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An Artificial Intelligence (AI)-Readiness and Adoption Framework for 

AgriTech Firms

ABSTRACT

With the recent technological advancements, empowered by the self-learning 

capabilities of algorithms, and the increasing power of machines computation, Artificial 

Intelligence (AI)-driven technologies have become more pervasive and performant, less 

costly, and more effective at addressing and solving prevailing business problems. In this 

respect, firms operating in the AgriTech sector make no exception and are indeed being 

significantly impacted by AI-driven technologies and systems. We argue in this paper that 

given the unique characteristics of AI technologies and emerging challenges and aspirations 

of the AgriTech sector, there is a need for re-examining traditional theorizations of 

technology adoption and readiness within AgriTech firms. Specifically, we develop a 

comprehensive AI readiness and adoption empirical framework that delineates the 

determinants of AI readiness and uncovers a set of key strategic components that can help 

AgriTech firms better manage their readiness process for AI adoption. We employ a mixed-

methods approach and collect through 236 e-surveys and 25 interviews from one of the most 

influential conferences in the AgriTech field. Our findings have implications for research and 

practice. 

Key words: Artificial intelligence; agricultural technology; readiness and adoption; mixed-

methods.
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INTRODUCTION

Information systems (IS) scholars have developed throughout the last decades several 

empirical models and frameworks, unravelling and theorizing the phenomenon of technology 

adoption and implementation within organizations (e.g., Venkatesh et al, 2003; Davis, 

Bagozzi, & Warshaw, 1992; Thompson, Higgins, & Howell, 1991). In this regard, the 

diffusion of innovation theory (Taherdoost, 2018) has emerged as a key theorization in 

explaining the effects of technological characteristics on technology adoption. This initial 

theorization led to the development of the perceived characteristics innovating (PCI) theory, 

which explains user adoption of technological innovation, using conventional technological 

characteristics such as compatibility, trainability, and voluntariness as predictors (Rogers, 

1995, 2003; Moore & Benbasat, 1991). While the PCI framework has greatly enhanced our 

understanding of the phenomenon of technology adoption within various types of 

organizations and for different technologies, there is a need for rethinking and further 

elaborating the model to better fit the emergence of cutting-edge technologies such as 

Artificial Intelligence (AI) (Jordan, 2017; Keding, 2020), and the unique specificities and 

challenges faced by evolving sectors such as the AgriTech sector (Bowen & Morris, 2019). 

Disruptive technologies have played a key role in revolutionizing the agricultural 

sector, introducing novel solutions, and optimizing operations and processes (Spanaki, 

Sivarajah, Fakhimi, Despoudi, & Irani, 2021). In this respect, agricultural technology 

(AgriTech), the focus of this research, has recently gained important scholarly attention 

(Lezoche et al, 2020), considering its potential for unlocking some the most prevailing global 

societal and economic problems (Bowen & Morris, 2019). Also referred to as e-agriculture, 

digital farming, or smart farming (CEMA, 2019), the AgriTech field is an emerging area of 

research that attracts significant interest from a multitude of institutional actors including 

practitioners, governmental actors, and societal constituencies. In this respect, extant research 
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within the AgriTech sector suggests that technology adoption and implementation is faced 

with a number of prevailing challenges including: the need for sustainable, organic, 

environmentally-friendly products; emission-cutting production mechanisms; natural resource 

optimizing systems; and the strive for exploiting the potential of disruptive technologies, 

enabling new possibilities for firms in the sector. 

With the recent technological advancements, empowered by the self-learning 

capabilities of algorithms (Faraj et al, 2018), availability of big data (George et al, 2014), and 

the increasing power of machines computation (Ferràs-Hernández, 2018), AI-driven 

technologies have become more pervasive and performant (Brynjolfsson and McAfee, 2016), 

less costly (Agrawal et al, 2017), and more effective at addressing and solving prevailing 

business and societal problems (Gunasekaran et al, 2017; Lee, 2018; Phan et al, 2017).

In this respect, firms operating in the AgriTech sector make no exception and are 

indeed being significantly impacted by AI-driven technologies and systems. Considering the 

potential of AI at revolutionizing firms’ internal processes and operations (Agrawal et al, 

2017; Jordan, 2017; Keding, 2020), and given the multitude of challenges facing the 

AgriTech sector for creating more sustainable, green products, and deploying resource-

optimizing and nature-preserving systems (Bowen & Morris, 2019), there is a need for re-

examining traditional theorizations of technology adoption and implementation within 

AgriTech firms (Spanaki et al, 2021). 

This research inquiry is motivated by the recent advancements of AI and its power at 

transforming firms’ operations (Brynjolfsson & McAfee, 2016; Faraj et al, 2018; George et al, 

2014; Keding, 2020). We thus endeavor in this paper to re-think and re-imagine the traditional 

mechanisms and processes that shape technology adoption within the AgriTech sector. 

Specifically, we aim at exploring two research questions: 1) “What are the determining 

perceived characteristics of AI adoption within AgriTech firms? ”; and 2) “How AgriTech 
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firms can maximize their readiness to facilitate the process of AI adoption?”, to gain a better 

understanding of the adoption process of AI-driven technologies. In doing so, we focus on 

developing an AI-based PCI framework that can better fit the specifies of, and better cope 

with the unique challenges faced by AgriTech firms. 

