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Abstract

Sustainable uptake of electric vehicles will require efficient provision of public electric vehicle

charging infrastructure for which it is essential to understand plug-in behaviors of electric vehicle

users. Using plug-in data from 19 public charging stations and amenities in Durham, clustering,

coupled with quantile regression analysis was used. Instead of focusing on the conditional average,

we explain the effects of various factors, including availability of other amenities, on the entire

distribution of the plug-in duration. Results show that both demand for charging and other

amenities surrounding the charging station play an important role. More specifically, these effects

are different at different quantiles of plug-in distribution.

1 Introduction

With the mission of providing affordable, reliable, accessible and secure electric vehicle (EV) network,

UK government runs the On-street residential charge-point scheme, that invites local councils to ap-

ply for funding. This scheme provides councils grants to fund building and operation of EV charging

station(s) (EVCS). Office for Zero Emission Vehicles (OZEV) has allocated £20 million for the year

2021-22 towards providing this grant. In many countries urban EV charging network is mainly the

onus of local governments/councils. Apart from the reasons that are central to policy making, a more

immediate (and yet connected) reason for this would be economic welfare and social inequality. In-

deed, if all sections were to move to electric mobility, achieving this with purely private infrastructure

may be a difficult objective to achieve. Hence, the push for governments to provide incentives for

local governments to become primary drivers and stakeholders in developing EV infrastructure.

More generally, policy and strategy towards public EV infrastructure is not uniform across different

countries, with some at a more mature state of play and others still in the process. In literature,
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the EVCS network formation is likened with chicken-and-egg dilemma, with users and operators at

conflict with each other. While some theories are starting to emerge on deployment of a EVCS

network, for example [Pardo-Bosch et al., 2021], there are no studies that provide guidance for long-

term EV infrastructure strategy, [Shi et al., 2021]. We believe one reason for this is the lack of

understanding of the human behavior towards EV evolution and their associated interactions with

EV infrastructure. This is especially difficult when a majority of population are not EV-ready, in

terms of existing driving and parking habits. A report published in March 2022 by UK department

for Transport and OZEV ([DfT, 2022]) finds that a significant proportion of non-EV drivers think

EVs would not fit well with their driving habits, and they are unlikely to use public charging spaces

at night times unless close to their residence.

It is well-established that charging behaviours of EV users play a vital role in policy. For ex-

ample, EVCS placement is a key policy question. In fact, in a number of studies policy deci-

sions are almost synonymous to roll-out and placement decisions. Several studies provide argu-

ments about how charging behavior traits or types should inform policy decisions. See for example

[van der Kam et al., 2020, Helmus et al., 2020].

On the contrary, decisions such as ownership and operations are largely ignored policy decisions,

likely due to their occurrence in downstream along the timeline of EV infrastructure maturity. Ar-

guably, these decisions are also influenced by charging behaviours, hence the dearth of evidence of

good models can be ascertained to lack of proper understanding of charging behaviors including

users’ interaction with EVCS. This forms the motivation for our work. Indeed, as our work shows

charging behaviours can be used to understand the business models that are most likely sustainable.

Our main aim is to establish a causal link between charging behaviors and ownership by connecting

them to urban amenities. More specifically, transition to EVs is bound to have impact on urban

planning. EVCS, seen as an amenity, will be utilized in tandem with other amenities, since charging

EV (unless it is rapid DC charging) takes time. Hence, charging behaviors and EV users’ interaction

with charging infrastructure are fundamentally influenced by other amenities’ locations, among other

factors.

2 Literature on charging behavior

Understanding charging behavior using charging data is important to provide empirical basis to

theories that prescribe charging and infrastructure policies, especially, for predicting what steady-

state behaviours will emerge, if they emerge, over time. Below we review the studies published that

focused on analyzing public charging behaviors at the time of this research.

