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Abstract

We study potential drivers for a large cross-section of commodity futures. Unlike
previous studies, we examine the effect of monthly drivers on daily returns using mixed-
frequency Granger causality tests. We find real economic activity as a main driver on a
monthly basis, whereas financial variables seem to affect returns at daily frequency. The
linkages are time-varying for various stages of the financialization of commodity markets
with an overall dissipating impact in the recent period of de-financialization. As our
results strongly differ from traditional low-frequency Granger causality tests under the
temporal aggregation of futures returns, we show the economic value of accessing infor-
mation at a higher frequency in an out-of-sample trading study. Our findings emphasize
the importance of using mixed-frequency techniques to uncover relationships between
monthly-published macroeconomic variables and commodity prices.
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1. Introduction

Since it is well established that prices of various “unrelated” commodities tend to

co-move, researchers are trying to understand the driving forces behind joint fluctuations

in commodity prices.1 Uncovering the effects that influence the cross-section of com-

modity futures fosters the accuracy of market research outlooks and helps commercial

traders to improve their hedging decisions. As correlations among commodities intensi-

fied during the so-called “financialization” of commodity futures markets (Tang & Xiong,

2012; Büyükşahin & Robe, 2014; Bhardwaj et al., 2016), it is also crucial for financial

investors to understand the drivers shared by multiple commodities to assess the level of

diversification in their portfolios properly.

The existing literature attributes the presence of commonalities in commodity prices

to three major factors. Firstly, commodity prices react to changes in macroeconomic

fundamentals that shift aggregate supply and demand or its expectations (Pindyck &

Rotemberg, 1990). These fundamentals include real economic activity or exchange rates,

for instance.2 Secondly, a high portion of the co-movement can be attributed to the

financialization of commodity markets. With financialization, commodities became a

new investable asset class in the eyes of financial investors. For example, Tang & Xiong

(2012) ascribe the tighter link between different commodity markets to the trading of

commodity index investors as they observe stronger effects for index compared with off-

index commodities.3 Results of Adams et al. (2020) indicate a growing importance of

financial variables in explaining commodity returns during financialization, which is of

significant interest to our study. Lastly, various uncertainty measures have been found

to affect commodity prices (e.g. Joëts et al., 2017). Effects originating from uncertainty

1See, e.g., Pindyck & Rotemberg (1990); Tang & Xiong (2012); Byrne et al. (2013); Chen et al. (2014);
West & Wong (2014); Gao & Süss (2015); Ohashi & Okimoto (2016); Le Pen & Sévi (2018); Delle Chiaie
et al. (2022), among others.

2The effect of real economic activity is documented in Pindyck & Rotemberg 1990; West & Wong 2014;
Delle Chiaie et al. 2022, while the impact of changes in the US-Dollar exchange rate is documented in
Chen et al. 2014; West & Wong 2014, amongst others. We provide a more detailed review on potential
drivers of commodity prices and related empirical findings of the literature in Section 3.

3Academic literature on causes of financialization and the motivation of financial investors seeking, e.g.,
portfolio diversification is becoming increasingly ample (Tang & Xiong, 2012; Cheng & Xiong, 2014;
Adams & Glück, 2015; Gao & Süss, 2015; Ohashi & Okimoto, 2016; Le Pen & Sévi, 2018).
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affect commodity markets both through fundamental and financial channels.

The majority of the existing literature on the drivers of commodity prices and their

co-movement uses temporally aggregated monthly, quarterly, or even annual returns for

empirical analyses as most macroeconomic indicators are available at a monthly or lower

frequency. This aggregation results in the loss of valuable information inherent in higher-

frequency data and can distort empirical findings (Marcellino, 1999).4 The few studies

using higher-frequency data restrict themselves to a small set of potential drivers (e.g.

Gao & Süss, 2015; Andreasson et al., 2016), which, in turn, leads to ignoring important

variable available only at monthly data frequency.

Unlike previous studies, we seek to identify “common drivers” that jointly affect com-

modity futures returns by employing mixed-frequency (MF) Granger causality (Ghysels

et al., 2016). The method allows to study the relation of lower-frequent, such as monthly-

available fundamental, financial, and uncertainty-related variables, to variables available

at a higher data frequency, such as daily or weekly commodity futures returns. Thereby,

we circumvent the aforementioned difficulties caused by temporal aggregation or variable

omittance. We do not aim to determine commodity-specific drivers as in Kang et al.

(2020), nor do we explicitly focus on identifying drivers of a common component in com-

modity prices like Byrne et al. (2013), for instance. Instead, we argue that if a single

factor significantly affects individual futures returns across different types of commodi-

ties, it should also constitute a cause behind their co-movement.

We find that most commodity futures returns are driven mainly by changes in real eco-

nomic activity on a monthly basis, whereas financial variables affect price movements on

a daily level. Many futures returns are also influenced by uncertainty, both in the short-

and long-term, depending on the cause of uncertainty. We further show that the rela-

tions between commodities and drivers are time-varying throughout the distinct stages of

financialization (Natoli, 2021). Our results indicate that not only linkages from financial

but also from fundamental and uncertainty variables to the broad range of commodity

4Ghysels et al. (2016), for instance, points out that temporal aggregation can cause both spurious causality
and spurious non-causality.
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futures dissolved in the recent period of the so-called “de-financialization” (2014 onward).

Additionally, we find that temporally aggregating commodity returns—as is done in pre-

vious work—leads to different, potentially erroneous conclusions in the Granger causality

analysis underpinning Ghysels et al. (2016) and Bevilacqua et al. (2019). With an out-

of-sample trading study, we demonstrate that MF models improve the economic value of

directional return predictions over traditional models estimated from monthly data only.

Our contribution to the literature on commodity futures is twofold. Firstly, we add to

the literature on co-movement by providing further evidence on common return drivers

of commodity futures using a novel MF approach. Secondly, we show the time-variation

in the relation of commodity futures to their return drivers over disparate stages of the fi-

nancialization. Particularly little evidence exists for the period of de-financialization since

samples of most studies end before 2014. We also contribute to the literature on Mixed

Data Sampling (MIDAS) by showing the economic benefit of utilizing higher-frequency

data to uncover relationships between macroeconomic indicators and commodity futures.

The remainder of the paper is organized as follows. We describe our methodology and

data in Section 2 and 3. Section 4 presents our empirical results. Section 5 concludes.

2. Methodology

We build our testing framework on the recently proposed MF Granger causality test

(Ghysels et al., 2016) based on MF Vector Autoregression (MF-VAR Ghysels, 2016). In

contrast to traditional VAR models that can be estimated only from variables that share

the same data frequency, MF-VARs combine information of multiple time series at distinct

sampling frequencies. Hence, when analyzing the nexus of low-frequency (LF) and high-

frequency (HF) processes, data from the HF process does not need to be temporally

aggregated to the common lower frequency. While most other MIDAS models are used

for predicting LF time series with HF information, MF-VARs also allow to study the

opposite direction, e.g., testing for Granger causality from LF macroeconomic indicators

to HF commodity futures returns. Moreover, recent findings by Foroni et al. (2018)

suggest that LF information can be useful for HF variables in a MIDAS framework.
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2.1. Mixed-Frequency Vector Autoregression

Ghysels (2016) introduces a new class of observation-driven MF-VAR models that can

be applied to an n-dimensional process consisting of KL low frequency (LF) processes,

with KL < n, and KH = n−KL high frequency (HF) processes.5 We focus on bivariate

models and set KH = KL = 1. In what follows, we briefly introduce MF-VAR models for

the case of two time series sampled at different frequencies.

Consider a univariate LF process, xL(τL), with time index τL ∈ {1, .., TL} representing

a variable that is available monthly such as log changes in world industrial production.

The log return of a commodity futures contract is described by the univariate HF process

xH(τL, kH) that is sampled m times between two observations of the LF variable such

that kH = 1, ...,m.6 Traditionally, the HF variable would be aggregated to match the

sampling frequency of the LF variable such that m = 1. Instead of losing valuable

information of the HF variable through temporal aggregation, Ghysels (2016) proposes to

form a “stacked” vector that contains all available observations of both the LF and the

HF variable. Assuming that we can observe new values for the LF series at the very end of

each LF period τL, yields the stacked vector X(τL) = [xH(τL, 1), ..., xH(τL,m), xL(τL)]
′.7

If X follows a VAR(P ) process, we can write the stacked vector as:



xH(τL, 1)

...

xH(τL,m)

xL(τL)


=

P∑
j=1

Aj



xH(τL − j, 1)

...

xH(τL − j,m)

xL(τL − j)


+ ε(τL), (1)

where Aj denotes the K×K coefficient matrix for lag j = 1, ..., P , with K = KL+m ·KH ,

5Since the MF-VAR model proposed by Ghysels (2016) is purely observation-driven, it does not require
to include latent variables as in state space models such as the Bayesian MF-VARs introduced in Eraker
et al. (2015); Schorfheide & Song (2015). See also Foroni et al. (2013) for an overview of various MF-VAR
models.

6We set m(τL) = m ∀τL, i.e., we assume a fixed number of HF observations during each LF period.
7For our analysis, it is reasonable to assume that the LF variable is observed at the end of each LF period
as the figures we use always refer to the entire month (e.g., monthly world steel production). We do not
consider the publication date since we are interested in the linkage between the information carried by
these variables (e.g., the level of global economic activity) and price fluctuations on commodity futures
markets, and not in the reaction of commodity prices to public releases of these numbers.
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and ε(τL) refers to the (K×1)-dimensional vector of errors. The bivariate MF-VAR model

from Eq. (1) is a traditional finite order VAR model of dimension K = m + 1. Prior to

fitting the MF-VAR from Eq. (1) with OLS, we demean each component of the stacked

vector.

2.2. Mixed-Frequency Granger causality

Based on the MF-VAR, Ghysels et al. (2016) develop a methodology to test for linear

MF Granger causality. Compared with traditional tests for Granger causality involving

temporal aggregation of the HF variable such that it matches the lower frequency, the

authors show that MF Granger causality tests have higher asymptotic power and temporal

aggregation is likely to lead to either spurious causality or spurious non-causality.

For KH = KL = 1, we extract x̃H(τL) = [xH(τL, 1), ..., xH(τL,m)]′ and xL(τL) sep-

arately from X(τL) and define `(τL) := X (−∞, τL] = x̃H (−∞, τL] + xL (−∞, τL] as

the MF reference information set in period τL. Our main interest is to analyze Granger

causality from potential LF driver variables to HF commodity returns. Adopting the

notation of Ghysels et al. (2016), we can formulate the null hypothesis of non-causality

from the LF to the HF variable at the LF forecasting horizon h ∈ N as:

H0(h): xL 9h xH | `, if:

P
[
x̃H(τL + h) | x̃H (−∞, τL]

]
= P

[
x̃H(τL + h) | `(τL)

]
∀τL ∈ Z,

where P [x̃H(τL + h) | `(τL)] describes the best linear h-step ahead forecast of xH given

the information ` at period τL. The null hypothesis states that the LF variable does

not Granger-cause the HF variable at horizon h, if the h-step ahead forecast of the HF

variable, xH , based on available information on xH up to period τL remains the same

whether or whether not past information about the LF variable is utilized. Simply put,

the prediction of the HF variable cannot be improved by looking at past values of the LF

variable.

In the bivariate case, xL does not Granger-cause xH at any horizon h > 0 if xL does

not Granger-cause xH at h = 1 (Dufour & Renault, 1998). We, hence, only test for

non-causality at horizon h = 1 using the following (P ,h)-autoregression based on Dufour
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et al. (2006):

X(τL + 1) =
P∑

j=1

AjX(τL + 1− j) + ε(τL), (2)

given that the stacked vector follows a VAR(P ) process and all elements of the stacked

vector are demeaned. Then, Eq. (2) is simply the MF-VAR(P ) presented in Eq. (1).8 To

circumvent parameter proliferation, we set the LF lag order to P = 1 resulting in

A1 ∈ RK×K =


a11 · · · a1K
... . . . ...

aK1 · · · aKK


being the full parameter set of MF-VAR coefficients. As our primary interest to analyze

Granger causality from the LF to the HF variable in a bivariate setting, we henceforth

describe the testing methodology for our particular case only, which includes KH = KL =

1, h = 1, and P = 1.9

Recall the form of the stacked vector X with the LF variable xL(τL) being observed

at the very end of each LF period. The influence of the LF variable on the HF variable,

represented through xH(τL, 1), ..., xH(τL,m) in X, is then given by the first m = K − 1

coefficients in the K-th column of A1. Therefore, from Ghysels et al. (2016) follows that

we can formulate the null of non-causality from the LF to the HF variable as:10

H
(1)
0 (h = 1) : [a1K , a2K , ..., amK ]

′ = 0m×1. (3)

Ghysels et al. (2016) propose to test the null hypothesis in Eq. (3) based on the Wald

8For MF Granger causality tests with multivariate MF-VARs, see Ghysels et al. (2016) together with
Dufour et al. (2006).

9For a more general representation of MF Granger causality testing with P, h ≥ 1 and n ≥ 2 (non-
bivariate), including MF Granger causality from LF to LF, HF to HF, all HF to all LF, and all LF to
all HF variables, please refer to Ghysels et al. (2016).

10More general, Ghysels et al. (2016) formulates the null of non-causality (LF to HF) as H0 :

R vec [B(h)] = r with B(h) =
[
A

(h)
1 , ...,A

(h)
P

]′
∈ RPK×K , where R is an m × PK2 selection ma-

trix and r is a column-vector of zeros with length m. We obtain our formulation of the null hypothesis
presented in Eq. (3) by setting h = 1, P = 1, KH = KL = 1, and using R = [Λ(δ1)

′, ...,Λ(δm)′] with
δk ∈ {1 · K, 2 · K, ...,m · K}, k = 1, ...,m, where the δk-th element of the 1 × K2-dimensional vector
Λ(δk) is 1 and zero otherwise.
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statistic WTL
[H0(h = 1)] with WTL

[H0(1)]
d→ χ2

m under H0(1):

WTL
[H0(1)] = TL

(
R vec

[
Â1

]
− r

)′(
RΣ̂R′

)−1(
R vec

[
Â1

]
− r

)
,

where r = 0m×1. The selection matrix R = [Λ(δ1)
′, ...,Λ(δm)

′], extracts the coefficients

of interest from Â1 with δk ∈ {1 ·K, 2 ·K, ...,m ·K}, k = 1, ...,m, where the δk-th element

of the (1×K2)-dimensional vector Λ(δk) is 1 and zero otherwise. As proven by Ghysels

et al. (2016), the OLS estimator Â1 for the MF-VAR parameter set is consistent and

asymptotically normal with

√
TL vec

[
Â1 −A1

]
d→ N

(
0K2×1,Σ

)
,

under the assumptions that the process X(τL) follows a VAR(P ), P ≥ 1, and X(τL)

as well as that ε(τL) are stationary and ergodic. Ghysels et al. (2016) derives an almost

surely positive semi-definite (for TL ≥ 0) and consistent estimator Σ̂ for the covariance

matrix Σ based on the HAC estimator of Newey & West (1987).

We calculate the p-values for Granger causality tests at horizon h = 1 based on the

parametric bootstrap of Gonçalves & Kilian (2004) with N = 999 replications according

to the procedure as is described in Ghysels et al. (2016).11

3. Data

We collect daily settlement prices of 37 front-month commodity futures traded at var-

ious exchanges via Bloomberg from January 1998 to December 2019. Motivated from

theory and empirical findings of previous studies, we select 21 fundamental, financial,

and uncertainty variables, that potentially affect the futures prices of many commodities.

While some are readily available at daily frequency, many of the potential drivers we

present below are only available on a monthly basis. A bivariate MF-VAR model with lag

11Ghysels et al. (2016) recommend to use bootstrapping for smaller sample sizes regarding the number
of LF observations in order to avoid size distortions. The wild bootstrap of Gonçalves & Kilian (2004)
allows for conditional heteroskedasticity and is implemented in the MFVAR Toolbox for Matlab kindly
provided by the authors via Kaiji Motegi’s Website (http://www2.kobe-u.ac.jp/~motegi/Matlab_
Codes.html).
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order one combining one daily and one monthly variable, however, entails more than 400

parameters. To avoid such parameter proliferation, we transform daily futures prices to

weekly log-returns, when analyzing effects from monthly-available driver variables.12 For

daily-available driver variables, we use non-aggregated daily commodity returns. Thereby,

we split our analysis into HF (daily) and LF (monthly) drivers to discard as few infor-

mation as possible. This section presents the commodities and drivers we include in our

analysis as well as data characteristics at the different sampling frequencies.

3.1. Commodity futures

Our data set covers a wide range of agricultural and energy commodities as well as

industrial and precious metals. We build our study based on futures for two reasons. First,

because they are traded on exchanges, their prices are more transparent than spot prices

and may also contain more information due to their higher trading volume. Second,

it enables us to test the economic significance of our results in a subsequent trading

application. Table 1 presents summary statistics for daily log returns. These daily returns

will serve as input for VAR models, that include daily-available driver variables. To check

the robustness of our results, we also construct equally-weighted commodity portfolios

and extract a common factor in the returns defined as the first principal component of

standardized log returns of all 32 commodities, for which data is available over the full

time period. Figure 1 depicts how the returns of different types of commodities and

the common return factor evolve throughout our sample. The co-movement becomes

particularly clear with simultaneous surging prices of raw materials starting from the

early 2000s followed by jointly crashing prices during the Global Financial Crisis, which

is also captured by the common component and found in extant literature (e.g., Ohashi

& Okimoto, 2016; Le Pen & Sévi, 2018). Also in the aftermath of the Global Financial

Crisis, a joint overall trend in commodity prices seems evident, however, not as obvious

as before, suggesting a looser link among raw materials. Considering the full sample, the

12Findings of Ghysels et al. (2016) suggest that a small difference in sampling frequencies is preferable
for estimating MF-VARs. Alternatively, Götz et al. (2016) propose techniques involving reduced rank
regressions or Bayesian VAR estimation to reduce the number of parameter estimates in MF-VARs with
a large difference in sampling frequencies (such as daily-monthly) before running Granger causality tests.
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common factor grasps 20% of total commodity return variation, whereas its correlation

is highest with Brent (0.73) and lowest to Feeder Cattle (0.04).13

Table 1: Sample statistics of commodity futures for daily log returns, 1998–2019
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 5739 0.008 1.889 −0.105 2.277 −19.607∗∗∗ −5865.937∗∗∗ 0.046
Coffee (ICE) KC1 5739 −0.004 2.159 0.317 5.122 −19.174∗∗∗ −5617.734∗∗∗ 0.105
Cotton (ICE) CT1 5739 0.001 1.809 0.006 4.467 −18.776∗∗∗ −5420.096∗∗∗ 0.041
Ethanol (CBOT) DL1 3805 0.004 2.054 −2.440 31.640 −15.655∗∗∗ −3673.614∗∗∗ 0.112
Lumber (CME) LB1 5739 0.006 2.129 0.701 7.110 −18.718∗∗∗ −5229.541∗∗∗ 0.029
Orange Juice (ICE) JO1 5739 0.003 2.015 0.377 7.420 −19.852∗∗∗ −5294.786∗∗∗ 0.062
Rubber (SGX) OR1 5739 0.012 1.514 −0.441 8.437 −16.479∗∗∗ −5514.569∗∗∗ 0.193
Sugar (ICE) SB1 5739 0.002 2.127 −0.176 3.676 −17.064∗∗∗ −5715.294∗∗∗ 0.075
Wool (ASX) OL1 3913 0.010 1.234 0.001 12.036 −15.366∗∗∗ −3830.093∗∗∗ 0.088
Portfolio (Softs) 5739 0.004 0.805 −0.163 1.930 −17.015∗∗∗ −5577.602∗∗∗ 0.134

Agriculture (Grains)

Corn (CBOT) C 1 5739 0.007 1.739 −0.518 12.514 −17.235∗∗∗ −5555.665∗∗∗ 0.064
Oats (CBOT) O 1 5739 0.012 2.285 −1.375 17.745 −18.947∗∗∗ −5212.071∗∗∗ 0.031
Rough Rice (CBOT) RR1 5739 0.004 1.664 0.279 26.747 −18.940∗∗∗ −5291.330∗∗∗ 0.103
Soybean (CBOT) S 1 5739 0.006 1.536 −0.798 5.936 −17.517∗∗∗ −5763.222∗∗∗ 0.071
Soybean Meal (CBOT) SM1 5739 0.007 1.829 −1.240 12.181 −18.630∗∗∗ −5659.082∗∗∗ 0.043
Soybean Oil (CBOT) BO1 5739 0.006 1.427 0.125 2.490 −17.367∗∗∗ −5761.564∗∗∗ 0.090
Wheat (CBOT) W 1 5739 0.009 1.910 0.173 1.968 −18.448∗∗∗ −5646.056∗∗∗ 0.044
Portfolio (Grains) 5739 0.007 1.203 −0.225 3.485 −17.119∗∗∗ −5876.679∗∗∗ 0.099

Agriculture (Livestock)

Feeder Cattle (CME) FC1 5739 0.011 0.948 −0.162 11.089 −18.057∗∗∗ −5282.721∗∗∗ 0.066
Lean Hogs (CME) LH1 5739 0.004 2.330 −0.085 31.484 −17.710∗∗∗ −5659.348∗∗∗ 0.013
Live Cattle (CME) LC1 5739 0.011 1.122 −1.448 15.812 −19.372∗∗∗ −5324.792∗∗∗ 0.028
Pork Bellies (CME) PB1 3392 0.022 2.505 0.582 45.805 −16.294∗∗∗ −3068.643∗∗∗ 0.019
Portfolio (Livestock) 5739 0.010 1.075 −0.120 8.346 −18.056∗∗∗ −5791.765∗∗∗ 0.038

Energy

Brent (ICE) CO1 5739 0.024 2.172 −0.064 3.153 −16.238∗∗∗ −6088.074∗∗∗ 0.159
Gasoil (NYMEX) QS1 5739 0.025 1.979 −0.048 3.571 −16.799∗∗∗ −5712.272∗∗∗ 0.147
Gasoline (NYMEX) XB1 3696 0.002 2.362 −0.113 7.175 −13.585∗∗∗ −3782.710∗∗∗ 0.068
Heating Oil (NYMEX) HO1 5739 0.025 2.191 −0.495 6.134 −18.010∗∗∗ −5927.710∗∗∗ 0.130
Natural Gas (NYMEX) NG1 5739 −0.001 3.299 0.486 5.724 −17.861∗∗∗ −5951.664∗∗∗ 0.098
WTI (NYMEX) CL1 5739 0.022 2.348 −0.058 4.372 −17.161∗∗∗ −5707.125∗∗∗ 0.131
Portfolio (Energy) 5739 0.020 1.830 −0.102 2.382 −16.938∗∗∗ −5854.340∗∗∗ 0.183

Industrial Metals

Aluminium (LME) LA1 5739 0.003 1.344 −0.245 4.329 −18.493∗∗∗ −5959.280∗∗∗ 0.059
Cobalt (LME) LCO1 2567 −0.008 1.745 −0.170 11.750 −11.776∗∗∗ −3297.770∗∗∗ 0.198
Copper (LME) LP1 5739 0.022 1.581 −0.087 4.747 −16.454∗∗∗ −6182.985∗∗∗ 0.180
Lead (LME) LL1 5739 0.021 1.977 −0.164 6.656 −18.580∗∗∗ −5521.674∗∗∗ 0.100
Nickel (LME) LN1 5739 0.015 2.412 −0.500 17.147 −17.843∗∗∗ −5876.506∗∗∗ 0.122
Tin (LME) LT1 5739 0.020 1.585 −0.004 7.798 −18.317∗∗∗ −5345.917∗∗∗ 0.133
Zinc (LME) LX1 5739 0.013 1.988 −0.967 24.234 −18.337∗∗∗ −6175.011∗∗∗ 0.070
Portfolio (Industrial Metals) 5739 0.015 1.339 −0.370 5.363 −17.455∗∗∗ −5932.693∗∗∗ 0.158

Precious Metals

Gold (COMEX) GC1 5739 0.029 1.068 −0.090 6.841 −18.396∗∗∗ −5717.254∗∗∗ 0.143
Palladium (NYMEX) PA1 5739 0.039 2.065 −0.279 5.249 −16.794∗∗∗ −5266.559∗∗∗ 0.115
Platinum (NYMEX) PL1 5739 0.017 1.458 −1.393 24.967 −16.927∗∗∗ −5394.389∗∗∗ 0.275
Silver (COMEX) SI1 5739 0.019 1.853 −0.853 8.025 −18.312∗∗∗ −5830.988∗∗∗ 0.107
Portfolio (Precious Metals) 5739 0.026 1.293 −0.602 4.591 −16.971∗∗∗ −5465.160∗∗∗ 0.074

Common Factor

PC1 (All Commodities) 5739 0.073 4.860 −0.282 3.734 −16.689∗∗∗ −5767.638∗∗∗ 0.196

Notes: Summary statistics for single futures are provided for rt = 100×[ln(pt)−ln(pt−1)], where {pt}Tt=1 is the front month continuous
futures series which contains daily settlement prices (in USD). Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are given
in column BBG. Portfolio log returns are calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective portfolio for
which returns are available on trading day t. Daily futures data spans the period of 1998:1–2019:12 except for Ethanol (2005:6–2019:12),
Wool (1998:1–2012:12), Pork Bellies (1998:1–2010:12), Gasoline (2005:11–2019:12), and Cobalt (2010:3–2019:12). The common factor
is constructed as the first principal compoenent (PC) of standardized log returns of all commodities, for which data is available over
the full sample period. The Jarque-Bera test rejects the null of normality at the 0.1% level of significance for all return series. Asterisks
indicate the rejection of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary (KPSS) at the ∗∗∗1%,
∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
tests for stationarity.