While traditional technological innovations are characterized by obsolete technological 

characteristics such as (e.g., relative advantage, compatibility, ease of use), AI-driven 

technologies are shaped by four main elements: mobility, interactivity, communication, and 

autonomy (COMEST, 2017). This significant difference urges for rethinking and eventually re-

configuring the traditional PCI framework to better capture the specific elements characterizing 

the contemporary AI-driven technologies and systems. 

This paper aims at addressing a number of important gaps in the AgriTech and AI 

literature. First, AgriTech research has been mainly dominated by conceptual studies 

(Lowenberg‑DeBoer et al, 2020; Spanaki et al, 2021), and lacks empirical investigations for 

validating the initial theorizations in the field (Spanaki, Sivarajah, Fakhimi, Despoudi, & 

Irani, 2021). Second, while the adoption and implementation effects of several emerging 

technologies on AgriTech firms have been explored (e.g., Wolfert, Ge, Verdouw, & Bogaardt, 

2017; Nukala et al, 2016), the impacts of AI-driven technologies and systems is yet to be 

explored. Specifically, the perceived role of AI-driven systems in newly developed 

agricultural operations and processes has received little scholarly attention (Spanaki, 

Sivarajah, Fakhimi, Despoudi, & Irani, 2021). Further, extant research on the adoption and 

implementation of AI in business has overlooked the emerging sector of AgriTech (Keding, 

2020). Finally, existing theorizations on technology adoption, and implementation do not 

fully capture the unique specificities and challenges of the AgriTech sector, and are not fully 

adapted to the revolutionary self-learning capabilities of machine learning (ML) algorithms 

(Faraj et al, 2018). In light of these research aspirations, we aim at addressing these gaps, and 
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endeavor to develop an AI-based readiness and adoption framework that can better fit the 

emerging needs of AgriTech firms and ongoing evolutions of AI-driven technologies and 

systems. 

We accomplish our research inquiry through two empirical investigations. First, we 

run an e-survey questionnaire to collect insights from a highly diversified pool of respondents, 

taking part in one of the most prominent conferences in the AgriTech field: “2021 4th Global 

Summit on Agriculture, Food Science, and Technology”. Second, we complemented this 

initial quantitative study with an in-depth qualitative investigation with a diversified pool of 

interviewees, exploring the narrative judgments of global scholars, managers, experts, and 

entrepreneurs from the field of AI and AgriTech. 

LITERATURE REVIEW

The Traditional PCI Theoretical Model

During the last decades, numerous behavioral theories and models (e.g., theory of 

reasoned action, social cognitive theory, motivational model, uses and gratification theory, 

technology-organization-environment, etc.) emerged in the IS literature that explain the 

perceived effects of different factors (cognitive, behavior, personality, motivation, 

environment, social, psychological) on technology (or new technology) acceptance, intention, 

or adoption (Venkatesh et al, 2003; Davis, Bagozzi, & Warshaw, 1992). Such models have been 

used for both individual and organizational perspectives. Nevertheless, this research focuses on 

the PCI theoretical model. The PCI, which is an extension of the DOI, explicitly explains the 

direct effects of different technological characteristics (relative advantage, compatibility, ease 

of use, result demonstrability, image, visibility, trialability, and voluntariness) on technology 

adoption.

Throughout the years, most of the models mentioned above (and their extensions (e.g., 

unified theory of acceptance and use of technology, technology acceptance model) have been 
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developed to fit certain contexts and situations; nevertheless, the PCI theoretical model remains 

underdeveloped. In the IS literature, scholars have missed the urgent need to innovate the 

theoretical model (rather than only extending) to match the rapid diffusion of innovations (e.g., 

AI). The authors believe that the current traditional technological characteristics (i.e., relative 

advantage, compatibility, ease of use, result demonstrability, image, visibility, trialability, and 

voluntariness), which are antecedents in the PCI framework, can be replaced with other 

characteristics that properly analyze the effects of advanced AI technologies. 

Instead, this research focused on advanced types of innovation characteristics (mobility, 

interactivity, communication, and autonomy) that are more adequate to cutting-edge 

technologies (e.g., AI-driven robots) (see Figure 1).

AI-driven robots in agriculture

Only recently managerial and organizational research on AI and robotics began to 

develop in the literature (Raj & Seamans, 2019). Previous literature mainly focused on the 

technical perspective of AI and robotics.

The concept of AI has witnessed multiple reforms since its introduction in 1955 by 

McCarthy (McCarthy et al, 1955; Trunk, Birkel, & Hartmann, 2020). Different academic fields 

(e.g., psychology, computer science, cognitive psychology, philosophy, etc.) have different 

conceptualizations of AI (e.g., Stephan & Klima, 2020; Goel & Davies, 2020). Nevertheless, 

in IS and management disciplines, recent definitions relate to AI as a technology that imitates 

human intelligence or a machine (mainly robotics) that performs tasks typically carried out by 

humans (Patel, Rai, Das, & Singh, 2021; Bolander, 2019). 

AI can be of two general types (i.e., general AI and narrow AI). The first refers to 

advanced software capable of independent thinking and decision-making. The second refers to 

software dependent on advanced algorithm coding and methods. The latter learns from the input 

data to create predictions, discover patterns, and develop its efficiency; hence, also known as 
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machine learning (Broussard, 2018). Machine learning, among many others such as image 

recognition, speech recognition, problem-solving, and natural language processing, is 

considered one of the main functions of AI (Kietzmann, Paschen, & Treen, 2018).

Three main approaches through which AI is used in businesses: assisted, augmented, 

and autonomous intelligence (Garbuio & Lin, 2019). The first aims at improving and enhancing 

the accuracy of the ongoing tasks. The second alters the nature of the task and business model 

(through natural language processing and data analysis). It is used for customization, accuracy, 

and prevention. The third refers to AI as independent and automated.