Studies analyzing EV charging decisions have caught the attention of many researchers in recent

times. More specifically, the charging decisions at public charge points are investigated by a number

of researchers in last few years. The obvious motivation being an understanding of the charging

behaviours is crucial to an optimal roll out of charging infrastructure.
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Early studies on charging behavior focused on limitations on EV usage due to limited charging

infrastructure. As EV adoption continues to grow in the last few years, studies emerged focusing

on charging decisions in more evolved charging infrastructure environments. A number of studies

focused on understanding users’ interaction with charging infrastructure, general charging behavior

(mostly at public charging facilities) and preferences. Many of these use either stated preference

studies and/or GPS data, while a few use actual charging EVSE data. We first summarize a number

of studies that use early observations in various countries.

Data from one of the early EV trials in Germany was analyzed by [Franke and Krems, 2013]

which involve data from 6-month EV trial with 79 drivers. They develop measures for user-battery

interaction style (UBIS) and show that UBIS and range anxiety influence the charging decisions of

users. They use the framework of control theory and behavior self-regulation to explain the factors

that lead to often observed heterogeneity in charging behaviors. [Yang et al., 2016] employ discrete

choice models in stated preference setting to analyze combined route choice and charging decisions

from survey data collected in Beijing, China and highlight the correlation between charging and

route choice decisions and show that commuters prefer to choose routes with fast charging facilities.

[Neaimeh et al., 2017] analyse the charging events from fast charging facilities in the UK. Using

regression analysis they find that fast chargers could be instrumental in overcoming range barriers and

making EVs attractive to future users. [Morrissey et al., 2016] analyse the charging data (primarily

public charging points, and some home charging points) from Ireland, and find that chargers with

access to home charging prefer to charge their EVs at home, while car parks were found to be the

most favoured public charge points. They found that home chargers preferred to charge at peak time

period. [Xu et al., 2017] study the charging mode and location choices using a mixed-logit model in

revealed preference setting with EV usage data for both private and commercial vehicles in Japan.

They find that choices made by private and commercial vehicles users are different. They highlight

the endogeneity issue in using the night time charging choice as a proxy for lower electricity rate

preference. They observe that the choice of night time charging not necessarily imply preference for

lower rates but due to the unobserved effects such as comfort and convenience. They use a control

function approach to include a suitable instrumental variable to correct for the endogeneity issue.

[Helmus et al., 2020] provide a data driven typology of EV user types and charging sessions focus-

ing on the public charge point usage data using a large dataset at multi-city population level in the

Netherlands. [Wolbertus et al., 2018b] study the impact of policies on charging choices and future EV

purchase decisions in the Netherlands. [Ge et al., 2018] study the existence of gas anxiety in PHEVs.

They analyze charging choices of PHEVs using a stated choice experiment with a survey based in the

United states. They find that PHEV owners do exhibit gas anxiety and prefer to charge at charging

stations inspite of the high cost. [Chakraborty et al., 2019] explore the key demand factors that drive

charging behavior at public charging facilities. They find that chargers prefer to charge at home

when it costs less compared to elsewhere, moreover, charging choices are highly influenced by socio-

demographic and vehicle technology factors. From the studies based in different countries, we find
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that while there are some common factors, the charging behaviors and preferences vary considerably

with location and may vary from country to country. We now shift our attention to studies that

explicitly focus on public charging behavior analyses by connecting their findings to policy decisions

such as rollout of EVCS network.

Roll-out of public charging infrastructure has been an active discussion area for many researchers

with earlier works based on theoretical models. Many models have been presented for charge point

placement. However, overall it is widely observed that charge point utilization rates are low in many

places ([Pan et al., 2019],[van der Kam et al., 2020],[Hardman et al., 2018]). With the availability of

more public charging data, some empirical research has been reported in the recent years.

[Wolbertus et al., 2018a] explore the factors that influence the connection times of EVs at public

charging stations. Their study employs charging data from four Dutch cities and use logistic regression

to understand the charging duration and factors driving the duration. It is highlighted that charge

stations are rival goods. It is widely reported that charge station utilization is often poor due to poor

placement of station and use of charge stations as parking spaces. To have an evidence based strategy

for effective roll-out it is necessary to connect policy measures with goals. [van der Kam et al., 2020]

provide a holistic view to map measures with goals by an empirical analysis of Dutch charging data.

