parameters were also set: for roads and pavements, surface albedo and emissivity were set to 0.2 and 0.9
respectively; and, for trees and green roofs, foliage albedo and foliage transmission factor were set to 0.2 and 0.3 respectively.
99
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Fig. 3. Scenario simulations for site B – PUD. Scenario 1 (sc1) – existing layout; scenario 2 (sc2) – building roofs were modified into green roofs, 39
trees and grasses were added. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 4. Difference between air temperature measured in the field and air temperature calculated in ENVI-met.

A. Cortes et al. Journal of Urban Management 11 (2022) 97–106
2.3. Scenario tests

Different scenarios were evaluated to analyze the effect of various UHI mitigation strategies on UHI parameters in Mandaue. De-
scriptions of each scenario are presented in Table 3 and the corresponding 3D model in ENVI-met are shown in Figs. 2 and 3.
2.4. Model validation

The ENVI-met simulation was validated using measured air temperature (Tair) collected for seven days from February 20 to 27, 2020.
A total of six HOBO MX100 sensors (�0:5 �C accuracy) were installed in each study sites (Fig. 1) placed 1.5 m above ground and
protected from direct sunlight and rain exposure. From the 7 days of field observation, measured values of Tair on February 25, 2020 was
chosen to evaluate the model accuracy. A total of 48 data points from four sensors were used to calculate for mean absolute error (MAE)
and mean absolute percentage error (MAPE).

3. Results and discussion

A box plot was created to illustrate temperature difference computed as simulated Tair �measured Tair : As seen in Fig. 4, the ENVI-
met model underestimated Tair , with absolute error ranging from 0.2 to 4 �C andMAE¼ 2.2 �C.We attribute this discrepancy to software
limitations of ENVI-met as also identified by Baloloy et al. (2020) and Cruz et al. (2021) which used the same methodology and reported
similar error values. Despite this, a MAPE value of 7.3% was calculated which signifies an overall good agreement between the
simulated and measured data. To further confirm model accuracy, a scatterplot of measured and simulated Tair was created and
R-squared (R2) was computed. The predicted trend line has high R2 value of 0.7832 indicating strong correlation betweenmeasured and
simulated Tair (Fig. 4). Thereby, the model was deemed appropriate for predicting outdoor thermal environment of Mandaue with
adequate accuracy.
3.1. UHI mitigation in M. C. Briones street

Examination of the simulation results show that the mitigation strategies introduced in M. C. Briones street decreased air temper-
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Fig. 5. Diurnal variations of air temperature in site A – M. C. Briones street under different scenarios. Scenario 1 – existing layout; scenario 2–10
buildings were removed, and 282 trees were added; scenario 3 – building roofs were modified into green roofs. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Difference in temperature between scenarios tested in site A – M. C. Briones street.
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ature and improved thermal comfort. Air temperature in subareas of M. C. Briones street show similar patterns of diurnal variations.
Consistent in both subareas 1 and 2 across different scenarios, Tair is lowest early morning, peaks around 13:00–15:00 local time (LT)
and eventually cools again late afternoon. Fig. 5 shows how mean Tair is reduced upon introduction of mitigation strategies, e.g., in
subarea 1: mean Tair ¼ 31:4 �C in siteAsc1; mean Tair ¼ 31:2 �C in siteAsc2; and, mean Tair ¼ 31:1 �C in siteAsc3. In subarea 2: mean Tair ¼
31:3 �C in siteAsc1; mean Tair ¼ 31:1 �C in siteAsc2; and mean Tair ¼ 30:8 �C in site Asc3.

In calculating the hourly difference in Tair it was found that for both subareas 1 and 2, addition of more urban spaces and trees
(Tair site Asc1 � Tair site Asc2) could decrease Tair by 0.2 �C on average (Fig. 6). Meanwhile, conversion of building roofs into green roofs
(Tair site Asc1 � Tair site Asc3) decreased Tair by an average of 0.2 �C for subarea 1 and 0.4 �C or subarea 2.