Since our MF methodology for analyzing monthly-available potential drivers requires

a fixed number of HF observations per LF observation (i.e., m is constant independent

13Factor loadings and correlations to all commodities and portfolios are listed in the Appendix (Table
C.12).
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Figure 1: Cumulative standardized log returns of selected commodity futures and a common factor of
commodity futures returns. The common factor is calculated as the first principal component of daily
futures log returns using soft, grain, livestock, and energy commodities as well as industrial and precious
metals.

of the low-frequency period τL), we only consider the last 20 trading days of each month

for our MF-VAR models. In doing so, we drop at most the first three daily observations

of a given month as 20 is the minimum number of trading days per month in our sample.

Based on the 20-days-per-month futures price series, we aggregate daily prices to weekly

log returns over non-overlapping 5-day intervals through 100 × [ln(pt) − ln(pt−5)]. We,

therefore, end up with four weekly log returns per month, such that m = 4.14

14Summary statistics of weekly returns for commodity futures and equally-weighted portfolios are pre-
sented in the appendix (Table C.5). One weekly return covers the period of five trading days except
for the first weekly return of the first month of a futures series, which covers only 4 days. E.g., the first
weekly return of February is calculated from the settlement price of the last trading day of January to
the settlement price of the fifth trading day of February. Note that this does not include the first trading
days of the month that may have been removed from our data set. The remaining weekly returns are
calculated from the 5th–10th, 10th–15th, and 15th–20th trading day of February. If February is the
starting month of the futures series, the first weekly return is calculated from the settlement price of
the first to the fifth trading day.
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3.2. Potential return drivers of commodity futures

Our set of fundamental variables primarily encompasses indicators of global real eco-

nomic activity. Shocks to real activity indicate changes in the aggregate demand for

commodities as real physical assets. Recent work by Alquist et al. (2020) and Delle Chi-

aie et al. (2022) suggests that aggregate economic activity primarily drives spot price

fluctuations in the cross-section of commodities. Popular indicators of global economic

activity that we include in our study are the Baltic Dry Index (BDI) as published by

the London Baltic Exchange, Global Crude Steel production (STEEL) published by the

World Steel Association, World Industrial Production (WIP) of Baumeister & Hamilton

(2019), and the Global Economic Conditions (GECON) index proposed by Baumeister

et al. (2020).15 While the BDI reflects the costs in dry bulk cargo shipping, the index

of WIP measures the industrial output of countries belonging to the OECD or can be

classified as major emerging markets. The GECON index aims at capturing the economic

conditions globally by combining a variety of indicators related to prospective energy de-

mand. In the recent COVID-19 pandemic, disruptions of the global supply chain had

a significant impact on various commodity prices. To cover such supply side effects, we

also employ a novel index for Global Supply Chain Pressure (GSCPI) published by the

Federal Reserve Bank of New York (Benigno et al., 2022). We furthermore classify the

following variables as potential fundamental drivers: the USD Effective Exchange Rate

(USDEER) published by the Bank for International Settlements since most commod-

ity futures are traded in USD, the three-month USD Treasury Bill Rate (TBILL) as a

proxy for the risk-free rate as part of the cost of carry, the University of Michigan Con-

sumer Sentiment index (CSENT), seasonally adjusted USD inflation (INFL) calculated

as year-on-year log-differences in US CPI, and consumers’ inflation expectation (INFLE)

surveyed by the University of Michigan. While, for instance, Chen et al. (2010) show

that exchange rates affect commodity prices, CSENT has been shown to affect long-term

15We also considered to include the index of Global Real Economic Activity (GREA) from Kilian (2009)
in the set of potential drivers as, e.g., Nguyen & Walther (2020) show that the GREA index is a
long-term driver of commodity market volatility. For our sample period, however, the ADF, PP, and
KPSS tests consistently indicate that the GREA time series is non-stationary, and conducting Granger
causality tests with non-stationary variables is likely to produce misleading results.
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commodity volatility (Nguyen & Walther, 2020). Studies of Pindyck & Rotemberg (1990)

and Gorton & Rouwenhorst (2006) show the close link of inflation to spot and futures

prices of raw materials.

We expect Financial variables to grasp effects from the financialization of commodity

futures markets as financial investors adjust their commodity trading positions based on

the performance of core financial asset classes such as equities (Cheng & Xiong, 2014). The

more financial investors engage in commodity markets, the stronger commodity returns

should be therefore influenced by variables representing key financial asset classes (Adams

et al., 2020). We use the S&P 500 (SPX) and the Cboe Volatility Index (VIX), that reflects

the markets expectations of near-term SPX volatility, to capture the stock market’s risk

and return. Cheng et al. (2015) find that during the great recession, financial investors

reduced their risk exposure in commodity futures markets in response to a soaring VIX.

Links between stock markets and commodities have been also documented in numerous

other studies.16 We also include the Investor Sentiment index (ISENT) from Baker &

Wurgler (2006) as Gao & Süss (2015) provide evidence that—next to fundamental and

equity variables—market sentiment contributes to the co-movement of commodity returns.

Uncertainty can affect commodity futures prices through different channels. Low

uncertainty indicates high confidence in the future, which ought to stimulate today’s

investments, whereas high uncertainty might raise the hedging demand of commercial

traders and cause firms to hold back investments.17 Through encouraging or hampering

investments, declining or rising uncertainty can cause changes in the industrial demand

for raw materials (Joëts et al., 2017). But uncertainty can also raise precautionary de-

mand, which has been identified as a driver of real crude oil prices found by Alquist &

Kilian (2010) and Cross et al. (2022). Results by Joëts et al. (2017) indeed suggest that

macroeconomic uncertainty has an impact on commodity prices that are strongly linked

to the global business cycle, such as industrial metals, energy and agricultural commodi-

16See Byrne et al. (2013); Büyükşahin & Robe (2014); Adams & Glück (2015); Basak & Pavlova (2016);
Andreasson et al. (2016); Zhang et al. (2017); Adams et al. (2020); Dinh et al. (2022), among others.

17See, for example, Dixit & Pindyck (1994) for a discussion of the effects of uncertainty on firms’ invest-
ment decisions.
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ties. Next to this fundamental channel, other authors, for instance Adams et al. (2020),

interpret effects from uncertainty variables on commodity prices in the sense of financial-

ization. They expect uncertainty to foster informational frictions and as Singleton (2014)

argues for the case of crude oil markets, informational frictions can incite speculation,

leading to futures prices deviating from their fundamental values. Likewise, Cheng &

Xiong (2014) identify informational frictions as the reason for surging futures prices of

many commodities before they collapsed in mid-2008. As uncertainty indicators cannot

be clearly assigned to either the fundamental or financial category, they form our third

class of potential drivers.

Irrespective of the channel through which uncertainty may induce commodity prices

to fluctuate, results of many studies support that they are related to various types of

uncertainty measures (e.g., Bakas & Triantafyllou 2018; Prokopczuk et al. 2019; Adams

et al. 2020; Nguyen & Walther 2020). The following measures form our set of uncer-

tainty variables, of which many but not all are employed in related previous work as well.

The indices of Macro (MUNC), Financial (FUNC) as well as Real Uncertainty (RUNC)

based on the work of Jurado et al. (2015) and Ludvigson et al. (2021) aim to quantify

the unpredictability of a wide range of macroeconomic (mostly real activity, price, and

financial), financial, and real activity variables, respectively. We also incorporate the

daily US Economic Policy Uncertainty (EPU) and the monthly Global Economic Policy

Uncertainty (GEPU) indices as proposed by Baker et al. (2016), that employ a keyword-

based search in newspaper articles to gauge the magnitude of policy-related economic

uncertainty. As Kilian (2008) points out, the prices of energy commodities in particular

are exposed to geopolitical events and military conflicts in the Middle East, or as recently

observed, in other energy exporting countries like Russia. This is, however, not limited to

energy commodities but can affect all raw materials of which a large portion of the world

market supply originates from only one or a few exporting countries. To capture such

effects, we use the recently proposed indices of Geopolitical Risk (GPR) from Caldara &

Iacoviello (2022) and Geopolitical Volatility (GEOVOL) from Engle & Campos-Martins
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(2020).18 While Caldara & Iacoviello (2022) follow a newspaper-based approach, Engle

& Campos-Martins (2020) associate geopolitical risk with common volatility shocks to

multiple financial time series. As both indices are relatively novel, they are not covered in

the literature on commodity drivers yet. Another traditional indicator of uncertainty is

given by the TED spread (TED) defined as the difference of the three-month USD LIBOR

rate and the three-month USD Treasury Bill rate.

Table 2 provides summary statistics for all variables in each category distinguished

by their data availability, which is either daily (HF) or monthly (LF).19 We use log-

differenced data except for ISENT, TBILL, and GSCPI, for which we use differences

due to the occurrence of negative values, GECON, which is stationary in levels, as well

as INFL and INFL that already express the (expected) year-on-year change in US CPI.

As Table 3 demonstrates, the vast majority of fundamental and uncertainty variables

is available at monthly frequency. To enable a more concise presentation of results, we

summarize information of monthly variables in the same category of drivers with their first

principal component (PC).20 This involves monthly fundamental (WIP, GECON, BDI,

STEEL, GSCPI, INFL, INFLE, CSENT), monthly financial (SPX, VIX, ISENT), and

monthly uncertainty (FUNC, MUNC, RUNC, TED, GEPU, GPR, GEOVOL) variables.21

The first PC of fundamental variables explains around 25% of their total variation. It

exhibits the highest correlation with the real activity measures GECON, WIP, BDI, and

STEEL. The variation in the SPX and VIX mainly contribute to the first financial PC,

which captures 53% of total variation. The first PC of uncertainty variables primarily

expresses changes in macro uncertainty while grasping around 33% of total variation in

the respective variables.22

18We are grateful to Susana Martins and Brian Reis for providing us with the GEOVOL time series.
19Descriptions and data sources of each variable can be found in the appendix (Table A.4).
20We also run the same analysis with individual variables and discuss outcomes in the results section.
21We aggregate daily data for variables that are similar to the monthly variables of the same category to

also include their information in the first PC of the respective group of LF drivers. This pertains to the
variables BDI, SPX, VIX, TED, and GEOVOL. Prior to monthly differencing, we temporally aggregate
the levels of these variables by their monthly means except for the SPX where we use monthly closing
prices as is common for financial price series.

22Please refer to Table C.16 and Figure C.6 in the Appendix for a more detailed description of the relation
of individual variables to their first PCs.
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Since only few measures can be retrieved on a daily basis, we do not employ PCs

for HF fundamental and uncertainty variables. The SPX and VIX are, however, highly

correlated and yield almost identical results in the Granger causality analysis. As for LF

drivers, we will thus present Granger causalities only for the first PC of daily financial

variables.

Table 2: Sample statistics of daily (HF) and monthly (LF) driver variables, 1998–2019
Obs. Mean Std.Dev. Min Max Skewn. Ex.Kurt. J.B. ADF PP KPSS

Fundamental

Daily (HF)
BDI 5739 −0.002 1.949 −12.072 13.658 0.093 5.060 0.000 −14.390∗∗∗ −1365.332∗∗∗ 0.059
TBILL 5739 −0.001 0.046 −0.810 0.740 −1.026 64.340 0.000 −17.679∗∗∗ −4140.216∗∗∗ 0.385∗

USDEER 5739 0.001 0.321 −2.279 2.020 0.063 3.483 0.000 −17.033∗∗∗ −5785.464∗∗∗ 0.213

Monthly (LF)
WIP 264 0.200 0.606 −3.265 1.842 −1.629 7.405 0.000 −5.130∗∗∗ −264.803∗∗∗ 0.101
GECON 264 −0.046 0.393 −2.203 0.885 −1.997 7.795 0.000 −3.688∗∗ −50.426∗∗∗ 0.097
BDI 264 0.024 19.436 −101.249 70.348 −0.657 3.889 0.000 −8.070∗∗∗ −162.775∗∗∗ 0.048
STEEL 264 0.319 4.477 −13.723 13.456 0.581 0.904 0.000 −6.543∗∗∗ −388.256∗∗∗ 0.034
GSCPI 264 0.004 0.318 −1.180 0.900 −0.375 0.988 0.000 −8.543∗∗∗ −245.771∗∗∗ 0.016
INFL 264 0.021 0.012 −0.020 0.054 −0.328 0.910 0.001 −4.300∗∗∗ −28.980∗∗∗ 0.590∗∗

INFLE 264 0.029 0.006 0.004 0.052 0.842 4.901 0.000 −3.649∗∗ −47.286∗∗∗ 0.407∗

CSENT 264 −0.011 4.925 −19.925 12.762 −0.384 1.194 0.000 −7.534∗∗∗ −218.613∗∗∗ 0.126
PC1 264 −0.000 1.412 −8.830 3.628 −1.977 9.073 0.000 −4.595∗∗∗ −123.741∗∗∗ 0.107

Financial

Daily (HF)
SPX 5739 0.021 1.170 −9.470 10.957 −0.241 8.490 0.000 −18.176∗∗∗ −5692.736∗∗∗ 0.156
VIX 5739 −0.010 6.712 −35.059 76.825 0.904 6.697 0.000 −20.292∗∗∗ −5152.573∗∗∗ 0.007
PC1 5739 0.000 1.319 −10.635 9.142 −0.551 4.566 0.000 −18.918∗∗∗ −5380.295∗∗∗ 0.061

Monthly (LF)
SPX 264 0.456 4.330 −18.564 10.231 −0.863 1.706 0.000 −5.842∗∗∗ −250.216∗∗∗ 0.160
VIX 264 −0.249 16.500 −37.925 71.918 1.198 3.161 0.000 −8.691∗∗∗ −217.326∗∗∗ 0.022
ISENT 252 −0.004 0.178 −0.751 0.720 −0.395 3.871 0.000 −3.730∗∗ −261.756∗∗∗ 0.040
PC1 264 −0.000 1.262 −2.842 6.198 1.116 2.727 0.000 −7.086∗∗∗ −214.971∗∗∗ 0.079

Uncertainty

Daily (HF)
TED 5737 −0.025 8.199 −71.846 74.194 −0.209 9.813 0.000 −18.542∗∗∗ −5680.713∗∗∗ 0.046
EPU 5739 0.017 60.209 −314.833 321.562 0.089 1.298 0.000 −27.491∗∗∗ −6116.752∗∗∗ 0.002
GEOVOL 4748 −0.218 11.224 −113.531 101.026 −0.438 12.450 0.000 −17.792∗∗∗ −4669.278∗∗∗ 0.007

Monthly (LF)
FUNC 264 0.082 3.314 −9.143 9.933 0.277 0.445 0.062 −6.069∗∗∗ −100.028∗∗∗ 0.075
MUNC 264 0.110 2.272 −5.550 8.284 0.487 1.066 0.000 −4.870∗∗∗ −74.841∗∗∗ 0.069
RUNC 264 0.109 2.140 −5.444 7.775 0.329 0.977 0.000 −5.483∗∗∗ −118.481∗∗∗ 0.072
TED 264 −0.212 30.849 −82.313 111.493 0.585 1.727 0.000 −6.608∗∗∗ −234.362∗∗∗ 0.043
GEPU 264 0.402 17.721 −45.853 70.585 0.529 1.143 0.000 −8.116∗∗∗ −249.979∗∗∗ 0.067
GPR 264 0.299 33.228 −102.940 175.819 0.550 2.922 0.000 −7.121∗∗∗ −269.733∗∗∗ 0.033
GEOVOL 234 −0.704 46.683 −176.673 150.359 −0.298 1.430 0.000 −9.864∗∗∗ −261.767∗∗∗ 0.028
PC1 264 0.000 1.499 −6.819 3.593 −0.667 1.744 0.000 −5.428∗∗∗ −109.754∗∗∗ 0.078

Notes: Summary statistics are provided for 100×log-differenced data except for GECON, INFL, and INFLE (in levels) as well as TBILL,
GSCPI, and ISENTI (in differences). The data spans the period of 1998:1–2019:12 except for ISENTI (1998:1–2018:12) and GEOVOL
(2000:7–2019:12). The first principal component (PC1) of each subset of drivers is calculated based on those drivers for which data
was available over the entire period. Asterisks indicate the rejection of the null hypothesis that the time series has a unit root (ADF,
PP) or is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP),
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for stationarity.

4. Results

We start our analysis by testing for Granger non-causality from potential HF and

LF drivers to commodity futures using data for the full sample period. To account for

possible time-varying effects, we divide our sample into three subsamples and repeat

Granger causality tests. For LF drivers, we encounter significant discrepancies in the

results between our MF approach and the traditional LF approach involving the temporal
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aggregation of commodity returns to the common lower frequency. In the second part of

our results section, we compare MF and LF approaches in an out-of-sample VAR-based

trading study.

4.1. In-sample Granger causality analysis

We evaluate p-values of pairwise Granger causality tests based on bivariate VAR mod-

els. For monthly-available LF drivers, the stacked vector in the MF-VAR model (1)

reads: X(τL) = [xH(τL, 1), xH(τL, 2), xH(τL, 3), xH(τL, 4), xL(τL)], where the HF vari-

able, xH(τL, kH), denotes the log return of a continuous front-month commodity futures

contract for week kH in month τL. The LF variable x(τL) represents a fundamental,

financial, or uncertainty indicator that we consider ex-ante as a potential common driver

of commodity returns. In case of daily-available HF drivers, the MF-VAR from (1) con-

denses to a standard VAR model. We call this a HF-VAR model as both variables are

used at the highest available frequency (daily) and X(τL) = [xH,1(t), xH,2(t)] with m = 1.

For the full sample of 1998–2019, Figure 2 depicts rejections of the null of non-causality

from potential drivers to commodity futures up to the 10% level, which reads:23

(1) HF Granger causality in case of (daily-available) HF drivers:

H0(h = 1) : Driver (xH,2) 91 Commodity (xH,1).

(2) MF Granger causality in case of (monthly-available) LF drivers:

H0(h = 1) : Driver (xL) 91 Commodity (xH).

Since the forecasting horizon, h, in the HF case (1) is one-day-ahead and one-month-

ahead in the MF case (2), we examine return drivers in both a short-term and longer-term

perspective. We also include results of Granger causality tests for the six-equally weighted

commodity portfolios and the common return factor as robustness checks.24

23The p-values of MF and HF Granger causality tests over the full sample are provided in the Appendix
(Tables C.17, C.21). Next to the results for the first PCs of the drivers, Table C.21 also provides
p-values of Granger causality tests for non-aggregated variables.

24In total, we present p-values of 430 pairwise Granger causality tests. However, we are not concerned
about accumulation of alpha errors as single significances do not draw our attention. For our key
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Figure 2: Bootstrapped p-values of pairwise Granger causality tests for the null of non-causality from
potential HF and LF drivers to commodity futures at the prediction horizon h = 1, which is daily for HF
and monthly for LF drivers. Granger causality tests are based on bivariate MF-VAR (HF-VAR) models
using weekly (daily) commodity returns, i.e., m = 4 (m = 1) for monthly (daily) variables. The period
covers the full sample from 1998–2019, provided that data of the respective driver-commodity pair is
available over this period. Shadings indicate excluded pairs for which data is available for less then half
of the period.

At first, we turn our attention to fundamental variables. In line with expectations,

monthly measures of global economic activity, which are most represented by the LF

fundamental PC1, appear to be “common” drivers of a large subset of commodity futures

across different types of commodities. This corresponds to findings of Alquist et al. (2020)

and Delle Chiaie et al. (2022) showing that commodity spot prices are commonly driven by

aggregate demand shocks related to changes in economic activity. We can observe the most

pronounced Granger causalities for energies, industrial metals, and precious metals except

gold. This seems not surprising since most of the demand for these commodities stems

from industrial usage and their (futures) prices should be, therefore, strongly influenced by

changes in economic activity. This also includes the precious metals palladium, platinum,

and—despite being classified as an investment good—also silver, which are primarily used

as industrial commodities, particularly in the automotive and electrical sectors. Gold, in

contrast, is predominantly considered an investment asset and is, thus, less connected to

findings, we solely focus on cases where one indicator Granger-causes at least a considerable subset of
commodity futures.
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the global business cycle. Agricultural commodities are only partly driven by fundamental

variables, whereas we find more Granger causalities by looking at single drivers instead

of PCs, particularly from GECON to the majority of grains. Granger causalities from

HF fundamental variables to commodity returns are detected much less frequently. While

very few Granger-causal relationships originate from T-BILL and USDEER, the latter

is Granger-caused by the futures returns of nearly all commodities.25 The null of non-

causality for the BDI—as a HF indicator of real activity—is also rejected less frequently

and less strongly compared to its LF counterparts. This could be due to rather noisy

daily fluctuations of the BDI compared to corresponding monthly indicators, that seem

to better convey the relevant information about real activity for commodity returns.