Different to the earlier works they also incorporate the neighbourhood factors in their analysis such

as population, charge point density, etc.,. [Helmus et al., 2018] connect the performance of different

roll-out strategies and find demand driven EVCS outperform compared to strategically placed EVCS.

[Kim et al., 2017] employ a heterogeneous hazard model to study charging transactions over a pe-

riod of four years and highlights mixed behaviors including regular and random users. [Hu et al., 2019]

use cumulative prospect theory to model the charging behavior and argue that risk attitudes play an

important role in charging choices. Moreover, they also find that over time EV users may shift their

charging needs to work and public EVCS. [Hardman et al., 2018] provide a review of consumer pref-

erences and EVCS interactions highlighting the need for research to understand the level and type of

EV infrastructure required. [Daina et al., 2017] evaluate the impact of smart charging services using

a stated-preference study.

[Pan et al., 2019] highlight a high level of EVCS under-utilization. Using a web-based stated

preference survey they develop choice models to show two classes - risk averse and risk seeking

class of EV users. [Straka et al., 2020] illustrate the benefit of combining data from a wide ranging

data sources for explaining energy consumption at slow EVCS. Like our study, in parallel, they

also illustrate the use of data from OSM. However, our analysis differs fundamentally not only in

terms of objectives but also in terms of scale with our study focused more at local level amenities.

[Shahraki et al., 2015] illustrate the use the EV charging session data to determine optimal charging

locations within an optimization model. Another aspect which is often more implicit (or sometimes

not considered) in many studies is the choice of charging time, [Sun et al., 2015] study charging time

choices of EV users and find that users prefer to charge at night to make use of lower tariff. A review
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of application of machine learning algorithms to charging data is presented in [Shahriar et al., 2020].

2.1 Positioning and Contributions

The contribution of this paper towards the literature on EV charging behaviour and policy implica-

tions is two-fold:

1. Current studies highlight typologies of possible charging behaviors, but we attempt to also pro-

vide reasons for this behavior formation. Even when there are global (at multi-city population

level) traits such behaviors can only be explained by taking local neighbourhood factors into

account. [van der Kam et al., 2020] observe that “policy makers responsible for public charging

infrastructure should take neighbourhood-specific charging behavior into account for policy de-

sign”. [Helmus et al., 2020] suggest that further research on understanding charging behaviors

should take city or area perspective to arrive at a portfolio of behaviors. In our work we do

this at a city level by connecting charging data with OSM data. Note that OSM data plays

a role only at city or council level rather than at country level because amenities are strongly

connected to local geography. Our approach differs from previous investigations which recog-

nize the importance of neighbourhood characteristics, but encode these in an indirect way. Our

approach directly encodes them by defining a distance-based approach to locating a number of

different type of urban amenities. More importantly, role of amenities is time-dependent and is

likely to impact the duration differently at different quantiles of distribution, hence our choice of

methodology to combine clustering and quantile-regression methods. Our results shows a stark

connection between charging behavior and location of amenities in close vicinity. Our results

show that choice of charging station and time are largely dependent on amenities available in

close vicinity.

2. Comparison of data sets: Our data set takes a city/council perspective as compared to re-

cent empirical studies on charging behavior with real data, example, [Helmus et al., 2020,

Wolbertus et al., 2018a]. Hence the scale of our data is incomparable to these studies when

viewed purely from the scale viewpoint, however, as the metrics in Table 1 show they are

comparable at per-station and per-month use statistics:

charge sessions per station (CPS) CPS per month

[Helmus et al., 2020] ≈ 822 ≈ 22

Our data ≈ 550 ≈ 11

Table 1: Data-set comparison statistics

3 Exploratory Data Analysis

We first give details of the data collected from the 19 EVCS in Durham and then present the data

collected from OSM.
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Variables
Data