Regardless of the approaches, in practice, AI has been integrated into many fields, 

operations, processes, industries, and businesses to achieve optimal performance (e.g., e-

commerce, fraud detection, marketing, finance, healthcare, information analysis) (Lee, 

Dabirian, McCarthy, & Kietzmann, 2020; Garbuio & Lin, 2019; Xing, Cambria, & Welsch, 

2018). The agriculture sector is no different. 

The agriculture sector is the most crucial source of food security and sustainability for 

the world (Ben Ayed & Hanana, 2021). Nevertheless, certain challenges (e.g., scarcity of 

natural resources, quality control, climate change) exist that may hinder the sector’s 

development. Thus, to achieve sustainability, growth, and effective decision-making, the use of 

advanced technologies (i.e., AI) is a need (Ben Ayed & Hanana, 2021).

In modern times, agriculture involves complex tasks that require automation for 

efficiency. Thus, AI-related innovations have been rapidly integrating into the agricultural 

sector (Ben Ayed & Hanana, 2021) to forecast weather, analyze crop infections, improve yield, 

and enhance farming tasks. One significant illustration of such innovations is robots (Albiero, 

2019).

From a general perspective, a robot is defined as any machine that automatically 

performs complex labor work or tasks regardless of its level of automation (semi or fully 
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automated) (Raj & Seamans, 2019). From a technical approach, a robot is a system that draws 

on an interplay among multidisciplinary operations and processes (sensing, codes, theories, 

etc.) related to AI logic (Albiero, 2019). Three general types of robots have been identified: 

industrial (manufacturing), professional (services), and collaborative (direct technology-human 

interaction) (Murashov, Hearl, & Howard, 2015).

Robots have been successfully used in several industrial applications before their 

successful implementation in agriculture (Vamshidhar Reddy, Vishnu Vardhan Reddy, 

Pranavadithya, & Kumar, 2016). Because of such success, the global market of agricultural 

robots is estimated to reach 20 billion by 2025 (M&M, 2020). Agricultural robots have been 

shown to increase agricultural efficiency and productivity (Zhao, Yang, Zheng, & Dong, 2020; 

Albiero, 2019). Agricultural robots are of multiple types (e.g., field, aerial, swarm) and used 

for various tasks (e.g., mainly inspection, cutting, harvesting, cultivation, milking, pruning, and 

spraying) (Shamshiri et al, 2018). This research did not focus on any specific task or type.

RESEARCH MODEL & HYPOTHESES DEVELOPMENT

Advanced AI characteristics (mobility, interactivity, communication, and autonomy), 

which are antecedents in this research, are considered with high impact on the AgriTech sector 

(Pesce et al, 2019).

 Mobility empowers a robot (semi or fully automated robot) to function and process tasks like 

humans (walking, swimming, flying) in any setting. Interactivity is the characteristic that 

distinguishes an advanced technology from a conventional one (computers, software, 

programs). It involves the use of sensors and micromotors that scan the environment for 

information and thus characterizing the robot with humanistic traits (senses of sight, touch, 

hear, etc.). Communication characteristic refers to the use of natural language processing by 

robots to communicate with humans. Such a characteristic functions through gestures, voice, 

or speech recognition algorithms. Lastly, autonomy refers to the capacity for a machine or robot 
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to fully function without (or with very minimal) human intervention, command, or control 

(Bekey, 2012).

Nevertheless, to date, there is no unifying theory of innovation adoption (Jöhnk, 

Weißert, & Wyrtki, 2021). The PCI theory focuses more on system features rather than the 

prediction of outcomes (Taherdoost, 2018). Therefore, this research further extends the 

theoretical framework with organizational readiness for change (ORC) theory. The ORC theory 

suggests that achieving a high level of innovation adoption is dependent on the level of 

readiness (Snyder-Halpern, 2001) (see Figure 1). Readiness may be either organizational or 

individual (employees) readiness (Parasuraman, 2000).

Innovation characteristics and AI readiness relationships

Organizational readiness has multiple definitions and measures (Miake-Lye et al, 2020). 

At an individual level, it is referred to as the degree to which individuals/employees are 

mentally and behaviorally set for organizational change (Weiner, 2009). At an organizational 

level, it is defined as a comprehensive attitude for change (Holt, Feild, & Harris, 2007). From 

an information systems (IS) approach, readiness (e-readiness or technology readiness) refers to 

organizational (or individual) ability/capability to adopt and benefit from technological 

innovation (Richey, Daugherty, & Roath, 2007; Parasuraman, 2000) and thus gaining 

competitive advantage in the market (Wiesbock & Hes, 2020).

In this research, AI-driven robots are the disruptive innovation in focus. Specifically, 

this research identifies AI as a set of underlying techniques that allow an entity to react or 

behave intelligently (Russell, Norvig, Davis, & Edwards, 2016), and AI readiness as a degree 

of preparedness for any change involving AI (AlSheibani, Cheung, & Messom, 2018).

From a general perspective, first, in IS research, innovation has been recognized as one 

of the primary sources of competitive advantage and sustainability (Bullinger, Auernhammer, 

& Gomeringer, 2004). Furthermore, other studies showed that AI technology characteristics 
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(e.g., relative advantage and compatibility) positively relate to AI readiness (AlSheibani, 

Cheung, & Messom, 2018). Second, in sustainability research, digital capabilities have shown 

to positively relate to organizational readiness and organizational readiness positively relates to 

digital innovation (Zhen, Yousaf, Radulescu, & Yasir, 2021).

