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A B S T R A C T

With the advent of Big Data, managing large-scale portfolios of thousands of securities is one
of the most challenging tasks in the asset management industry. This study uses an evolutionary
multi-objective technique to solve large-scale portfolio optimisation problems with both long-
term listed and newly listed securities. The future returns of long-term listed securities are
defined as random variables whose probability distributions are estimated based on sufficient
historical data, while the returns of newly listed securities are defined as uncertain variables
whose uncertainty distributions are estimated based on experts’ knowledge. Our approach
defines security returns as theoretically uncertain random variables and proposes a three-moment
optimisation model with practical trading constraints. In this study, a framework for applying
arbitrary multi-objective evolutionary algorithms to portfolio optimisation is established, and a
novel evolutionary algorithm based on large-scale optimisation techniques is developed to solve
the proposed model. The experimental results show that the proposed algorithm outperforms
state-of-the-art evolutionary algorithms in large-scale portfolio optimisation.

1. Introduction
In 2022, the global asset management industry hit a new high of 126 trillion of assets under management(AUM).

This figure represents 28 percent of global financial assets, up from 23 percent a decade ago (McKinsey, 2022).
The computational complexity of optimal portfolio construction, which simultaneously balances risk minimisation
with return maximisation, is perhaps the most intrinsic and recurrent financial problem in the asset management
industry. Modern portfolio theory (MPT), first introduced by Markowitz (1952), extols the virtues of the first two
moments of the Gaussian distribution (the so-called mean-variance model) as sufficient to solve the problem of optimal
portfolio allocation based on practitioners’ views on risk and return. In academia, the MPT continues to be challenged
from various perspectives. Some scholars have chosen to extend the mean-variance approach in non-trivial directions
(Lassance, 2022; Zhen & Chen, 2022; Li et al., 2022b), while others have attacked the statistical validity of the mean-
variance model and proposed practical extension to accommodate fat-tailedness of risk factors (Samuelson, 1975;
Theodossiou & Savva, 2015; Sahamkhadam et al., 2022), and or improvements to the distribution of speculative assets
(Mandelbrot, 1963; Jensen, 1968; Hsieh, 1991; Carr & Wu, 2003; Borovicka et al., 2016). In this paper, we consider
the practical challenge of large-scale portfolio optimisation where historical data for some eligible securities is limited.

Most existing portfolio optimisation models view financial asset returns as random variables whose distributional
characteristics can be extracted from historical data. However, when there is a lack of sufficient historical data for
newly listed securities, scholars have proposed the use of fuzzy variables estimated by experts’ judgement, leading to
the development of fuzzy portfolio optimisation theory (Tanaka & Guo, 1999; Gupta et al., 2008; Zhang et al., 2007;
Mehlawat et al., 2020; Zhang et al., 2022). Also, Liu (2007) proposes the uncertainty theory as another alternative
tool for modelling indeterministic quantities that are subject to experts’ estimates. Based on the uncertainty theory,
portfolio optimisation problems are able to be solved in uncertain environments (Huang, 2012; Huang & Di, 2016;
Zhai & Bai, 2018; Dai & Qin, 2021).
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This study addresses the real-world challenge of large-scale portfolio optimisation problems when the eligible
basket of securities includes both established (long-term listed) and newly listed entities. In a situation where a large
number of securities are of interest, portfolio selection is essentially considered as a large-scale optimisation task. In
such a scenario, both long-term listed securities and newly listed securities are usually included in the portfolio. Since
sufficient historical samples are available for the long-term listed securities, it is usually assumed that the security
returns are random variables whose distributions are statistically traceable. In contrast, since sufficient historical data
is not available for newly listed securities, security returns are usually defined as uncertain variables whose distributions
are estimated based on experts’ estimates. In this hybrid environment, uncertain random variables are introduced to deal
with the complex system with randomness and uncertainty (Liu, 2013a,b). Qin (2015) first proposes a mean-variance
portfolio optimisation model to address this problem. Since then, a large body of work has been put into solving
portfolio optimisation problems under uncertain random environments (Qin et al., 2017; Ahmadzade et al., 2020; Li
& Teo, 2021; Mehlawat et al., 2021).

In practise, trading restrictions add fractions to real-world portfolio optimisation and inhibit the use of classical
MPT approaches. Investment restrictions such as cardinality and minimum transaction lot are important factors that
should be taken into account (Branke et al., 2009; Liu & Zhang, 2015; Dai & Qin, 2021; Kobayashi et al., 2023).
As is often the case in practise, investors prefer a portfolio with a reasonable number of securities, especially when
the investment capital is large. The cardinality constraint helps investors construct a portfolio with an appropriate size.
Most existing models have been studied under the assumption of perfect fractionability of investment, which is difficult
to implement in the real world. In the financial market, securities often have to be traded in integer multiples of a round
lot, where a lot is a fixed quantity of units in a transaction. Therefore, it is necessary to include the constraint of a
minimum transaction lot in the portfolio optimisation problem.

The introduction of complex constraints makes solving portfolio optimisation models challenging, especially for
large-scale investments. Multi-Objective Evolutionary Algorithms (MOEA) have been shown to cope with constrained
portfolio optimisation models. This has spurred research on alternative algorithms, allowing MOEA to shine in the
field of portfolio optimisation (Woodside-Oriakhi et al., 2011; Chen et al., 2018; Wang et al., 2018; Chen et al., 2019;
Petchrompo et al., 2022). Most existing MOEAs have shown promising performance in solving complex optimisation
problems, but their performance may deteriorate when they process a large number of decision variables (Tian et al.,
2021). In recent years, three types of Large-Scale Multi-objective Evolutionary Algorithms (LSMOEA) have been
developed based on decision variable grouping, decision space reduction and novel search strategies to address
the challenges of large-scale problems (Tian et al., 2021). Most LSMOEAs assume that the problem contains no
or few simple constraints, so they are not directly applicable to large-scale portfolio optimisation problems with
realistic constraints. Although evolutionary algorithms have achieved remarkable success in optimising portfolios with
constraints, research on the application of MOEAs to large-scale portfolio optimisation tasks is still limited.

To illustrate the above view, the performance of representative MOEAs on the mean-variance model is discussed.
The mean-variance model is a quadratic programming problem whose true efficient front can be easily obtained (e.g.,
with the function ‘quadprog’ in MATLAB). Two portfolio problems with 30 securities (small-scale case) and 1000
securities (large-scale case) are considered. Four representative MOEAs, NSGA-II (Deb et al., 2002), WOF (Zille
et al., 2018), LSMOF (He et al., 2019) and LMOEADS (Qin et al., 2021), are used to find 100 efficient solutions
to the mean-variance models, the first one being the best known multi-objective algorithm and the next three being
representatives of the outstanding LSMOEAs. The parameters associated with the algorithms are set according to the
original literature, and the termination condition is set at 30000 function evaluations. The efficient fronts determined by
the algorithms are shown in Figure 1. As can be seen in Figure 1(a), all MOEAs converge to the true effective frontier
in the small-scale case, with the three LSMOEAs achieving better diversity than NSGA-II. However, in the large-
scale case, Figure 1(b) shows that their performance deteriorates dramatically, with NSGA-II and WOF showing poor
convergence and diversification, and LSMOF and LMOEADS performing much worse than in the small-scale case.
This observation suggests that the application of MOEAs in large-scale portfolio optimisation still holds considerable
challenges and potential for improvement.

This study addresses a large-scale portfolio optimisation problem involving long-term and newly listed securities
in an uncertain random environment. A multi-objective portfolio optimisation model with realistic constraints is
proposed. In this model, the mean, variance and skewness of the portfolio return serve as decision criteria and are
complemented by constraints such as cardinality, bounding, minimum transaction lot and no short selling to make
the model more comprehensive and applicable to real investment scenarios. To solve the proposed model, a novel
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Figure 1: Efficient fronts of the mean-variance models obtained by the NSGA-II and LMOEADS.

Table 1
Feature comparison with existing approaches.

Feature Qin (2015) Chen et al. (2019) Chang et al. (2020) Dai & Qin (2021) Huang & Jiang (2021) Mehlawat et al. (2021) Li & Teo (2021) Our
Skewness × ✓ × × × ✓ ✓ ✓

Environment Uncertain Random Uncertain Uncertain Uncertain Uncertain Uncertain Random Uncertain Random Uncertain Random
Cardinality × ✓ ✓ × × ✓ ✓ ✓

Transaction Lot × × × ✓ × × × ✓

Bounding × ✓ × ✓ × ✓ × ✓

No Short-selling × ✓ ✓ ✓ ✓ ✓ ✓ ✓

Risk-free Asset × × × × × × × ✓

Large-scale × × × × × × × ✓

Solution CQP ICA-FA LP GA LP GA ASM LSWOEA

CQP: Convex Quadratic Programming; ICA-FA: Imperialist Competitive Algorithm and Firefly Algorithm; LP: Linear Programming; GA: Genetic Algorithm;
IFMOICA: Improved Multi-objective Imperialist Competitive; ASM: Active-Set Method; LSWOEA: Lager-scale Weighting optimisation Evolutionary Algorithm.

evolutionary algorithm based on large-scale multi-objective optimisation techniques is proposed. First, an encoder-
decoder method is developed to deal with the constraints and convert the proposed model into a model without
constraints. Then, an optimisation framework based on variable space reduction is designed to solve the converted
model. Finally, a novel search strategy is developed to improve the operational efficiency of the algorithm.

Based on the above discussion, a comparison of the features with some important related works is given in Table
1. The main highlights and innovations of this study are summarised below:

1. A mean-variance-skewness model for large-scale portfolio optimisation problems with long-term listed and
newly listed securities have been formulated in an uncertain random environment.

2. In order to improve the practicality of the proposed model, realistic constraints have been included. In particular,
the constraints of cardinality, minimum transaction lot, bounding and prohibition of short selling are considered
and explained in detail.

3. An encoder-decoder method is presented to convert the proposed model into an unconstrained multi-objective
model. The developed constraint-handling method enables the application of arbitrary MOEAs to the proposed
model, which greatly extends the capabilities of existing evolutionary algorithms in portfolio optimisation.

4. To solve the proposed model, a novel evolutionary algorithm based on large-scale multi-objective optimisation
techniques is developed. The proposed algorithm is extended with a decision space reduction method and a novel
search strategy to solve large-scale portfolio optimisation problems efficiently.

5. The proposed model and algorithm are implemented on two datasets of the Chinese stock market. Numerical
analysis shows that the proposed algorithm outperforms the existing MOEAs on large-scale portfolio optimisa-
tion problems.
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The rest of this paper is structured as follows: Section 2 reviews the relevant literature. Section 3 briefly introduces
the properties of the theory of uncertainty and uncertain random variables. Section 4 describes the proposed model.
Section 5 explains the solution algorithm. Section 6 conducts two case studies. Finally, Section 7 provides a summary
and conclusion.