Type

Count of Data Points

Raw Unique Clean

Session ID Categorical 10188 10188 9903

End Time Date & Time 10188 10188 9903

Start Time Date & Time 10188 10188 9903

User ID Categorical 9968 1185 9683

EVCS site Categorical 10188 19 9903

Car Categorical 7894 38 7609

Total KwH Numeric 10188 10188 9903

Charger type Categorical 10188 6 9903

(7kW, 3kW, Rapid)

Table 2: Summary of Durham County Council dataset

The Durham County Council data set is the collection of 10,188 charging events from 19 real

public charging stations in Durham from 01/01/2015 to 11/07/2019. As is expected, charging rate

in earlier years was very low. This data set has eight variables, as shown in the first column of Table

2. We derived car battery size from the car specification for all the users for which this information

is available. There are a total of 38 different car types recorded in the data, not including the

unknowns. Only a handful of sessions were recorded at Rapid stations. We have not considered them

in our analysis. Roughly 84% of the charge points are 7kW type. Some stations were more busy than

others and handful of stations account for more than 85% of the recorded sessions. Contrary to the

popular belief, weekdays account for more sessions compared to the weekends.

Among 1185 recorded EV drivers in the dataset, about half of them, 522 EV drivers exactly,

charged more than once. The other 557 EV drivers only charged once. The average charge frequency

for EV drivers is 7.97. There are 133 EV drivers who charged more than 10 times, 20 EV drivers

charged more than 100 times. Interestingly, no driver has connected multiple times in a single day,

and multiple charging events of the same EV driver usually occur on different dates. For the 19

different charging sites, each has a different number of charging drivers. Some EV drivers prefer to

charge in a fixed site, but some other have accessed multiple sites.

OpenStreetMap is an open source project that creates and distributes free geographic data for the

world. It provides a comprehensive source for a range of data from roads, landmarks to amenities.

Road junctions and key landmarks are represented by nodes, and roads (or road segments) are

represented by edges. The position of each node is given by its latitude and longitude, and the length

of each road (or road segment) is given in kilometres. We use OSMnx python library [Boeing, 2017]

to extract the amenity information from OpenStreetMap (OSM). For the purpose of illustration, in

Figure 1 we show the map of Durham extracted from OSM.
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Figure 1: OSM Map of Durham

The black coloured area in the figure shows the entire area of the map (a close polygon). Dim-gray

colour represent the drive ways (roads) around the county. Yellow colour represents nodes in the

map, and there can be at least one tag associated with them. For example, a node might represent

amenities, operator, traffic signal etc. Red colour shows the amenities and leisure data that will be

used in our analysis.

In total we include seven amenity groups within our analysis, that we explain below:

• financial: ATMs, banks, currency exchange etc.,

• healthcare: general practitioner clinics, dentist, pharmacy etc.,

• education: schools, library etc.,

• entertainment: clubs, cinema theatres etc.,

• transportation: parking, train and bus station etc.,

• sustenance: restaurants, pubs etc.,

• leisure: parks, fitness centres etc.
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Each of these amenity groups can have a number of amenities ranging from 10s to 100s in numbers.

However, we chose amenities at group level rather than at individual or sub-amenity groups level,

as the latter was found to be not significant in preliminary analysis, and we also wanted to avoid

over-fitting of our results. We also omitted a general amenity group Others as it may contain wide

heterogeneity which is difficulty to explain. More information about these amenity groups can be

found via the following Wikipedia pages: https://wiki.openstreetmap.org/wiki/Key:leisure

and https://wiki.openstreetmap.org/wiki/Key:amenity.

As would be expected, the amenities that may influence the use of a certain EVSC are more likely

to be the ones that are close, if not the closest. Therefore, we adopt a distance-wise approach to

only consider amenities within a pre-specified distance from the EVSC under consideration. Using

the GPS co-ordinates of the 19 EVSCs, for which we collected plug-in data, we calculate distances

to all amenities within each of the seven aforementioned amenity groups using the Haversine formula

[Gade, 2010],

d = 2r × arcsin(

√
sin2(

ϕ2 − ϕ1

2
) + cos(ϕ1)cos(ϕ2)sin2(

λ2 − λ1

2
)

Here, d is the distance between two points in a geographical space with location, (longitude, latitude)

(ϕ1, λ1), (ϕ2, λ2), and r is a constant, which, in our case, is equal to radius of Earth.