This finding reverses when we shift our focus to financial variables, which Granger-

cause daily returns of the majority of softs, energies, industrial metals, precious metals,

and soybean-related grains. On the contrary, we find almost no Granger causalities based

on LF financial indicators. The absence of monthly Granger causality suggests that past

monthly observations of financial variables do not contain any information new to the

weekly commodity return series. Combined with the significant HF Granger causalities,

this indicates that commodity futures prices already absorb the information from stock

markets on a day-by-day basis. Our results suggest that financial variables are important

drivers of daily commodity returns, presumably reflecting the influence of financial mar-

kets on commodity futures markets during their financialization. In the next section, we

will zoom into different financialization phases to better control these effects.

Results for uncertainty variables depend on the group of commodities and the uncer-

tainty measure. Many agriculturals and industrial metals are Granger-caused by the first

PC of monthly uncertainty indicators. Similar patterns can be observed on a daily level

from EPU to livestock futures and from GEOVOL to some industrial metals. Moreover,

changes in GEOVOL appear to affect returns of energy commodities as well as gold and

25Likewise, Andreasson et al. (2016) find linear causation from commodity futures returns to a trade-
weighted US-Dollar index. This compares with findings of Chen et al. (2010) regarding exchange rates
of other commodity-exporting countries. However, they provide evidence that even though commodity
prices Granger-cause exchange rates in-sample, they have only weak out-of-sample forecasting ability.
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silver. TED, in contrast, exhibits almost no Granger-causal relations. As we were arguing

previously, these findings reflect that changes in uncertainty can affect commodity prices

through both a fundamental and a financial channel. GEOVOL links financial market

reactions to geopolitical events and, thereby, encompasses both perceptions. From the

perspective of financial market uncertainty, an increase in GEOVOL should entail infor-

mational frictions and, thereby, inciting the speculative behavior of financial investors in

commodity markets. This is likely to affect mainly commodities that are largely held for

investment purposes such as gold and silver, or those heavily weighted in popular com-

modity indices as is the case for energy commodities. Furthermore, based on their status

as traditional safe havens (see, e.g., Baur & McDermott 2010; Klein 2017), demand for

gold and silver as part of investment portfolios should increase with rising risk aversion

of investors during times of higher uncertainty.26 On the other hand, GEOVOL reflects

uncertainty emanating from political and military events. That might, beyond the influ-

ence of financial players, explain observed Granger causalities to energy commodities in

conjunction with tensions in the Middle East and other energy-exporting countries. Since

the PC of LF uncertainty measures primarily expresses monthly changes in macroeco-

nomic uncertainty, detected Granger causalities to softs and especially industrial metals

might reflect the longer-term impact uncertainty exerts on commodity prices through a

reduction in investment activity. That agricultural, energy, and industrial commodities

are partly driven by uncertainty is in line with findings of, i.a., Joëts et al. (2017).

Overall, we find no single driver that affects the entire cross-section of commodity

futures employed in this work. Yet, our results indicate that fundamental and financial

variables in particular, but also uncertainty have significant effects on the futures returns

of many different types of commodities. While monthly fundamentals seem more impor-

tant than daily indicators, detected Granger causalities indicate that financial variables

26These findings also hold for our monthly GEOVOL measure, where we, additionally, observe Granger
causality to Platinum, which can also offer safe haven properties (e.g., Klein 2017; Li & Lucey 2017).
While we find no effects from our daily US-based measure of EPU to gold returns, policy-related
economic uncertainty measured on a monthly and global basis (represented by GEPU) Granger-causes
weekly Gold returns, which supports our argumentation regarding the linkage of uncertainty and gold.
Economic policy uncertainty has been already identified numerous times as a determinant of gold prices,
e.g., in Li & Lucey (2017).
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drive commodity returns on a daily basis. Regarding the time horizon of Granger causal-

ity, results are not as clear-cut for uncertainty variables reflecting that uncertainty can

affect commodity prices through both fundamental and financial motives. These results

also hold for the common return factor, that was constructed to capture the co-movement

of commodities, and is Granger-caused by HF financial, LF fundamental, and both HF

and LF uncertainty variables.27 However, we find Granger causalities slightly more often

and more consistent to energies and metals in contrast to agricultural commodities. The

portfolio formed of livestock commodities is the only portfolio that is neither Granger-

caused by HF financial nor by LF fundamental variables. In terms of correlations, livestock

commodities are also the least related to the common factor suggesting that they do not

contribute significantly to the overall co-movement of commodity prices.

Although our results suggest that HF commodity futures prices entail information

from daily stock prices, especially monthly indicators of real economic activity appear to

contribute further valuable information on the evolution of commodity prices that might

be not factored in stock prices. Our findings also hold in multivariate VAR models.

4.2. Time-variation in return drivers

Before the early 2000s, commodities used to exhibit low correlations to each other and

to equity markets, which attracted financial investors through potential diversification

benefits.28 A large body of the literature claims that the increased exposure gained

by financial investors resulted in the financialization of commodity futures markets and

fundamentally changed their behavior (see, e.g., Cheng & Xiong, 2014). As our full

sample period comprises different stages of the financialization, we now split our sample

into subperiods accounting for the distinct behavior of commodity prices over time and a

possible associated time-variation of the linkages to their return drivers.

According to current perceptions in the literature (Büyükşahin & Robe, 2014; Adams

& Glück, 2015; Adams et al., 2020), financialization commenced around 2004 with rising

open interest and net long positions in commodity futures yielding increased prices and

27We obtain robust results for a common factor formed of non-fuel commodities only.
28See, e.g., Erb & Harvey 2006; Gorton & Rouwenhorst 2006; Tang & Xiong 2012; Adams & Glück 2015.
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volatility, as well as tightened correlations between individual commodities and to eq-

uity markets (Basak & Pavlova, 2016). The co-movement among commodities and with

other financial asset classes exacerbated with the onset of the Global Financial Crisis

in 2008 and remained particularly high over the following years (Büyükşahin & Robe,

2014; Adams & Glück, 2015; Le Pen & Sévi, 2018). However, Adams et al. (2020) argues,

that commodity markets have entered a period of de-financialization around 2014 with

a dissipating influence of financial factors—albeit still different from pre-financialization

levels. This is also supported by the results of other studies such as Aromi & Clements

(2019) and Bianchi et al. (2020). Based on Adams et al. (2020), Figure 3 illustrates the

different stages of financialization including pre-financialization (1998–2013), emerging

financialization (2004–2007), the core period of financialization beginning with the out-

burst of the Global Financial Crisis (2008–2013), and de-financialization (2014-2019). We

summarize the emerging financialization and the following period involving the Global

Financial Crisis to ensure a sufficient number of monthly observations in each subsample.

Figure 4 presents p-values of HF and MF Granger causality tests over the financialization

subsamples.29

The commodity futures market seems rather segmented during pre-financialization as

we do not find any variable commonly Granger-causing the majority of futures returns.

This observation matches findings of the literature on commodity co-movement, which

indicate that the co-movement among different commodities only began to increase in

the early years of the century (Ohashi & Okimoto, 2016; Delle Chiaie et al., 2022). HF

financial variables mostly affect industrial metals as well as gold and silver. Similar

causalities are detected for LF financial variables. Following our arguments from the

previous section, this is a sign that HF commodity prices did not reflect all the information

29Subsample statistics for commodity futures and potential drivers can be found in the Appendix (Tables
C.6–C.11 and C.13–C.15). Note that stationary tests show equivocal results for some drivers, i.e.,
we cannot unambiguously determine if the variables are stationary over the subsamples. GECON
(1998–2003) and INFL (2014–2019) are non-stationary as indicated by all three tests. This might
imply that supposedly causal links could be of spurious nature. One way to get around this issue
might be provided by using MF Granger causality tests for processes that are possibly cointegrated as
introduced by Götz & Hecq (2019). Tables C.18–C.24 provide p-values of MF and HF Granger causality
tests over each of the subsamples including results for non-aggregated drivers.
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Figure 3: Different stages of the financialization of commodity futures markets illustrated by cumulative
returns of the S&P 500 Total Return and the S&P GSCI Total Return indices adapted from Adams et al.
(2020). Data is obtained from Refinitiv Datastream.

inherent in daily stock prices, before financial investors increasingly engaged in commodity

markets. Most of the energy futures and some industrial metals as well as platinum and

silver are driven by changes in real activity as indicated by our LF fundamental PC.

For industrial metals, this linkage is also confirmed in the short-run perspective with

linear causation from BDI. LF uncertainty measures mainly affect softs and few industrial

commodities like tin, zinc, and Brent. Also GEOVOL Granger-causes Brent, gasoil, and

heating oil, while other HF uncertainty measures show almost no significant causalities.

That energy commodities are affected by uncertainty, especially GEOVOL, might be

traced to the 9/11 terrorist attacks in 2001 and the subsequent “War on Terror” with the

invasion of Iraq by the U.S. military in 2003.30

With increased financial investors’ activity during financialization, linkages between

stock markets and commodity futures intensified as indicated by strong Granger causal-

ities from HF financial variables to the majority of commodities except for livestock

contracts. Consistent with the full sample, we cannot observe most of these Granger

30This is supported by Granger causalities from our LF measure of geopolitical risk (GPR) to all en-
ergy commodities.The temporally aggregated LF measure of GEOVOL shows, in contrast, no Granger
causalities to any of the energy commodities. This is probably due to the limited number of monthly
observations of the GEOVOL time series during the first subsample as the series starts in July 2000.
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Panel A. Pre−Financialization (1998−2003)
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Panel B. Financialization (2004−2013)
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Panel C. De−Financialization (2014−2019)
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Figure 4: Bootstrapped p-values of pairwise Granger causality tests for the null of non-causality from
potential HF and LF drivers to commodity futures at the prediction horizon h = 1, which is daily for HF
and monthly for LF drivers. Granger causality tests are based on bivariate MF-VAR (HF-VAR) models
using weekly (daily) commodity returns, i.e., m = 4 (m = 1) for monthly (daily) drivers. Shadings
indicate excluded pairs for which data is available for less then half of the respective subsample period.
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causalities from LF financial variables. Next to HF financial, also LF fundamental vari-

ables drive the major part of soft and energy commodities, industrial metals as well as

soybeans, soybean oil, palladium, and platinum. This finding corresponds to Bhardwaj

et al. (2016) arguing that the business cycle caused increasing commodity correlations

since 2004. Likewise, Delle Chiaie et al. (2022) find that changes in global demand during

the Global Financial Crisis, covered by this subsample, affected a wide range of com-

modity spot prices more than usual. As this period does not only entail the Global

Financial Crisis but also the ensuing European sovereign debt crisis and severe economic

downturns, we detect monthly Granger causalities primarily from macroeconomic uncer-

tainty to industrial metals and some agricultural and energy commodities. Except for

agricultural commodities, this finding is corroborated by the uncertainty indicator GEO-

VOL. Surprisingly, TED and EPU seem to were rather unimportant for daily commodity

returns.

Coinciding with the idea that commodity markets entered the de-financialization

around 2014, the number of daily Granger causalities from financial variables declined

substantially in this period. The bulk of detected links to the HF financial PC now nar-

rows down to industrial metals (aluminium, cobalt, copper, zinc) and precious metals

with industrial usage (palladium, platinum, silver). Interestingly, we find that instead

TBILL and TED influence daily returns of multiple soft and livestock commodities, in-

dustrial and precious metals, as well as Brent, gasoil and WTI over the last subsample.

Astonishingly, Granger causalities from the first PCs of LF fundamental and uncertainty

variables dissipated almost entirely, suggesting that commodity futures returns are much

less sensitive to changes in real activity and macro uncertainty during this recent period.

Results for non-aggregated fundamental and financial variables show only few linkages to

certain groups of commodities. While GECON and GEPU cause some of the industrial

metals, the uncertainty measures FUNC, GEPU, and GEOVOL show Granger causalities

to energy commodities.31 Compared with previous periods, we observe more Granger

31INFL Granger-causes the most commodities out of the LF variables during de-financialiaztion including
softs, grains, livestock, industrial, and precious metals. We do not pay attention to these findings,
however, since all three statistical tests indicate that the INFL series is non-stationary over the last
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causalities for monthly SPX returns mainly to softs, industrial, and precious metals.

In summary, we find the following by splitting our sample into financialization sub-

periods. (1) Relationships between drivers and commodity futures fundamentally change

over time and our previous full sample results do not hold in each of the subsamples.

(2) We find less and statistically weaker Granger causalities during the periods of pre-

financialization and de-financialization compared to the financialization period. (3) Most

of the Granger causalities from the LF variables identified during financialization and

partly pre-financialization vanished over the course of de-financialization. Our findings

also hold for the common factor in commodity returns underpinning the transferability

of our results to the drivers of the co-movement of commodity futures prices.

4.3. Out-of-sample trading backtest

Our in-sample analysis suggests that monthly-updated indicators of global economic

activity and uncertainty can contain useful information for the development of commodity

futures prices. Since it is common practice in the majority of published research to

temporally aggregate commodity prices to the data frequency of macroeconomic variables,

we also tested for Granger causalities based on monthly (LF) commodity returns. For

many pairs of commodities and drivers, this would have guided us to other conclusions

in the previous two sections, as we find substantial differences in LF and MF Granger

causalities in accordance with Ghysels et al. (2016) and Bevilacqua et al. (2019). For

instance, the variable MUNC Granger-causes 31 out of 43 commodity return series in the

LF setting at a 10% level given data from 1998 to 2019.32 This compares with only 19

rejections using our MF methodology. Results from the literature on MIDAS indicate that

MF approaches generally are not only preferable to uncover true causalities (Ghysels et al.,

2016) but also to gain significant forecast improvements.33 The purpose of this section

period, which can distort empirical findings.
32Table C.25 shows the proportion of rejections of the null hypothesis of non-causality relative to the

total number of bivariate Granger causality tests per driver.
33The majority of published research in the field of MIDAS deals with the forecasting of LF variables

using HF information (Andreou et al., 2011) but there is also evidence that LF variables can be used
to improve predictions of HF series as indicated by results of Foroni et al. (2018) or the literature on
volatility modeling with MIDAS.
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is to investigate whether this statistical significance is also accompanied by economic

significance. To provide evidence to this question, we implement a VAR-based trading

backtest and compare trading profits generated from MF-VAR and LF-VAR models.

Our trading strategy is straightforwardly constructed based on directional VAR return

predictions of the S&P GSCI total return index (GSCI) that reflects the performance of

investing in a series of liquid commodity futures.34 We compare the trading performance

of an MF-VAR that uses weekly GSCI returns together with monthly observations of

potential driver variables against a traditional LF-VAR estimated only from monthly

data. Besides, we examine how the combination of daily GSCI returns with LF drivers,

and thereby even more information at the expense of parameter proliferation, changes

the performance of the MF model.35 We repeat the trading backtest for the three types

of VAR models and for different sets of monthly drivers, where variable set S either

comprises all variables, only fundamental, only financial, or only uncertainty variables.

The implemented trading rules are as follows:

(1) On the last day of a given month, we fit bivariate VAR(1) models for each variable

of set S to the data of the last 50 months corresponding to a rolling window of 1,000

trading days.

(2) We obtain our trading signal by averaging over one-month-ahead GSCI log return

forecasts that are generated by the bivariate models.

(3) We enter a long position if the average predicted return for the next month is

positive and exit an open long position if the average predicted return is negative,

i.e., we hold cash over the next month. If the return prediction has the same sign

on two consecutive months, positions remain unchanged.

Profits are fully reinvested. Transaction costs are not taken into account but should

merely play a minor role as trades are at most executed on a monthly basis.36

34We choose the GSCI as the trading instrument since the index is investable through liquid and highly
capitalized ETFs and ETNs. Using an index instead of futures also allows to calculate returns that are
independent of margin requirements.

35Sample statistics for the GSCI at the three data frequencies can be found in the Appendix (Table C.26).
36Note that for some drivers this strategy uses “pseudo” out-of-sample forecasts as, e.g., monthly steel

production or inflation is not readily available by the end of the month. In real world applications, one
would need to rely on nowcasts of these variables for the last month of the rolling window and might
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A popular method for evaluating the directional predictive accuracy of forecasts is

given by the success ratio (see, e.g., Degiannakis et al. 2022) stating the proportion of

months for which the sign of the return was correctly predicted. The success ratio on

its own, however, does not allow to draw conclusions about the profitability of a trading

strategy. To test the significance of trading returns, we rely on the excess profitability

(EP) test of Anatolyev & Gerko (2005) that takes both into account: the sign of the

return forecast and the magnitude of the trading strategy’s return that was either earned

or avoided due to the forecast-based long or short signal. Let yτ = sign(r̂τ)rτ, where rτ

denotes the actual discrete return of month τL and sign(r̂τ) is −1 if the predicted return

averaged over the respective bivariate VAR models for month τL, r̂τ, is negative and +1

otherwise.37 In order to test the null hypothesis of conditional mean independence, i.e.,

E[rτ+1|`(τ)] = const., the authors propose the following Hausman-type test statistic:

AT −BT√
v̂ar(AT −BT )

a∼ N(0, 1),

where AT = T−1
∑T

τ=1 yτ represents the mean monthly strategy returns including omit-

ted negative and missed out positive returns, BT =
(
T−1

∑T
τ=1 sign(r̂τ)

)(
T−1

∑T
τ=1 rτ

)
,

v̂ar(AT −BT ) = 4T−2pr̂(1−pr̂)
∑

τ(rτ− r̄)2, and pr̂ = 0.5
(
1+T−1

∑
τ sign(r̂τ)

)
. If the null

hypothesis holds, the actual strategy’s mean return, AT , is not significantly greater than

the mean return generated by buy and sell signals that appear arbitrarily with ex-post

probabilities of buys and sells induced by the trading strategy that is tested.

We expect the trading performance to vary over time as relationships between com-

modities and their drivers also change. If encountered differences in MF and LF Granger

causalities are indeed due to spurious (non-)causality provoked by temporal aggregation

(Ghysels et al., 2016), a trading strategy that relies on MF-VAR return predictions should

outperform the same strategy based on LF-VAR forecasts. The MF-VAR using weekly

GSCI returns should, moreover, produce higher (risk-adjusted) returns than the MF-VAR

adjust positions based on updated forecasts as soon as the variable is officially published.
37Please refer to Appendix B for a description on how we obtain return forecasts of the HF variable in

an MF-VAR.
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with daily returns as the latter is expected to suffer from parameter proliferation. Annual-

ized return figures, the success ratio and its significance based on the non-parametric test

of directional accuracy suggested in Pesaran & Timmermann (1992)38, as well as results

of the EP test are presented in Table 3.

Table 3: Trading results for VAR-based directional forecasts of the S&P GSCI
Annualized return Annualized Sharpe ratio Success ratio Mean monthly returns (AT )

m = 1 m = 4 m = 20 m = 1 m = 4 m = 20 m = 1 m = 4 m = 20 m = 1 m = 4 m = 20

All 0.624 8.115 2.939 0.042 0.573 0.187 0.523 0.565∗∗ 0.570∗∗ 0.122 1.308∗∗∗ 0.526
Fundamental 0.555 8.122 3.299 0.041 0.590 0.213 0.495 0.570∗∗ 0.561∗ 0.076 1.301∗∗∗ 0.578∗

Financial 1.359 7.198 3.098 0.088 0.488 0.198 0.495 0.537 0.575∗∗ 0.259 1.179∗∗∗ 0.550
Uncertainty 1.988 6.831 1.000 0.137 0.475 0.061 0.537 0.547 0.561∗ 0.339 1.113∗∗∗ 0.226

Notes: This table presents the results of a trading strategy based on one-month-ahead directional return forecasts of the S&P
GSCI index, which is also used as the trading instrument. Monthly return forecasts used as long and short signals are obtained
by averaging the monthly return forecasts of the bivariate VAR models of either all LF driver variables, only fundamental, only
financial, or only uncertainty-related LF driver variables. Trading positions are opened and exited at the close. Bivariate VAR(1)
models are estimated over a rolling window spanning 50 months with daily (m = 20), weekly (m = 4), and monthly (m = 1)
GSCI return data as well as monthly observations of the respective driver variable. The sample period lasts from 1998:1–2019:12
such that the first trading signal determining the position for the next month is generated at the end of 2002:2. Return figures
(annualized return and AT ) are stated in percent. Note that AT is not a return in the conventional sense as it also takes avoided
negative and foregone positive returns into account. The Sharpe ratio is calculated for a zero risk-free rate. Transaction costs are
not taken into account. Asterisks denote the rejection of the null hypothesis of the non-parametric test of directional accuracy
for the success ratio (Pesaran & Timmermann, 1992) and the excess profitability test for AT (Anatolyev & Gerko, 2005) at the
10%∗, 5%∗∗, and 1%∗∗∗ level, respectively.

From Table 3 we can deduce that both annualized returns and annualized Sharpe ratios

are consistently and substantially higher for the MF-VAR estimated from weekly GSCI

returns (MF-VARm=4) compared to the MF-VAR using daily returns (MF-VARm=20)

and the LF-VAR (LF-VARm=1). Averaging return forecasts over bivariate MF-VAR4

models with fundamental drivers yields an annualized return (Sharpe ratio) of 8.12%

(0.59) as opposed to merely 0.56% (0.04) for the LF-VAR1, and 3.30% (0.21) for the

MF-VAR20. In case of the MF-VAR4, fundamental driver variables deliver the highest

risk-adjusted performance, closely followed by the backtest that takes return predictions

from all variables into account. Relying on uncertainty indicators results in the least risk-

adjusted performance, which is, however, still remarkably superior to the benchmark VAR

models. According to the EP test, mean returns are both positive and highly significant

38For the success ratio SR = T−1
∑T

τ=1 I{rτr̂τ > 0}, where I{·} is the indicator function that is one if
the condition in curly brackets is true and zero otherwise, Pesaran & Timmermann (1992) suggest the
following Hausman-type test statistic:

SR− SR∗√
v̂ar(SR)− v̂ar(SR∗)

a∼ N(0, 1),

where SR∗ = PrPr̂+(1−Pr)(1−Pr̂) is the estimated probability that rτr̂τ > 0, Pr = T−1
∑T

τ=1 I{rτ >

0}, Pr̂ = T−1
∑T

τ=1 I{r̂τ > 0}, v̂ar(SR) = T−1SR∗(1 − SR∗), and v̂ar(SR∗) = T−1(2Pr − 1)2Pr̂(1 −
Pr̂) + T−1(2Pr̂ − 1)2Pr(1− Pr) + 4T−2PrPr̂(1− Pr)(1− Pr̂).
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in case of MF-VAR4 return predictions across all sets of driver variables. The MF-VAR20

yields significant returns at the 10% level merely when the model includes fundamental

drivers. The LF-VAR1 is not able to produce significant returns at all. In contrast, success

ratios differ only slightly and are mostly even higher for the MF-VAR20 compared to the

MF-VAR4. On average, the MF-VAR4 model variants achieve 55.49% correct directional

return predictions, which is higher than 51.29% for the LF-VAR1, but also slightly less

than 56.66% in case of the MF-VAR20. The far higher and significant monthly strategy

returns from the EP test, hence, suggest that the MF-VAR4 outperformance does not

stem from more frequent correct directional return forecasts, but from more accurate

directional forecasts of relatively high positive and negative GSCI returns.

The upper panel of Figure 5 depicts the trading performance over time with cumu-

lative returns of the VAR-based strategies for each set of drivers relative to a GSCI

buy-and-hold benchmark. Over the full trading period, all VAR models beat the passive

buy-and-hold investment, that yields a negative annualized return of −0.54%. However,

at the beginning of the trading period, all VAR-models lagged behind the buy-and-hold

investment when commodity prices rapidly climbed up during the first years of finan-

cialization until the GSCI reached its peak in 2008. While the index crashed with the

outburst of the Global Financial Crisis, most VAR models issued sell signals after prices

began to shrink and thereby avoided sharper losses. Thereafter, the MF-VAR4-based

strategy strongly outperformed the buy-and-hold strategy and the other VAR-models.