Results indicate that there is only a slight difference in air temperature between the two approaches although the deployment of
green roof is more effective. This is contrary to the findings of X. X. Li and Norford (2016) which showed that green vegetation could
reduce air temperature greater than deploying green roof. We attribute this inconsistency to the fact that in scenario 2 of our study, we
did not adapt 100% vegetation in the study site (i.e. some spaces were left open) whereas 100% green roof was adapted on all buildings
in scenario 3. The buildings occupy a large percentage of the area in M. C. Briones street which is also typical in an urban environment as
pointed out by Mohajerani et al. (2017). Hence, green roof covers larger surface area than the trees added which could in turn
significantly reduce temperature as already proven by Herath et al. (2018). Yet, Tsoka et al. (2018) specified that the effect of green roof
contributes to greater cool air advection when there is lesser distance between roof and ground surface as in the case of low-rise
buildings.

Both mitigations in M. C. Briones street adopted different forms of vegetation which nonetheless reduces air temperature by
increasing latent heat flux through evapotranspiration and in effect increasing humidity as well (Acero & Arrizabalaga, 2018; Lee et al.,
2014; Mohajerani et al., 2017). We could not account for a large difference in evapotranspiration between scenarios 2 and 3, in fact
101



Fig. 7. Effect of UHI mitigations on relative humidity and thermal comfort index in site A –M. C. Briones street. Scenario 1 – existing layout; scenario
2–10 buildings were removed and 282 trees were added; scenario 3 – building roofs were modified into green roofs. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 8. Diurnal variations of surface temperature in site A – M. C. Briones street under different scenarios. Scenario 1 – existing layout; scenario 2–10
buildings were removed, and 282 trees were added; scenario 3 – building roofs were modified into green roofs. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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relative humidity only differs by 1.2% for both subareas. Fig. 7 illustrates that relative humidity in the study site is highest around
7:00–9:00 LT which could reach higher than 70% for both subareas in scenario 2 and 3. Furthermore, this study also confirms the
findings of Emmanuel and Johansson (2006) which proved that relative humidity is lowest when air temperature is warmest.

Relative humidity and air temperature affect human thermal stress level; to determine the effect of these parameters on thermal
comfort, we used the temperature-humidity index (THI). In the method of X. X. Li and Norford (2016), THI is calculated as THI ¼ 0:8tþ
0:2t � ðRH100Þ where t is air temperature in �C and RH is relative humidity in %. In the same study, X. X. Li and Norford (2016) explained
that THI close to about 21 �C is the most ideal level where majority of the people feel comfortable while THI close to 26 �C means that
majority of the people feel uncomfortable. In the simulation for subareas 1 and 2, thermal comfort for all scenarios are in the un-
comfortable level i.e. THI >26 �C (Fig. 7). Lowest THI range of 25.8 �C–26.0 �C is only calculated once at 7:00 LT while highest THI �
30 �C occurs during 12:00–15:00 LT. This means that the mitigations introduced were not enough to significantly minimize human
102



Fig. 9. Diurnal variations of air temperature in site B – PUD at different subareas under different scenarios. Scenario 1 – existing layout; scenario 2 –

building roofs were modified into green roofs, 39 trees, and grasses were added. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 10. Difference in temperature between scenarios tested in site B – PUD.
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thermal stress.
Similar to Tair , surface temperature (Tsur) also varies diurnally where Tsur is lowest early morning, peaks around 12:00–15:00 LT and

eventually cools again from 16:00 LT. Fig. 8 shows that mean Tsur is reduced upon introduction of mitigation strategy, e.g., in subarea 1:
mean Tsur ¼ 31:0 �C in site Asc1,; mean Tsur ¼ 30:2 �C in site Asc2; and, mean Tsur ¼ 31:0 �C in site Asc3. In subarea 2: mean Tsur ¼ 30:0 �C
in site Asc1,; mean Tsur ¼ 29:5 �C in site Asc2; and mean Tsur ¼ 30:0 �C in site Asc3. The difference in hourly Tsur was also calculated to
further compare the scenarios in each subarea (Fig. 6). Addition of more urban spaces and trees (Tsur site Asc1 � Tsur site Asc2) showed that
Tsur could be decreased by an average of 0.8 �C in subarea 1 and 0.5 �C in subarea 2 while conversion of building roofs into green roofs
(Tsur site Asc1 � Tsur site Asc3) did not affect Tsur as temperature difference in both subareas is 0.0 �C. However, this surface temperature
103



Fig. 11. Diurnal variations of surface temperature in site B – PUD at different subareas under different scenarios. Scenario 1 – existing layout;
scenario 2 – building roofs were modified into green roofs, 39 trees, and grasses were added. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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was calculated at 0 m while roof surfaces are at 2 m and above based on the existing buildings height. We were not able to consider roof
surface temperature in this study but if it had been considered, a greater temperature reduction could be expected. The same argument
was reiterated by Herath et al. (2018) in their study which ascertained that 50%–100% green roofing could lower surface temperature.
3.2. UHI mitigation in PUD