To apply vicinity based approach we encode the presence of an amenity of certain group only if

it is located within a distance of 200 meters (0.2 km). This choice is mainly motivated by practical

considerations and did not bear a particularly high sensitivity to our results. Instead of directly

encoding distance to amenities within this distance we use dummy encoding for the presence of

amenity within the distance as 1, and 0 otherwise. Table 3 presents the output of this encoding for

each of the charging stations alongwith a count of the recorded sessions.

4 Clustering of charging sessions

Clustering is a useful technique to detect and distinguish the patterns within the choice of plug-in

time during the day, especially, when drivers tend to plug-in only once a day at a public charging

station. This is contrary to home charging where vehicles are plugged in and out several times a

day. After experimenting with several clustering methods including hierarchical clustering , k-means

clustering and Gaussian mixture model, we observed k-means clustering gave a more interpret-able

outcome with duration, start time, etc., of the main variables.

All charging sessions of duration more than 24 hours (1440 minutes) were are not considered in

the analysis. Before clustering, data was normalized using min-max scaling as the start time data

had a range from 0 to 24 hours and the total duration data had range of 0 to 1440 minutes. Then,

euclidean distance was used to estimate the dissimilarity among two data points. k-means algorithm

divides data into k mutually exclusive and exhaustive samples (say C1, C2, . . . Ck), each described by

the mean, µt ∈ R2 of the data points within these samples; also, known as clusters. Here, µt are
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Site Name Financial Healthcare Education Entertainment Transportation Sustenance Leisure Freq

Bowlees Visitor Centre 0 0 0 0 1 1 1 43

Albert Road Car Park 1 1 0 1 1 1 1 820

Greencroft Centre 0 0 0 0 0 0 0 59

Comeleon House 0 0 0 0 0 0 0 38

Scott Street 0 0 0 0 1 1 0 356

Annand House 0 0 0 0 0 0 1 174

Meadowfield Depot 0 0 0 0 1 0 0 519

Sniperley Park and Ride 0 0 0 0 1 0 0 420

Durham County Hall 0 0 0 0 1 0 1 1282

Howlands Park and Ride 0 0 0 0 1 0 0 212

Riverside Car Park 0 0 0 0 1 0 1 267

Green Lane, Spennymoor 0 0 0 0 1 0 0 739

North Burns 0 1 0 0 1 1 0 746

The Sands Car Park 0 0 1 0 1 1 1 1958

Old Elvet 1 1 0 0 1 1 1 1560

Belmont Park and Ride 0 0 0 0 1 0 0 156

St John’s Car Park 0 0 1 0 1 0 0 48

Terrace Green Carpark 0 0 0 0 1 1 1 344

Spectrum 8 0 0 0 0 1 0 0 162

Table 3: Vicinity based amenity labels and counts for all EVCS

commonly understood as the “centroids”. The three step k-means algorithm (Lloyd’s algorithm) tries

to minimise within-cluster sum-of-squares;

n∑
i=0

min
µt∈C

(||Di
i − µt||2)

For validation, we employ both the visual and rule based approaches. Based on the knee-plot

shown in Figure 2(a)) and spatial distribution of clusters in Figure 2(b)), five clusters were identified.

Note that Figure 2(b) illustrates spatial distribution of the five clusters on start time-duration plot,

that is, x-axis represents the duration of charging in minutes and y-axis represent the start time of

(a) Knee-Plot to find optimal k (b) Multi-dimensional scaling for clusters

Figure 2: Cluster plots
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charging in hours (for example, 15 means 3pm/mid-afternoon).

We now give characterisation of the five identified clusters. To make names of these clusters more

meaningful we typify them based on start time, end time, length of charging sessions, and time of the

day (i.e. MR - morning, AF - afternoon, EV - evening). There are three short duration (SD), one

medium (MD) and one long (LD) duration clusters.