The superior trading performance attained by using information from weekly instead of

monthly aggregated GSCI returns is not limited to the full sample period as the lower

panel of Figure 5 demonstrates by plotting the 12-month rolling excess returns of the

MF-VAR4 over the LF-VAR1.

Whether the higher trading profits from MF-VAR4 return forecasts are due to bet-

ter capturing the nexus of GSCI returns and external return drivers, or due to better

accounting for the interdependencies among lagged GSCI returns, depends on the time

period. As we know from the Granger causality analysis, dependencies of commodity

returns on fundamental, financial, and uncertainty indicators are not constant over time.
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Figure 5: Cumulative returns relative to buy-and-hold (upper panel) and 12-month rolling excess returns
of MF-VAR (m = 4) over LF-VAR (m = 1) on a monthly basis (lower panel) for trading the S&P GSCI
based on averaged one-month-ahead directional return forecast from bivariate VAR models. Shadings
in the lower panel indicate the following periods: Pre-Financialization (1998–2003), Emerging Finan-
cialization (2004–2007), Global Financial Crisis (2008–2013), and De-Financialization (2014–2019). The
trading period runs from the end of 2002:2 to 2019:12.

Likewise, the drivers’ contribution to the trading performance of our model are different

across drivers and time. Using forecasts from an MF-VAR4 that is estimated only from

GSCI returns without including any driver shows, that periods in which external variables

improve returns alternate with periods in which their inclusion has a detrimental or no

effect on directional GSCI return predictions.39

In sum, our findings from the trading application are in line with expectations. They

emphasize the adverse VAR model performance coming with either temporal aggregation

and disregarding HF information in an LF environment or parameter proliferation in an

MF model where the frequency mismatch becomes too large. The outcome of the trading

study further supports the conclusion on common commodity drivers gained from the

39We present relative cumulative returns and 12-month rolling excess returns of the MF-VAR4 strategy
over an equivalent MF-VAR that does not encompass the LF drivers in the appendix (Figure C.7).
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in-sample analysis. We cannot identify variables that drive the returns across a large

cross-section of commodity futures consistently over time.

5. Conclusion

Previous studies on the return drivers of commodities or their co-movement faced

either of two difficulties: (1) They needed to aggregate daily to monthly return data to

match the frequency of monthly macroeconomic variables, thereby disregarding valuable

information; or (2) they could only use daily or weekly drivers and therefore neglected

important variables usually available at monthly frequency.

We evade these problems by using a mixed-frequency approach to study the effects of

monthly drivers on higher-frequency returns. In particular, we examine potential funda-

mental, financial, and uncertainty indicators. We find that most commodity futures are

driven by real economic activity on a monthly basis and by financial variables on a daily

level. The relation, however, does not hold over time. While most of the effects are visible

during the period of financialization (2004-2013), we encounter dissipating linkages in the

period afterward. In an out-of-sample analysis, we show that using these insights together

with mixed-frequency models results in superior trading performance.

Our study adds to the literature on commodity futures by exploring their time-varying

relation to a broad range of potential fundamental, financial, and uncertainty-related

variables that could cause joint price fluctuations. In addition, we contribute to the

literature on MIDAS by presenting the economic benefits of utilizing mixed-frequency

models in the commodity futures space.

This study uncovers new research opportunities for commodities and their co-movement.

One limitation of our study is that we only use pairwise linear Granger causality tests

based on bivariate VAR models. Hence, we might oversee potential non-linearities or

causality chains. Also, we did not specifically focus on modeling the co-movement among

commodities and its causes. It might be interesting to revisit the findings of related litera-

ture using mixed-frequency methodologies as already mentioned by Le Pen & Sévi (2018).

Lastly, we expect that the economic repercussions of the COVID-19 pandemic and the
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Ukraine war again led to major shifts in the linkages of commodity markets and their

drivers, which is certainly worth investigating.
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Appendix A. Variable definitions

Table A.4: Variable definitions
Variable Definition Frequency Data source

BDI Baltic Dry Index published by the London Baltic
Exchange. Reflects costs in dry bulk cargo shipping

Daily Refinitiv Datastream

CSENT Consumer sentiment index published by the University of
Michigan

Monthly http://www.sca.isr.
umich.edu

EPU US Economic Policy Uncertainty by Baker et al. (2016).
Measures US policy-related economic uncertainty based on
US newspaper coverage of articles related to economic
policy uncertainty

Daily https://www.
policyuncertainty.com/
index.html

FUNC Financial Uncertainty by Jurado et al. (2015) and
Ludvigson et al. (2021). Measures uncertainty based on
the predictability of financial series

Monthly https://www.
sydneyludvigson.com/

GECON Global Economic Conditions by Baumeister et al. (2020)
measured based on 16 indicators related to energy demand
such as real economic activity, uncertainty, financial
indicators, transportation, expectations

Monthly https://sites.google.
com/site/
cjsbaumeister/research

GEOVOL Measure of Geopolitical Volatility from Engle &
Campos-Martins (2020) based on common volatility
shocks across different financial assets induced by political,
regulatory, and military events as well as terrorism and
natural disasters

Daily Data kindly provided by
Susana Martins and
Brian Reis (https:
//vlab.stern.nyu.edu/)

GEPU Global Economic Policy Uncertainty by Baker et al.
(2016) measures as the GDP-weighted average of 21
country-specific EPU indices that measure policy-related
economic uncertainty based on national newspaper
coverage of articles related to economic policy uncertainty

Monthly https://www.
policyuncertainty.com/
index.html

GPR Geopolitical risk by Caldara & Iacoviello (2022). Measures
geopolitical risk based on the number of geopolitical event-
or risk-related newspaper articles

Monthly https://www.
matteoiacoviello.com/
gpr.htm

GSCPI Global Supply Chain Pressure Index by the Federal
Reserve Bank of New York. Indicates disruptions of global
supply chains by combining information from multiple
variables associated with supply chains and transportation
cost

Monthly https://
libertystreeteconomics.
newyorkfed.org

INFL YoY log difference in US CPI (seasonally adjusted) Monthly https://www.bls.gov/
INFLE 12 months inflation expectation of consumers published by

the University of Michigan
Monthly http://www.sca.isr.

umich.edu
ISENT Investor Sentiment index by Baker & Wurgler (2006) that

gauges sentiment based on six equity-related components
Monthly http://people.stern.

nyu.edu/jwurgler/
MUNC Macro Uncertainty by Jurado et al. (2015) and Ludvigson

et al. (2021). Measures uncertainty based on the
predictability of real activity, price, and financial series

Monthly https://www.
sydneyludvigson.com/

RUNC Real Uncertainty by Jurado et al. (2015) and Ludvigson
et al. (2021). Measures uncertainty based on the
predictability of real activity series

Monthly https://www.
sydneyludvigson.com/

SPX S&P 500 stock market index (closing prices) Daily Refinitiv Datastream
STEEL Volume of global crude steel production published by the

World Steel Association
Monthly Refinitiv Datastream

TBILL 3-month USD Treasury Bill rate Daily Refinitiv Datastream
TED TED spread calculated as the difference of the 3-month

USD LIBOR rate and the 3-month USD Treasury Bill rate
Daily Refinitiv Datastream

USDEER USD effective exchange rate calculated as the geometric
weighted average of 60 bilateral exchange rates

Daily https://www.bis.org/
statistics/

VIX Cboe Volatility Index that measures implied volatility of
S&P 500 options with a maturity of more than 23 but less
than 37 days (settlement values)

Daily Refinitiv Datastream

WIP World Industrial Production by Baumeister & Hamilton
(2019). Measures production output generated by the
industrial sector in OECD countries and six emerging
markets

Monthly https://sites.google.
com/site/
cjsbaumeister/research

Notes: Definitions and data sources for economic variables used as potential drivers of commodity futures returns in
our analysis. The stated frequency refers to the original data availability.
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Appendix B. Forecasting HF commodity futures returns in an MF-VAR

We obtain monthly return forecasts from an MF-VAR model by forecasting the GSCI log return
for each of the m HF periods (days or weeks) during the one-step-ahead LF period (month) and then
aggregating HF log return forecasts to the monthly level. We forecast the log return for the i-th HF
period of the following month in a bivariate MF-VAR(1) through:

x̂H(TL + 1, kH) | `(τL) = E
[
xH(TL + 1, kH) | `(TL)

]
= â11xH(TL, 1) + ...+ â1mxH(TL,m) + â1(m+1)xL(TL,m),

where kH = 1, ...,m, the reference information set

`(TL) = {xH(1, 1), ..., xH(TL, 1), ..., xH(1,m), ..., xH(TL,m), xL(1), ..., xL(TL)}

over the window size TL, and either m = 20 in case of daily log returns or m = 4 in case of weekly log
returns. Then, we predict the log return over the next month by adding the individually forecasted HF
log returns:

x̂a
H(TL + 1) =

m∑
kH=1

x̂H(TL + 1, kH).

We further aggregate the HF log return predictions of xH over the bivariate VAR models with the
respective group of driver variables through simple averaging, which yields the final return forecast, r̂τ,
the trading signal is based on.

38



Appendix C. Additional tables and figures

39



Table C.5: Sample statistics of commodity futures for weekly (5-day) log returns, 1998–2019
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 1056 0.042 4.543 0.178 1.646 −10.290∗∗∗ −925.317∗∗∗ 0.061
Coffee (ICE) KC1 1056 −0.021 4.842 0.327 1.368 −9.244∗∗∗ −1023.794∗∗∗ 0.131
Cotton (ICE) CT1 1056 0.003 4.248 −0.378 3.995 −9.564∗∗∗ −923.139∗∗∗ 0.045
Ethanol (CBOT) DL1 700 0.017 5.028 −1.460 9.782 −9.443∗∗∗ −665.940∗∗∗ 0.108
Lumber (CME) LB1 1056 0.032 4.864 0.080 1.012 −9.910∗∗∗ −1021.886∗∗∗ 0.034
Orange Juice (ICE) JO1 1056 0.018 4.952 0.341 2.450 −9.456∗∗∗ −997.246∗∗∗ 0.082
Rubber (SGX) OR1 1056 0.065 3.959 −1.143 9.095 −9.055∗∗∗ −953.870∗∗∗ 0.162
Sugar (ICE) SB1 1056 0.009 4.788 0.029 1.524 −9.509∗∗∗ −1081.916∗∗∗ 0.070
Wool (ASX) OL1 720 0.058 2.966 0.287 2.719 −7.717∗∗∗ −719.204∗∗∗ 0.086
Portfolio (Softs) 1056 0.020 2.037 −0.363 3.043 −8.436∗∗∗ −1040.804∗∗∗ 0.118

Agriculture (Grains)

Corn (CBOT) C 1 1056 0.037 4.094 −0.220 3.547 −9.368∗∗∗ −1087.932∗∗∗ 0.063
Oats (CBOT) O 1 1056 0.063 5.153 −0.140 1.865 −10.918∗∗∗ −1020.563∗∗∗ 0.041
Rough Rice (CBOT) RR1 1056 0.020 3.985 0.213 6.579 −9.516∗∗∗ −902.526∗∗∗ 0.119
Soybean (CBOT) S 1 1056 0.034 3.624 −0.969 5.938 −9.388∗∗∗ −1073.929∗∗∗ 0.069
Soybean Meal (CBOT) SM1 1056 0.039 4.288 −0.806 5.766 −10.094∗∗∗ −995.482∗∗∗ 0.046
Soybean Oil (CBOT) BO1 1056 0.031 3.399 −0.120 1.921 −9.021∗∗∗ −1037.910∗∗∗ 0.087
Wheat (CBOT) W 1 1056 0.050 4.392 0.276 0.794 −10.620∗∗∗ −1020.920∗∗∗ 0.051
Portfolio (Grains) 1056 0.039 2.797 −0.239 1.695 −9.305∗∗∗ −1025.571∗∗∗ 0.094

Agriculture (Livestock)

Feeder Cattle (CME) FC1 1056 0.063 2.389 −0.468 4.490 −8.987∗∗∗ −1194.923∗∗∗ 0.064
Lean Hogs (CME) LH1 1056 0.020 5.734 −0.299 3.847 −11.019∗∗∗ −1035.006∗∗∗ 0.014
Live Cattle (CME) LC1 1056 0.062 2.810 −0.530 2.416 −9.835∗∗∗ −1104.615∗∗∗ 0.032
Pork Bellies (CME) PB1 624 0.118 6.605 0.184 8.140 −9.231∗∗∗ −579.250∗∗∗ 0.024
Portfolio (Livestock) 1056 0.055 2.780 −0.406 1.886 −11.122∗∗∗ −1032.449∗∗∗ 0.040

Energy

Brent (ICE) CO1 1056 0.132 4.968 −0.474 3.105 −9.362∗∗∗ −1186.024∗∗∗ 0.144
Gasoil (NYMEX) QS1 1056 0.134 4.701 −0.462 2.150 −9.121∗∗∗ −1093.413∗∗∗ 0.134
Gasoline (NYMEX) XB1 684 −0.016 5.652 −0.257 4.486 −7.645∗∗∗ −792.766∗∗∗ 0.038
Heating Oil (NYMEX) HO1 1056 0.134 5.052 −0.374 2.612 −9.303∗∗∗ −1042.040∗∗∗ 0.133
Natural Gas (NYMEX) NG1 1056 0.002 7.401 0.095 1.124 −10.694∗∗∗ −1013.340∗∗∗ 0.116
WTI (NYMEX) CL1 1056 0.119 5.316 −0.220 2.399 −9.283∗∗∗ −1114.968∗∗∗ 0.129
Portfolio (Energy) 1056 0.108 4.432 −0.283 1.799 −9.082∗∗∗ −1080.172∗∗∗ 0.174

Industrial Metals

Aluminium (LME) LA1 1056 0.014 2.977 0.096 2.210 −9.060∗∗∗ −1091.361∗∗∗ 0.062
Cobalt (LME) LCO1 472 −0.055 3.798 −0.341 3.502 −6.588∗∗∗ −506.552∗∗∗ 0.147
Copper (LME) LP1 1056 0.120 3.569 −0.814 6.186 −8.546∗∗∗ −1116.661∗∗∗ 0.148
Lead (LME) LL1 1056 0.116 4.500 −0.238 2.945 −9.491∗∗∗ −1012.827∗∗∗ 0.111
Nickel (LME) LN1 1056 0.080 5.167 −0.276 2.472 −9.439∗∗∗ −1088.691∗∗∗ 0.117
Tin (LME) LT1 1056 0.110 3.842 −0.558 4.242 −8.488∗∗∗ −1092.765∗∗∗ 0.130
Zinc (LME) LX1 1056 0.070 4.026 −0.430 2.239 −9.020∗∗∗ −1077.933∗∗∗ 0.074
Portfolio (Industrial Metals) 1056 0.083 2.961 −0.569 3.582 −8.695∗∗∗ −1053.068∗∗∗ 0.147

Precious Metals

Gold (COMEX) GC1 1056 0.157 2.440 −0.179 2.716 −10.167∗∗∗ −924.486∗∗∗ 0.178
Palladium (NYMEX) PA1 1056 0.212 5.020 −0.111 3.187 −9.927∗∗∗ −1041.536∗∗∗ 0.109
Platinum (NYMEX) PL1 1056 0.092 3.242 −0.584 3.005 −8.912∗∗∗ −1001.061∗∗∗ 0.264
Silver (COMEX) SI1 1056 0.104 4.252 −0.749 5.308 −10.479∗∗∗ −938.532∗∗∗ 0.121
Portfolio (Precious Metals) 1056 0.141 2.979 −0.692 3.149 −9.591∗∗∗ −1002.686∗∗∗ 0.072

Common Factor

PC1 (All Commodities) 1056 0.401 11.836 −0.664 4.265 −8.048∗∗∗ −1088.730∗∗∗ 0.176

Notes: Summary statistics for single futures are provided for non-overlapping 5-day returns calculated as rt = 100× [ln(pt)− ln(pt−5)],
where {pt}Tt=1 is the front month continuous futures series which contains daily settlement prices (in USD) of the last 20 trading days
of each month. Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are given in column BBG. Portfolio log returns are
calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective portfolio for which returns are available on trading
day t. Daily futures data spans the period of 1998:1–2019:12 except for Ethanol (2005:6–2019:12), Wool (1998:1–2012:12), Pork Bellies
(1998:1–2010:12), Gasoline (2005:10–2019:12), and Cobalt (2010:3–2019:12). The common factor is constructed as the first principal
compoenent (PC) of standardized log returns of all commodities, for which data is available over the full sample period. The Jarque-
Bera test rejects the null of normality at the 0.1% level of significance for all return series. Asterisks indicate the rejection of the null
hypothesis that the time series has a unit root (ADF, PP) or is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the
Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for stationarity.
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Table C.6: Sample statistics of commodity futures for daily log returns, 1998–2003
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 1565 −0.005 2.091 0.016 2.027 −10.898∗∗∗ −1679.248∗∗∗ 0.225
Coffee (ICE) KC1 1565 −0.059 2.603 0.494 6.662 −13.197∗∗∗ −1451.230∗∗∗ 0.143
Cotton (ICE) CT1 1565 0.007 1.811 0.725 5.067 −11.743∗∗∗ −1544.760∗∗∗ 0.269
Ethanol (CBOT) DL1 − − − − − − − −
Lumber (CME) LB1 1565 0.006 2.140 0.484 5.066 −11.035∗∗∗ −1480.534∗∗∗ 0.047
Orange Juice (ICE) JO1 1565 −0.018 1.863 1.663 23.380 −12.148∗∗∗ −1530.514∗∗∗ 0.139
Rubber (SGX) OR1 1565 0.034 1.315 −0.099 5.152 −10.385∗∗∗ −1335.883∗∗∗ 0.385∗

Sugar (ICE) SB1 1565 −0.049 2.284 −0.408 4.099 −11.447∗∗∗ −1592.705∗∗∗ 0.120
Wool (ASX) OL1 1565 0.007 1.445 0.227 10.051 −11.066∗∗∗ −1635.197∗∗∗ 0.215
Portfolio (Softs) 1565 −0.009 0.777 0.129 1.170 −11.508∗∗∗ −1474.443∗∗∗ 0.392∗

Agriculture (Grains)

Corn (CBOT) C 1 1565 −0.005 1.409 0.458 3.183 −11.574∗∗∗ −1431.816∗∗∗ 0.103
Oats (CBOT) O 1 1565 −0.002 2.494 −3.133 35.285 −13.491∗∗∗ −1454.636∗∗∗ 0.089
Rough Rice (CBOT) RR1 1565 −0.015 1.961 1.871 32.484 −11.826∗∗∗ −1420.601∗∗∗ 0.509∗∗

Soybean (CBOT) S 1 1565 0.010 1.308 −0.232 3.179 −10.804∗∗∗ −1605.325∗∗∗ 0.507∗∗

Soybean Meal (CBOT) SM1 1565 0.011 1.615 −0.771 9.903 −11.724∗∗∗ −1465.768∗∗∗ 0.268
Soybean Oil (CBOT) BO1 1565 0.007 1.337 0.282 1.599 −10.001∗∗∗ −1391.926∗∗∗ 0.532∗∗

Wheat (CBOT) W 1 1565 0.009 1.593 0.275 1.513 −11.502∗∗∗ −1495.470∗∗∗ 0.137
Portfolio (Grains) 1565 0.002 1.069 0.041 2.595 −12.191∗∗∗ −1458.207∗∗∗ 0.546∗∗

Agriculture (Livestock)

Feeder Cattle (CME) FC1 1565 0.003 0.794 −0.976 16.642 −10.674∗∗∗ −1474.138∗∗∗ 0.093
Lean Hogs (CME) LH1 1565 −0.005 2.663 0.687 31.750 −11.796∗∗∗ −1512.976∗∗∗ 0.033
Live Cattle (CME) LC1 1565 0.010 1.107 −1.204 12.836 −11.580∗∗∗ −1468.708∗∗∗ 0.032
Pork Bellies (CME) PB1 1565 0.035 2.673 −1.260 13.213 −11.788∗∗∗ −1423.639∗∗∗ 0.028
Portfolio (Livestock) 1565 0.011 1.212 −0.154 4.326 −11.401∗∗∗ −1521.712∗∗∗ 0.045

Energy

Brent (ICE) CO1 1565 0.038 2.376 −0.218 2.465 −11.607∗∗∗ −1582.456∗∗∗ 0.064
Gasoil (NYMEX) QS1 1565 0.038 2.276 −0.424 3.815 −11.659∗∗∗ −1479.900∗∗∗ 0.068
Gasoline (NYMEX) XB1 − − − − − − − −
Heating Oil (NYMEX) HO1 1565 0.040 2.602 −0.910 6.673 −12.866∗∗∗ −1578.027∗∗∗ 0.059
Natural Gas (NYMEX) NG1 1565 0.064 3.790 0.303 5.647 −11.535∗∗∗ −1612.975∗∗∗ 0.052
WTI (NYMEX) CL1 1565 0.039 2.528 −0.383 3.792 −13.052∗∗∗ −1455.339∗∗∗ 0.051
Portfolio (Energy) 1565 0.044 2.034 −0.335 2.272 −11.954∗∗∗ −1522.414∗∗∗ 0.076

Industrial Metals

Aluminium (LME) LA1 1565 0.002 0.994 0.231 2.087 −11.251∗∗∗ −1459.832∗∗∗ 0.115
Cobalt (LME) LCO1 − − − − − − − −
Copper (LME) LP1 1565 0.018 1.123 0.096 2.005 −11.318∗∗∗ −1519.630∗∗∗ 0.237
Lead (LME) LL1 1565 0.017 1.318 −0.022 3.616 −12.332∗∗∗ −1448.465∗∗∗ 0.423∗

Nickel (LME) LN1 1565 0.065 1.984 −0.561 9.251 −11.355∗∗∗ −1503.573∗∗∗ 0.362∗

Tin (LME) LT1 1565 0.012 1.004 −0.250 5.604 −10.189∗∗∗ −1367.165∗∗∗ 0.452∗

Zinc (LME) LX1 1565 −0.005 1.158 0.033 3.080 −11.775∗∗∗ −1631.911∗∗∗ 0.165
Portfolio (Industrial Metals) 1565 0.018 0.903 −0.109 2.284 −11.115∗∗∗ −1504.401∗∗∗ 0.489∗∗

Precious Metals

Gold (COMEX) GC1 1565 0.023 0.932 1.175 10.548 −12.079∗∗∗ −1609.489∗∗∗ 0.230
Palladium (NYMEX) PA1 1565 −0.002 2.357 0.170 6.437 −11.464∗∗∗ −1338.201∗∗∗ 0.595∗∗

Platinum (NYMEX) PL1 1565 0.050 1.590 −2.996 58.532 −13.202∗∗∗ −1373.143∗∗∗ 0.091
Silver (COMEX) SI1 1565 −0.000 1.324 0.059 3.165 −12.450∗∗∗ −1649.340∗∗∗ 0.182
Portfolio (Precious Metals) 1565 0.018 1.056 −0.061 3.947 −10.998∗∗∗ −1376.278∗∗∗ 0.105