2. Literature Review
Markowitz (1952) proposes the mean-variance portfolio optimisation model, which formulates the problem in

a mathematical framework for the first time. The model uses mean and variance to characterise return and risk,
respectively. However, variance treats investment returns above and below the mean as equivalent to increased risk,
which is unrealistic when security returns are asymmetrically distributed. To address this challenge, some scholars have
replaced variance with a measure of downside risk (Markowitz, 1959; Ling et al., 2020; Rigamonti & Lucivjanska,
2022); others have used skewness, the third central moment, to measure the degree of asymmetry in the distribution of
returns (Samuelson, 1975; Li et al., 2010; Theodossiou & Savva, 2015; Zhou & Palomar, 2021). In these approaches,
only the randomness of financial markets is taken into account, and security returns are treated as random variables
whose distributions can be derived from historical data. However, in some emerging markets, there may be a lack of
sufficient trading data. In this case, some researchers consider security returns as fuzzy variables whose distributions
are estimated by experts’ knowledge. Zadeh (1965) introduced the concept of fuzzy sets, which later became the basis
of fuzzy techniques. With the development of fuzzy techniques, researchers began to use fuzzy numbers to formulate
payoff distributions and to study fuzzy portfolio optimisation problems based on three different approaches: fuzzy set
theory (Gupta et al., 2008), possibility theory (Tanaka & Guo, 1999; Zhang et al., 2007; Tsaur, 2013; Liu et al., 2020)
and credibility theory (Huang, 2008; Mehlawat & Gupta, 2014; Guo et al., 2016; Mehlawat et al., 2020).

However, fuzzy theory has been criticised for the paradoxes associated with describing security returns using
fuzzy numbers (Huang & Ying, 2013). To better describe subjectively imprecise quantities, Liu (2007) proposes
an uncertainty theory that deals with uncertain quantities estimated by experts. Based on uncertainty theory, many
works have been done to solve related portfolio optimisation problems. Huang (2011) develops a mean-risk model
for uncertain portfolio optimisation. Huang (2012) proposes a mean-variance method for portfolio optimisation with
returns based on experts’ estimates. Yao (2014) introduces sinusoidal entropy for uncertain sets and explores its
applications in portfolio optimisation. Some scholars discuss uncertain portfolio optimisation problems considering
background risk from different perspectives (Huang & Di, 2016; Huang & Jiang, 2021; Huang et al., 2021). Zhai & Bai
(2018) propose a mean-risk model for uncertain portfolio optimisation with background risk. Zhai et al. (2018) design
an uncertain mean-risk skewness model for portfolio optimisations. Chang et al. (2020) deal with uncertain portfolio
optimisation problems with mental accounts and realist constraints. Dai & Qin (2021) proposes an uncertain portfolio
optimisation model with minimal transaction lots and dynamic risk preference. Li et al. (2022a) provide an analytical
solution to a multi-period uncertain portfolio optimisation problem.

In most real-world situations, it is doubtful whether there is sufficient historical data for all securities or for any
securities. Consequently, portfolio optimisation problems in the real world are usually simultaneously associated with
random and uncertain returns. Liu (2013a,b) proposes to use uncertain random variables to model systems with
randomness and uncertainty. Qin (2015) is the first to study portfolio optimisation problems in hybrid environments
using uncertain random variables. Qin et al. (2017) develop a VaR model with uncertain random mean for portfolio
optimisation problems. Ahmadzade et al. (2020) introduce the partial divergence measure of uncertain random
variables and apply it to portfolio optimisation problems. Mehralizade et al. (2020) design a new risk criterion for
the uncertain random portfolio optimisation problem. Li & Teo (2021) present a mean-variance-skewness model for
the uncertain random portfolio optimisation problem. Mehlawat et al. (2021) propose a portfolio optimisation model
using higher moments in uncertain random environments.

In addition to uncertainty and randomness, real-world constraints are also important factors in portfolio optimisa-
tions. The studies conducted in this area are very active, have various constraints such as cardinality and transaction
lots, and are integrated into the existing portfolio optimisation models (Lin & Liu, 2008; Li & Xu, 2013; Liu & Zhang,
2015; Mehlawat et al., 2021; Li & Teo, 2021). However, the introduction of realistic constraints has turned the models
into NP-hard problems that can be computationally very challenging. MOEA is a good candidate to solve the models.
Numerous works have been carried out with the aim of using MOEAs to solve multi-objective portfolio optimisation
models with realistic constraints. Chen et al. (2018) design a novel hybrid MOEA to solve the multi-period mean-
variance-skewness model. Wang et al. (2018) present a fuzzy simulation-based particle swarm optimisation algorithm
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for the bi-objective portfolio optimisation model. Chen et al. (2019) present a novel hybrid ICA-FA algorithm for
solving multi-period uncertain portfolio optimisation. Li et al. (2021) develop an improved imperialistic competition
algorithm for solving the fuzzy random portfolio optimisation model.

Although MOEAs are widely used in portfolio optimisation, it is still a challenge to use them to solve large-
scale portfolio optimisation models with thousands of securities. MOEAs have shown promise in solving various
optimisation problems, but their performance may deteriorate when tackling problems with a large number of decision
variables (Tian et al., 2021). In recent years, significant efforts have been made to solve large multi-objective
optimisation problems, with performance improved mainly by three techniques: grouping of decision variables (Ma
et al., 2016; Cao et al., 2017; Du et al., 2019), decision space reduction (Zille et al., 2018; He et al., 2019; Chang
et al., 2020; Qin et al., 2021; Tian et al., 2022) and novel search strategies (Hong et al., 2019; Tian et al., 2020; He
et al., 2022). Some MOEAs have been proposed to solve constrained multi-objective optimisation models with several
decision variables based on co-evolutionary or multi-stage frameworks (Fan et al., 2019; Li et al., 2019). However,
most existing methods for dealing with constraints need to test the feasibility of potential solutions, which makes the
algorithms inefficient for large-scale optimisation models.

In summary, portfolio optimisation as a fundamental financial problem has been the focus of interest of scholars in
various fields. Based on the analysis of the existing literature, this study addresses the following four main challenges:

1. How to account for uncertainty and randomness in optimising large portfolios of long-term listed and newly
listed securities?

2. How to develop investment strategies for such large-scale investments that are closer to investors’ decision criteria
and real investment scenarios?

3. How can existing advanced evolutionary algorithms be used to solve portfolio optimisation problems with
realistic constraints?

4. How to improve the performance of evolutionary algorithms in solving large-scale portfolio optimisation
problems?

To overcome these challenges, a large-scale uncertain random mean-variance-skewness portfolio optimisation
model is proposed. In this model, the future returns of long-term listed and newly listed securities are treated as random
and uncertain variables, respectively. Additionally, the constraints of cardinality, minimum transaction lot, bounding
and prohibition on short selling are considered to fit the real world of investment. Then, an encoder-decoder method is
developed to convert the proposed model into a constraint-free model so that any MOEA can be applied to solve the
proposed model. Besides, a novel evolutionary algorithm based on large-scale multi-objective optimisation techniques
is proposed to solve the transformed model.

3. Preliminaries
This section introduces uncertainty theory and uncertain random variables as a precursor to this study.

3.1. Uncertainty Theory
Liu (2007) proposes uncertainty theory as a branch of axiomatic mathematics to study uncertainty in relation to

the degree of human belief.

Definition 1. (Liu, 2007). Let Γ be a non-empty set and 𝓁 be a 𝜎-algebra over Γ. An element Λ ∈ 𝓁 is called an event.
A function  ∶ 𝓁 → [0, 1] is called an uncertain measure if it satisfies: (1) (Γ) = 1; (2) (Λ) + (Λ𝑐) = 1
for any event Λ ∈ 𝓁; (3) For every countable sequence of events Λ1,Λ2,…, we have (

⋃∞
𝑖 Λ𝑖) ≤

∑∞
𝑖 (Λ𝑖). The

triple (Γ,𝓁,) is called an uncertain space.

Definition 2. (Liu, 2007). Let (Γ𝑘,𝓁𝑘,𝑘) be uncertain space for 𝑘 = 1, 2,…. The product uncertain measure  is
an uncertain measure satisfying {

∏∞
𝑘 𝑘{Λ𝑘}} =

⋀∞
𝑘=1𝑘{Λ𝑘}, where Λ𝑘 are arbitrarily chosen events from

𝓁𝑘.

Definition 3. (Liu, 2007). An uncertain variable is a function 𝜉 from an uncertain space (Γ𝑘,𝓁𝑘,𝑘) to the set of real
numbers such that {𝜉 ∈ 𝐵} is an event for any Borel set 𝐵.
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Definition 4. (Liu, 2007). The uncertain distribution Φ of an uncertain variable 𝜉 is defined by Φ𝜉(𝑥) = {𝜉 ≤ 𝑥}
for any real number 𝑥.

Definition 5. (Liu, 2007). The expected value of an uncertain variable 𝜉 is defined by

𝐸[𝜉] = ∫

+∞

0
{𝜉 ≥ 𝑥} − ∫

0

−∞
{𝜉 ≤ 𝑥},

provided that at least one of the two integrals exists.

Definition 6. (Liu, 2010). The uncertain variables 𝜉1,… , 𝜉𝑛 are said to be independent if



{ 𝑛
⋂

𝑖=1
{𝜉𝑖 ∈ 𝐵𝑖}

}

= min
1≤𝑖≤𝑛

{𝜉𝑖 ∈ 𝐵𝑖},

for any Borel sets 𝐵1,… , 𝐵𝑛 of real numbers.

3.2. Uncertain Random Variable
The uncertain variable is developed by Liu (2013a) for modelling complex systems with uncertainty and

randomness. Let (Γ,𝓁,) and (Ω,, 𝑃 ) be uncertain space and probability space, respectively. The product
(Γ,𝓁,) × (Ω,, 𝑃 ) is called a chance space.

Definition 7. (Liu, 2013a). Let (Γ,𝓁,) × (Ω,, 𝑃 ) be a chance space and Θ ∈ 𝓁 ×  be an uncertain random
event. The chance measure of Θ is defined by

Ch{Θ} = ∫

1

0
𝑃 {𝜔 ∈ Ω|{𝛾 ∈ Γ|(𝛾, 𝜔) ∈ Θ} ≥ 𝑥} (1)

Definition 8. (Liu, 2013a). An uncertain random variable is a function 𝜉 from a chance space (Γ,𝓁,) × (Ω,, 𝑃 )
to the set of real numbers such that {𝜉 ∈ 𝐵} is and event in 𝓁× for any Borel set 𝐵. Its chance distribution is defined
by Ψ(𝑥) = Ch{𝜉 ≤ 𝑥}.