From a specific stance, mobility can be directly related to dynamism or dynamic 

capability. This multidimensional characteristic refers to the likelihood to systematically 

resolve problems and take decisions through resource configuration. Such a construct is 

characterized by sensing, learning, coordinating, and integrating (Pavlou & El Sawy, 2011). 

These same traits, which are organization-oriented, are found in AI-driven robots. The dynamic 

capability has been directly related to competitive advantage (Barreto, 2010), innovation 

(Ellonen, Wikstrom, & Jantunen, 2009), and disruptive innovation (Pandit, Joshi, Gupta, & 

Sahay, 2017).

Interactivity is considered one of the most significant characteristics in technology-

mediated environments (Javornik, 2016). Interactivity has been characterized into user–

machine, user–user, or user–message interaction (Cho & Leckenby, 1997). Nevertheless, 

different understandings of interactivity are found in multiple research streams (see Table 1).

Table 1 :  Conceptualizations of interactivity

Conceptualization Research Source

Continuous technology-mediated 
communication

Marketing 
strategy

Day (1998)

Predominant explanatory construct for the 
undertaken tasks

Marketing 
strategy

Deighton & Kornfeld 
(2009)

Feature-based driver - interface functionality 
that allows synchronisation of communication

Consumer 
behaviour

Sundar (2004); Mollen 
& Wilson (2010)

Complex concept consisting of machine 
interactivity and person interactivity

E-Business Suntornpithug &
Todorovic (2010)

User perception - perception towards the 
features of technology during interaction

Consumer 
behaviour / 

Song & Zinkhan 
(2008); Mollen & 
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Marketing / 
Media

Wilson (2010);
Voorveld, Neijens, & 

Smit (2011)

Modality/medium type - functional view that 
is related to technological features and 
functions that permit users for taking actions 
and initiate interactions

Digital
technologies

Sundar, Jia, Waddell, 
& Huang (2015)

Message type - tool that provides message 
exchanges between different parties

Digital
technologies

Sundar, Jia, Waddell, 
& Huang (2015)

Source type - degree the technology 
establishes the user as the source of 
communication and the one in control, either 
through selection of content
or its creation and customisation

Digital
technologies

Sundar, Jia, Waddell, 
& Huang (2015)

Regardless of the diverse conceptualizations and research streams of interactivity, 

throughout the last two decades, interactivity has been identified as the most prominent 

characteristic that positively relates to digital (Deighton & Kornfeld, 2009; Sundar, Jia, 

Waddell, & Huang, 2015) and advanced technologies (augmented and virtual realities) (Lakkis 

& Issa, 2021).

In the marketing and media domains, communication is interrelated within the concept 

of interactivity. Interactivity refers to the extent to which two or more entities communicate 

with synchronized degrees of influence (Liu & Shrum, 2002). Nevertheless, in the AI field, 

communication is more closely related to the system’s information processing capacity. 

Information could be linguistic, textual, or any other type. Information processing capacity, 

which is derived from information technology (IT) resources/capabilities, relates to the ability 

to gather, analyze, merge, and diffuse the input data to cope with uncertainty (Huang, Pan, & 

Ouyang, 2014). Such types of IT capabilities are efficient in removing communication 

restrictions (Brown & Duguid, 2001). Information processing capacity is also closely related to 

the conceptualization of learning (i.e., machine/deep learning in the case of AI). It consists of 

codifying, integrating, storing, and assessing big data/information in the form of input and 
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output (Amalina, Suhaimi, & Abas, 2020); thus, directly associated with information 

management. Furthermore, merged with machine learning, natural language processing, an AI-

driven method, can design systems that learn to perform tasks independently and understand 

human language. 

Autonomy first emerged as an individual/personality trait (psychology), then advanced 

to work-related tasks (design), and recently integrated into innovation (characteristic and 

capabilities) (e.g., autonomous vehicles, robots, or machines). In early literature, autonomy has 

been identified as the degree of freedom to complete work-related tasks (Hackman & Oldham, 

1976) and directly linked to independence (self-determination) in decision-making (Morgeson 

& Humphrey, 2006). In the IS literature, autonomy is identified as a system’s non-functional 

feature that outlines other functions while constantly adjusting its actions and behavior to 

changes in the environment (Janiesch, Fischer, Winkelmann, & Nentwich, 2019). From a 

technical perspective, autonomy requires pre-configured automation to perform independent 

decisions (Janiesch et al., 2019). Autonomy has shown to be a significant antecedent to work 

satisfaction, high performance, motivation, and user service innovation (Ye & Kankanhalli, 

2018), in which its absence leads to reduced readiness to adapt to new environments, tasks, or 

tools (Sonnentag, Volmer, & Spychala, 2008). 

Therefore, in alignment with these arguments, the authors raise the following 

hypotheses:

Hypothesis 1: Mobility positively relates to AI readiness.

Hypothesis 2: Interactivity positively relates to AI readiness.

Hypothesis 3: Communication positively relates to AI readiness.

Hypothesis 4: Autonomy positively relates to AI readiness.

AI readiness and AI adoption relationship
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AI readiness and adoption research is embryonic and underdeveloped (Jöhnk, Weißert, 

& Wyrtki, 2021). Yet, multiple recent studies (empirical and conceptual) have shown that AI 

readiness is positively related to AI adoption (Jöhnk, Weißert, & Wyrtki, 2021; Pumplun, 

Tauchert, & Heidt, 2019; Alsheibani et al., 2018). Therefore, based on the literature, it is 

plausible to hypothesize the following:

Hypothesis 5: AI readiness positively relates to AI adoption.