Common Factor

PC1 (All Commodities) 5739 0.073 4.860 −0.282 3.734 −16.689∗∗∗ −5767.638∗∗∗ 0.196

Notes: Summary statistics for single futures are provided for rt = 100×[ln(pt)−ln(pt−1)], where {pt}Tt=1 is the front month continuous
futures series which contains daily settlement prices (in USD). Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are
given in column BBG. Portfolio log returns are calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective portfolio
for which returns are available on trading day t. Daily futures data spans the period of 1998:1–2003:12 except for Pc1 (1998:1–2019:12).
The common factor is constructed as the first principal compoenent (PC) of standardized log returns of all commodities, for which
data is available over the full sample period. The Jarque-Bera test rejects the null of normality at the 0.1% level of significance for all
return series. Asterisks indicate the rejection of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary
(KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests for stationarity.
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Table C.7: Sample statistics of commodity futures for daily log returns, 2004–2013
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 2609 0.022 1.919 −0.231 2.511 −14.947∗∗∗ −2549.365∗∗∗ 0.041
Coffee (ICE) KC1 2609 0.020 1.928 0.049 2.254 −13.363∗∗∗ −2723.683∗∗∗ 0.267
Cotton (ICE) CT1 2609 0.005 2.026 −0.235 3.437 −13.975∗∗∗ −2374.629∗∗∗ 0.100
Ethanol (CBOT) DL1 2240 0.021 2.186 −2.495 32.353 −12.684∗∗∗ −2328.956∗∗∗ 0.132
Lumber (CME) LB1 2609 0.005 2.246 1.107 8.602 −13.281∗∗∗ −2321.366∗∗∗ 0.088
Orange Juice (ICE) JO1 2609 0.031 2.162 −0.049 4.002 −14.711∗∗∗ −2369.012∗∗∗ 0.130
Rubber (SGX) OR1 2609 0.023 1.616 −0.763 10.940 −11.746∗∗∗ −2586.459∗∗∗ 0.187
Sugar (ICE) SB1 2609 0.041 2.204 −0.249 3.301 −13.313∗∗∗ −2567.511∗∗∗ 0.207
Wool (ASX) OL1 2348 0.013 1.070 −0.365 12.369 −13.584∗∗∗ −2200.645∗∗∗ 0.103
Portfolio (Softs) 2609 0.020 0.861 −0.333 2.553 −12.652∗∗∗ −2538.068∗∗∗ 0.190

Agriculture (Grains)

Corn (CBOT) C 1 2609 0.021 2.077 −0.765 12.396 −13.924∗∗∗ −2550.230∗∗∗ 0.126
Oats (CBOT) O 1 2609 0.034 2.210 −0.406 5.047 −14.658∗∗∗ −2378.241∗∗∗ 0.037
Rough Rice (CBOT) RR1 2609 0.023 1.653 −1.224 20.223 −13.333∗∗∗ −2388.159∗∗∗ 0.052
Soybean (CBOT) S 1 2609 0.020 1.789 −0.872 4.945 −13.392∗∗∗ −2524.597∗∗∗ 0.066
Soybean Meal (CBOT) SM1 2609 0.023 2.041 −1.203 8.925 −13.687∗∗∗ −2512.570∗∗∗ 0.055
Soybean Oil (CBOT) BO1 2609 0.013 1.611 0.023 2.465 −13.250∗∗∗ −2725.892∗∗∗ 0.120
Wheat (CBOT) W 1 2609 0.018 2.176 0.114 1.835 −13.748∗∗∗ −2637.253∗∗∗ 0.074
Portfolio (Grains) 2609 0.022 1.405 −0.329 2.985 −13.309∗∗∗ −2715.620∗∗∗ 0.089

Agriculture (Livestock)

Feeder Cattle (CME) FC1 2609 0.029 0.915 0.524 13.466 −13.703∗∗∗ −2520.739∗∗∗ 0.094
Lean Hogs (CME) LH1 2609 0.018 1.927 −0.179 32.698 −14.088∗∗∗ −2549.285∗∗∗ 0.024
Live Cattle (CME) LC1 2609 0.021 1.034 −0.607 7.749 −16.346∗∗∗ −2537.570∗∗∗ 0.041
Pork Bellies (CME) PB1 1827 0.011 2.352 2.887 90.541 −12.277∗∗∗ −1634.296∗∗∗ 0.027
Portfolio (Livestock) 2609 0.021 0.943 0.383 14.421 −13.989∗∗∗ −2567.265∗∗∗ 0.047

Energy

Brent (ICE) CO1 2609 0.050 2.082 −0.107 3.484 −12.585∗∗∗ −2770.995∗∗∗ 0.127
Gasoil (NYMEX) QS1 2609 0.048 1.901 0.083 2.221 −12.759∗∗∗ −2664.924∗∗∗ 0.133
Gasoline (NYMEX) XB1 2131 0.027 2.374 −0.169 4.028 −11.499∗∗∗ −2094.039∗∗∗ 0.048
Heating Oil (NYMEX) HO1 2609 0.047 2.069 0.031 2.096 −14.039∗∗∗ −2660.041∗∗∗ 0.102
Natural Gas (NYMEX) NG1 2609 −0.015 3.233 0.854 5.439 −12.654∗∗∗ −2766.357∗∗∗ 0.047
WTI (NYMEX) CL1 2609 0.042 2.307 0.093 5.210 −13.456∗∗∗ −2621.532∗∗∗ 0.101
Portfolio (Energy) 2609 0.036 1.800 −0.014 2.046 −12.603∗∗∗ −2640.011∗∗∗ 0.117

Industrial Metals

Aluminium (LME) LA1 2609 0.004 1.618 −0.375 3.408 −13.277∗∗∗ −2788.177∗∗∗ 0.163
Cobalt (LME) LCO1 1002 −0.032 1.763 0.380 3.661 −9.814∗∗∗ −1115.077∗∗∗ 0.067
Copper (LME) LP1 2609 0.044 1.991 −0.139 3.200 −11.835∗∗∗ −2800.152∗∗∗ 0.248
Lead (LME) LL1 2609 0.042 2.508 −0.200 4.569 −14.023∗∗∗ −2545.718∗∗∗ 0.108
Nickel (LME) LN1 2609 −0.007 2.912 −0.491 15.843 −13.247∗∗∗ −2745.131∗∗∗ 0.105
Tin (LME) LT1 2609 0.047 2.033 −0.004 5.083 −13.958∗∗∗ −2443.199∗∗∗ 0.087
Zinc (LME) LX1 2609 0.027 2.567 −1.018 18.091 −13.791∗∗∗ −2840.128∗∗∗ 0.194
Portfolio (Industrial Metals) 2609 0.025 1.729 −0.372 3.218 −13.265∗∗∗ −2680.339∗∗∗ 0.208

Precious Metals

Gold (COMEX) GC1 2609 0.041 1.263 −0.458 5.104 −14.154∗∗∗ −2521.314∗∗∗ 0.234
Palladium (NYMEX) PA1 2609 0.049 2.114 −0.573 3.687 −13.981∗∗∗ −2367.249∗∗∗ 0.058
Platinum (NYMEX) PL1 2609 0.020 1.506 −0.674 4.238 −13.068∗∗∗ −2433.822∗∗∗ 0.118
Silver (COMEX) SI1 2609 0.045 2.312 −0.963 6.113 −13.900∗∗∗ −2594.335∗∗∗ 0.158
Portfolio (Precious Metals) 2609 0.039 1.552 −0.729 3.700 −13.860∗∗∗ −2455.169∗∗∗ 0.131

Common Factor

PC1 (All Commodities) 5739 0.073 4.860 −0.282 3.734 −16.689∗∗∗ −5767.638∗∗∗ 0.196

Notes: Summary statistics for single futures are provided for rt = 100×[ln(pt)−ln(pt−1)], where {pt}Tt=1 is the front month continuous
futures series which contains daily settlement prices (in USD). Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are
given in column BBG. Portfolio log returns are calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective
portfolio for which returns are available on trading day t. Daily futures data spans the period of 2004:1–2013:12 except for Ethanol
(2005:6–2013:12), Wool (2004:1–2012:12), Pork Bellies (2004:1–2010:12), Gasoline (2005:11–2013:12), Cobalt (2010:3–2013:12), and
Pc1 (1998:1–2019:12). The common factor is constructed as the first principal compoenent (PC) of standardized log returns of all
commodities, for which data is available over the full sample period. The Jarque-Bera test rejects the null of normality at the 0.1%
level of significance for all return series. Asterisks indicate the rejection of the null hypothesis that the time series has a unit root
(ADF, PP) or is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron
(PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for stationarity.
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Table C.8: Sample statistics of commodity futures for daily log returns, 2014–2019
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 1565 −0.004 1.605 −0.007 0.910 −11.594∗∗∗ −1638.126∗∗∗ 0.067
Coffee (ICE) KC1 1565 0.010 2.030 0.346 1.970 −11.819∗∗∗ −1679.712∗∗∗ 0.096
Cotton (ICE) CT1 1565 −0.013 1.371 −0.389 4.252 −11.939∗∗∗ −1555.754∗∗∗ 0.089
Ethanol (CBOT) DL1 1565 −0.021 1.848 −2.250 26.496 −11.514∗∗∗ −1275.703∗∗∗ 0.026
Lumber (CME) LB1 1565 0.008 1.906 −0.120 4.614 −11.470∗∗∗ −1407.993∗∗∗ 0.077
Orange Juice (ICE) JO1 1565 −0.022 1.904 0.180 1.435 −11.646∗∗∗ −1430.713∗∗∗ 0.114
Rubber (SGX) OR1 1565 −0.028 1.522 0.004 3.977 −11.069∗∗∗ −1390.369∗∗∗ 0.182
Sugar (ICE) SB1 1565 −0.013 1.810 0.515 2.603 −11.820∗∗∗ −1503.006∗∗∗ 0.056
Wool (ASX) OL1 − − − − − − − −
Portfolio (Softs) 1565 −0.010 0.735 −0.083 0.536 −10.576∗∗∗ −1467.252∗∗∗ 0.075

Agriculture (Grains)

Corn (CBOT) C 1 1565 −0.005 1.385 −0.005 2.322 −10.196∗∗∗ −1533.858∗∗∗ 0.043
Oats (CBOT) O 1 1565 −0.012 2.189 −0.403 8.848 −12.397∗∗∗ −1447.152∗∗∗ 0.112
Rough Rice (CBOT) RR1 1565 −0.011 1.324 −0.070 4.894 −12.590∗∗∗ −1508.702∗∗∗ 0.194
Soybean (CBOT) S 1 1565 −0.021 1.265 −0.922 8.210 −10.700∗∗∗ −1614.959∗∗∗ 0.112
Soybean Meal (CBOT) SM1 1565 −0.024 1.649 −1.711 22.827 −10.881∗∗∗ −1647.057∗∗∗ 0.055
Soybean Oil (CBOT) BO1 1565 −0.008 1.164 0.291 1.083 −12.553∗∗∗ −1578.197∗∗∗ 0.124
Wheat (CBOT) W 1 1565 −0.005 1.718 0.248 0.765 −11.432∗∗∗ −1469.930∗∗∗ 0.096
Portfolio (Grains) 1565 −0.012 0.937 −0.054 1.935 −10.908∗∗∗ −1607.165∗∗∗ 0.212

Agriculture (Livestock)

Feeder Cattle (CME) FC1 1565 −0.009 1.128 −0.463 6.055 −11.885∗∗∗ −1427.228∗∗∗ 0.125
Lean Hogs (CME) LH1 1565 −0.011 2.576 −0.852 23.393 −10.768∗∗∗ −1568.615∗∗∗ 0.038
Live Cattle (CME) LC1 1565 −0.005 1.270 −2.308 21.977 −13.074∗∗∗ −1435.459∗∗∗ 0.059
Pork Bellies (CME) PB1 − − − − − − − −
Portfolio (Livestock) 1565 −0.008 1.136 −0.538 7.103 −11.845∗∗∗ −1641.946∗∗∗ 0.072

Energy

Brent (ICE) CO1 1565 −0.033 2.104 0.226 3.418 −11.520∗∗∗ −1716.323∗∗∗ 0.296
Gasoil (NYMEX) QS1 1565 −0.028 1.777 0.456 4.421 −11.400∗∗∗ −1566.392∗∗∗ 0.320
Gasoline (NYMEX) XB1 1565 −0.032 2.345 −0.036 11.688 −11.559∗∗∗ −1688.074∗∗∗ 0.127
Heating Oil (NYMEX) HO1 1565 −0.027 1.923 −0.525 9.683 −12.333∗∗∗ −1767.090∗∗∗ 0.294
Natural Gas (NYMEX) NG1 1565 −0.042 2.854 −0.070 4.106 −11.716∗∗∗ −1602.300∗∗∗ 0.046
WTI (NYMEX) CL1 1565 −0.031 2.227 0.128 3.413 −11.624∗∗∗ −1720.939∗∗∗ 0.240
Portfolio (Energy) 1565 −0.032 1.657 0.113 2.753 −11.561∗∗∗ −1681.488∗∗∗ 0.276

Industrial Metals

Aluminium (LME) LA1 1565 0.001 1.129 0.160 2.921 −12.897∗∗∗ −1663.492∗∗∗ 0.064
Cobalt (LME) LCO1 1565 0.007 1.734 −0.539 17.317 −9.315∗∗∗ −2114.121∗∗∗ 0.429∗

Copper (LME) LP1 1565 −0.011 1.143 0.092 1.518 −10.764∗∗∗ −1705.813∗∗∗ 0.192
Lead (LME) LL1 1565 −0.009 1.451 0.068 1.911 −11.640∗∗∗ −1483.653∗∗∗ 0.065
Nickel (LME) LN1 1565 0.001 1.806 −0.115 1.811 −11.106∗∗∗ −1534.859∗∗∗ 0.141
Tin (LME) LT1 1565 −0.017 1.147 −0.088 3.439 −11.355∗∗∗ −1497.921∗∗∗ 0.121
Zinc (LME) LX1 1565 0.007 1.472 0.136 2.092 −11.058∗∗∗ −1607.383∗∗∗ 0.136
Portfolio (Industrial Metals) 1565 −0.003 0.881 −0.110 1.299 −10.770∗∗∗ −1750.492∗∗∗ 0.214

Precious Metals

Gold (COMEX) GC1 1565 0.015 0.811 0.251 2.811 −11.761∗∗∗ −1719.053∗∗∗ 0.095
Palladium (NYMEX) PA1 1565 0.062 1.626 −0.456 2.429 −11.425∗∗∗ −1625.503∗∗∗ 0.313
Platinum (NYMEX) PL1 1565 −0.022 1.217 −0.034 1.322 −11.864∗∗∗ −1686.665∗∗∗ 0.129
Silver (COMEX) SI1 1565 −0.005 1.390 −0.250 3.995 −12.217∗∗∗ −1697.782∗∗∗ 0.073
Portfolio (Precious Metals) 1565 0.013 1.001 −0.245 1.636 −11.648∗∗∗ −1666.707∗∗∗ 0.222

Common Factor

PC1 (All Commodities) 5739 0.073 4.860 −0.282 3.734 −16.689∗∗∗ −5767.638∗∗∗ 0.196

Notes: Summary statistics for single futures are provided for rt = 100×[ln(pt)−ln(pt−1)], where {pt}Tt=1 is the front month continuous
futures series which contains daily settlement prices (in USD). Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are
given in column BBG. Portfolio log returns are calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective portfolio
for which returns are available on trading day t. Daily futures data spans the period of 2014:1–2019:12 except for Pc1 (1998:1–2019:12).
The common factor is constructed as the first principal compoenent (PC) of standardized log returns of all commodities, for which
data is available over the full sample period. The Jarque-Bera test rejects the null of normality at the 0.1% level of significance for all
return series. Asterisks indicate the rejection of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary
(KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests for stationarity.
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Table C.9: Sample statistics of commodity futures for weekly (5-day) log returns, 1998–2003
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 288 −0.025 5.105 0.659 2.385 −6.855∗∗∗ −257.401∗∗∗ 0.244
Coffee (ICE) KC1 288 −0.318 5.832 0.407 1.505 −7.529∗∗∗ −328.769∗∗∗ 0.197
Cotton (ICE) CT1 288 0.039 4.100 0.393 0.834 −7.375∗∗∗ −263.838∗∗∗ 0.275
Ethanol (CBOT) DL1 − − − − − − − −
Lumber (CME) LB1 288 0.027 4.976 0.100 −0.005 −6.683∗∗∗ −271.635∗∗∗ 0.051
Orange Juice (ICE) JO1 288 −0.096 4.267 0.800 4.479 −7.876∗∗∗ −292.683∗∗∗ 0.189
Rubber (SGX) OR1 288 0.185 3.553 0.316 1.146 −6.560∗∗∗ −211.511∗∗∗ 0.317
Sugar (ICE) SB1 288 −0.267 4.938 0.115 0.342 −5.399∗∗∗ −249.190∗∗∗ 0.124
Wool (ASX) OL1 288 0.039 3.378 0.406 1.888 −5.635∗∗∗ −261.655∗∗∗ 0.214
Portfolio (Softs) 288 −0.052 1.940 0.251 0.661 −7.247∗∗∗ −292.328∗∗∗ 0.404∗

Agriculture (Grains)

Corn (CBOT) C 1 288 −0.023 3.505 0.346 3.288 −6.435∗∗∗ −285.508∗∗∗ 0.110
Oats (CBOT) O 1 288 −0.009 5.014 −0.612 2.787 −6.809∗∗∗ −293.399∗∗∗ 0.132
Rough Rice (CBOT) RR1 288 −0.076 4.608 1.380 10.065 −7.047∗∗∗ −273.884∗∗∗ 0.580∗∗

Soybean (CBOT) S 1 288 0.062 3.067 0.332 1.445 −6.543∗∗∗ −315.189∗∗∗ 0.430∗

Soybean Meal (CBOT) SM1 288 0.067 3.849 0.277 2.983 −6.824∗∗∗ −319.332∗∗∗ 0.276
Soybean Oil (CBOT) BO1 288 0.040 3.303 0.523 1.344 −7.426∗∗∗ −325.205∗∗∗ 0.429∗

Wheat (CBOT) W 1 288 0.045 3.893 0.584 0.928 −7.731∗∗∗ −303.609∗∗∗ 0.170
Portfolio (Grains) 288 0.015 2.458 0.576 1.318 −6.874∗∗∗ −313.120∗∗∗ 0.592∗∗

Agriculture (Livestock)

Feeder Cattle (CME) FC1 288 0.018 2.120 −1.692 14.998 −3.376∗ −351.377∗∗∗ 0.082
Lean Hogs (CME) LH1 288 −0.026 6.688 −0.225 3.354 −7.055∗∗∗ −312.857∗∗∗ 0.033
Live Cattle (CME) LC1 288 0.060 2.898 −0.513 3.747 −4.262∗∗∗ −313.889∗∗∗ 0.031
Pork Bellies (CME) PB1 288 0.183 6.574 −0.788 5.405 −7.584∗∗∗ −292.296∗∗∗ 0.030
Portfolio (Livestock) 288 0.059 3.087 −0.469 1.390 −6.781∗∗∗ −321.591∗∗∗ 0.042

Energy

Brent (ICE) CO1 288 0.211 5.283 −0.352 0.957 −7.306∗∗∗ −301.422∗∗∗ 0.062
Gasoil (NYMEX) QS1 288 0.207 5.439 −0.649 2.694 −6.588∗∗∗ −302.088∗∗∗ 0.066
Gasoline (NYMEX) XB1 − − − − − − − −
Heating Oil (NYMEX) HO1 288 0.213 5.881 −0.454 2.005 −7.160∗∗∗ −279.852∗∗∗ 0.065
Natural Gas (NYMEX) NG1 288 0.367 8.210 0.120 0.948 −6.453∗∗∗ −282.217∗∗∗ 0.054
WTI (NYMEX) CL1 288 0.217 5.665 −0.334 1.367 −7.163∗∗∗ −295.767∗∗∗ 0.061
Portfolio (Energy) 288 0.243 4.834 −0.140 1.172 −6.609∗∗∗ −273.501∗∗∗ 0.077

Industrial Metals

Aluminium (LME) LA1 288 0.012 2.204 0.200 1.180 −6.616∗∗∗ −292.664∗∗∗ 0.133
Cobalt (LME) LCO1 − − − − − − − −
Copper (LME) LP1 288 0.100 2.615 0.136 0.754 −6.519∗∗∗ −230.464∗∗∗ 0.285
Lead (LME) LL1 288 0.091 2.863 0.270 0.426 −6.898∗∗∗ −289.457∗∗∗ 0.468∗∗

Nickel (LME) LN1 288 0.353 4.615 −0.474 1.163 −4.993∗∗∗ −278.648∗∗∗ 0.386∗

Tin (LME) LT1 288 0.068 2.220 −0.211 1.768 −5.104∗∗∗ −298.183∗∗∗ 0.386∗

Zinc (LME) LX1 288 −0.028 2.553 0.040 −0.103 −6.929∗∗∗ −257.349∗∗∗ 0.195
Portfolio (Industrial Metals) 288 0.099 2.106 −0.160 0.770 −5.576∗∗∗ −277.776∗∗∗ 0.495∗∗

Precious Metals

Gold (COMEX) GC1 288 0.126 2.105 0.704 2.929 −7.210∗∗∗ −265.649∗∗∗ 0.278
Palladium (NYMEX) PA1 288 −0.009 5.929 0.543 3.392 −6.749∗∗∗ −297.035∗∗∗ 0.486∗∗

Platinum (NYMEX) PL1 288 0.274 3.018 −0.043 1.116 −6.391∗∗∗ −275.498∗∗∗ 0.109
Silver (COMEX) SI1 288 0.001 3.091 0.164 2.053 −8.008∗∗∗ −249.501∗∗∗ 0.247
Portfolio (Precious Metals) 288 0.098 2.367 0.134 0.956 −6.766∗∗∗ −296.585∗∗∗ 0.095

Common Factor

PC1 (All Commodities) 1056 0.401 11.836 −0.664 4.265 −8.048∗∗∗ −1088.730∗∗∗ 0.176

Notes: Summary statistics for single futures are provided for non-overlapping 5-day returns calculated as rt = 100× [ln(pt)− ln(pt−5)],
where {pt}Tt=1 is the front month continuous futures series which contains daily settlement prices (in USD) of the last 20 trading days
of each month. Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are given in column BBG. Portfolio log returns are
calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective portfolio for which returns are available on trading day
t. Daily futures data spans the period of 1998:1–2003:12 except for Pc1 (1998:1–2019:12). The common factor is constructed as the
first principal compoenent (PC) of standardized log returns of all commodities, for which data is available over the full sample period.
The Jarque-Bera test rejects the null of normality at the 0.1% level of significance for all return series. Asterisks indicate the rejection
of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level
for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for stationarity.
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Table C.10: Sample statistics of commodity futures for weekly (5-day) log returns, 2004–2013
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 480 0.121 4.684 −0.183 0.906 −8.725∗∗∗ −443.683∗∗∗ 0.056
Coffee (ICE) KC1 480 0.111 4.245 0.158 0.480 −8.537∗∗∗ −412.048∗∗∗ 0.324
Cotton (ICE) CT1 480 0.025 4.835 −0.624 4.440 −7.394∗∗∗ −415.124∗∗∗ 0.104
Ethanol (CBOT) DL1 412 0.108 5.203 −0.959 3.541 −6.399∗∗∗ −398.408∗∗∗ 0.117
Lumber (CME) LB1 480 0.029 5.017 0.134 0.927 −7.625∗∗∗ −496.648∗∗∗ 0.096
Orange Juice (ICE) JO1 480 0.169 5.532 0.161 2.112 −8.014∗∗∗ −471.883∗∗∗ 0.156
Rubber (SGX) OR1 480 0.126 4.389 −1.960 12.802 −5.367∗∗∗ −400.221∗∗∗ 0.159
Sugar (ICE) SB1 480 0.221 5.041 −0.319 1.704 −7.035∗∗∗ −544.917∗∗∗ 0.188
Wool (ASX) OL1 432 0.070 2.661 0.120 3.317 −6.545∗∗∗ −464.229∗∗∗ 0.111
Portfolio (Softs) 480 0.108 2.236 −0.761 4.260 −6.037∗∗∗ −460.157∗∗∗ 0.164