Theorem 1. (Liu, 2013a). Let 𝜉1 be a random variable and 𝜉2 be an uncertain variable. 𝜉1 or 𝜉2 can be regarded as
a special uncertain random variable, and 𝜉1 + 𝜉2 is also an uncertain random variable.

Definition 9. (Liu, 2013b). Let 𝜉 be an uncertain random variable. Its expected value is defined by

𝐸[𝜉] = ∫

+∞

0
Ch{𝜉 ≥ 𝑥}𝑑𝑥 − ∫

0

−∞
Ch{𝜉 ≤ 𝑥}𝑑𝑥,

provided that at least one of the two integrals exists.

Theorem 2. (Liu, 2013a). Let 𝜂 be a random variable and 𝜉 be an uncertain variable. The uncertain random variable
𝜂 + 𝜉 has an expected value

𝐸[𝜂 + 𝜉] = 𝐸[𝜂] + 𝐸[𝜉].

Definition 10. (Liu, 2013a). Let 𝜉 be an uncertain random variable with a finite mean value 𝑒. Its variance is defined
by

𝑉 [𝜉] = 𝐸[(𝜉 − 𝑒)2].

Theorem 3. (Guo & Wang, 2014). Let 𝜉 be an uncertain random variable with chance distribution Ψ(𝑥). If 𝜉 has a
finite mean value 𝑒, then

𝑉 [𝜉] = ∫

+∞

−∞
(𝑥 − 𝑒)2𝑑Ψ(𝑥).
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Table 2
Key notations used in the model derivation.

Category Symbolization Annotation

Indices

𝑛 Number of long-term listed securities
𝑚 Number of newly listed securities
𝑖 Index for long-term listed securities, 𝑖 = 1,… , 𝑛
𝑗 Index for newly listed securities, 𝑗 = 1,… , 𝑚

Decision variables
𝑥0 Investment proportion of the risk-free asset
𝑥𝑖 Investment proportion of long-term listed securities
𝑦𝑗 Investment proportion of newly listed securities

Modeling variables

𝐾min Minimum number of the securities held
𝐾max Maximum number of the securities held
𝑙1𝑖 Lower bound of the investment proportion in 𝑖-th long-term listed security if it is held
𝑢1𝑖 Upper bound of the investment proportion in 𝑖-th long-term listed security if it is held
𝑙2𝑗 Lower bound of the investment proportion in 𝑗-th newly listed security if it is held
𝑢2𝑗 Upper bound of the investment proportion in 𝑗-th newly listed security if it is held
𝑊0 Total capital at the be beginning of investment
𝑃 1
𝑖 Price of a round lot of 𝑖-th long-term listed security

𝑃 2
𝑗 Price of a round lot of 𝑗-th newly listed security

𝑟0 Risk-free return
𝜂𝑖 Random return of 𝑖-th long-term listed security
𝜉𝑗 Uncertain return of 𝑗-th newly listed security
Υ𝑖 Probability distribution of random return 𝜉𝑖
Φ𝑗 Uncertain distribution of uncertain return 𝜂𝑗

Definition 11. (Li & Shu, 2022; Mehlawat et al., 2021; Zhai et al., 2022). Let 𝜉 be an uncertain random variable with
a finite mean value 𝑒. Its skewness is defined by

𝑆[𝜉] = 𝐸[(𝜉 − 𝑒)3].

Theorem 4. (Li & Shu, 2022; Mehlawat et al., 2021; Zhai et al., 2022). Let 𝜉 be an uncertain random variable with
chance distribution Ψ(𝑥). If 𝜉 has a finite mean value 𝑒, then

𝑆[𝜉] = ∫

+∞

−∞
(𝑥 − 𝑒)3𝑑Ψ(𝑥).

4. Constrained multi-objective portfolio optimisation model
We consider a multi-objective portfolio optimisation problem with large-scale securities and a risk-free asset, where

long-term listed and newly listed securities are represented simultaneously. For simplicity, the notations used are listed
in Table 2.

Let 𝒙 = (𝑥1,… , 𝑥𝑛)′ and 𝒚 = (𝑦1,… , 𝑦𝑚)′ be the portfolio vectors of long-term listed securities and newly listed
securities, respectively, where ′ is the transpose operator. The portfolio vector for a risk-free asset and all securities can
be represented by 𝑋 = (𝑥0,𝒙′, 𝒚′)′. Then, the portfolio return is given by

𝑅(𝑋) = 𝑥0𝑟0 + 𝒙′𝜼 + 𝒚′𝝃 = 𝑥0𝑟0 + 𝑥1𝜂1 +⋯ + 𝑥𝑛𝜂𝑛 + 𝑦1𝜉1 +⋯ + 𝑦𝑚𝜉𝑚.

where 𝜼 = (𝜂1,… , 𝜂𝑛)′ and 𝝃 = (𝜉1,… , 𝜉𝑚)′ are the return vector of long-term listed and newly listed securities,
respectively. It is worth noting that 𝒙′𝜼 is a random variable and 𝒚′𝝃 is an uncertain variable, so𝑅(𝑋) can be considered
an uncertain random variable according to Theorem 1.

4.1. Objectives
In a risk-return framework, the returns and risks of investments are naturally measured by the expected value and

variance of 𝑅(𝑋). Since skewness is an important statistical indicator of asymmetric characteristics, it would be a
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valuable extension to add maximising skewness as an additional objective. To simplify the presentation, the following
two assumptions from Qin (2015) are used.

Assumption 1. The random vector 𝜼 = (𝜂1,… , 𝜂𝑛)′ has a multivariate normal distribution with the following
probability density function

𝚼(𝒛) = 1
√

(2𝜋)𝑛|Σ|
exp

(

−1
2
(𝒛 − 𝝁)′Σ−1(𝒛 − 𝝁)

)

, ∀𝒛 ∈ ℝ𝑛,

where 𝝁 and Σ are the expected vector and covariance matrix of 𝜼, respectively.

Assumption 2. The uncertain returns of the newly listed securities are independent in the sense of the uncertain
measure, i.e., 𝜉1,… , 𝜉𝑚 are independent uncertain variables that follow Definition 6.

By Assumption 1, the random variable 𝒙′𝜼 is normally distributed with mean 𝒙′𝝁 and variance 𝒙′Σ𝒙. The
probability distribution of 𝒙′𝜼 is thus given by

Υ(𝑧) = 1
√

2𝜋𝒙′Σ𝒙
exp

(

−
(𝑧 − 𝒙′𝝁)2

2𝒙′Σ𝒙

)

, ∀𝑧 ∈ ℝ,

According to Theorem 2, the expected value of portfolio return 𝑅(𝑋) is given by

𝐸[𝑅(𝑋)] = 𝑥0𝑟0 + 𝐸[𝒙′𝜼] + 𝐸[𝒚′𝝃] = 𝑥0𝑟0 + 𝒙′𝝁 + 𝒚′𝒗,

where 𝒗 = (𝐸[𝜉1],… , 𝐸[𝜉𝑚])′ is the expected vector of 𝝃 = (𝜉1,… , 𝜉𝑚)′.
It follows from Theorems 3 and 4 that the variance and skewness of uncertain random variable 𝑅(𝑋) are

𝑉 [𝑅(𝑋)] = 𝑉 [𝑅(𝑋) − 𝑥0𝑟0] = ∫

+∞

−∞

(

𝑧 − (𝒙′𝝁 + 𝒚′𝒗)
)2 𝑑Ψ(𝑧)

and

𝑆[𝑅(𝑋)] = 𝑆[𝑅(𝑋) − 𝑥0𝑟0] = ∫

+∞

−∞

(

𝑧 − (𝒙′𝝁 + 𝒚′𝒗)
)3 𝑑Ψ(𝑧),

respectively, where Ψ(𝑧) is the chance distribution of 𝑅(𝑋) determined by

Ψ(𝑧) = ∫

+∞

−∞
Φ(𝑧 − 𝑢)𝑑Υ(𝑢)

and Φ(⋅) is the uncertain distribution of 𝒚′𝝃.
Similar to treating random returns as normally distributed, uncertain returns 𝜉1,… , 𝜉𝑚 are usually assumed to

follow the same type of uncertain distribution. Here, zigzag uncertain variables are used to deal with the uncertain
returns of newly listed securities.

Assumption 3. The uncertain return 𝜉𝑗 (𝑗 = 1,… , 𝑚) is assumed to be a zigzag uncertain variable (𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) with
uncertain distribution

Φ𝑗(𝑧) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, if 𝑧 ≤ 𝑎𝑗
𝑧 − 𝑎𝑗

2(𝑏𝑗 − 𝑎𝑗)
, if 𝑎𝑗 < 𝑧 ≤ 𝑏𝑗

𝑧 + 𝑐𝑗 − 2𝑏𝑗
2(𝑐𝑗 − 𝑏𝑗)

, if 𝑏𝑗 < 𝑧 ≤ 𝑐𝑗

1, otherwise

.
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In this case, the expected value of the portfolio return can be determined as follows

𝐸[𝑅(𝑋)] = 𝑥0𝑟0 + 𝒙′𝝁 + 𝒚′ ⋅ 𝒂 + 2𝒃 + 𝒄
4

(2)

where 𝒂 = (𝑎1,… , 𝑎𝑚)′, 𝒃 = (𝑏1,… , 𝑏𝑚)′ and 𝒄 = (𝑐1,… , 𝑐𝑚)′.
As can be seen from the discussion in Qin (2015), the variance of the portfolio return 𝑅(𝑋) has an analytic

expression

𝑉 [𝑅(𝑋)] =𝒙′Σ𝒙 +
5(𝒚′𝒃 − 𝒚′𝒂)2 + 5(𝒚′𝒄 − 𝒚′𝒃)2 + 6(𝒚′𝒃 − 𝒚′𝒂)(𝒚′𝒄 − 𝒚′𝒃)

48
(3)

From the discussions in (Li & Teo, 2021; Mehlawat et al., 2021; Zhai et al., 2022) it follows that the skewness of
the portfolio return 𝑅(𝑋) has an analytical expression

𝑆[𝑅(𝑋)] =
(𝒚′𝒂 − 2𝒚′𝒃 + 𝒚′𝒄)(𝒚′𝒄 − 𝒚′𝒂)2

32
(4)

So far, the three objective functions of the mean-variance-skewness portfolio optimisation model have been
constructed in Equations (2)-(4). Next, the constraints of the model are described in detail.