Figure 1: Research model and proposed hypotheses

EMPIRICAL STUDIES

Study 1: Quantitative Investigation

For the quantitative study, data was analyzed using SPSS 23.0, AMOS 23.0, and 

smartPLS3. STATA 14.2 was further implemented to double-check and verify the findings. 

Several software tools were implemented because each software delivers diverse aspects of 

validity and no general acknowledgment exists yet on types of tests that reflect adequate 

validity standards (Lombard et al., 2015).
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An E-survey questionnaire was implemented to examine the proposed hypotheses. The 

questionnaire was developed to be compact and short in length to encourage a high response 

rate. The survey consisted of 19 constructs’ items (see Table 2) and seven demographics 

(gender, age, nationality, level of education, type of profession, technology/innovation 

experience, agriculture experience). All the items followed a seven-point Likert scale (strongly 

disagree, disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, and 

strongly agree).

Table 2. Questionnaire items

Mobility (adopted from dynamic capability of innovation; Pandit, Joshi, Gupta, & Sahay, 
2017; Pavlou & El Sawy, 2011)

MO 1 The advanced machines are effectively able to spot, understand, and pursue 
opportunities or tackle threats at the workplace (sensing capability)

MO 2 The advanced machines are able to restructure existing functional competencies 
with new knowledge (learning capability)

MO 3 The advanced machines are able to integrate individual knowledge and inculcate 
it into the operational capabilities via collective sense-making (integrating 
capability)

MO 4 The advanced machines are able to facilitate reconfiguration by assigning and 
organising tasks and resources in the new operational capability set up 
(coordinating capability)

Interactivity (adapted from media characteristics; Yuping, 2003)

INT 1 The advanced machines facilitate multi-communication channels among the users

INT 2 The needed information is received without any delay

INT 3 When using the advanced machines, receiving instantaneous information is 
guaranteed

Communication (adapted from information management ; Devece-Caranana, Peris-Ortiz, 
& Rueda-Armengot, 2015)
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COM 1 The advanced machines are efficient in capturing relevant and up-to-date 
information from the environment (collecting information)

COM 2 The advanced machines have procedures to systematically codify and store 
information (assessing information)

COM 3 The advanced machines can transmit and developing knowledge through 
communication, dialogue, and debate (identifying and distributing information)

Autonomy (adapted from design autonomy; decision-making autonomy; Morgeson & 
Humphrey, 2006)

AUT 1 The advanced machines are effectively able to choose their own method to 
develop applications and finish tasks

AUT 2 The advanced machines have full control over which type of applications to 
design or tasks to complete 

AUT 3 The advanced machines are fully capable to decide on their own what/which 
applications should be designed or tasks to finish first

AI Readiness (adapted from technology readiness; Berndt, Saunders, & Petzer, 2010)

AIR 1 I prefer the use of the most advanced technology available.

AIR 2 I enjoy the challenges of figuring out how high-tech gadgets work.

AIR 3 I feel confident that machines will do what you tell them to do.

AI Adoption (adapted from intention to adopt; Brown & Venkatesh, 2005; Venkatesh et al., 
2003)

AID 1 I can imagine using advanced technologies (AI-driven) regularly in my 
workplace.

AID 2 I plan to use advanced technologies (AI-driven) in the future.

AID 3 I intend to use advanced technologies (AI-driven) in everyday work.
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Common method bias

Before the regression analysis, common method bias was not found to be a major issue 

(see Table 3). Furthermore, several technical remedies and statistical control tests were 

implemented (i.e., separation of the criterion and predictor measures; CLF method within the 

CFA model) (Podsakoff, Mackenzie, Lee, & Podsakoff, 2003) to rule out the possibility of 

common method bias.

Table 3. Harman’s One Factor Test

Total Variance Explained

Initial Eigenvalues Rotation Sums of Squared Loadings
Component

Total % of 
Variance

Cumulative 
% 

Total % of 
Variance

Cumulative %

1 3.903 20.541 20.541 2.879 15.152 15.152

2 3.303 17.382 37.923 2.674 14.075 29.227

3 2.405 12.660 50.583 2.556 13.454 42.681

4 1.998 10.516 61.100 2.218 11.675 54.356

5 1.727 9.091 70.191 2.111 11.110 65.466

6* 1.189 6.260 76.450 2.087 10.985 76.450

7 .701 3.688 80.139

* Eigenvalues > 1.0; cumulative 76.450%; No single or general factor emerged for most of the variance
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Factor loadings showed significant correlations (see Table 4). Convergent and 

discriminant validity showed satisfactory estimates (see Table 5). Finally, the appropriateness 

of the model was assessed providing an adequate overall measurement model fit (see Table 6).