Agriculture (Grains)

Corn (CBOT) C 1 480 0.112 4.813 −0.445 3.013 −6.891∗∗∗ −488.092∗∗∗ 0.122
Oats (CBOT) O 1 480 0.184 5.396 0.124 1.858 −8.041∗∗∗ −459.310∗∗∗ 0.045
Rough Rice (CBOT) RR1 480 0.124 3.967 −0.807 3.253 −6.967∗∗∗ −394.804∗∗∗ 0.054
Soybean (CBOT) S 1 480 0.106 4.207 −1.283 6.105 −6.592∗∗∗ −452.541∗∗∗ 0.067
Soybean Meal (CBOT) SM1 480 0.124 4.776 −0.946 4.279 −6.828∗∗∗ −423.513∗∗∗ 0.060
Soybean Oil (CBOT) BO1 480 0.069 3.755 −0.459 2.108 −6.812∗∗∗ −425.313∗∗∗ 0.119
Wheat (CBOT) W 1 480 0.099 4.827 0.096 0.640 −7.958∗∗∗ −458.282∗∗∗ 0.077
Portfolio (Grains) 480 0.117 3.257 −0.530 1.383 −6.951∗∗∗ −433.424∗∗∗ 0.082

Agriculture (Livestock)

Feeder Cattle (CME) FC1 480 0.156 2.299 −0.202 1.682 −6.828∗∗∗ −522.854∗∗∗ 0.089
Lean Hogs (CME) LH1 480 0.098 4.673 −0.293 4.085 −7.563∗∗∗ −435.366∗∗∗ 0.030
Live Cattle (CME) LC1 480 0.116 2.537 −0.317 0.857 −7.237∗∗∗ −537.775∗∗∗ 0.051
Pork Bellies (CME) PB1 336 0.062 6.642 0.992 10.448 −8.245∗∗∗ −297.351∗∗∗ 0.037
Portfolio (Livestock) 480 0.114 2.477 −0.352 2.160 −8.319∗∗∗ −422.709∗∗∗ 0.053

Energy

Brent (ICE) CO1 480 0.271 4.866 −0.870 5.106 −5.881∗∗∗ −587.257∗∗∗ 0.112
Gasoil (NYMEX) QS1 480 0.259 4.578 −0.479 1.306 −6.436∗∗∗ −525.116∗∗∗ 0.124
Gasoline (NYMEX) XB1 396 0.098 5.690 −0.611 3.670 −5.551∗∗∗ −455.302∗∗∗ 0.034
Heating Oil (NYMEX) HO1 480 0.253 4.900 −0.366 2.240 −6.508∗∗∗ −519.624∗∗∗ 0.106
Natural Gas (NYMEX) NG1 480 −0.079 7.337 0.243 0.843 −7.755∗∗∗ −501.205∗∗∗ 0.048
WTI (NYMEX) CL1 480 0.231 5.256 −0.356 3.331 −5.947∗∗∗ −533.226∗∗∗ 0.094
Portfolio (Energy) 480 0.197 4.438 −0.555 2.459 −6.185∗∗∗ −535.622∗∗∗ 0.107

Industrial Metals

Aluminium (LME) LA1 480 0.021 3.554 −0.028 1.590 −6.890∗∗∗ −510.223∗∗∗ 0.160
Cobalt (LME) LCO1 184 −0.202 3.705 0.340 1.409 −6.229∗∗∗ −218.301∗∗∗ 0.072
Copper (LME) LP1 480 0.242 4.463 −1.024 4.869 −6.070∗∗∗ −540.618∗∗∗ 0.192
Lead (LME) LL1 480 0.228 5.821 −0.313 1.416 −7.048∗∗∗ −460.117∗∗∗ 0.116
Nickel (LME) LN1 480 −0.038 5.996 −0.248 2.348 −6.962∗∗∗ −488.189∗∗∗ 0.102
Tin (LME) LT1 480 0.255 4.981 −0.596 2.318 −7.216∗∗∗ −490.486∗∗∗ 0.088
Zinc (LME) LX1 480 0.147 5.060 −0.517 1.285 −6.855∗∗∗ −500.721∗∗∗ 0.203
Portfolio (Industrial Metals) 480 0.133 3.794 −0.608 2.087 −6.646∗∗∗ −476.819∗∗∗ 0.199

Precious Metals

Gold (COMEX) GC1 480 0.221 2.861 −0.468 2.239 −8.708∗∗∗ −430.678∗∗∗ 0.276
Palladium (NYMEX) PA1 480 0.269 5.100 −0.634 2.164 −6.646∗∗∗ −472.190∗∗∗ 0.059
Platinum (NYMEX) PL1 480 0.109 3.586 −0.946 3.770 −6.738∗∗∗ −464.966∗∗∗ 0.102
Silver (COMEX) SI1 480 0.245 5.273 −0.943 4.192 −8.018∗∗∗ −434.533∗∗∗ 0.165
Portfolio (Precious Metals) 480 0.211 3.593 −0.908 2.633 −7.204∗∗∗ −454.344∗∗∗ 0.131

Common Factor

PC1 (All Commodities) 1056 0.401 11.836 −0.664 4.265 −8.048∗∗∗ −1088.730∗∗∗ 0.176

Notes: Summary statistics for single futures are provided for non-overlapping 5-day returns calculated as rt = 100× [ln(pt)− ln(pt−5)],
where {pt}Tt=1 is the front month continuous futures series which contains daily settlement prices (in USD) of the last 20 trading days
of each month. Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are given in column BBG. Portfolio log returns are
calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective portfolio for which returns are available on trading
day t. Daily futures data spans the period of 2004:1–2013:12 except for Ethanol (2005:6–2013:12), Wool (2004:1–2012:12), Pork Bellies
(2004:1–2010:12), Gasoline (2005:10–2013:12), Cobalt (2010:3–2013:12), and Pc1 (1998:1–2019:12). The common factor is constructed
as the first principal compoenent (PC) of standardized log returns of all commodities, for which data is available over the full sample
period. The Jarque-Bera test rejects the null of normality at the 0.1% level of significance for all return series. Asterisks indicate the
rejection of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%,
and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests
for stationarity.
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Table C.11: Sample statistics of commodity futures for weekly (5-day) log returns, 2014–2019
BBG Obs. Mean Std.Dev. Skewn. Ex.Kurt. ADF PP KPSS

Agriculture (Softs)

Cocoa (ICE) CC1 288 −0.022 3.629 0.090 0.029 −6.521∗∗∗ −245.953∗∗∗ 0.088
Coffee (ICE) KC1 288 0.055 4.687 0.475 0.725 −7.547∗∗∗ −258.936∗∗∗ 0.110
Cotton (ICE) CT1 288 −0.071 3.241 −0.531 1.686 −5.964∗∗∗ −264.851∗∗∗ 0.112
Ethanol (CBOT) DL1 288 −0.114 4.772 −2.398 22.053 −7.910∗∗∗ −263.337∗∗∗ 0.030
Lumber (CME) LB1 288 0.041 4.492 −0.071 2.595 −6.459∗∗∗ −259.328∗∗∗ 0.091
Orange Juice (ICE) JO1 288 −0.118 4.559 0.383 0.715 −6.897∗∗∗ −258.608∗∗∗ 0.143
Rubber (SGX) OR1 288 −0.155 3.572 −0.007 0.294 −5.882∗∗∗ −332.224∗∗∗ 0.159
Sugar (ICE) SB1 288 −0.070 4.160 0.882 2.895 −6.469∗∗∗ −244.162∗∗∗ 0.060
Wool (ASX) OL1 − − − − − − − −
Portfolio (Softs) 288 −0.057 1.768 0.066 0.428 −6.119∗∗∗ −254.171∗∗∗ 0.066

Agriculture (Grains)

Corn (CBOT) C 1 288 −0.029 3.264 0.230 1.103 −6.862∗∗∗ −318.181∗∗∗ 0.041
Oats (CBOT) O 1 288 −0.067 4.879 −0.249 0.587 −7.992∗∗∗ −287.082∗∗∗ 0.141
Rough Rice (CBOT) RR1 288 −0.058 3.292 −0.021 1.311 −6.699∗∗∗ −234.482∗∗∗ 0.265
Soybean (CBOT) S 1 288 −0.115 3.047 −0.806 3.336 −6.307∗∗∗ −329.253∗∗∗ 0.099
Soybean Meal (CBOT) SM1 288 −0.131 3.827 −1.447 12.250 −7.462∗∗∗ −284.195∗∗∗ 0.052
Soybean Oil (CBOT) BO1 288 −0.041 2.831 0.144 0.299 −5.520∗∗∗ −288.352∗∗∗ 0.159
Wheat (CBOT) W 1 288 −0.028 4.105 0.462 0.533 −7.475∗∗∗ −291.078∗∗∗ 0.117
Portfolio (Grains) 288 −0.067 2.233 0.056 0.475 −7.261∗∗∗ −288.409∗∗∗ 0.202

Agriculture (Livestock)

Feeder Cattle (CME) FC1 288 −0.048 2.764 −0.124 2.379 −6.296∗∗∗ −303.541∗∗∗ 0.130
Lean Hogs (CME) LH1 288 −0.062 6.298 −0.331 2.651 −6.625∗∗∗ −283.262∗∗∗ 0.033
Live Cattle (CME) LC1 288 −0.026 3.140 −0.685 2.083 −6.185∗∗∗ −257.943∗∗∗ 0.073
Pork Bellies (CME) PB1 − − − − − − − −
Portfolio (Livestock) 288 −0.045 2.939 −0.341 1.710 −6.789∗∗∗ −294.267∗∗∗ 0.061

Energy

Brent (ICE) CO1 288 −0.180 4.814 0.037 2.822 −6.001∗∗∗ −287.978∗∗∗ 0.255
Gasoil (NYMEX) QS1 288 −0.149 4.070 −0.014 1.308 −6.258∗∗∗ −241.290∗∗∗ 0.273
Gasoline (NYMEX) XB1 288 −0.172 5.605 0.249 5.787 −6.102∗∗∗ −324.090∗∗∗ 0.108
Heating Oil (NYMEX) HO1 288 −0.145 4.367 −0.241 3.789 −6.801∗∗∗ −248.443∗∗∗ 0.278
Natural Gas (NYMEX) NG1 288 −0.229 6.628 −0.365 1.581 −7.833∗∗∗ −247.975∗∗∗ 0.057
WTI (NYMEX) CL1 288 −0.166 5.057 0.171 2.178 −5.870∗∗∗ −279.832∗∗∗ 0.211
Portfolio (Energy) 288 −0.173 3.983 0.023 1.113 −6.097∗∗∗ −261.142∗∗∗ 0.244

Industrial Metals

Aluminium (LME) LA1 288 0.005 2.577 0.529 1.223 −7.131∗∗∗ −256.832∗∗∗ 0.099
Cobalt (LME) LCO1 288 0.039 3.860 −0.731 4.727 −5.489∗∗∗ −273.609∗∗∗ 0.257
Copper (LME) LP1 288 −0.062 2.584 0.310 0.879 −6.339∗∗∗ −237.359∗∗∗ 0.196
Lead (LME) LL1 288 −0.047 3.107 0.111 0.487 −6.877∗∗∗ −271.483∗∗∗ 0.085
Nickel (LME) LN1 288 0.003 4.094 0.044 0.326 −5.661∗∗∗ −314.015∗∗∗ 0.129
Tin (LME) LT1 288 −0.091 2.800 −0.172 1.695 −5.931∗∗∗ −292.396∗∗∗ 0.134
Zinc (LME) LX1 288 0.038 3.213 0.021 −0.281 −5.500∗∗∗ −281.211∗∗∗ 0.146
Portfolio (Industrial Metals) 288 −0.017 1.938 −0.013 −0.187 −5.572∗∗∗ −266.238∗∗∗ 0.194

Precious Metals

Gold (COMEX) GC1 288 0.082 1.945 0.106 0.436 −6.439∗∗∗ −265.846∗∗∗ 0.098
Palladium (NYMEX) PA1 288 0.339 3.742 −0.262 1.427 −6.938∗∗∗ −234.223∗∗∗ 0.341
Platinum (NYMEX) PL1 288 −0.120 2.825 −0.009 0.667 −6.893∗∗∗ −233.419∗∗∗ 0.154
Silver (COMEX) SI1 288 −0.027 3.233 0.042 0.525 −7.107∗∗∗ −260.909∗∗∗ 0.092
Portfolio (Precious Metals) 288 0.069 2.335 −0.105 0.693 −6.683∗∗∗ −243.519∗∗∗ 0.233

Common Factor

PC1 (All Commodities) 1056 0.401 11.836 −0.664 4.265 −8.048∗∗∗ −1088.730∗∗∗ 0.176

Notes: Summary statistics for single futures are provided for non-overlapping 5-day returns calculated as rt = 100× [ln(pt)− ln(pt−5)],
where {pt}Tt=1 is the front month continuous futures series which contains daily settlement prices (in USD) of the last 20 trading days
of each month. Bloomberg tickers for the continuous series BBG Comdty (PX_SETTLE) are given in column BBG. Portfolio log returns are
calculated as n−1 ∑n

i=1 ri,t, where i = 1, ..., n are the futures in the respective portfolio for which returns are available on trading day
t. Daily futures data spans the period of 2014:1–2019:12 except for Pc1 (1998:1–2019:12). The common factor is constructed as the
first principal compoenent (PC) of standardized log returns of all commodities, for which data is available over the full sample period.
The Jarque-Bera test rejects the null of normality at the 0.1% level of significance for all return series. Asterisks indicate the rejection
of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level
for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for stationarity.
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Table C.12: Factor loadings and correlations of the first principal component of commodity returns to
the original futures return series

Common Factor (PC1) Common Factor (PC1, non-fuel)

Factor loading Correlation Factor loading Correlation

Softs
Cocoa 0.096 0.247 −0.119 −0.266
Coffee 0.124 0.279 −0.167 −0.328
Cotton 0.114 0.308 −0.148 −0.345
Ethanol 0.313 −0.293
Lumber 0.053 0.122 −0.074 −0.148
Orange Juice 0.050 0.122 −0.061 −0.127
Rubber 0.070 0.226 −0.089 −0.249
Sugar 0.130 0.297 −0.164 −0.326
Wool −0.007 −0.001

Grains
Corn 0.152 0.425 −0.203 −0.493
Oats 0.144 0.306 −0.208 −0.385
Rough Rice 0.074 0.215 −0.101 −0.258
Soybean 0.148 0.469 −0.197 −0.542
Soybean Meal 0.137 0.364 −0.192 −0.444
Soybean Oil 0.147 0.499 −0.178 −0.529
Wheat 0.150 0.382 −0.202 −0.447

Livestock
Feeder Cattle 0.008 0.04 −0.005 −0.02
Lean Hogs 0.037 0.077 −0.045 −0.081
Live Cattle 0.026 0.114 −0.029 −0.107
Pork Bellies 0.059 −0.057

Energy
Brent 0.327 0.733 −0.359
Gasoil 0.579 −0.289
Gasoline 0.236 0.621 −0.386
Heating Oil 0.316 0.702 −0.313
Natural Gas 0.255 0.375 −0.119
WTI 0.352 0.728 −0.357

Industrial Metals
Aluminium 0.144 0.520 −0.191 −0.602
Cobalt 0.032 −0.047
Copper 0.203 0.622 −0.271 −0.723
Lead 0.210 0.515 −0.292 −0.624
Nickel 0.263 0.531 −0.372 −0.653
Tin 0.143 0.438 −0.192 −0.512
Zinc 0.225 0.55 −0.321 −0.684

Precious Metals
Gold 0.090 0.410 −0.115 −0.455
Palladium 0.191 0.449 −0.256 −0.524
Platinum 0.137 0.456 −0.176 −0.511
Silver 0.194 0.509 −0.250 −0.571

Portfolios
Softs 0.510 −0.563
Grains 0.549 −0.644
Livestock 0.110 −0.106
Energy 0.796 −0.364
Industrial Metals 0.684 −0.824
Precious Metals 0.575 −0.652

Notes: This table displays the factor loadings of the first PC (common factor) based on stan-
dardized daily commodity futures log returns, that are available over the full sample period
from 1998:01 through 2019:12. All energy commodities are excluded from the calculation of
the non-fuel PC. Correlations to the first PC are calculated based on the available data for
each commodity.
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Table C.13: Sample statistics of daily (HF) and monthly (LF) driver variables, 1998–2003
Obs. Mean Std.Dev. Min Max Skewn. Ex.Kurt. J.B. ADF PP KPSS

Fundamental

Daily (HF)
BDI 1565 0.086 0.849 −3.922 5.587 1.061 5.419 0.000 −9.760∗∗∗ −321.680∗∗∗ 0.832∗∗∗

TBILL 1565 −0.003 0.047 −0.510 0.480 −1.789 30.641 0.000 −9.858∗∗∗ −1285.204∗∗∗ 0.341
USDEER 1565 −0.000 0.280 −2.122 1.382 −0.373 3.512 0.000 −10.676∗∗∗ −1511.467∗∗∗ 0.483∗∗

Monthly (LF)
WIP 72 0.232 0.513 −1.354 1.112 −0.449 0.065 0.297 −2.041 −95.495∗∗∗ 0.132
GECON 72 −0.043 0.335 −1.108 0.636 −0.397 0.151 0.375 −1.193 −15.937 0.368∗

BDI 72 1.839 9.826 −22.110 52.481 1.753 8.363 0.000 −2.429 −59.221∗∗∗ 0.456∗

STEEL 72 0.304 4.157 −6.946 13.456 0.986 1.137 0.000 −5.590∗∗∗ −108.137∗∗∗ 0.093
GSCPI 72 0.007 0.220 −0.580 0.470 −0.233 −0.192 0.683 −5.195∗∗∗ −66.423∗∗∗ 0.039
INFL 72 0.023 0.008 0.011 0.037 0.355 −1.100 0.076 −1.833 −5.257 0.290
INFLE 72 0.026 0.005 0.004 0.032 −2.278 7.810 0.000 −3.020 −24.602∗∗ 0.222
CSENT 72 −0.136 3.780 −11.206 10.278 −0.029 0.382 0.800 −4.175∗∗∗ −71.103∗∗∗ 0.073
PC1 72 0.181 1.078 −2.807 2.974 −0.312 0.573 0.341 −1.762 −42.202∗∗∗ 0.227

Financial

Daily (HF)
SPX 1565 0.009 1.303 −7.044 5.573 0.010 1.871 0.000 −12.127∗∗∗ −1501.041∗∗∗ 0.199
VIX 1565 −0.017 5.390 −19.377 27.122 0.214 0.890 0.000 −13.108∗∗∗ −1351.675∗∗∗ 0.023
PC1 1565 −0.007 1.282 −5.920 4.613 −0.098 1.193 0.000 −12.462∗∗∗ −1417.278∗∗∗ 0.093

Monthly (LF)
SPX 72 0.189 5.249 −15.759 9.232 −0.545 0.002 0.168 −3.364∗ −67.762∗∗∗ 0.237
VIX 72 −0.629 14.208 −34.106 46.550 0.873 1.831 0.000 −4.442∗∗∗ −50.220∗∗∗ 0.056
ISENT 72 −0.018 0.283 −0.751 0.720 −0.135 0.490 0.625 −3.021 −71.111∗∗∗ 0.225
PC1 72 0.008 1.313 −2.298 4.622 0.886 1.239 0.001 −3.597∗∗ −56.652∗∗∗ 0.126

Uncertainty

Daily (HF)
TED 1563 −0.128 10.572 −71.846 74.194 −0.125 8.320 0.000 −12.841∗∗∗ −1652.563∗∗∗ 0.074
EPU 1565 0.032 70.994 −248.131 294.635 0.161 0.692 0.000 −17.233∗∗∗ −1799.909∗∗∗ 0.004
GEOVOL 866 −0.338 8.693 −35.662 34.057 −0.133 1.478 0.000 −7.724∗∗∗ −914.949∗∗∗ 0.020

Monthly (LF)
FUNC 72 −0.171 3.466 −7.872 9.035 0.431 0.029 0.327 −4.123∗∗∗ −36.535∗∗∗ 0.374∗

MUNC 72 0.107 1.998 −4.560 5.788 −0.150 0.251 0.795 −3.503∗∗ −27.105∗∗∗ 0.219
RUNC 72 −0.035 1.877 −5.444 4.528 −0.183 0.557 0.513 −3.922∗∗ −40.107∗∗∗ 0.120
TED 72 −1.458 32.281 −82.313 95.316 0.249 0.893 0.209 −6.423∗∗∗ −59.699∗∗∗ 0.043
GEPU 72 −0.447 17.496 −34.496 70.585 1.079 2.717 0.000 −4.860∗∗∗ −61.926∗∗∗ 0.054
GPR 72 1.266 42.004 −102.940 175.819 0.865 3.122 0.000 −4.797∗∗∗ −66.433∗∗∗ 0.048
GEOVOL 42 −2.587 46.160 −106.282 92.450 −0.121 −0.448 0.797 −5.639∗∗∗ −44.053∗∗∗ 0.086
PC1 72 0.093 1.523 −5.055 3.593 −0.380 1.090 0.071 −3.938∗∗ −36.762∗∗∗ 0.224

Notes: Summary statistics are provided for 100×log-differenced data except for GECON, INFL, and INFLE (in levels) as well as TBILL,
GSCPI, and ISENTI (in differences). The data spans the period of 1998:1–2003:12 except for GEOVOL (2000:7–2003:12). The first
principal component (PC1) of each subset of drivers is calculated based on those drivers for which data was available over the entire
period. Asterisks indicate the rejection of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary
(KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests for stationarity.
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Table C.14: Sample statistics of daily (HF) and monthly (LF) driver variables, 2004–2013
Obs. Mean Std.Dev. Min Max Skewn. Ex.Kurt. J.B. ADF PP KPSS

Fundamental

Daily (HF)
BDI 2609 −0.028 2.103 −11.953 13.658 0.029 4.402 0.000 −9.660∗∗∗ −457.986∗∗∗ 0.076
TBILL 2609 −0.000 0.056 −0.810 0.740 −0.619 54.740 0.000 −14.622∗∗∗ −1745.976∗∗∗ 0.554∗∗