AF-SD cluster contains those charging sessions, which start and end in the afternoon. Figure 4

indicates that a typical charging session starts between 11:00-3:00 pm, end between 1:00-4:00 pm,

and duration of a charging session is less than four hours for most data points in this cluster. The

mean start time of charging sessions is at 1:02 pm, mean end time is at 3:13 pm, and mean duration

of charging sessions is around 132 minutes (2 hours and 12 minutes). Table 3 shows that an average

user in this cluster plugs-in at EVSC approximately 3.97 times (mean) on weekday and 2.29 times

on a weekend. This cluster contains 31% of the observed charging transactions, and 65% of total

users (individual user identified by user-id) available in the Durham county council data-set (Table

3). Similar observations can be made for the remaining four clusters and Table 3 and Figure 4 provide

all the relevant details.

We make two further observations. Firstly, in EV-SD cluster, the high number of sessions per user

on weekdays might be suggesting that these drivers have used charging station to park their vehicle

while being on workplace (assuming weekend as most likely to be non-work days); thus, they utilised

charging station as parking spot in addition to charging station as a pre-defined tactic, something also

noted by [Helmus et al., 2020]. Secondly, in case of EV-MR-LD cluster, the charging sessions could be

seen as overnight charging session, similarly observed in [Helmus et al., 2020]. It is highly likely that

these sessions are more parking in nature than fulfuling the charging needs, which is also observed

in [Helmus et al., 2020].We remark that similar, though not exactly same, typology was observed in

charging data analyses in the literature [Helmus et al., 2020, De Gennaro et al., 2014].

Cluster Weekday Weekend % Charging Session % Individuals Total

AF-SD 3.969112 2.292566 31.11% 64.77% 3.947575

EV-MR-LD 9.538462 3.2 6.28% 6.11% 8.444444

EV-SD 3.742268 1.819383 19.26% 42.19% 3.752515

MR-AF-SD 5.268362 2.305419 24.09% 39.13% 5.060738

MR-EV-MD 13.91667 3.611111 19.26% 12.48% 12.68707

Total 8.518644 3.355243 100.00% 100.00% 8.219864

Figure 3: Cluster-wise charging statistics
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(a) Histogram of Charging Duration (b) Box-plot of Charging Duration

(c) Histogram of Start Time (d) Box-plot of Start Time

Figure 4: Box-plot & Histogram of Charging Duration, Start Time, and End Time

5 Regression modelling

We start with a quick comment about choice of models. While there are aspects of data which possibly

can make space for dynamic models the issues such as possibility of users charging at other venues

(outside of recorded stations and/or home/work), very large charging sessions sometime recorded as

multiple sessions etc makes it hard to apply such models. We use consumed kWh (Total kWh)) as

a proxy to the demand or State of Charge (SOC) of the car user. Since our main aim is to establish

a causal link between connection times and factors that influence these times this does not lead to

look-ahead bias. However, these models cannot be used to make predictions for the same reason.

The rate of recurring usage is different among different users with some using more frequently

than others. If EV users depend (critically) on public EVCS then their connection times must depend

on their frequency, that is, a more frequent user is more likely charge habitually. We include a count

variable that keeps count of how many times the user has connected the vehicle before the said
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charging session as a dependent variable to explain connection times, named Previous.Charge.

We start with an OLS model. Table 5 shows the estimates of an OLS model. Except transportation

all other amenities are seen to have significant effect on connection times. Similarly, other factors

such as demand proxy, previous.charge, and days also affect times. However, it is difficult to offer

an explanation for the sign and magnitude of the effect for any of the factors hence we focus on

cluster-wise quantile regressions which we motivate below.

Table 4 gives mean and standard deviations for each of the clusters for recurring users with

battery information available. Since most charging sessions are short duration most variance is

also observed in these clusters. We note that high density clusters AF-SD, EV-SD and MR-AF-SD

have high variance. Hence focusing on averages obscures the opportunities to understand the causal

factors affecting tails of the duration distribution. For example, the uncertainty in other amenity

directly affects duration times, that is, if at a particular time of the day users are more likely to

avail a particular amenity nearby whose service times are highly uncertain then impact of this is

different at 80th quantile compared to 20th quantile of plug-in distribution. For this reason we employ

quantile regression, which is well known to be robust against outliers in high variability data and is

able to estimate effects of independent variables on plug-in times (see [Koenker and Hallock, 2001]).