Table 4. Factor loadings 

1 2 3 4 5 6

INT1 .094 .015 -.021 .110 -.114 .863

INT2 .343 .174 -.013 -.091 .096 .711

INT3 .015 .060 -.022 .089 -.017 .816

MO1 .760 .167 -.160 .022 -.015 .262

MO2 .802 -.090 .070 -.002 -.087 .000

MO3 .855 .079 -.033 .026 -.062 .179

MO4 .868 -.029 .021 .217 -.090 -.006

COM1 -.105 -.149 .091 .185 .787 -.099

COM2 -.045 .005 .143 -.088 .800 -.055

COM3 -.081 -.144 .083 .036 .813 .084

AUT1 .100 .131 .124 .673 .227 .159

AUT2 .087 .056 -.073 .912 .039 -.039
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AUT3 .031 .060 .021 .889 -.109 .046

AID1 .024 .144 .879 .021 .061 -.023

AID2 -.037 .083 .905 .051 .153 -.017

AID3 -.051 .179 .902 -.015 .127 -.022

AIR1 .014 .917 .103 .086 -.119 .107

AIR2 .025 .911 .171 .094 -.022 .088

AIR3 .048 .894 .150 .070 -.159 .038

Table 5. Descriptive statistics, Convergent & Discriminant validity

Mean St.Dv 

CR*
AVE

* MSV** AID MO INT COM AUT AIR

AID
2.423 1.392

.904 .758 .088 .871

MO
5.600 1.126

.861 .611 .127 -.071 .781

INT 5.114 1.034 .764 .521 .127 -.050 .357 .722

COM
2.735 1.314

.764 .522 .072 .268 -.206 -.121 .723

AUT
4.209 1.066

.816 .607 .031 -.009 .177 .095 .114 .779
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AIR
4.559 1.373

.928 .811 .088 .297 .106 .212 -.233 .155 .900

*CR > 0.70 & AVE > 0.50 (Fornell & Larcker, 1981); Convergent validity is satisfactory
**MSV < AVE (Fornell & Larcker, 1981; Discriminant validity is satisfactory)

Endogeneity

Durbin–Wu–Hausman (DWH) test (augmented regression test) for endogeneity 

concerns and Durbin–Watson (DW) test for autocorrelation issues were implemented. No 

endogeneity was found since the Durbin (score) chi2(1) > 0.05 and Wu-Hausman > 0.05. 

Hence, since both p values are greater than 0.05, we accept the null hypothesis that states there 

is “no correlation between the variables”. In addition, autocorrelation was not found to exist 

among the constructs (Durbin-Watson (d) estimate provided 2.0).

Hypothesis testing

In terms of hypothesis testing, the empirical analysis provided several interesting 

insights. H1 (MO-AIR) was not supported (t= -.433; β= -.029; p> .05); H2 (INT-AIR) was 

supported (t= 2.523; β= .167; p< .05); H3 (COM-AIR) was not supported (t= -3.121; β= -.199; 

p< .05); H4 (AUT-AIR) was supported (t = 2.861; β = .183; p< .05); H5 (AIR-AID) was 

supported (t= 4.365; β= .274; p< .05) (see Table 6 & Figure 2).

Table 6: Regression analysis

Variables AI Readiness (AIR)

t Stnd ß Unst. ß Hypotheses

Mobility (MO) -.433 -.029 -.036 H1 Not supported
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Interactivity (INT) 2.523* .167* .221* H2 Supported

Communication (COM) -3.121* -.199* -.208* H3 Not supported

Autonomy (AUT) 2.861* .183* .235* H4 Supported

AI Adoption (AID) 

AI Readiness (AIR) 4.365* .274* .278* H5 Supported

R .317 R .274

R² .100 R² .075

Adjusted R² .085 Adjusted R² .071

VIF** 1.12 VIF** 1.08

Model fit

CMIN/DF 2.603 (< 3) (Hair et al., 2010)

CFI .908 (> .900) (Hair et al., 2010)

RMSEA .080 (< .080) (Hooper et al., 2008)

*<.05; **VIF estimates 1/(1−R2) < 5 (Gruber, Heinemann, Brettel, & Hungeling, 2010); thus, 
multicollinearity is not a concern 

Figure 2: Empirically tested research model (t values, Beta values)
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Therefore, H1 and H4 showed to be positively significant whereas H3 showed to be negatively 

significant. Nevertheless, H1 showed to be insignificant. Such a finding led the authors to further 

investigate the effect of mobility on AI readiness. Thus, the authors examined the possibility of a 

curvilinear relationship between mobility and AI readiness. The results showed that mobility nonlinearly 

affects AI readiness (see Table 7). In other terms, a cubic (s-shaped) relationship exists in which AI 

readiness changes (increases and decreases) depending on the constant increase in perceived mobility 

(see Figure 3).

Table 7 : Nonlinear regression analysis (curve estimation)

Variables AI Readiness (AIR)

t Stnd ß Unst. ß

Mobility -1.436 -2.356 -2.872  Not significant

Mobility squared *2 1.831 6.879 .810 Not significant

Mobility cubed *3 -2.066* -4.507* -.065* Significant

R .199

R² .040
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Adjusted R² .027

*<.05

Figure 3: Mobility - AI readiness s-shaped (cubic) relationship

Mediation analysis

Mediation effects were also examined. Submodel 1 showed partial mediation effects. Thus, MO 

has both direct and indirect relationships with AID (the path from MO to AID is reduced in absolute 

size but is still different from zero when AIR is introduced). Whereas, submodels 2, 3, & 4 showed full 

mediation effects. In other words, the characteristics only have indirect effects on AID (i.e., the 

characteristics no longer affect AID after AIR is controlled) (see Table 8).