4.2. Constraints
(1) Cardinality Constraint:
As is often the case in practice, investors prefer to manage a portfolio of a reasonable size, especially when faced

with large-scale investments. On the one hand, it is impractical to invest in thousands of securities simultaneously,
which can significantly increase subsequent management costs. On the other hand, investing in too few securities can
lead to a concentration of capital, which does not achieve the purpose of risk diversification. Therefore, the cardinality
constraint is presented to limit the number of securities held in the portfolio to a certain interval [𝐾min, 𝐾max], i.e.,

𝐾min ≤
𝑛
∑

𝑖=1
sgn(𝑥𝑖) +

𝑚
∑

𝑗=1
sgn(𝑦𝑗) ≤ 𝐾max (5)

where sgn(⋅) is the signum function.
(2) Minimum Transaction Lot Constraint:
Most existing portfolio optimisation models assume that investments are perfectly fractionable so that the

investment portion of each security can be represented by any real number on [0, 1]. However, the transaction is usually
associated with minimum transaction lots or rounds. A lot in securities represents the number of units of a financial
instrument traded on an exchange. To incorporate minimum transaction lot constraint, the number of transaction lots
invested in each security must be an integer. For example, a round lot in the China Stock Exchange is 100 shares.
Suppose the market price of a security is 𝑎. In this case, the price of a round lot of this security is equal to 𝑃 = 100𝑎,
and the capital invested in this security must be an integral multiple of 𝑃 . Based on the above discussion, the constraint
of minimum transaction lots is formulated as

𝑊0𝑥𝑖
𝑃 1
𝑖

∈ ℕ, 𝑖 = 1,… , 𝑛 (6)

𝑊0𝑦𝑗
𝑃 2
𝑗

∈ ℕ, 𝑗 = 1,… , 𝑚 (7)

where 𝑊0 is the total capital, and 𝑃 1
𝑖 and 𝑃 2

𝑗 are the price of a round lot of 𝑖-th long-term listed security and 𝑗-th newly
listed security, respectively. It should be noted that the risk-free asset is assumed to be perfectly fractionable.

(3) Bounding Constraint:
To obtain a diversified portfolio, it is assumed that the investment share of each held security must be limited in

an interval. The bounding constraints ensure that neither a large nor a very small portion of the capital is invested
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in a single security. If an asset is held in the portfolio, its investment share is limited to the interval. Otherwise, the
investment share is set to zero. Therefore, the bounding constraints are formulated as follows

sgn(𝑥𝑖)𝑙1𝑖 ≤ sgn(𝑥𝑖)𝑥𝑖 ≤ sgn(𝑥𝑖)𝑢1𝑖 , 𝑖 = 1,… , 𝑛 (8)
sgn(𝑦𝑗)𝑙2𝑗 ≤ sgn(𝑦𝑗)𝑦𝑗 ≤ sgn(𝑦𝑗)𝑢2𝑗 , 𝑗 = 1,… , 𝑚 (9)

It is worth pointing out that the condition
∑𝐾max

𝑘=1 𝑙𝑘 < 1 holds to ensure the validity of the cardinality constraint1, where
𝑙1,… , 𝑙𝑛+𝑚 are the descending order of the sequence 𝑙11,… , 𝑙1𝑛, 𝑙

2
1,… , 𝑙2𝑚.

(4) Budget Constraint:
In general, an investor’s available capital is finite. Let 1𝑛 and 1𝑚 be 𝑛 × 1 and 𝑚 × 1 matrices with each entry 1,

respectively. Suppose that all the available capital must be invested. The investment threshold is thus formulated as

𝑥0 + 𝒙′1𝑛 + 𝒚′1𝑚 = 1 (10)

(5) No Short-selling Constraint:
It is assumed that short selling is not permitted, and therefore we have

𝑥0 ≥ 0, 𝑥𝑖 ≥ 0, 𝑦𝑖 ≥ 0, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚 (11)

4.3. Model Formulation
Based on the above discussion, the three-moment portfolio selection model can be constructed by optimising the

objectives in Equations (2)-(4) subject to the constraints in Equations (5)-(11), i.e.,

𝑃1

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

max
𝑋

𝐸[𝑅(𝑋)] = 𝑥0𝑟0 + 𝒙′𝝁 + 𝒚′ ⋅ 𝒂 + 2𝒃 + 𝒄
4

min
𝑋

𝑉 [𝑅(𝑋)] = 𝒙′Σ𝒙 +
6(𝒚′𝒃 − 𝒚′𝒂)(𝒚′𝒄 − 𝒚′𝒃) + 5(𝒚′𝒃 − 𝒚′𝒂)2 + 5(𝒚′𝒄 − 𝒚′𝒃)2

48

max
𝑋

𝑆[𝑅(𝑋)] =
(𝒚′𝒂 − 2𝒚′𝒃 + 𝒚′𝒄)(𝒚′𝒄 − 𝒚′𝒂)2

32

s.t. 𝐾min ≤
𝑛
∑

𝑖=1
sgn(𝑥𝑖) +

𝑚
∑

𝑗=1
sign(𝑦𝑗) ≤ 𝐾max

𝑊0𝑥𝑖
𝑃 1
𝑖

∈ ℕ

𝑊0𝑦𝑗
𝑃 2
𝑗

∈ ℕ

sgn(𝑥𝑖)𝑙1𝑖 ≤ sgn(𝑥𝑖)𝑥𝑖 ≤ sgn(𝑥𝑖)𝑢1𝑖
sgn(𝑦𝑗)𝑙2𝑗 ≤ sgn(𝑦𝑗)𝑦𝑗 ≤ sgn(𝑦𝑗)𝑢2𝑗
𝑥0 + 𝒙′1𝑛 + 𝒚′1𝑚 = 1
𝑥0 ≥ 0, 𝑥𝑖 ≥ 0, 𝑦𝑖 ≥ 0
𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑚

5. Solution Algorithm
Considering that the proposed model 𝑃1 is a multi-objective programming model with complex constraints, it

would be tedious to solve it using conventional optimisation approaches. MOEA is a suitable alternative solution tool.
Despite the complex technical details, most of the MOEAs share a general framework as presented in Figure 2 (Eiben &
Smith, 2015). In this study, an encoder-decoder method is first developed to convert the model 𝑃1 into an unconstrained
model. Then, a novel MOEA method based on large-scale optimisation techniques is proposed to solve the converted
model. The optimisation framework of the proposed solution algorithm is presented in Figure 3. Next, we introduce
the essential components of the solution algorithm.

1This condition guarantees that at least one feasible portfolio exists when any 𝐾 ∈ [𝐾min, 𝐾max] securities are selected to construct the portfolio.
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Figure 2: General framework of MOEAs.

Figure 3: Optimisation framework of the proposed solution algorithm.

5.1. Constraint Handling Method
A portfolio vector 𝑋 = (𝑥0,𝒙′, 𝒚′)′ is encoded by a real value vector 𝒑 in the following search space

Δ =
{

𝒑 = (𝑝0, 𝑝1,… , 𝑝𝑛+𝑚, 𝑝𝑛+𝑚+1)′ ∶ 0 ≤ 𝑝𝑘 ≤ 1, 𝑘 = 0,… , 𝑛 + 𝑚 + 1
}

.

Given a representative vector 𝒑 ∈ Δ, a unique solution 𝑋 of the model 𝑃1 satisfying all constraints is obtained by
a decoding method. Next, we introduce the decoding method in detail.

First, the element 𝑝𝑛+𝑚+1 is used to indicate the number of the held securities in the portfolio. Specifically, the
cardinality of the portfolio 𝑋 is formulated as follows

𝐾 = Round
(

𝐾min + 𝑝𝑛+𝑚+1
(

𝐾max −𝐾min
))

(12)

where Round(⋅) is the round function.
Second, the elements 𝑝1,… , 𝑝𝑛+𝑚 are sorted in descending order to 𝑝̃1,… , 𝑝̃𝑛+𝑚. Denote the serial number of the

element 𝑝𝑘 in the new order sequence by 𝑞𝑘, 𝑘 = 1,… , 𝑛 + 𝑚. The first 𝐾 elements in the new order sequence, i.e.
𝑝̃1,… , 𝑝̃𝐾 , are selected to form a potential portfolio. The index sets of the selected long-term listed and newly listed
securities are thus respectively represented by

𝑆1 = {𝑘 ∶ 𝑞𝑘 ≤ 𝐾, 𝑘 = 1,… , 𝑛} (13)
𝑆2 = {𝑘 − 𝑛 ∶ 𝑞𝑘 ≤ 𝐾, 𝑘 = 𝑛 + 1,… , 𝑛 + 𝑚} (14)

Then, a potential portfolio 𝑋̃ = (𝑥̃0, 𝑥̃1,… , 𝑥̃𝑛, 𝑦̃1,… , 𝑦̃𝑚)′ is formulated by the normalisation operation as follows

𝑥̃0 =
𝑝0

𝑝0 +
∑𝐾

𝑘=1 𝑝̃𝑘
(15)
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𝑥̃𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑝̃𝑞𝑖
𝑝0 +

∑𝐾
𝑘=1 𝑝̃𝑘

, if 𝑖 ∈ 𝑆1

0, if 𝑖 ∉ 𝑆1

(16)

𝑦̃𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑝̃𝑞𝑛+𝑗
𝑝0 +

∑𝐾
𝑘=1 𝑝̃𝑘

, if 𝑗 ∈ 𝑆2

0, if 𝑗 ∉ 𝑆2

(17)

Note that the potential solution meets the constraints of cardinality, budget and no short sales.
The next step is to check whether the potential solution satisfies the bounding constraints. If it does not, it will be

moved into the feasible space. Let 𝑙1𝑖 = 𝑙1𝑖 ∕(
∑

𝑖∈𝑆1
𝑙1𝑖 +

∑

𝑗∈𝑆2
𝑙2𝑗 ) and 𝑙2𝑗 = 𝑙2𝑗∕(

∑

𝑖∈𝑆1
𝑙1𝑖 +

∑

𝑗∈𝑆2
𝑙2𝑗 ) for 𝑖 ∈ 𝑆1 and

𝑗 ∈ 𝑆2, respectively. The feasibility of potential solution 𝑋 is tested under the bounding constraints by the following
Equation (18)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜃1 = max
𝑖∈𝑆1

{

max{𝑙1𝑖 − 𝑥̃𝑖, 0} + min{𝑢1𝑖 − 𝑥̃𝑖, 0}

𝑙1𝑖 − 𝑥̃𝑖

}

𝜃2 = max
𝑗∈𝑆2

{

max{𝑙2𝑗 − 𝑦̃𝑗 , 0} + min{𝑢2𝑗 − 𝑦̃𝑗 , 0}

𝑙2𝑗 − 𝑦̃𝑗

}

𝜃 = max{𝜃1, 𝜃2}

(18)