Moreover, quantile regression offers a huge benefit of not requiring to have Gaussian error structure

and the relative independence of the bootstrapped standard errors to the heteroskedastic errors.

However, the results should be interpreted carefully, since quantile regression does not address omitted

variable bias and violation of linearity assumption.

Given that major proportion are short duration (SD) (average duration of 2 hours) we focus our

analysis on these clusters. In all SD clusters, SOC-proxy (Total kWh) is significant factor which

highlights that EV users account for availability of EVCS to fulfill their charging needs. Moreover,

in all SD cluster no day variables were significant in OLS model. Hence these were not taken for the

respective QR models. Previous.charge variable is significant for AF-SD users which implies users

in this clusters are habitual and strategic. However, this is not the case for EV-SD cluster, while

for MR-AF-SD this is only the case for higher quantiles, see Figure7. Battery size inversely affects

connection times indicating that small battery EV users are most likely benefactors of public EVSCs

compared to large battery EV users. A probable explanation for this could be larger battery cars are

typically more expensive and are likely owned by people with home and work charging availability.

Indeed, different population level battery mix evolution can have different impact on public EVSC

usage.

All SD clusters are affected by amenity categories, albeit, in different manner across the quantiles.

Leisure, among all, is significant in three SD clusters. In non evening clusters, it is negative effect,

which can explained by the fact that people are less likely to visit at these time. Using a similar

explanation presence of leisure facilities is likely to result longer connection times at evening times

with this effect along the quantiles. Note that in OLS model leisure has a negative effect in contrast

to different effects at different clusters which highlights the importance of cluster-wise modeling.
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Interestingly, healthcare, as an amenity category, when significant, has always a negative slope

indicating inverse relationship with connection times when all other factors are held constant. A

likely explanation here time duration at healthcare facilities such as clinics and pharmacies are very

short within an hour and does not allow EV users enough time to plan for charging.

Sustenance and transportation show effects only at certain quantiles which, for example, captures

effects such as EV users planning trips to restaurants (EV-SD) and charging while a short train or

bus travel (upper quantiles MR-AF-SD).

Cluster Mean Std. dev

AF-SD 140.61 94.71

EV-MR-LD 806.49 195.48

EV-SD 130.78 101.37

MR-AF-SD 167.58 91.64

MR-EV-MD 487.94 107.84

Table 4: Cluster-wise summary statistics for recurring chargers

6 Policy implications

EVCS placement is an important policy decision and have been widely discussed in the literature.

Here we revisit the implications on placement decisions of our results. We found that two key factors

(among many) that heavily influence charging decisions at public EVCS are amenities and demand.

Moreover, charging sessions are more likely short duration (averaging a couple of hours). While a

city or council level there are several amenities that may influence each other, seen as an amenity

itself, EVCS usage ties with specific amenities at specific times. This indicates that EVCS placement

should focus around those amenities (eg., parks, fitness centres) which are more likely ones to be used

by EV users while charging and not the ones which underlie very short durations (like healthcare). It

is important to see the connection with amenities in conjunction with recurring users, since we found

that users exhibit recurring behavior that strongly reinforces that they do depend on public EVCS

for fulfilling their charging needs.

Equally important, but not discussed enough, are ownership and operation (including manage-

ment) policy decisions. The significance of other amenities within the urban landscape pose interesting

and important future infrastructural implications for councils. From an ownership viewpoint, councils

may explore a joint ownership within a public-private partnership model that makes local businesses

important stakeholders. Given that EVCS deployment comes with considerable set-up costs this can

lead to manageable risk sharing with councils not having to take all the risk. When local businesses

that manage other amenities partner with councils in EVCS operations this could lead to increased

utilization. For example, the following medium and long term effects are very likely in view of our

13



sqrt(Duration) estimate

(Intercept) 5.42∗∗∗

sqrt(Total.kWh) 3.41∗∗∗

Previous.Charge 0.01∗∗∗

Battery size -0.03∗∗∗

Charge type (3 or 7 kW) 0.10

Financial 4.80∗∗∗

Healthcare -1.54∗∗∗

Education 2.77∗∗∗

Entertainment -3.27∗∗∗

Transportation -0.70.