Simulation of UHI mitigation in PUD show that combined effects of green roofs and increased vegetation could decrease both air and
surface temperature. Fig. 9 depicts how Tair changes throughout the day such that in the four subareas, Tair peaks during 12:00–15:00 LT
and eventually cools again late afternoon. Mean Tair of the four subareas is consistently lower in scenario 2 than in scenario 1, with the
temperature difference computed as Tair site Bsc1 � Tair site Bsc2. UHI mitigations in site Bsc2 are in fact a combination of green roof, trees,
and grasses which all contribute to evapotranspiration.

On average, Tair decreased by 0.1 �C in subarea 1, 0.1 �C in subarea 2, 0.3 �C in subarea 3 and 0.1 �C in subarea 4 (Fig. 10). We
attribute the high surface temperature reduction in subarea 3 compared with other subareas in PUD due to its significant conversion
from empty open space (in scenario 1) into a highly vegetated area with trees and grasses (in scenario 2). The other subareas in PUD
were also added with trees in scenario 2 but the existing layout of buildings were left unchanged. Therefore, higher evapotranspiration
in subarea 3 compared with other subareas is expected. Also, due to the absence of urban structures compared with other subareas,
subarea 3 has the highest sky view factor. A review by Mohajerani et al. (2017) found that the sky view factor is a key parameter for the
cooling effect of vegetation.

Surface temperature in PUD also follows the same diurnal pattern as air temperature, i.e., it peaks during 12:00–15:00 LT (Fig. 11).
Mean Tsur of the four subareas is also consistently lower in scenario 2 than in scenario 1, with the temperature difference computed as
Tsur site Bsc1 � Tsur site Bsc2. On average, Tsur decreased by 0.4 �C in subarea 1, 0.8 �C in subarea 2, 1.1 �C in subarea 3 and 0.7 �C in
subarea 4 (Fig. 10). Similar to Tair , we attribute the high surface temperature reduction in subarea 3 compared with other subareas in
PUD due to its significant conversion into a highly vegetated area. Presence of urban greenery especially trees, are known to cool urban
surfaces in various methods including: shadow effect as the leaves block incoming solar radiation (O'Malley et al., 2015; Tsoka et al.,
2018; Wang et al., 2016); and, increased latent heat flux as discussed in section 3.1. In subareas 1, 2, and 4, a combination of 100% green
roofing and adding few trees to empty spaces were deployed as UHI mitigation strategies in scenario 2. Hence, surface temperature in
these subareas were still reduced even if roof surface temperature was not considered as in the case of scenario 3 for M. C. Briones street.
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4. Conclusions

This study investigated how a change in urban design of built-up areas in Mandaue city could mitigate UHI phenomenon. Using
ENVI-met, different scenarios were simulated to identify the effects of vegetation, open spaces, and green roof on parameters such as air
temperature, relative humidity, thermal comfort index, and surface temperature. Addition of more urban spaces and trees could
decrease air temperature by 0.2 �C on average while green roof could decrease air temperature by an average range of 0.2 �C–0.4 �C.
When a combination of trees, grasses and green roof is used, air temperature could be decreased by an average range of 0.1 �C–0.3 �C.
Nevertheless, the thermal comfort index in Mandaue would be greater than 26 �C despite the mitigations employed which means that
majority of the people would still feel uncomfortable. On the other hand, addition of more urban spaces and trees could decrease surface
temperature by an average range of 0.5 �C–0.8 �C while conversion of building roofs into green roofs would have no effect. When a
combination of vegetation and green roof is employed, surface temperature could be decreased by an average range of 0.4 �C–1.1 �C.

The findings of the study imply that UHI phenomenon in Mandaue could be mitigated by several simple approaches although, in the
end the choice of mitigation strategy would depend on which aspect of urban thermal environment the city wants to improve. The study
also further strengthen the need to include greening in urban design as it is not only effective for cooling but also have added benefits
like carbon sequestration potential and ecological service. We would therefore highly encourage the local government to adapt greening
policies as well as consider UHI phenomenon in its land use plans.

For future studies, we suggest to investigate the effect of green roof on roof surface temperature and indoor air temperature.
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