If 𝜃 = 0, the potential solution satisfies all the bounding constraints; otherwise, 𝜃 > 0, and the potential solution is
revised to

{

𝑥̃𝑖 ← 𝑥̃𝑖 + 𝜃 ⋅ (𝑙1𝑖 − 𝑥̃𝑖), if 𝑖 ∈ 𝑆1

𝑦̃𝑗 ← 𝑦̃𝑗 + 𝜃 ⋅ (𝑙2𝑗 − 𝑦̃𝑗), if 𝑗 ∈ 𝑆2
(19)

Finally, to satisfy the minimum transaction lot constraint, the potential solution 𝑋̃ is transformed into a feasible
solution of Model 𝑃1 as follows:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥𝑖 =
𝑃 1
𝑖

𝑊0
⋅

⌊

𝑊0𝑥̃𝑖
𝑃 1
𝑖

⌋

, 𝑖 = 1,… , 𝑛

𝑦𝑗 =
𝑃 2
𝑗

𝑊0
⋅

⌊

𝑊0𝑦̃𝑗
𝑃 2
𝑗

⌋

, 𝑗 = 1,… , 𝑚

𝑥0 = 𝑥̃0 +
𝑛
∑

𝑖=1
(𝑥̃𝑖 − 𝑥𝑖) +

𝑚
∑

𝑗=1
(𝑦̃𝑗 − 𝑦𝑗)

(20)

where ⌊⋅⌋ is the floor function. Hereby, we assume 𝑊0𝑙1𝑖 and 𝑊0𝑙2𝑖 are an integer multiple of 𝑃 1
𝑖 and 𝑃 2

𝑖 , respectively,
to ensure the cardinality constraint always holds2.

In summary, the pseudocode of the decoding method is shown in Algorithm 1. Then the model 𝑃1 can be
transformed into the following model:

𝑃2

⎧

⎪

⎨

⎪

⎩

min
𝒑

{−𝐸[𝑅(𝑋)], 𝑉 [𝑅(𝑋)],−𝑆[𝑅(𝑋)]}

s.t. 𝑋 = Decoder(𝒑)
0 ≤ 𝑝𝑘 ≤ 1, 𝑘 = 0,… , 𝑛 + 𝑚 + 1

It is clear that the transformed model is an unconstrained optimisation model in the search space Δ. In the next
subsection, a novel MOEA based on large-scale optimisation techniques called LMWOEA is proposed to solve it
in the case of large-scale investment.

2This assumption ensures that when a security is held, its investment amount after adjusted by the floor function (see Equation (20)) is still
greater than the given lower bound.
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Algorithm 1 Decoder(𝒑)
Require: Representative vector 𝒑 = (𝑝0,… , 𝑝𝑛+𝑚+1)′.
Ensure: Portfolio vector 𝑋 = (𝑥0,𝒙′, 𝒚′)′.

1: 𝑝̃1,… , 𝑝̃𝑛+𝑚 ← Sort the elements 𝑝1,… , 𝑝𝑛+𝑚 in descending order.
2: 𝑞1,… , 𝑞𝑛+𝑚 ← Record the serial number of elements 𝑝1,… , 𝑝𝑛+𝑚 in the new sequence 𝑝̃1,… , 𝑝̃𝑛+𝑚.
3: 𝐾 ← Determine the cardinality of the portfolio. //See Equation (12).
4: 𝑆1, 𝑆2 ← Determine the index sets of the selected long-term listed and newly listed securities. //See Equations

(13)-(14).
5: 𝑋̃ = (𝑥̃0, 𝒙̃′, 𝒚̃′)′ ← Construct a potential portfolio. //See Equations (15)-(17).
6: 𝜃 ← Check the bounding constraints of the potential solution 𝑋̃. //See Equation (18).
7: if 𝜃 > 0 then
8: 𝑋̃ ← Revise the potential solution based on Equation (19).
9: end if

10: 𝑋 ← Revise the potential solution based on Equation (20).
11: return 𝑋

5.2. Large-scale Evolutionary Algorithm
Although the constraint handling method allows for the easy application of arbitrary MOEAs to the proposed

models, there are still significant challenges in terms of computational accuracy and time, especially given the large-
scale securities. To efficiently solve the model 𝑃2, a novel evolutionary algorithm named LSWOEA based on large-
scale multi-objective optimisation techniques is designed. The algorithm first applies a weighting optimisation-based
decision variable reduction technique and then develops a novel dispersed target-guided search strategy to improve the
search performance. LSWOEA is briefly introduced in Algorithm 2.

Algorithm 2 LSWOEA(𝑃2, 𝐵, 𝐴1)
Require: Problem 𝑃2, Multi-objective optimiser 𝐴, Single-objective optimiser 𝐵.
Ensure: Solution Population 𝑆.

1: FEmax,𝑔1, 𝑝𝑠 ← Parameter Setting. //FEmax: Maximum number of function evaluations; 𝑔1: Number of maximum
iterations in the normal optimisation step; 𝑝𝑠: Population size.

2: 𝑆 ← Randomly initialize population of size 𝑝𝑠 for Problem 𝑃2.
3: repeat
4: 𝑆 ← Weighting_Optimisation(𝑆, 𝑃2, 𝐵). //See Algorithm 3.
5: 𝑔 ← 1.
6: while 𝑔 ≤ 𝑔1 do
7: 𝑆1 ← Generate a offspring population of 𝑆 by the multi-objective optimiser 𝐴.
8: 𝑆 ← Conduct the environment selection on 𝑆 ∪ 𝑆1.
9: 𝑅 ← Create a set of reference vectors. //See Subsection 5.2.2.

10: 𝑆 ← Dispersed_Target_Guided_Strategy(𝑆, 𝑃2, 𝑅). //See Algorithm 4.
11: 𝑔 ← 𝑔 + 1.
12: end while
13: until All function evaluations are used.
14: return 𝑆

It should be noted that a population-based multi-objective optimiser and a single-objective optimiser must be
included in the optimisation process. In this study, at each generation, the multi-objective optimiser 𝐴 is randomly
selected from the traditional MOEAs, including NSGA-II (Deb et al., 2002), MOEA-D (Zhang & Li, 2007), SMPSO
(Nebro et al., 2009) and NSGA-III (Deb & Jain, 2014), and the single-objective optimiser 𝐵 is implemented by the
widely used DE (Zhang & Sanderson, 2009).
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5.2.1. Decision Space Reduction Method
The decision space reduction-based technique (Zille et al., 2018; He et al., 2019; Qin et al., 2021) is a main category

of existing MOEAs for large-scale optimisation, which transforms the original problem into a simpler one with a small
number of decision variables. The main idea of problem transformation in this study is inspired by He et al. (2019).

To illustrate, consider a general multi-objective problem with 𝑀 objectives and 𝑁 decision variables

𝑃

⎧

⎪

⎨

⎪

⎩

min
𝒙

𝒇 (𝒙) = (𝑓1(𝒙),… , 𝑓𝑀 (𝒙))′

s.t. 𝒙 = (𝑥1,… , 𝑥𝑁 )′ ∈ ℝ𝑁

0 ≤ 𝑥𝑗 ≤ 1, 𝑗 = 1,… , 𝑁

Taking a fixed solution 𝒙̃ as a reference point, two direction vectors are defined as follows
{𝒗𝑙 = 𝒙̃ − 𝟎𝑁
𝒗𝑢 = 𝟏𝑁 − 𝒙̃

(21)

where 𝟎𝑁 and 𝟏𝑁 are the lower and upper boundary points of the search space. Given two weight variables 𝑤1 and 𝑤2
between 0 and 0.5, two corresponding points in the search space are determined by

⎧

⎪

⎨

⎪

⎩

𝒙𝑛𝑒𝑤1 = 𝟎𝑁 +𝑤1
𝒗𝑙

‖𝒗𝑙‖
𝑙max

𝒙𝑛𝑒𝑤2 = 𝟏𝑁 −𝑤2
𝒗𝑢

‖𝒗𝑢‖
𝑙max

(22)

where 𝑙max = ‖𝟏𝑁 − 𝟎𝑁‖ =
√

𝑁 is the maximum diagram length in the search space. Then the objective values
associated with the weight variables 𝑤1 and 𝑤2 can be calculated as follows

{

𝒈𝑙(𝒙̃, 𝑤1) = 𝒇 (𝒙𝑛𝑒𝑤1 )
𝒈2(𝒙̃, 𝑤2) = 𝒇 (𝒙𝑛𝑒𝑤2 )

(23)

Given a set of reference solutions of size ℎ, once each of them is associated with two weighting variables, a
total number of 2ℎ new solutions can be constructed. Specifically, denote the set of reference solutions by 𝑋̃ =
{𝒙̃′1,… , 𝒙̃′ℎ} and the weight vector by 𝒘 = (𝑤11, 𝑤12,… , 𝑤ℎ1, 𝑤ℎ2)′. The corresponding 2ℎ solutions, denoted by
𝒙𝑛𝑒𝑤11 ,𝒙𝑛𝑒𝑤12 ,… ,𝒙𝑛𝑒𝑤ℎ1 ,𝒙𝑛𝑒𝑤ℎ2 , can be generated according to Equations (21) and (22) and their objective values can be
calculated according to Equation (23). Assume that the set of reference points 𝑋̃ is given. In this case, the optimisation
of the decision vector 𝒙 in the original problem can be converted into an optimisation of the weight vector 𝒘 to find a
set of superior solutions for the original problem. Here the metric of hypervolume (HV) (While et al., 2006) is used to
evaluate the quality of a set of solutions. Denote the HV of 2ℎ solutions associated with the weight vector 𝒘 and the
reference point set 𝑋̃ by 𝐻(𝒘, 𝑋̃). Then, for an arbitrary but fixed set of reference solutions 𝑋̃, the original problem
𝑃 can be reconstructed as the following one-objective model

𝑃3(𝑋̃)

⎧

⎪

⎨

⎪

⎩

max
𝒘

𝑓 (𝒘) = 𝐻(𝒘, 𝑋̃)

s.t. 𝒘 = (𝑤11, 𝑤12,… , 𝑤ℎ1, 𝑤ℎ2)′ ∈ ℝ2ℎ

0 ≤ 𝑤𝑗1, 𝑤𝑗2 ≤ 0.5, 𝑗 = 1,… , ℎ

It can be seen that the weighting optimisation problem 𝑃3(𝑋̃) has only 2ℎ < 𝑁 decision variables, which serves the
purpose of decision space reduction by bounding the search space. Model 𝑃3(𝑋̃) is optimised with a single objective
optimiser with population size 𝑝𝑠𝑤. In each iteration, up to 2ℎ ⋅ 𝑝𝑠𝑤 new solutions (de-duplicated) to the original
problem 𝑃 can be obtained, which are collected as candidate solutions.