Leisure -1.49∗∗∗

Monday 0.47∗

Saturday -0.59∗

Sunday -1.32∗∗∗

Thursday 0.50∗

Tuesday 0.15

Wednesday 0.79∗∗∗

R2 0.49

Table 5: OLS full model for chargers who have charged more than once. ∗∗∗ : p ≤ 0.0001, ∗∗ : 0.001 <

p ≤ 0.01, ∗ : 0.01 < p ≤ 0.05, . : 0.05 < p ≤ 0.1

results. With considerable EV uptake in medium term, businesses may use deploying EVCS as a

tactical move to increase sales. Such practices are already common practice in urban parking man-

agement. In longer term, businesses may offer perks such as discounts on charging prices to boost

their sales. Our argument for this to improve utilization rate is because charge station hogging is

more likely in a centrally owned scenario where only councils own and operate EVCS. In a shared

ownership scenario, other amenities are more likely to interact with users directly hence utilization

is more directly observable and likely controllable. In a similar vein community financed and shared

EV infrastructure is recently proposed in [Azarova et al., 2020].

Commercial fleet charging solutions are quickly emerging such as battery swapping and mobile

charging units. However, such solutions are difficult to implement for personal users. Those can be

extended to personal users when local businesses join within PPP models where charging cars comes

as a package deal for this customers. There is very little discussion on future business models for EV

infrastructure expansion with aspects such as risk and revenue sharing between partners still need to

be fully understood. From councils’ point of view there are several aspects which make the case for

an active partnership. Significant of these factors include: (a) usage of EVCS in combination with

14



Quantiles

0.2 0.4 0.6 0.8

(Intercept) 50.42∗∗∗ 81.85∗∗∗ 115.10∗∗∗ 159.90∗∗∗

Total.kWh 9.87∗∗∗ 11.10∗∗∗ 11.04∗∗∗ 10.39∗∗∗

Previous.Charge 0.26∗∗∗ 0.30∗∗∗ 0.39∗∗∗ 0.37∗∗∗

Battery size -0.67∗∗∗ -0.87∗∗∗ -0.95∗∗∗ -1.41∗∗∗

Financial 12.10∗ 36.45∗∗∗ 34.36∗∗∗ 52.69∗∗∗

Healthcare -9.93∗ -30.93∗∗∗ -19.62∗∗∗ -9.76

Education 0.29 -0.75 -3.26 10.80

Transportation -22.81∗∗ -15.64 -20.70 3.69

Sustenance 8.86∗ 12.40 5.13 -17.97∗

Entertainment 7.66 1.14 -10.08 -33.47∗∗

Leisure -9.62∗ -30.12∗∗∗ -25.09∗∗∗ -18.92∗∗

Table 6: Quantile regression results AF-SD

other urban amenities presents the opportunity for more effective urban and city planning including

better congestion control, (b) high volume of data generated from charging transactions can hold a

wealth of information for councils to enable better social welfare, (c) last but not least EV charging

holds a key revenue source which councils can use to be less dependent on federal funds.

Currently, there is lack of studies that inform medium and long term policy on EVCS ownership

and management and the role of councils in the same. We hope our analysis sheds light on the role

councils may want to play in the long term, especially, with EVs expected to change the dynamics of

urban planning.

7 Limitations and Future research

Our results are based on dataset specific to Durham. There may be confounding factors which are

specific to Durham which are not accounted for in our analysis. Generalization should be done with

care. However, our approach does illustrate, albeit not at estimate level, but at general level on effect

of amenities on charging behaviors that can be argued to be largely true for a typical urban scenario.
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Figure 5: Quantile regressions plot AF-SD
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