Table 8 : Mediation analysis

Submodel Lower CI Upper CI Point P value Result

(1) MO-AIR-AID -.0118 .0922 .0300 >.05 Partial mediation

(2) INT-AIR-AID .0170 .1517 .0754 <.05 Full mediation

(3) COM-AIR-AID -.1407 -.0160 -.0661 <.05 Full mediation
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(4) AUT-AIR-AID .0105 .1483 .0642 <.05 Full mediation

* Medcurve macro analysis (SPSS); If zero is not found within the interval, then there is a significant 
mediating effect (i.e., full mediation) (Preacher & Hayes, 2004; 2008)

Study 2: Qualitative Investigation

Approach taken

We complement our primary quantitative investigation with an in-depth qualitative 

analysis (Cameron, 2008; Clark et al., 2019; Vergne, 2012) organizations maximize their 

readiness for AI adoption. We aim at unravelling some of the key areas and elements on 

which firms have to focus as part of their preparation process for adopting AI-based 

technologies. In doing so, we employ a set of grounded theory procedures that draw from 

both the ‘Straussian’ and ‘Glaserian’ schools of thought. Specifically, we adopt Strauss and 

Corbin’s (1990b) interpretation of grounded theory, which allows for the emergence of 

important themes and patterns in the data while assuming some prior knowledge through 

broad questions identified in the literature. We use this complementary methodological 

approach to fill some of the voids and address some of the shortcomings of our primary 

quantitative analysis (Cameron, 2008; Clark et al., 2019; Vergne, 2012). The main aim is to 

seek in-depth qualitative insights from a diversified pool of subject matter experts on the field 

under investigation. 

Research Setting and Sources of Evidence

We investigate our research question within the AgriTech sector, which provides, 

given its unique characteristics, newly emerging needs and challenges (Shepherd, et al., 

2018), a unique opportunity for exploring the ways in which AI-driven organizations can 

manage their adoption of this revolutionary technology. 
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To explore our research question, we collected interview data from one of the most 

influential conferences within the field of AgriTech: “2021 4th Global Summit on Agriculture, 

Food Science, and Technology”. We rely on an in-depth analysis of 25 interviews with a highly 

diversified sample of interviewees comprising managers, entrepreneurs, scholars, and experts 

from the field of AI and AgriTech. The speakers were solicited and interviewed to share their 

insights on how firms within the AgriTech sector can maximize their readiness for the adoption 

of state-of-the-art AgriTech AI-powered systems and technologies. 

Sampling method

We use the purposeful sampling strategy, which aims at including information-rich 

cases that have knowledge and expertise relevant to the phenomenon being explored 

(Breckenridge & Jones, 2009; Coyne, 1997; Glaser & Strauss, 1967; Suri, 2011). Our 

sampling strategy consisted of selecting participants by virtue of their capacity to provide 

richly-textured insights about the subject under investigation. As such, we focused on AI and 

AgriTech managers, entrepreneurs, scholars, along with experts to uncover the AI readiness 

key components that can facilitate the process of AI adoption. 

Data Analysis and Coding Methodology

We pursued a grounded theory approach to data analysis (Strauss and Corbin, 1990). 

The analysis process involved three main stages: i) Identifying relevant segments of text 

through ‘micro-analysis’; ii) creating a large set of codes through ‘open coding’; and iii) 

Identifying the key themes for AI readiness through ‘axial coding’. 

Phase 1: Identifying relevant segments of text through ‘micro-analysis’

Following Strauss and Corbin (1990), the first phase started by a microanalysis, which 

consisted of screening the sources of evidence that have been collected to identify segments of 

texts that were relevant to the mechanisms and strategic action that were involved in the 

readiness process for AI adoption. This micro-analysis was performed by two co-authors 
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independently. The authors agreed to maintain only the accounts that were consensually judged 

relevant to the investigated research question. 

Phase 2: Creating a large set of codes through ‘open coding’

The second phase started by ‘open coding’ (Strauss and Corbin, 1990), which consisted 

of creating a large set of codes that classify the identified AI readiness accounts from phase 1. 

Specific codes were used to label and summarize the identified accounts for the construction of 

AI readiness key components. This process was performed by two co-authors in isolation to 

minimize the subjective interpretation of the data and better capture all the AI readiness 

accounts embedded in the interview data. A comparison of the two coding schemes was 

accomplished, resolving eventual inconsistencies between the two coders. 

Phase 3: Inductive analysis of the AI readiness key components.  

In phase 3, open coding was followed by what Strauss and Corbin (1990) refer to as 

axial coding, which involved grouping the large set of codes under broader theoretical 

categories, that we label as: AI readiness key components. They constitute the main categories 

in our empirical framework of AI readiness. 

Findings

Our analysis has led to the identification of a set of three AI readiness components that 

delineate how firms operating within the AgriTech field manage their readiness process for 

AI adoption. We label these key readiness components as: 1) Established human-machine 

collaboration mindset; 2) Pre-identified AI strategic impacts; and 3) Robust technological 

infrastructures and data management capabilities. We analyse our data in light of the 

findings from study 1 in relevance to the role of the AI readiness construct in shaping the 

relationship between AI adoption and technology perceived characteristics, and aim at 
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uncovering deeper qualitative insights to construct a comprehensive framework for AI 

readiness within the AgriTech sector. 

AI readiness first component: Established human-machine collaboration mindset

AgriTech firms strive for finding practical tools that optimize their internal practices 

and operational systems. In this vein, the integration of human and algorithmic intelligence 

seems to be an important block in constructing future AgriTech AI-driven business models. 

However, in light of the evident differences in the nature of human’s and machine’s 

capabilities, a number of adoption and implementation challenges surface. 