Obviously, the original problem 𝑃 and the weight optimisation problem 𝑃3(𝑋̃) are complementary. On the one
hand, Model 𝑃 can reach all possible solutions, but it can converge very slowly in a large-dimensional space. On
the other hand, Model 𝑃3(𝑋̃) has the disadvantage of restricting the search space and the advantage of searching a
smaller space more thoroughly. To exploit the synergy of these two formulations, two different optimisation phases
are alternated: a normal optimisation step and a weight optimisation step. The original problem 𝑃 is optimised in the
normal optimisation step for fixed function evaluations of 𝑔1. Then, the weighting optimisation step is performed for
ℎ different reference solutions, as shown in Algorithm 3.
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Algorithm 3 Weighting_Optimisation(𝑆, 𝑃 , 𝐵)
Require: Population 𝑆, Original Problem 𝑃 , Single-objective optimiser 𝐵.
Ensure: New Population 𝑆.

1: ℎ, 𝑝𝑠𝑤, 𝑔2 ← Parameter setting. //ℎ: Number of reference solutions; 𝑝𝑠𝑤: Population size; 𝑔2: Maximum number
of iterations.

2: 𝑋̃ = {𝒙̃1,… , 𝒙̃ℎ} ← Conduct the environment selection on 𝑆 to select ℎ reference solutions.
3: 𝑃3(𝑋̃) ← Construct a weighting optimisation problem.
4: 𝐻 ← Randomly initialise population of size 𝑝𝑠𝑤 for problem 𝑃3(𝑋̃).
5: 𝑆1 ← Collect the generated candidate solutions based on the initial population 𝐻 . //See Equations (21) and (22).
6: for all 𝑔 = 1,… , 𝑔2 do
7: 𝐻 ← Optimize Problem 𝑃3(𝑋̃) with optimiser 𝐵.
8: 𝑆2 ← Collect the generated candidate solutions based on the current population 𝐻 . //See Equations (21) and

(22).
9: 𝑆1 ← 𝑆1 ∪ 𝑆2.

10: end for
11: 𝑆 ← Conduct the environment selection on 𝑆 ∪ 𝑆1 to select 𝑝𝑠 solutions.
12: return 𝑆

5.2.2. A novel search strategy
The search space increases exponentially as the number of decision variables increases. This dramatically degrades

the search performance and convergence ability of evolutionary algorithms. To solve this problem, a dispersed target-
guided search strategy is proposed to identify promising search directions in the decision space.

First, a set of reference vectors 𝑅 = {𝒓1,… , 𝒓𝑁𝑓
} on a normalised (𝑀 −1)-dimensional hyperplane is established

for the 𝑀-objective problem. In this study, a method from Das & Dennis (1998) is used to generate the 𝑁𝑓 reference
vectors widely distributed on the entire normalised hyperplane.

Second, the objective vectors of the parent population are normalised. Suppose that 𝑁𝑓 solutions are selected from
the current population to form the parent population denoted by 𝑆𝑝 = {𝒙1,… ,𝒙𝑁𝑓

}. The ideal point and the anti-ideal
point of the population are determined by the minimum and maximum values for each objective function, respectively,
i.e., 𝒛min = (𝑧min

1 ,… , 𝑧min
𝑀 )′ and 𝒛max = (𝑧max

1 ,… , 𝑧max
𝑀 )′. Then the normalised objective functions for each solution

are defined by

𝑓 𝑛
𝑖 (𝒙|𝑆𝑝) =

𝑓𝑖(𝒙) − 𝑧min
𝑖

𝑧max
𝑖 − 𝑧min

𝑖

, 𝑖 = 1,… ,𝑀 (24)

Then each member of the parent population is associated with a unique reference vector. The matching problem is
considered as a classical assignment problem where the objective is to minimise the total distance between individuals
and relevant reference points. Denote the decision variable as 𝐷 = {𝑑𝑖𝑗} ∈ ℝ𝑁𝑓×𝑁𝑓 . Then the assignment model is
formulated as follows

𝑃4

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐷

𝑁𝑓
∑

𝑖=1

𝑁𝑓
∑

𝑗=1
𝑑𝑖𝑗 ⋅ ‖𝒇 𝑛(𝒙𝑖|𝑆𝑝) − 𝒓𝑗‖

s.t.
𝑁𝑓
∑

𝑖=1
𝑑𝑖𝑗 = 1, 𝑗 = 1,… , 𝑁𝑓

𝑁𝑓
∑

𝑗=1
𝑑𝑖𝑗 = 1, 𝑖 = 1,… , 𝑁𝑓

𝑑𝑖𝑗 ∈ {0, 1}
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where ‖ ⋅‖ is the 𝐿2- norm function and 𝑑𝑖𝑗 = 1 indicates that the solution 𝒙𝑖 is ordered to the reference point 𝒓𝑗 . It can
be seen that the model 𝑃3 is an integer linear programming problem that can be solved with the function ‘intlinprog’
in MATLAB.

Next, the search direction for each parent solution is constructed. Define a target function for the parent solution 𝒙𝑖

𝑓 𝑡
𝑖 (𝒙|𝐷) =

𝑁𝑓
∑

𝑗=1
𝑑𝑖,𝑗𝒓′𝑗𝒇

𝑛(𝒙|𝑆𝑝), 𝑖 = 1,… , 𝑁𝑓 (25)

Then the search direction 𝒗𝑖 = (𝑣𝑖,1,… , 𝑣𝑖,𝑁 ) of the parent solution 𝒙𝑖 is defined as

𝑣𝑖𝑗 = 𝑓 𝑡
𝑖 (𝒙𝑖 + 𝛿𝒆𝑗|𝐷) − 𝑓 𝑡

𝑖 (𝒙𝑖 − 𝛿𝒆𝑗|𝐷), 𝑗 = 1,… , 𝑁 (26)

where 𝛿 is a fully small positive number and 𝒆𝑗 is a unit vector whose 𝑗th element is 1. 𝑣𝑖,𝑗 > 0 indicates that sightly
enlarging the value of 𝑥𝑖𝑗 tends to increase the objective value 𝑓 𝑡

𝑖 (𝒙𝑖|𝐷), and vice versa.
Finally, the offspring solution 𝒙𝑛𝑒𝑤𝑖 of the parent solution 𝒙𝑖 is generated along the search direction 𝒗𝑖 =

(𝑣𝑖𝑗 ,… , 𝑣𝑖,𝑁 )′:

𝒙𝑛𝑒𝑤𝑖 = 𝒙𝑖 + 𝑟𝑎𝑛𝑑 ⋅ (0.5 − 0.5sgn(𝒗𝑖) − 𝒙𝑖), 𝑖 = 1,… , 𝑁𝑓 (27)

where 𝑟𝑎𝑛𝑑 ∈ [0, 1] is a random coefficients. Equation 26 drives solution 𝒙𝑖 in the direction of decreasing the objective
value and ensures that its elements remain between [0, 1].

In summary, Algorithm 4 represents the pseudocode of the dispersed target-guided search strategy. To simply
exhibit how the search directions are defined, an example with two objectives is given in Figure 4. As shown in Figure
4, a parent population with six solutions is selected, denoted by blue dots. Six reference points represented by red dots
are uniformly generated and linked to a separate solution. Guided by the reference points, the ideal search directions
for the parent solutions are shown as the green arrows in Figure 4. It can be seen that the proposed search strategy
encourages both convergence and diversification.

Algorithm 4 Dispersed_Target_Guided_Strategy(𝑆, 𝑃 ,𝑅)
Require: Population 𝑆, Problem 𝑃 , A Set of Reference Solutions 𝑅 = (𝒓′1,… , 𝒓′𝑁𝑓

).
Ensure: New Population 𝑆.

1: 𝑆𝑝 ← Randomly select 𝑁𝑓 solutions from Population 𝑆 as parents.
2: 𝑓 𝑛

1 (𝒙|𝑆𝑝),… , 𝑓 𝑛
𝑀 (𝒙|𝑆𝑝) ← Define the normalize functions for the parent population. //See Equation (24).

3: 𝐷 ← Assign each parent to a unique reference vector by solving Problem 𝑃4.
4: for all 𝑖 = 1,… , 𝑁𝑓 do
5: 𝑓 𝑡

𝑖 (𝒙|𝐷) ← Define the target objective function for the parent solution 𝒙𝑖. //See Equation (25).
6: 𝒗𝑖 ← Build the search direction for the parent solution 𝒙𝑖. //See Equation (26).
7: 𝒙𝑛𝑒𝑤𝑖 ← Generate a offspring population for the parent solution 𝒙𝑖. //See Equation (27).
8: end for
9: 𝑆 ← Conduct the environment selection on 𝑆 ∪ {𝒙𝑛𝑒𝑤𝑖 }

𝑁𝑓
𝑖=1.

10: return 𝑆

6. Numerical experiments
In this section, two numerical experiments are presented to illustrate the applicability and effectiveness of the

proposed model and algorithm. First, a small-scale case with only 30 securities is conducted to illustrate the proposed
approach comprehensively. Then, a large-scale case with thousands of securities is discussed to demonstrate the
superiority of the proposed LSWOEA in large-scale portfolio optimisation.

6.1. Small-scale Case
Now consider a portfolio optimisation problem with 20 long-term listed securities and 10 newly listed securities.

The securities are randomly selected from the Shanghai Stock Exchange (SSE), and their codes and market prices are
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Figure 4: Diagram of the search direction.

Table 3
Codes and market prices of the selected securities.

Label A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
Code 600000 600004 600006 600007 600008 600009 600010 600011 600012 600015 600016 600017 600018 600019 600020
Price 10.5371 17.3769 4.4009 16.0374 2.8041 76.4827 1.3095 5.197 4.9876 6.5335 5.3314 2.7994 5.1843 4.5603 4.067
Label A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
Code 600021 600022 600026 600027 600028 600025 600901 600903 600929 600933 600938 601016 601028 601038 601068
Price 7.7203 1.3299 5.9047 3.0495 3.991 3.8486 5.3257 14.8497 6.2256 12.7783 4.4331 5.8268 27.8886 5.57 4.0658

Table 4
Sample means of the returns for the long-term listed securities.