USDEER 2609 −0.004 0.357 −2.279 2.020 0.239 3.184 0.000 −13.359∗∗∗ −2728.733∗∗∗ 0.074

Monthly (LF)
WIP 120 0.214 0.742 −3.265 1.842 −1.931 6.849 0.000 −3.220∗ −73.234∗∗∗ 0.116
GECON 120 −0.070 0.491 −2.203 0.885 −2.055 5.927 0.000 −2.486 −19.878∗ 0.221
BDI 120 −0.622 22.732 −101.249 70.348 −0.856 3.656 0.000 −4.811∗∗∗ −66.842∗∗∗ 0.049
STEEL 120 0.413 4.563 −13.723 12.061 0.363 0.651 0.093 −5.478∗∗∗ −170.384∗∗∗ 0.042
GSCPI 120 −0.001 0.405 −1.180 0.900 −0.339 0.037 0.316 −7.837∗∗∗ −116.293∗∗∗ 0.027
INFL 120 0.024 0.014 −0.020 0.054 −0.672 0.641 0.004 −3.367∗ −16.662 0.437∗

INFLE 120 0.032 0.006 0.017 0.052 1.122 2.310 0.000 −3.758∗∗ −27.891∗∗∗ 0.069
CSENT 120 −0.096 6.230 −19.925 12.762 −0.367 0.209 0.233 −6.201∗∗∗ −96.434∗∗∗ 0.113
PC1 120 −0.246 1.797 −8.830 3.628 −1.780 5.774 0.000 −2.874 −37.192∗∗∗ 0.117

Financial

Daily (HF)
SPX 2609 0.019 1.265 −9.470 10.957 −0.330 11.547 0.000 −13.846∗∗∗ −2725.361∗∗∗ 0.172
VIX 2609 −0.011 6.621 −35.059 49.601 0.684 4.596 0.000 −15.299∗∗∗ −2497.305∗∗∗ 0.033
PC1 2609 −0.001 1.368 −8.694 9.142 −0.541 5.593 0.000 −14.311∗∗∗ −2608.229∗∗∗ 0.104

Monthly (LF)
SPX 120 0.424 4.295 −18.564 10.231 −1.087 2.827 0.000 −4.000∗∗ −97.917∗∗∗ 0.151
VIX 120 −0.146 16.590 −25.390 71.918 1.616 4.252 0.000 −5.333∗∗∗ −106.878∗∗∗ 0.070
ISENT 120 0.006 0.126 −0.539 0.264 −0.567 1.801 0.000 −4.236∗∗∗ −101.173∗∗∗ 0.159
PC1 120 −0.016 1.274 −2.059 6.226 1.546 4.602 0.000 −4.654∗∗∗ −95.197∗∗∗ 0.120

Uncertainty

Daily (HF)
TED 2609 −0.009 7.364 −57.093 53.011 −0.281 8.585 0.000 −13.285∗∗∗ −2342.324∗∗∗ 0.100
EPU 2609 0.025 56.966 −314.833 267.690 −0.071 1.448 0.000 −20.789∗∗∗ −2667.951∗∗∗ 0.004
GEOVOL 2427 −0.192 11.072 −113.531 85.858 −0.487 12.528 0.000 −13.678∗∗∗ −2280.695∗∗∗ 0.006

Monthly (LF)
FUNC 120 −0.023 3.382 −9.143 9.933 0.309 0.644 0.136 −4.096∗∗∗ −43.304∗∗∗ 0.160
MUNC 120 −0.075 2.516 −5.550 8.284 0.699 1.384 0.000 −4.061∗∗∗ −36.616∗∗∗ 0.200
RUNC 120 0.082 2.401 −5.369 7.775 0.353 0.525 0.145 −4.818∗∗∗ −55.492∗∗∗ 0.097
TED 120 −0.268 33.018 −77.467 111.493 0.713 1.867 0.000 −5.309∗∗∗ −124.392∗∗∗ 0.107
GEPU 120 0.447 17.377 −45.853 54.647 0.182 0.088 0.704 −6.146∗∗∗ −120.909∗∗∗ 0.045
GPR 120 −0.294 27.184 −73.343 65.133 −0.025 −0.119 0.959 −7.826∗∗∗ −132.921∗∗∗ 0.043
GEOVOL 120 −0.284 42.678 −164.922 150.359 −0.178 1.834 0.000 −6.984∗∗∗ −132.678∗∗∗ 0.029
PC1 120 −0.024 1.591 −3.096 6.730 0.959 2.128 0.000 −3.945∗∗ −57.614∗∗∗ 0.168

Notes: Summary statistics are provided for 100×log-differenced data except for GECON, INFL, and INFLE (in levels) as well as TBILL,
GSCPI, and ISENTI (in differences). The data spans the period of 2004:1–2013:12. The first principal component (PC1) of each subset
of drivers is calculated based on those drivers for which data was available over the entire period. Asterisks indicate the rejection of
the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level
for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for stationarity.
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Table C.15: Sample statistics of daily (HF) and monthly (LF) driver variables, 2014–2019
Obs. Mean Std.Dev. Min Max Skewn. Ex.Kurt. J.B. ADF PP KPSS

Fundamental

Daily (HF)
BDI 1565 −0.047 2.416 −12.072 11.355 0.184 2.332 0.000 −9.707∗∗∗ −492.548∗∗∗ 0.162
TBILL 1565 0.001 0.019 −0.080 0.140 0.389 4.595 0.000 −10.754∗∗∗ −1515.582∗∗∗ 0.608∗∗

USDEER 1565 0.013 0.296 −1.883 1.804 −0.047 3.021 0.000 −10.999∗∗∗ −1462.522∗∗∗ 0.344

Monthly (LF)
WIP 72 0.145 0.412 −0.973 1.079 0.023 −0.213 0.931 −3.499∗∗ −103.032∗∗∗ 0.097
GECON 72 −0.009 0.229 −0.517 0.351 −0.337 −0.813 0.187 −2.004 −20.407∗∗ 0.167
BDI 72 −0.715 20.785 −53.387 46.504 −0.068 −0.251 0.885 −4.873∗∗∗ −55.918∗∗∗ 0.136
STEEL 72 0.176 4.692 −9.691 13.061 0.635 1.081 0.015 −5.088∗∗∗ −110.262∗∗∗ 0.038
GSCPI 72 0.008 0.225 −0.640 0.450 −0.151 −0.192 0.825 −5.541∗∗∗ −94.620∗∗∗ 0.070
INFL 72 0.015 0.008 −0.002 0.029 −0.674 −0.446 0.049 −2.834 −8.516 0.815∗∗∗

INFLE 72 0.027 0.002 0.022 0.033 0.542 0.035 0.171 −2.631 −18.984∗ 0.647∗∗

CSENT 72 0.257 3.226 −9.146 7.296 −0.177 0.156 0.799 −5.403∗∗∗ −79.894∗∗∗ 0.059
PC1 72 0.230 0.790 −1.794 2.225 −0.029 0.320 0.853 −3.231∗ −94.297∗∗∗ 0.158

Financial

Daily (HF)
SPX 1565 0.036 0.812 −4.184 4.840 −0.522 3.931 0.000 −12.134∗∗∗ −1473.485∗∗∗ 0.047
VIX 1565 0.000 7.947 −29.983 76.825 1.270 8.184 0.000 −13.918∗∗∗ −1462.970∗∗∗ 0.008
PC1 1565 0.008 1.271 −10.635 4.709 −1.031 5.612 0.000 −13.305∗∗∗ −1468.938∗∗∗ 0.016

Monthly (LF)
SPX 72 0.776 3.287 −9.627 7.972 −0.637 1.088 0.015 −4.423∗∗∗ −82.020∗∗∗ 0.096
VIX 72 −0.041 18.578 −37.925 70.533 0.780 1.873 0.000 −4.683∗∗∗ −68.863∗∗∗ 0.034
ISENT 60 −0.006 0.081 −0.256 0.199 −0.726 1.034 0.019 −3.988∗∗ −62.257∗∗∗ 0.064
PC1 72 −0.043 1.215 −2.842 3.756 0.689 1.143 0.008 −4.600∗∗∗ −69.608∗∗∗ 0.050

Uncertainty

Daily (HF)
TED 1565 0.051 6.672 −46.612 37.110 −0.227 4.286 0.000 −12.378∗∗∗ −1586.254∗∗∗ 0.033
EPU 1565 −0.013 53.371 −185.874 321.562 0.236 1.365 0.000 −16.946∗∗∗ −1718.374∗∗∗ 0.007
GEOVOL 1455 −0.191 12.720 −112.255 101.026 −0.427 12.144 0.000 −10.582∗∗∗ −1379.116∗∗∗ 0.012

Monthly (LF)
FUNC 72 0.509 3.039 −7.646 9.688 0.096 0.757 0.400 −3.132 −31.277∗∗∗ 0.175
MUNC 72 0.420 2.090 −4.011 6.436 0.615 0.138 0.100 −2.949 −19.383∗ 0.205
RUNC 72 0.298 1.930 −3.916 6.985 0.725 1.730 0.000 −3.250∗ −38.447∗∗∗ 0.403∗

TED 72 1.128 25.544 −49.039 92.127 0.846 1.705 0.000 −5.660∗∗∗ −71.135∗∗∗ 0.046
GEPU 72 1.174 18.701 −43.731 60.568 0.532 1.290 0.015 −5.323∗∗∗ −78.508∗∗∗ 0.046
GPR 72 0.322 32.944 −89.791 100.606 0.248 1.276 0.060 −4.909∗∗∗ −85.482∗∗∗ 0.100
GEOVOL 72 −0.306 53.535 −176.673 138.871 −0.459 1.399 0.015 −6.796∗∗∗ −90.233∗∗∗ 0.040
PC1 72 0.240 1.293 −2.561 3.756 0.376 −0.152 0.414 −3.083 −45.708∗∗∗ 0.301

Notes: Summary statistics are provided for 100×log-differenced data except for GECON, INFL, and INFLE (in levels) as well as
TBILL, GSCPI, and ISENTI (in differences). The data spans the period of 2014:1–2019:12 except for ISENTI (2014:1–2018:12). The
first principal component (PC1) of each subset of drivers is calculated based on those drivers for which data was available over the
entire period. Asterisks indicate the rejection of the null hypothesis that the time series has a unit root (ADF, PP) or is level stationary
(KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) tests for stationarity.

Table C.16: Factor loadings and correlations of first principal components to the original variables of the
respective group of drivers

LF PC1 (Fundamental) HF PC1 (Financial) LF PC1 (Financial) LF PC1 (Uncertainty)

Factor loading Correlation Factor loading Correlation Factor loading Correlation Factor loading Correlation

WIP 0.495 0.699
GECON 0.570 0.804
BDI 0.324 0.458
STEEL 0.311 0.439
GSCPI 0.041 0.058
INFL −0.266 −0.375
INFLE −0.292 −0.412
CSENT 0.266 0.375

SPX 0.707 0.933 −0.705 −0.888
VIX −0.707 −0.933 0.708 0.892
ISENT −0.053 −0.067

FUNC 0.392 0.594
MUNC 0.560 0.847
RUNC 0.489 0.740
TED 0.299 0.453
GEPU 0.361 0.546
GPR 0.132 0.200
GEOVOL 0.238 0.361

Notes: This table displays factor loadings of the first PCs as well as the correlation of PCs to the original variables used for the PC
analysis. The PCs contained in this table also comprise information of variables for which data is not available over the full sample.
Hence, PCs were estimated from data spanning the period from 1998:1–2019:12 for LF fundamental and HF financial PCs, whereas the
period used for the LF financial PC is 1998:1–2018:12, and 2000:7-2003:12 for the LF uncertainty PC. Note that for our Granger causality
analysis, we exclude variables for which data is not available over the full (sub-)sample period prior to running the PC analysis, such that
the respective PC always covers the full (sub-)sample period.
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Figure C.6: First PCs of LF fundamental, financial, and uncertainty driver variables and standardized
variables of the respective set of drivers that exhibit the highest correlation to the first PC. Note that
for our Granger causality analysis, we exclude variables for which data is not available over the full
(sub-)sample period prior to running the PC analysis, such that the respective PC always covers the full
(sub-)sample period.
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Table C.17: Bootstrapped p-values of pairwise Granger causality tests for the null of non-causality from
potential drivers 9 commodities, 1998-2019

HF drivers LF drivers

Fundamental Financial Uncertainty Fundamental Financial Uncertainty

BDI TBILL USDEER PC1 TED EPU GEOVOL PC1 PC1 PC1

Softs
Cocoa 0.906 0.707 0.122 0.021 0.705 0.157 0.121 0.143 0.228 0.593
Coffee 0.423 0.047 0.423 0.002 0.161 0.634 0.010 0.242 0.697 0.190
Cotton 0.414 0.737 0.287 0.179 0.134 0.326 0.185 0.003 0.681 0.047
Ethanol 0.359 0.340 0.097◦ 0.074◦ 0.328 0.498 0.997 0.378 0.037 0.296
Lumber 0.245 0.365 0.528 0.258 0.002 0.928 0.758 0.024 0.753 0.068◦

Orange Juice 0.551 0.261 0.028 0.001 0.349 0.932 0.706 0.554 0.551 0.043
Rubber 0.084◦ 0.360 0.047 0.001 0.512 0.897 0.848 0.412 0.165 0.003
Sugar 0.006 0.228 0.674 0.085◦ 0.858 0.558 0.871 0.371 0.238 0.771
Wool 0.412 0.077◦ 0.394 0.799 0.635 0.148 0.709 0.288 0.037 0.013

Grains
Corn 0.807 0.221 0.493 0.571 0.381 0.663 0.802 0.187 0.184 0.378
Oats 0.544 0.236 0.427 0.443 0.701 0.753 0.347 0.033 0.510 0.204
Rough Rice 0.074◦ 0.867 0.977 0.397 0.255 0.857 0.407 0.606 0.776 0.363
Soybean 0.954 0.071◦ 0.955 0.044 0.974 0.986 0.331 0.104 0.032 0.104
Soybean Meal 0.864 0.078◦ 0.671 0.070◦ 0.687 0.880 0.511 0.449 0.073◦ 0.128
Soybean Oil 0.328 0.224 0.976 0.001 0.990 0.474 0.052◦ 0.141 0.090◦ 0.018
Wheat 0.961 0.095◦ 0.517 0.201 0.863 0.355 0.343 0.746 0.250 0.866

Livestock
Feeder Cattle 0.343 0.284 0.474 0.023 0.429 0.080◦ 0.755 0.854 0.562 0.312
Lean Hogs 0.807 0.790 0.044 0.804 0.255 0.005 0.079◦ 0.431 0.034 0.039
Live Cattle 0.988 0.965 0.210 0.138 0.541 0.014 0.401 0.587 0.078◦ 0.012
Pork Bellies 0.553 0.983 0.219 0.713 0.835 0.874 − 0.316 0.527 0.975

Energy
Brent 0.053◦ 0.125 1.000 0.001 0.332 0.445 0.022 0.001 0.591 0.226
Gasoil 0.088◦ 0.628 0.093◦ 0.001 0.320 0.435 0.002 0.001 0.793 0.433
Gasoline 0.024 0.099◦ 0.720 0.006 0.499 0.008 0.060◦ 0.003 0.576 0.238
Heating Oil 0.099◦ 0.212 0.288 0.005 0.616 0.939 0.003 0.001 0.465 0.159
Natural Gas 0.039 0.374 0.149 0.457 0.719 0.810 0.253 0.011 0.776 0.915
WTI 0.188 0.268 0.348 0.006 0.219 0.267 0.031 0.001 0.407 0.210

Industrial Metals
Aluminium 0.905 0.808 0.011 0.001 0.980 0.484 0.019 0.001 0.207 0.079◦

Cobalt − − − − − − − − − −
Copper 0.288 0.748 0.225 0.001 0.254 0.574 0.141 0.044 0.255 0.006
Lead 0.905 0.980 0.456 0.001 0.241 0.886 0.032 0.030 0.453 0.019
Nickel 0.449 0.670 0.365 0.001 0.081◦ 0.569 0.012 0.002 0.743 0.004
Tin 0.555 0.889 0.117 0.001 0.229 0.832 0.167 0.007 0.478 0.058◦

Zinc 0.822 0.407 0.843 0.001 0.229 0.345 0.184 0.029 0.411 0.010

Precious Metals
Gold 0.195 0.565 0.892 0.004 0.081◦ 0.906 0.075◦ 0.596 0.601 0.803
Palladium 0.089◦ 0.573 0.312 0.001 0.181 0.381 0.391 0.003 0.110 0.671
Platinum 0.122 0.560 0.943 0.001 0.387 0.998 0.322 0.019 0.075◦ 0.511
Silver 0.066◦ 0.706 0.878 0.001 0.665 0.571 0.033 0.041 0.545 0.216

Portfolios / PC1
Softs 0.635 0.446 0.670 0.001 0.289 0.529 0.049 0.022 0.099◦ 0.109
Grains 0.603 0.193 0.776 0.029 0.561 0.994 0.167 0.024 0.062◦ 0.046
Livestock 0.688 0.670 0.032 0.408 0.220 0.004 0.255 0.350 0.263 0.613
Energy 0.023 0.186 0.808 0.002 0.555 0.579 0.005 0.003 0.348 0.243
Industrial Metals 0.762 0.839 0.843 0.001 0.196 0.599 0.020 0.001 0.290 0.002
Precious Metals 0.077◦ 0.697 0.677 0.001 0.177 0.860 0.066◦ 0.014 0.166 0.433
Common Factor 0.262 0.263 0.598 0.001 0.171 0.996 0.002 0.001 0.112 0.004

Notes: This table shows bootstrapped p-values with N = 999 replications for testing the null hypothesis of non-causality from potential HF
and LF drivers to commodity futures at the prediction horizon h = 1, which is daily for HF and monthly for LF drivers. Granger causality
tests are based on bivariate MF-VAR (HF-VAR) models with lag order P = 1 using weekly (daily) commodity returns, and monthly (daily)
(log-differenced) data for potential drivers, i.e., m = 4 (m = 1). Data was demeaned prior to VAR estimation. A highlighted cell (circle)
indicates the rejection of non-causality at the 5% (10%) level. The sample spans the period 1998:1–2019:12 where data is available over
the full horizon. Results are only displayed for pairs of which data is available at least over half of the sample period. The first principal
component (PC1) of each subset of drivers is calculated based on drivers for which data was available over the entire period (cf. Table 2).
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Table C.18: Bootstrapped p-values of pairwise Granger causality tests for the null of non-causality from
potential drivers 9 commodities, 1998-2003

HF drivers LF drivers

Fundamental Financial Uncertainty Fundamental Financial Uncertainty

BDI TBILL USDEER PC1 TED EPU GEOVOL PC1 PC1 PC1

Softs
Cocoa 0.433 0.356 0.290 0.835 0.802 0.693 0.425 0.965 0.260 0.828
Coffee 0.956 0.854 0.467 0.250 0.531 0.216 0.486 0.710 0.944 0.424
Cotton 0.034 0.255 0.170 0.705 0.017 0.380 0.975 0.257 0.813 0.024
Ethanol − − − − − − − − − −
Lumber 0.003 0.658 0.993 0.074◦ 0.288 0.249 0.338 0.131 0.234 0.120
Orange Juice 0.392 0.223 0.154 0.100 0.972 0.975 0.033 0.023 0.393 0.031
Rubber 0.093◦ 0.819 0.085◦ 0.846 0.475 0.900 0.657 0.205 0.712 0.068◦

Sugar 0.170 0.573 0.637 0.167 0.545 0.281 0.666 0.693 0.565 0.789
Wool 0.710 0.992 0.507 0.567 0.908 0.144 0.671 0.629 0.228 0.035

Grains
Corn 0.515 0.115 0.230 0.435 0.982 0.702 0.347 0.401 0.201 0.216
Oats 0.957 0.855 0.457 0.124 0.188 0.905 0.038 0.651 0.078◦ 0.295
Rough Rice 0.485 0.404 0.254 0.914 0.407 0.816 0.734 0.228 0.917 0.522
Soybean 0.254 0.978 0.019 0.596 0.207 0.324 0.722 0.452 0.316 0.328
Soybean Meal 0.334 0.533 0.010 0.625 0.083◦ 0.372 0.316 0.455 0.113 0.678
Soybean Oil 0.616 0.692 0.071◦ 0.948 0.669 0.978 0.559 0.279 0.148 0.192
Wheat 0.467 0.171 0.140 0.623 0.985 0.318 0.831 0.196 0.092◦ 0.625

Livestock
Feeder Cattle 0.764 0.474 0.853 0.758 0.887 0.164 0.998 0.577 0.707 0.696
Lean Hogs 0.222 0.562 0.666 0.601 0.610 0.194 0.245 0.247 0.151 0.303
Live Cattle 0.458 0.529 0.466 0.672 0.765 0.038 0.342 0.772 0.252 0.190
Pork Bellies 0.868 0.871 0.804 0.448 0.701 0.875 0.224 0.887 0.267 0.553

Energy
Brent 0.904 0.506 0.343 0.014 0.985 0.542 0.022 0.082◦ 0.730 0.073◦

Gasoil 0.654 0.762 0.378 0.399 0.974 0.905 0.013 0.045 0.443 0.902
Gasoline − − − − − − − − − −
Heating Oil 0.454 0.825 0.993 0.426 0.831 0.253 0.050◦ 0.040 0.496 0.518
Natural Gas 0.285 0.971 0.366 0.286 0.466 0.678 0.735 0.362 0.467 0.703
WTI 0.822 0.777 0.759 0.094◦ 0.786 0.750 0.175 0.039 0.858 0.549

Industrial Metals
Aluminium 0.207 0.324 0.003 0.076◦ 0.043 0.524 0.482 0.299 0.781 0.169
Cobalt − − − − − − − − − −
Copper 0.025 0.691 0.135 0.005 0.132 0.847 0.076◦ 0.097◦ 0.091◦ 0.115
Lead 0.728 0.912 0.428 0.198 0.205 0.102 0.119 0.854 0.332 0.701
Nickel 0.161 0.444 0.178 0.007 0.850 0.699 0.004 0.020 0.029 0.259
Tin 0.085◦ 0.168 0.869 0.066◦ 0.618 0.754 0.360 0.052◦ 0.031 0.030
Zinc 0.014 0.599 0.101 0.019 0.809 0.460 0.288 0.070◦ 0.033 0.073◦

Precious Metals
Gold 0.851 0.507 0.111 0.003 0.676 0.164 0.689 0.217 0.099◦ 0.951
Palladium 0.753 0.851 0.655 0.530 0.691 0.546 0.297 0.586 0.784 0.355
Platinum 0.090◦ 0.823 0.745 0.677 0.554 0.343 0.754 0.044 0.899 0.451
Silver 0.677 0.744 0.373 0.001 0.683 0.149 0.124 0.039 0.106 0.354

Portfolios / PC1
Softs 0.152 0.469 0.117 0.018 0.478 0.382 0.152 0.471 0.971 0.054◦

Grains 0.399 0.556 0.010 0.363 0.147 0.735 0.155 0.174 0.081◦ 0.336
Livestock 0.436 0.926 0.582 1.000 0.883 0.233 0.131 0.888 0.311 0.475
Energy 0.518 0.683 0.744 0.103 0.861 0.677 0.083◦ 0.035 0.678 0.827
Industrial Metals 0.052◦ 0.375 0.130 0.003 0.290 0.719 0.017 0.039 0.063◦ 0.084◦

Precious Metals 0.830 0.764 0.874 0.014 0.669 0.477 0.660 0.134 0.348 0.133
Common Factor 0.279 0.941 0.243 0.008 0.954 0.978 0.005 0.008 0.243 0.310