Label A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15
Mean 0.1773 0.1791 0.0755 0.1311 0.0502 0.2662 0.0644 0.0133 0.1279 0.1137 0.1382 0.0653 0.1436 -0.0019 0.0805
Label A16 A17 A18 A19 A20
Mean 0.1862 -0.1203 -0.0769 -0.0057 -0.0321

listed in Table 3. For the long-term listed securities (A1-A20), historical data of 614 weekly returns from 1 January 2008
to 31 December 2019 are used to calculate the sample mean vector 𝝁 and the covariance matrix Σ, which are reported
in Tables 4 and 5, respectively. For the newly listed securities (A21-A30), the historical data of 51 weekly returns from
1 January 2019 to 31 December 2019 is used as reference information for the experts’ estimation. In this experiment,
the uncertain return of a newly listed security is simply estimated as a zigzag uncertain variable (𝑎, 𝑏, 𝑐), where 𝑎, 𝑏
and 𝑐 are the minimum, average and maximum of the historical returns, respectively. The uncertain parameters for the
newly listed securities are listed in Table 6. It should be noted that in practice, these uncertain parameters should be
estimated more accurately based on experts’ knowledge and opinion.

The initial wealth 𝑊0 is set at CNY 1 million. A round lot of the securities on the SSE is 100 shares. The
minimum and maximum number of the held securities are set to 𝐾min = 8 and 𝐾max = 16, respectively. The minimum
investment amount of securities is five lots, and the upper limits of investment proportions are set to 0.5 for all securities.
Additionally, some general parameters for the proposed LSWOEA are given as follows: EFmax = 30000, 𝑝𝑠 = 100,
𝑔1 = 30, ℎ = 10, 𝑝𝑠𝑤 = 10 and 𝑔2 = 30. The LSWOEA is applied to solve the problem to obtain a set of diversified
efficient solutions. For brevity, only 15 solutions with the largest crowding distances are listed in Table 7. Table 7
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Table 5
Sample covariance matrix of the returns for the long-term listed securities.

24.4 8.6 8.3 10.2 11.2 11.3 11.1 9.8 9.2 19.3 16.5 9.7 13.0 13.3 8.7 8.9 11.3 17.3 9.8 11.7
8.6 20.1 11.2 12.5 14.1 14.2 12.6 7.4 12.6 8.4 7.4 14.5 11.7 10.8 11.6 10.9 11.9 14.1 8.7 7.8
8.3 11.2 33.9 12.6 18.6 11.7 14.4 8.4 14.2 9.5 7.9 16.6 13.1 10.4 14.7 16.8 14.1 16.5 12.7 8.5
10.2 12.5 12.6 29.1 18.0 12.1 12.0 7.8 13.4 10.5 8.6 14.5 13.4 11.5 13.3 13.7 13.5 15.9 9.4 8.4
11.2 14.1 18.6 18.0 43.8 15.3 18.4 12.3 13.4 11.9 11.5 20.9 15.0 14.1 17.9 18.0 17.4 20.3 16.2 11.3
11.3 14.2 11.7 12.1 15.3 23.5 12.0 9.3 10.3 10.9 9.3 14.3 15.8 11.4 11.6 12.1 11.1 15.9 10.7 9.3
11.1 12.6 14.4 12.0 18.4 12.0 38.6 12.6 12.1 11.8 10.7 15.3 17.1 17.8 13.9 16.6 18.1 17.1 13.3 10.3
9.8 7.4 8.4 7.8 12.3 9.3 12.6 23.4 5.9 9.9 9.6 10.0 10.9 11.2 8.2 12.2 11.0 11.4 18.1 10.2
9.2 12.6 14.2 13.4 13.4 10.3 12.1 5.9 28.2 9.0 7.3 15.0 11.4 8.8 15.0 12.5 12.4 13.9 9.3 7.2
19.3 8.4 9.5 10.5 11.9 10.9 11.8 9.9 9.0 22.9 17.3 10.0 13.2 12.7 9.7 8.8 9.9 16.3 10.0 12.0
16.5 7.4 7.9 8.6 11.5 9.3 10.7 9.6 7.3 17.3 19.4 8.0 11.6 12.3 7.7 7.4 8.3 14.2 9.6 11.3
9.7 14.5 16.6 14.5 20.9 14.3 15.3 10.0 15.0 10.0 8.0 30.6 17.7 12.0 16.2 15.7 17.3 19.0 13.4 9.1
13.0 11.7 13.1 13.4 15.0 15.8 17.1 10.9 11.4 13.2 11.6 17.7 37.2 14.1 15.0 15.4 11.9 19.1 11.4 11.1
13.3 10.8 10.4 11.5 14.1 11.4 17.8 11.2 8.8 12.7 12.3 12.0 14.1 23.9 10.3 11.6 16.3 17.0 11.2 11.4
8.7 11.6 14.7 13.3 17.9 11.6 13.9 8.2 15.0 9.7 7.7 16.2 15.0 10.3 23.2 15.6 14.0 15.5 11.5 8.2
8.9 10.9 16.8 13.7 18.0 12.1 16.6 12.2 12.5 8.8 7.4 15.7 15.4 11.6 15.6 32.8 13.8 14.6 14.7 8.7
11.3 11.9 14.1 13.5 17.4 11.1 18.1 11.0 12.4 9.9 8.3 17.3 11.9 16.3 14.0 13.8 36.6 17.7 13.6 9.4
17.3 14.1 16.5 15.9 20.3 15.9 17.1 11.4 13.9 16.3 14.2 19.0 19.1 17.0 15.5 14.6 17.7 39.6 15.2 13.0
9.8 8.7 12.7 9.4 16.2 10.7 13.3 18.1 9.3 10.0 9.6 13.4 11.4 11.2 11.5 14.7 13.6 15.2 23.7 9.5
11.7 7.8 8.5 8.4 11.3 9.3 10.3 10.2 7.2 12.0 11.3 9.1 11.1 11.4 8.2 8.7 9.4 13.0 9.5 19.7

Table 6
Uncertain returns for the newly listed securities.

Label A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
𝑎 -8.4967 -8.5106 -8.2014 -11.2266 -8.8620 -10.3896 -6.5934 -15.8198 -13.2426 -8.8388
𝑏 0.7201 0.2341 0.1650 -0.3225 1.2628 0.0261 -0.2097 2.6569 0.4138 0.0475
𝑐 11.9512 14.1780 17.6014 14.4050 18.2809 9.5142 6.7416 34.5289 29.7723 6.6667

shows that the solutions satisfy all realistic constraints, indicating that the proposed approach is practical to solve the
portfolio optimisation problem with realistic constraints.

To empirically investigate the performance of LSWOEA, six existing MOEAs are selected as the baselines for the
experiments, namely, SMPSO (Nebro et al., 2009), NSGA-II (Deb et al., 2002), MOEA-D (Zhang & Li, 2007), WOF-
NSGA-II (Zille et al., 2018), LSWOF-NSGA-II (He et al., 2019) and LMOEADS (Qin et al., 2021). The first three are
widely known MOEAs using particle swarm optimisation, genetic algorithm and decomposition, respectively, and the
last three are state-of-the-art LSMOEAs. To allow fair comparisons, the population size and the maximum number of
objective evaluations for all algorithms are set to 100 and 30000, respectively. Other recommended parameter settings
for the compared algorithms are taken from the original literature. All compared algorithms are reproduced based
on the PlatEMO (Tian et al., 2017). Since the true Pareto front of the problem is unknown, the hypervolume (HV)
indicator (While et al., 2006), which measures both convergence and diversity, is used to measure the performance of
each solution set. For a more accurate calculation, the objective space is normalised by Equation (28)

𝑓𝑖 =
𝑓𝑖 − 𝑓min

𝑖

𝑓max
𝑖 − 𝑓min

𝑖

(28)

where 𝑓max
𝑖 and 𝑓min

𝑖 denote the maximum and minimum values of the 𝑖th objective for all solutions in the test. The
reference point is set to the maximum values of the normalised objectives, i.e. (1, 1, 1)′.

In the comparisons, each algorithm is run 20 times on the proposed model to obtain the statistical results. Figure 5
shows the comparison results of the Pareto fronts obtained by the proposed LSWOEA and each compared algorithm in
the last test. Table 8 lists the comparisons of the best, worst and mean HVs obtained by the seven algorithms in the 20
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Table 7
Optimal asset allocations for the small-scale case.

Label Investment Proportion (Number of Shares / 100)
A0 0.0020 0.1679 0.0214 0.0057 0.0474 0.0304 0.0044 0.0392 0.0126 0.0099 0.0760 0.0027 0.0042 0.0068 0.0068
A1 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0042(4) 0.0000(0)
A2 0.0000(0) 0.1355(78) 0.0000(0) 0.0070(4) 0.0539(31) 0.0104(6) 0.0000(0) 0.0730(42) 0.2294(132) 0.0000(0) 0.1425(82) 0.0608(35) 0.0000(0) 0.0122(7) 0.0000(0)
A3 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0356(81) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0304(69) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0044(10)
A4 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0096(6) 0.0289(18) 0.0000(0) 0.0385(24) 0.0000(0) 0.0000(0) 0.0000(0) 0.0112(7) 0.0000(0) 0.0064(4)
A5 0.0000(0) 0.0000(0) 0.0269(96) 0.0000(0) 0.0000(0) 0.0059(21) 0.0533(190) 0.0000(0) 0.0000(0) 0.0286(102) 0.0000(0) 0.0000(0) 0.0000(0) 0.0017(6) 0.0000(0)
A6 0.0000(0) 0.0000(0) 0.0382(5) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0306(4) 0.0382(5) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A7 0.0013(10) 0.0000(0) 0.0000(0) 0.0042(32) 0.0000(0) 0.0000(0) 0.0000(0) 0.0424(324) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0016(12) 0.0000(0) 0.0000(0)
A8 0.0026(5) 0.1050(202) 0.0000(0) 0.0000(0) 0.0946(182) 0.0000(0) 0.0000(0) 0.1455(280) 0.0935(180) 0.0000(0) 0.0000(0) 0.0457(88) 0.0229(44) 0.0000(0) 0.0000(0)
A9 0.0000(0) 0.0000(0) 0.0264(53) 0.0075(15) 0.0000(0) 0.0000(0) 0.0080(16) 0.0464(93) 0.0928(186) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A10 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0444(68) 0.0046(7) 0.0105(16) 0.0000(0) 0.0000(0) 0.0477(73) 0.0000(0) 0.0235(36) 0.0000(0) 0.0000(0) 0.0000(0)
A11 0.0000(0) 0.1109(208) 0.0347(65) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0901(169) 0.0528(99) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0277(52)
A12 0.0000(0) 0.0476(170) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0031(11)
A13 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0073(14) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A14 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A15 0.0000(0) 0.0000(0) 0.0468(115) 0.0000(0) 0.0000(0) 0.0000(0) 0.0321(79) 0.0000(0) 0.0000(0) 0.0313(77) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A16 0.0000(0) 0.0579(75) 0.0000(0) 0.0039(5) 0.0000(0) 0.0000(0) 0.0000(0) 0.0479(62) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A17 0.0012(9) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A18 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0384(65) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A19 0.0024(8) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0604(198) 0.0000(0) 0.0000(0) 0.0015(5) 0.0000(0)
A20 0.0000(0) 0.0822(206) 0.0000(0) 0.0068(17) 0.0000(0) 0.0000(0) 0.0000(0) 0.0686(172) 0.0000(0) 0.0000(0) 0.1489(373) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A21 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0362(94) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0250(65) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A22 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0256(48) 0.0000(0) 0.0000(0) 0.0000(0)
A23 0.0000(0) 0.0000(0) 0.1203(81) 0.0074(5) 0.1604(108) 0.0089(6) 0.0000(0) 0.1812(122) 0.0431(29) 0.0000(0) 0.0817(55) 0.1515(102) 0.0089(6) 0.1960(132) 0.0074(5)
A24 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A25 0.0000(0) 0.0000(0) 0.0588(46) 0.0000(0) 0.1763(138) 0.0524(41) 0.0000(0) 0.0741(58) 0.0000(0) 0.0000(0) 0.0869(68) 0.1802(141) 0.0115(9) 0.0396(31) 0.0473(37)
A26 0.0022(5) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A27 0.0000(0) 0.1987(341) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0623(107) 0.1101(189) 0.0000(0) 0.1503(258) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0)
A28 0.4964(178) 0.0000(0) 0.3124(112) 0.4797(172) 0.1952(70) 0.3960(142) 0.4267(153) 0.0446(16) 0.1785(64) 0.3988(143) 0.0558(20) 0.2315(83) 0.4602(165) 0.3821(137) 0.4518(162)
A29 0.4902(880) 0.0000(0) 0.3141(564) 0.4779(858) 0.1560(280) 0.4818(865) 0.4289(770) 0.0462(83) 0.1487(267) 0.3977(714) 0.1593(286) 0.2785(500) 0.4779(858) 0.3559(639) 0.4450(799)
A30 0.0016(4) 0.0943(232) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0000(0) 0.0016(4) 0.0000(0) 0.0000(0)
Cardinality 8.0000 8.0000 9.0000 8.0000 9.0000 8.0000 8.0000 13.0000 9.0000 8.0000 9.0000 8.0000 8.0000 8.0000 8.0000
Mean 5.1070 -0.0052 3.7313 4.9759 2.8302 4.6521 4.4361 1.1674 1.8815 4.1716 1.5071 3.5586 4.8946 4.4374 4.8092
Variance 181.7515 4.8239 98.7724 172.0954 59.1661 152.9261 136.5120 15.5258 30.7568 121.6968 24.0647 93.2201 167.4917 141.3012 160.5001
Skewness 954.3545 -0.0534 382.0130 881.8210 167.4952 744.9057 620.4033 15.1647 52.2265 516.8136 38.0050 348.1535 847.5590 659.7523 789.4525

Table 8
Best, worst and mean HVs of the algorithms on the small-scale case.

Algorithm SMPSO NSGA-II MOEA-D WOF-NSGA-II LSMOF-NSGA-II LMOEADS LSWOEA
Best 0.3305 0.2297 0.3082 0.3711 0.4244 0.4212 0.4251
Worst 0.1172 0.1392 0.1608 0.1580 0.3588 0.3827 0.4180
Mean 0.1589 0.1700 0.2227 0.2471 0.4134 0.4088 0.4215

runs, and Figure 6 shows the boxplots of the statistical results. As can be seen from Figure 5, the LSWOEA achieves
higher quality and more distributionally efficient solutions compared to the traditional MOEAs (SMPSO, NSGA-II and
MOEA-D), while the LSWOEA performs comparably to the existing LSMOEAs (WOF-NSGA-II, LSMOF-NSGA-II
and LMOEADS). Furthermore, it can be seen from Table 8 that the best, worst and mean HVs of the LSWOEA
are slightly higher than those of the other LSMOEAs, indicating that the LSWOEA is slightly superior to them.
Additionally, Figure 6 suggests that the LSWOEA is more stable than the other algorithms. In summary, the LSMOEAs
generally perform better than the traditional algorithms on small portfolio optimisation problems, with the LSWOEA
proposed in this study performing slightly better than the other large algorithms.

6.2. Large-scale case
In this section, a case study of 1,063 securities is conducted to illustrate the effectiveness of the proposed

methodology in optimising large portfolios. The securities used for the experiment are selected from the SSE’s A-
Shares, of which 792 securities listed prior to 2008 are considered long-term listed and 271 securities listed in 2018
are considered newly listed. Weekly 12-year data from 1 January 2008 to 31 December 2019 is used for long-term
listed securities and weekly 1-year data from 1 January 2019 to 31 December 2019 is used for newly listed securities.
The initial assets are set at CNY 100 million and the minimum and maximum number of the held securities are set at
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(a) SMPSO (b) NSGA-II

(c) MOEA-D (d) WOF-NSGA-II

(e) LSMOP-NSGA-II (f) LMOEADS

Figure 5: Pareto fronts obtained by the LSWOEA and each compared algorithm on the small-scale case.

80 and 600, respectively. The other parameters of the model and the algorithm are set according to the same rules as
in the small scale.

Each algorithm is run 20 times on the proposed model for 30000 function evaluations. Additionally, the
experimental results are recorded for 60000 function evaluations to test the convergence speed of the algorithms.
Figure 5 shows the comparative Pareto frontier results obtained in the final test for the proposed LSWOEA and each
comparison algorithm, where A-3 and A-6 denote Algorithm A for 30000 and 60000 function evaluations, respectively.
Table 8 lists the comparison of the best, worst and average HV obtained by the seven algorithms over 20 runs, and
Figure 6 shows the boxplots of the statistical results.
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Figure 6: Boxplots of the HVs on the small-scale case.

Table 9
Best, worst and mean HVs of the algorithms on the large-scale case.

FEmax Algorithm SMPSO NSGA-II MOEA-D WOF-NSGA-II LSMOF-NSGA-II LMOEADS LSWOEA

30000
Best 0.0285 0.0474 0.0369 0.0470 0.4194 0.1123 0.4575
Worst 0.0201 0.0321 0.0159 0.0313 0.0249 0.0261 0.4218
Mean 0.0230 0.0418 0.0267 0.0407 0.2822 0.0411 0.4299

60000
Best 0.0300 0.0545 0.0427 0.0544 0.4258 0.3461 0.4602
Worst 0.0219 0.0387 0.0234 0.0397 0.0548 0.0302 0.4229
Mean 0.0257 0.0446 0.0333 0.0460 0.3281 0.0686 0.4313

As shown in Figure 7, LSWOEA shows excellent performance and obtains a set of high-quality diversified efficient
solutions. Among the compared algorithms, the traditional algorithms (SMPSO, NSGA-II and MOEA-D) continue
to perform poorly, while the existing LSMOEA (WOF-NSGA-II, LSMOF-NSGA-II and LMOEADS), which are
comparable to LSWOEA in the small-scale case, perform intensely worse in this case. When the number of function
evaluations is increased from 30000 to 60000, only LSMOF-NSGA-II achieves a significant improvement, but its
performance is still worse than that of the proposed LSWOEA.

As seen in Table 7 and Figure 8, the best, worst and mean HVs obtained by LSWOEA are much better than those
of the other algorithms, indicating that LSWOEA has an outstanding advantage in dealing with large-scale portfolio
optimisation problems. Since the performance of LSMOF-NSGA-II is only surpassed by the performance of LSWOEA,
this section specifically compares their performance. With 30000 function evaluations, the best HV of LSMOF-NSGA-
II is 0.4194, which is comparable to LSWOEA. However, the worst score of HV is only 0.0249, compared to the worst
score of HV of 0.4218, indicating that LSMOEA has excellent robustness that guarantees superiority in the worst
case. The performance of LSMOF-NSGA-II improves when the number of function evaluations is increased to 60000,
and the average performance of HV increases by 0.0459. However, its worst-case value HV remains low, suggesting
that it may converge prematurely to a poor solution set when solving large-scale cases. LSWOEA shows the slightest
improvement of all the algorithms when the number of function evaluations increases. This indicates that LSWOEA
has good convergence efficiency and approaches convergence at 30000 function evaluations.
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(a) SMPSO (b) NSGA-II

(c) MOEA-D (d) WOF-NSGA-II

(e) LSMOF-NSGA-II (f) LMOEADS

Figure 7: Pareto fronts obtained by the LSWOEA and each compared algorithm on the large-scale case.

In summary, existing evolutionary algorithms effectively solve small-scale portfolio optimisation problems but
face significant challenges when dealing with large-scale cases. Even the advanced LSMOEAs (e.g. WOF, LSMOF
and LMOEADS) perform poorly when the number of securities increases to more than a thousand. The proposed
LSMOEA provides an effective solution tool for large-scale portfolio optimisation and enriches the practical relevance
of evolutionary algorithms and portfolio optimisation in the context of Big Data.
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Figure 8: Boxplots of the HVs on the large-scale case.

7. Conclusion
This study discusses the application of evolutionary multi-objective optimisation to a large-scale portfolio selection

problem with long-term listed and newly listed securities. A model of multi-objective portfolio optimisation with
real constraints is proposed. In this model, the future returns of long-term listed securities are quantified by random
variables, while newly listed securities are uncertain variables. The portfolio return is then considered as an uncertain
random variable with mean, variance and skewness as triple criteria for decision-making. Additionally, realistic
constraints such as cardinality, minimum transaction lot, bounds and no short selling are introduced to match real
investment conditions. In terms of solution algorithms, this study addresses two dilemmas of MOEA in large-scale
portfolio optimisation problems. On the one hand, an encoder-decoder method is developed to handle the complex
constraints, providing a solution framework for applying arbitrary MOEAs to portfolio selection problems. On the
other hand, a novel MOEA for large-scale portfolio optimisation is proposed, enriching the practice of evolutionary
algorithms in the portfolio optimisation community.

To evaluate the effectiveness of the proposed model and algorithm, a numerical experiment analysis is performed
for a small and a large-scale portfolio optimisation problem. In the small-scale case, the application of the proposed
method is systematically presented to illustrate the practicality of the proposed approach. The comparison with some
state-of-the-art algorithms shows that the proposed LSWOEA can significantly outperform the traditional MOEAs,
but only slightly outperform the existing LSMOEAs. In the large-scale case, LSWOEA still maintains excellent
performance while all the compared algorithms (including the existing LSMOEAs) drop sharply. The experimental
results show that the proposed algorithm outperforms some benchmark MOEAs in large-scale portfolio optimisation
and can effectively solve portfolio selection problems with thousands of securities.
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