Notes: This table shows bootstrapped p-values with N = 999 replications for testing the null hypothesis of non-causality from potential HF
and LF drivers to commodity futures at the prediction horizon h = 1, which is daily for HF and monthly for LF drivers. Granger causality
tests are based on bivariate MF-VAR (HF-VAR) models with lag order P = 1 using weekly (daily) commodity returns, and monthly (daily)
(log-differenced) data for potential drivers, i.e., m = 4 (m = 1). Data was demeaned prior to VAR estimation. A highlighted cell (circle)
indicates the rejection of non-causality at the 5% (10%) level. The sample spans the period 1998:1–2003:12 where data is available over
the full horizon. Results are only displayed for pairs of which data is available at least over half of the sample period. The first principal
component (PC1) of each subset of drivers is calculated based on drivers for which data was available over the entire period (cf. Table
C.13).
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Table C.19: Bootstrapped p-values of pairwise Granger causality tests for the null of non-causality from
potential drivers 9 commodities, 2004-2013

HF drivers LF drivers

Fundamental Financial Uncertainty Fundamental Financial Uncertainty

BDI TBILL USDEER PC1 TED EPU GEOVOL PC1 PC1 PC1

Softs
Cocoa 0.578 0.841 0.573 0.002 0.344 0.738 0.213 0.166 0.378 0.262
Coffee 0.597 0.027 0.088◦ 0.004 0.166 0.081◦ 0.137 0.051◦ 0.509 0.047
Cotton 0.767 0.245 0.055◦ 0.064◦ 0.362 0.318 0.155 0.004 0.658 0.048
Ethanol 0.618 0.083◦ 0.067◦ 0.060◦ 0.856 0.436 0.641 0.112 0.151 0.202
Lumber 0.919 0.242 0.631 0.884 0.091◦ 0.397 0.772 0.030 0.573 0.352
Orange Juice 0.746 0.001 0.434 0.002 0.146 0.562 0.976 0.002 0.712 0.101
Rubber 0.592 0.161 0.282 0.001 0.219 0.272 0.743 0.269 0.212 0.012
Sugar 0.059◦ 0.325 0.755 0.250 0.531 0.476 0.732 0.063◦ 0.419 0.363
Wool 0.311 0.022 0.525 0.829 0.346 0.540 0.910 0.618 0.221 0.059◦

Grains
Corn 0.678 0.470 0.176 0.039 0.674 0.567 0.374 0.135 0.371 0.300
Oats 0.323 0.377 0.897 0.128 0.869 0.343 0.836 0.137 0.255 0.415
Rough Rice 0.159 0.556 0.602 0.155 0.318 0.740 0.584 0.655 0.896 0.417
Soybean 0.801 0.041 0.308 0.001 0.159 0.844 0.327 0.026 0.212 0.355
Soybean Meal 0.781 0.012 0.417 0.002 0.151 0.780 0.336 0.336 0.214 0.419
Soybean Oil 0.285 0.127 0.563 0.001 0.624 0.580 0.089◦ 0.030 0.148 0.072◦

Wheat 0.392 0.173 0.118 0.013 0.647 0.630 0.110 0.287 0.262 0.675

Livestock
Feeder Cattle 0.520 0.906 0.542 0.180 0.709 0.519 0.853 0.585 0.043 0.536
Lean Hogs 0.585 0.606 0.234 0.420 0.357 0.122 0.502 0.788 0.778 0.041
Live Cattle 0.782 0.259 0.345 0.406 0.417 0.503 0.787 0.290 0.049 0.028
Pork Bellies 0.460 0.931 0.155 0.791 0.363 0.732 0.856 0.471 0.585 0.432

Energy
Brent 0.129 0.038 0.896 0.001 0.632 0.415 0.171 0.009 0.644 0.145
Gasoil 0.168 0.504 0.337 0.001 0.349 0.298 0.008 0.008 0.170 0.151
Gasoline 0.135 0.042 0.932 0.004 0.164 0.024 0.423 0.021 0.910 0.053◦

Heating Oil 0.257 0.079◦ 0.433 0.001 0.999 0.774 0.007 0.004 0.193 0.301
Natural Gas 0.394 0.152 0.249 0.355 0.836 0.856 0.195 0.128 0.637 0.986
WTI 0.462 0.107 0.238 0.018 0.514 0.477 0.131 0.018 0.449 0.087◦

Industrial Metals
Aluminium 0.836 0.285 0.358 0.001 0.777 0.463 0.048 0.004 0.029 0.044
Cobalt − − − − − − − − − −
Copper 0.541 0.538 0.114 0.001 0.134 0.278 0.045 0.042 0.284 0.011
Lead 0.747 0.826 0.340 0.001 0.230 0.220 0.025 0.002 0.689 0.011
Nickel 0.187 0.888 0.774 0.001 0.150 0.396 0.184 0.002 0.094◦ 0.004
Tin 0.991 0.862 0.012 0.005 0.389 0.548 0.412 0.009 0.070◦ 0.040
Zinc 0.716 0.185 0.344 0.001 0.822 0.084◦ 0.043 0.117 0.025 0.045

Precious Metals
Gold 0.133 0.900 0.537 0.009 0.086◦ 0.495 0.223 0.907 0.785 0.732
Palladium 0.091◦ 0.385 0.705 0.001 0.678 0.535 0.397 0.005 0.025 0.098◦

Platinum 0.058◦ 0.148 0.544 0.001 0.976 0.868 0.658 0.011 0.075◦ 0.592
Silver 0.105 0.535 0.907 0.001 0.571 0.843 0.039 0.169 0.349 0.457

Portfolios / PC1
Softs 0.978 0.070◦ 0.656 0.001 0.394 0.787 0.162 0.002 0.271 0.396
Grains 0.369 0.177 0.326 0.001 0.560 0.996 0.150 0.019 0.374 0.425
Livestock 0.531 0.999 0.089◦ 0.491 0.574 0.523 0.595 0.154 0.860 0.146
Energy 0.117 0.063◦ 0.767 0.001 0.637 0.650 0.031 0.012 0.277 0.208
Industrial Metals 0.960 0.555 0.228 0.001 0.242 0.221 0.032 0.001 0.112 0.002
Precious Metals 0.066◦ 0.391 0.651 0.001 0.485 0.764 0.140 0.027 0.227 0.298
Common Factor 0.456 0.156 0.203 0.001 0.599 0.489 0.008 0.001 0.053◦ 0.097◦

Notes: This table shows bootstrapped p-values with N = 999 replications for testing the null hypothesis of non-causality from potential HF
and LF drivers to commodity futures at the prediction horizon h = 1, which is daily for HF and monthly for LF drivers. Granger causality
tests are based on bivariate MF-VAR (HF-VAR) models with lag order P = 1 using weekly (daily) commodity returns, and monthly (daily)
(log-differenced) data for potential drivers, i.e., m = 4 (m = 1). Data was demeaned prior to VAR estimation. A highlighted cell (circle)
indicates the rejection of non-causality at the 5% (10%) level. The sample spans the period 2004:1–2013:12 where data is available over
the full horizon. Results are only displayed for pairs of which data is available at least over half of the sample period. The first principal
component (PC1) of each subset of drivers is calculated based on drivers for which data was available over the entire period (cf. Table
C.14).
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Table C.20: Bootstrapped p-values of pairwise Granger causality tests for the null of non-causality from
potential drivers 9 commodities, 2014-2019

HF drivers LF drivers

Fundamental Financial Uncertainty Fundamental Financial Uncertainty

BDI TBILL USDEER PC1 TED EPU GEOVOL PC1 PC1 PC1

Softs
Cocoa 0.774 0.071◦ 0.507 0.488 0.046 0.038 0.573 0.873 0.208 0.662
Coffee 0.574 0.762 0.095◦ 0.510 0.610 0.446 0.043 0.191 0.468 0.998
Cotton 0.156 0.202 0.634 0.552 0.044 0.697 0.875 0.358 0.013 0.413
Ethanol 0.542 0.048 0.820 0.924 0.069◦ 0.936 0.578 0.833 0.541 0.867
Lumber 0.195 0.002 0.631 0.716 0.003 0.944 0.792 0.747 0.558 0.284
Orange Juice 0.802 0.931 0.059◦ 0.095◦ 0.894 0.591 0.806 0.667 0.453 0.566
Rubber 0.120 0.082◦ 0.311 0.001 0.201 0.282 0.982 0.561 0.062◦ 0.310
Sugar 0.071◦ 0.929 0.190 0.312 0.566 0.461 0.924 0.553 0.075◦ 0.542
Wool − − − − − − − − − −

Grains
Corn 0.170 0.391 0.986 0.049 0.111 0.657 0.250 0.239 0.857 0.868
Oats 0.755 0.293 0.391 0.408 0.154 0.459 0.682 0.097◦ 0.067◦ 0.575
Rough Rice 0.370 0.348 0.599 0.399 0.842 0.439 0.284 0.207 0.481 0.221
Soybean 0.285 0.142 0.945 0.447 0.039 0.353 0.973 0.354 0.300 0.620
Soybean Meal 0.844 0.262 0.889 0.258 0.103 0.177 0.373 0.207 0.554 0.944
Soybean Oil 0.785 0.406 0.824 0.242 0.632 0.272 0.413 0.697 0.537 0.657
Wheat 0.074◦ 0.678 0.364 0.171 0.160 0.915 0.503 0.991 0.281 0.453

Livestock
Feeder Cattle 0.400 0.003 0.846 0.121 0.052◦ 0.013 0.791 0.546 0.964 0.850
Lean Hogs 0.590 0.515 0.062◦ 0.767 0.558 0.045 0.182 0.830 0.136 0.583
Live Cattle 0.594 0.056◦ 0.641 0.029 0.097◦ 0.010 0.190 0.785 0.457 0.015
Pork Bellies − − − − − − − − − −

Energy
Brent 0.116 0.046 0.360 0.121 0.118 0.140 0.269 0.422 0.686 0.146
Gasoil 0.261 0.064◦ 0.210 0.005 0.192 0.983 0.199 0.286 0.675 0.189
Gasoline 0.351 0.425 0.505 0.281 0.629 0.107 0.088◦ 0.263 0.867 0.541
Heating Oil 0.211 0.235 0.322 0.210 0.418 0.116 0.413 0.175 0.775 0.595
Natural Gas 0.065◦ 0.695 0.987 0.210 0.710 0.296 0.959 0.837 0.671 0.039
WTI 0.199 0.056◦ 0.672 0.446 0.124 0.071◦ 0.276 0.962 0.645 0.203

Industrial Metals
Aluminium 0.843 0.055◦ 0.095◦ 0.061◦ 0.079◦ 0.300 0.528 0.402 0.953 0.197
Cobalt 0.067◦ 0.431 0.609 0.013 0.566 0.359 0.385 0.140 0.325 0.033
Copper 0.814 0.066◦ 0.638 0.023 0.048 0.363 0.187 0.879 0.318 0.114
Lead 0.176 0.089◦ 0.326 0.125 0.037 0.562 0.870 0.390 0.346 0.496
Nickel 0.619 0.012 0.338 0.121 0.011 0.359 0.460 0.454 0.857 0.526
Tin 0.438 0.164 0.009 0.100 0.016 0.086◦ 0.271 0.101 0.292 0.886
Zinc 0.353 0.006 0.342 0.003 0.001 0.263 0.294 0.983 0.406 0.523

Precious Metals
Gold 0.806 0.041 0.769 0.914 0.668 0.325 0.266 0.123 0.631 0.948
Palladium 0.328 0.009 0.369 0.018 0.023 0.955 0.810 0.046 0.117 0.433
Platinum 0.665 0.002 0.336 0.054◦ 0.125 0.173 0.315 0.527 0.113 0.348
Silver 0.147 0.090◦ 0.984 0.085◦ 0.650 0.482 0.208 0.758 0.392 0.892

Portfolios / PC1
Softs 0.678 0.005 0.970 0.097◦ 0.006 0.487 0.514 0.122 0.150 0.991
Grains 0.290 0.581 0.637 0.476 0.248 0.630 0.969 0.363 0.195 0.951
Livestock 0.671 0.037 0.128 0.453 0.142 0.001 0.729 0.602 0.671 0.777
Energy 0.068◦ 0.071◦ 0.455 0.417 0.197 0.239 0.252 0.805 0.900 0.260
Industrial Metals 0.755 0.011 0.030 0.020 0.001 0.240 0.814 0.255 0.346 0.063◦

Precious Metals 0.396 0.005 0.999 0.031 0.075◦ 0.409 0.357 0.168 0.286 0.787
Common Factor 0.407 0.002 0.386 0.065◦ 0.003 0.250 0.378 0.463 0.411 0.076◦

Notes: This table shows bootstrapped p-values with N = 999 replications for testing the null hypothesis of non-causality from potential HF
and LF drivers to commodity futures at the prediction horizon h = 1, which is daily for HF and monthly for LF drivers. Granger causality
tests are based on bivariate MF-VAR (HF-VAR) models with lag order P = 1 using weekly (daily) commodity returns, and monthly (daily)
(log-differenced) data for potential drivers, i.e., m = 4 (m = 1). Data was demeaned prior to VAR estimation. A highlighted cell (circle)
indicates the rejection of non-causality at the 5% (10%) level. The sample spans the period 2014:1–2019:12 where data is available over
the full horizon. Results are only displayed for pairs of which data is available at least over half of the sample period. The first principal
component (PC1) of each subset of drivers is calculated based on drivers for which data was available over the entire period (cf. Table
C.15).
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Table C.25: Share of rejections of the null of non-causality per driver
1998–2019 1998–2003 2004–2013 2014–2019

<0.01 <0.05 <0.10 <0.01 <0.05 <0.10 <0.01 <0.05 <0.10 <0.01 <0.05 <0.10

1st Principal Components
Fundamental PC m = 4 0.3023 0.5581 0.5581 0.0244 0.2439 0.3415 0.3023 0.5349 0.5814 0.0000 0.0238 0.0476

m = 1 0.3721 0.5581 0.6512 0.3415 0.4146 0.4146 0.3721 0.6047 0.7209 0.0238 0.0714 0.0952
Financial PC m = 4 0.0000 0.0930 0.2326 0.0000 0.0732 0.2195 0.0000 0.1163 0.2093 0.0000 0.0238 0.0952

m = 1 0.0000 0.0465 0.1163 0.0488 0.1220 0.1951 0.0000 0.0465 0.1628 0.0000 0.0238 0.0714
Uncertainty PC m = 4 0.1163 0.3256 0.3953 0.0000 0.0976 0.2195 0.0465 0.2791 0.4186 0.0000 0.0714 0.1190

m = 1 0.1395 0.4186 0.5814 0.0732 0.1707 0.2439 0.1395 0.5349 0.6744 0.0238 0.0238 0.0714

Fundamental
WIP m = 4 0.2558 0.4419 0.5349 0.0000 0.0732 0.1220 0.3023 0.4186 0.4884 0.0000 0.0000 0.0238

m = 1 0.2093 0.5581 0.5814 0.0000 0.0732 0.2683 0.1860 0.3953 0.6744 0.0238 0.1190 0.2143
GECON m = 4 0.1395 0.4186 0.5581 0.0244 0.0976 0.1951 0.0930 0.3023 0.3953 0.0238 0.0714 0.1429

m = 1 0.1628 0.2326 0.2558 0.1220 0.2683 0.3659 0.0233 0.1395 0.3488 0.0000 0.0476 0.0714
BDI m = 4 0.0465 0.1163 0.2093 0.0000 0.1220 0.3659 0.0233 0.0698 0.1860 0.0000 0.0952 0.2143

m = 1 0.0000 0.0930 0.1860 0.0244 0.1951 0.2439 0.0698 0.0930 0.1395 0.0238 0.0952 0.1190
STEEL m = 4 0.0465 0.2093 0.3023 0.0000 0.0976 0.1463 0.0000 0.0698 0.1395 0.0000 0.0238 0.1429

m = 1 0.0233 0.2791 0.4186 0.0000 0.1463 0.2195 0.0000 0.0465 0.0930 0.0000 0.1667 0.2619
GSCPI m = 4 0.0000 0.0000 0.0000 0.0000 0.0244 0.0244 0.0000 0.0000 0.0000 0.0000 0.0476 0.0714

m = 1 0.0000 0.0000 0.0465 0.0000 0.0000 0.0244 0.0000 0.0000 0.0000 0.0000 0.0238 0.0714
INFL m = 4 0.0000 0.1628 0.3023 0.0244 0.0732 0.1707 0.0930 0.3488 0.5581 0.1429 0.3095 0.4524

m = 1 0.0698 0.1860 0.4884 0.0000 0.0244 0.1463 0.2326 0.4884 0.6512 0.0476 0.0952 0.1190
INFLE m = 4 0.0233 0.1395 0.2093 0.0488 0.1951 0.3171 0.1163 0.2558 0.4186 0.0476 0.1190 0.2143

m = 1 0.1163 0.3488 0.4419 0.0488 0.1463 0.2439 0.1395 0.5581 0.6279 0.0238 0.1190 0.2381
CSENT m = 4 0.0000 0.0465 0.0930 0.0000 0.0488 0.1220 0.0233 0.0698 0.0698 0.0000 0.0952 0.0952

m = 1 0.0000 0.0930 0.1628 0.0976 0.2195 0.2683 0.0000 0.0698 0.0930 0.0238 0.1190 0.1905

Financial
SPX m = 4 0.0000 0.0233 0.1163 0.0000 0.0488 0.0732 0.0233 0.0233 0.0930 0.0238 0.0952 0.2619

m = 1 0.0000 0.0000 0.0698 0.0244 0.1463 0.2195 0.0000 0.0233 0.1395 0.0000 0.0952 0.1905
VIX m = 4 0.0000 0.0465 0.1628 0.0000 0.0488 0.0976 0.0000 0.1163 0.1628 0.0000 0.0238 0.0238

m = 1 0.0465 0.0698 0.1628 0.0488 0.0732 0.1220 0.0233 0.1163 0.2326 0.0000 0.0238 0.0476
ISENT m = 4 0.0000 0.1628 0.2326 0.0244 0.0732 0.0976 0.0000 0.0465 0.1628 0.0000 0.0238 0.0238

m = 1 0.0000 0.0698 0.1628 0.0244 0.0488 0.0732 0.0233 0.0233 0.1163 0.0000 0.0238 0.0952

Uncertainty
FUNC m = 4 0.0465 0.2326 0.3023 0.0000 0.0488 0.0976 0.0233 0.0930 0.2093 0.0476 0.1905 0.3571

m = 1 0.2558 0.3953 0.4419 0.0244 0.1463 0.2439 0.1860 0.3721 0.5116 0.0476 0.0952 0.0952
MUNC m = 4 0.1163 0.2558 0.4419 0.0244 0.1463 0.1951 0.0233 0.2093 0.3256 0.0476 0.0952 0.1429

m = 1 0.0698 0.5116 0.7209 0.0732 0.2683 0.2683 0.1163 0.3953 0.5814 0.0000 0.0476 0.0476
RUNC m = 4 0.0000 0.1163 0.1860 0.0000 0.0976 0.1220 0.0000 0.2093 0.3023 0.0000 0.0714 0.1429

m = 1 0.0000 0.1395 0.2791 0.0244 0.0976 0.1707 0.0000 0.1860 0.3721 0.0000 0.0476 0.0952
TED m = 4 0.0000 0.0233 0.0698 0.0000 0.0244 0.0732 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

m = 1 0.0000 0.0000 0.0233 0.0000 0.0976 0.1220 0.0000 0.0000 0.0698 0.0000 0.0476 0.0952
GEPU m = 4 0.0233 0.0698 0.0698 0.0000 0.0488 0.1463 0.0000 0.0000 0.0465 0.0476 0.1190 0.3095

m = 1 0.0000 0.0465 0.0930 0.0000 0.1463 0.2927 0.0000 0.0233 0.0233 0.0000 0.0476 0.0714
GPR m = 4 0.0000 0.0000 0.0465 0.0000 0.1220 0.2439 0.0233 0.1860 0.2558 0.0000 0.0000 0.0238

m = 1 0.0000 0.0465 0.0698 0.0000 0.0732 0.2195 0.0930 0.2093 0.2093 0.0000 0.0238 0.0238
GEOVOL m = 4 0.0238 0.1190 0.1667 0.0000 0.0244 0.0732 0.0465 0.1395 0.1395 0.0000 0.1190 0.1190

m = 1 0.0238 0.0476 0.2143 0.0000 0.0732 0.1463 0.0000 0.0233 0.0930 0.0000 0.0000 0.0476

total m = 4 0.0543 0.1696 0.2472 0.0081 0.0871 0.1649 0.0543 0.1661 0.2458 0.0181 0.0771 0.1440
m = 1 0.0710 0.1973 0.2938 0.0465 0.1405 0.2149 0.0764 0.2071 0.3112 0.0113 0.0646 0.1111

Notes: This table shows the proportion of all bivariate Granger causality tests for a given LF variable in which the null hypothesis
of non-causality from the LF variable to the commodity futures is rejected at the 1%, 5%, and 10% level, respectively. Including
commodity portfolios and the common factor, we conduct 43 Granger causality tests per driver for the full sample (1998–2019), 41 for
the first (1998–2003), 43 for the second (2004–2013), and 42 for the third subsample (2014–2019). Granger causality tests are based
on bivariate MF-VAR (LF-VAR) models using weekly (monthly) commodity returns, i.e., m = 4 (m = 1).
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Table C.26: Sample statistics of S&P GSCI index for daily, weekly (5-day), and monthly log returns
Obs. Mean Std.Dev. Min. Max. Skewn. Ex.Kurt. J.B. ADF PP KPSS

Daily prices 5739 4173.24 1638.04 1860.66 10898.10 0.89 0.839 0.000 −1.849 −5.125 9.311∗∗∗

Daily returns 5280 −0.003 1.469 −15.613 7.617 −0.543 6.352 0.000 −15.807∗∗∗ −5475.936∗∗∗ 0.220
Weekly returns 1056 −0.014 3.323 −22.295 12.320 −0.546 2.964 0.000 −8.364∗∗∗ −1141.649∗∗∗ 0.194
Monthly returns 264 −0.063 6.529 −33.127 17.953 −0.649 1.984 0.000 −6.524∗∗∗ −225.772∗∗∗ 0.144

Notes: Summary statistics for daily (i = 1) and non-overlapping weekly (i = 5) returns are provided for rt = 100× [ln(pt)− ln(pt−i)],
where {pt}Tt=1 is the time series of S&P GSCI closing prices of the last 20 trading days of each month. The sample period runs
from 1998:1 to 2019:12. Asterisks indicate the rejection of the null hypothesis that the time series has a unit root (ADF, PP) or
is level stationary (KPSS) at the ∗∗∗1%, ∗∗5%, and ∗10% level for the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests for stationarity.
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Figure C.7: Cumulative returns of MF-VARs (m = 4) relative to MF-VARs (m = 4) without including
a driver variable (MF-VAR*) for trading the S&P GSCI based on averaged one-month-ahead directional
return forecast from bivariate VAR models (upper panel) and 12-month rolling excess returns of MF-
VARs (m = 4) over MF-VAR (m = 4) without including a driver (MF-VAR*) on a monthly basis (lower
panel). The trading period runs from the end of 2002:2 to 2019:12. Shadings indicate the following pe-
riods: Pre-Financialization (1998–2003), Emerging Financialization (2004–2007), Global Financial Crisis
(2008–2013), and De-Financialization (2014–2019).
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