Our findings reveal that AI scholars and AgriTech experts predict human-machine 

collaboration to be a fundamental prerequisite for successful AI adoptions within the 

AgriTech sector. While machines are better at scanning complex environments and 

processing large amounts of unstructured data, humans are better at performing tasks that 

requires high levels of creativity and novelty. As such, AgriTech firms are faced with a real 

strategic opportunity for driving performance thanks to the synergies that can be potentially 

obtained from using the best of what machines can do and coupling that with the best of what 

humans can do in the field.  

“The aim is not a total replacement of our human capital. As opposed to what some 
experts may claim, many of the tasks that workers perform in the field can be hardly 
substituted by technology.”
(AgriTech expert 1)

“It is important to promote the spirit of collaboration between workers and robots. This 
kind of mindset is a key element that can facilitate the process of technology acquisition. 
For that to happen, most agricultural workers need to go through a process of training to 
acquire the relevant skills.” 
(AgriTech manager 3)

While some sectors may opt for a full machine delegation and decision-making 

automation, AgriTech firms would privilege employing “human-confirmation modes”, 

namely when it comes to important and risky decisions in the field. Human confirmation of 
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AI decisions can help build the trust between the human and the AI and prepares the ground 

for an effective collaboration between the two. 

“From our experience, people have often a hard time trusting the AI for taking the final 
decision. To address this problem, new features have been integrated to the system to 
build the trust. It is called the “human-confirmation mode”. The app says -- a threat was 
detected and here is what the AI wants to do about it, do you confirm? -- The trust is built 
through time as the person sees that the AI is taking the right decision every time.”
(AI scholar 2)

There is another important dimension to human-machine collaboration. Most firms are faced 
with significant opposition and scrutiny after launching their strategies for AI adoptions. 
There is a dominant belief that artificially intelligent robots will still away people’s jobs. As 
such, human-AI collaboration emerges as an “ethical”, “socially acceptable” adoption strategy 
for AgriTech companies that aim at enhancing the capabilities of their employees and 
managers, as supposed to the radical alternative of an integral replacement of their human 
collaborators. Thus, promoting the human-machine mind-set can assure employees and 
maximize AI readiness. Human-machine collaboration seems to prevail as a wiser strategic 
option for “socially-responsible” AgriTech firms that aim at simultaneously yielding the 
benefits of AI’s unique capabilities on the one hand, and preserving their valuable human 
capital and corporate legitimacy on the other. 
AI readiness second component: Pre-identified strategic impacts  

Many contemporary organizations adopt external practices as a response for 

institutional pressures (Bromley and Powell, 2012). Such firms would implement cutting edge 

technological practices, which have an ambiguous links to the firms’ core goals (Jabbouri et 

al., 2019; Wijen, 2014).   

In this respect, it is highly important for organizations that seek to yield the maximum 

benefits of AI capabilities, to undergo a thorough strategic analysis. This preliminary process 

aims at diagnosing the firms’ most prevailing business problems, that can be potentially 

addressed through AI implementation. Organizations should not fall in the trap of adopting AI 

as a “symbolic action” (Bromley and Powell, 2012), to cope with increasing pressures for 

being “technology-driven” (Jabbouri et al., 2019). 

Adoption of cutting edge technologies requires mobilizing significant resources. As 

such, it is important to link these strategic choices to the most prominent strategic needs of the 
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firm. This way the firm can avoid decoupling the adopted technology from the daily practices 

and internal processes. Our qualitative accounts portray some of these arguments: 

 
“For many agricultural firms, AI has become a must, not an option. But, saying this 
you still want to do it right. You need to ask the right questions: how am I going to do 
it; who is going to be involved with the AI; which department, which business unit; 
which people?” 
“It’s part of the process to specify all these elements before you dive into it.”
(AI expert 4)

Our findings suggest that AI adoption needs to be preceded by a set of strategic 

diagnoses, that can help AgriTech managers clarify the utility, usefulness, and impact of AI 

adoption on their firms. This constitutes identifying the most imminent strategic needs that 

can be potentially resolved through AI implementation, as well as the business units, 

production lines, processes, and collaborators that would be directly or indirectly impacted by 

AI adoption. 

“The way I see it is that I wouldn’t go for it (AI) if I don’t see an actual impact. You know 
these AI systems demand significant investments. You have got to install it (AI system), 
make it operational, then maintain it over time.” 
“My starting point would be the ROI. If it’s worth it then, am totally in.”  
(AgriTech entrepreneur 2)

The high rate of failure of technology adoption and implementation (Jabbouri et al., 

2019) compels AgriTech firms to devote more effort into preparing the ground and 

maximizing their readiness for future adoptions. In this regard, the AI readiness process 

comprises a set of strategic actions to be performed prior to the AI adoption. This includes 

assessing the ROI, the estimated impact on performance and operations, and the specific 

strategic needs that can eventually be addressed through AI. 

AI readiness third component: Robust technological infrastructures and data management 

capabilities. 
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AI is a complex technology of which the implementation requires a robust 

technological infrastructure. In this respect, the adoption of AI technologies within AgriTech 

firms necessitates the existence of a number of fundamental technological blocks; robust and 

effective technological infrastructures that are key to the proper functioning of a AI-driven 

firm’s operational systems, production lines, and internal processes. 

“If you’re thinking of adopting a certain AI tool to improve your business, you need to 
make sure you have the appropriate ground for that. First, are your collaborators 
familiar with the basic technological functioning? Second, have you already used 
other technological tools in your managing your operations at all?” 
“The idea here is that your adoption of technology should be done in a progressive 
manner. You need to build the right culture for that and make sure that your business 
units are smoothly digesting newly employed technologies.”
(AgriTech scholar 3)

Our findings reveal that AI can be considered as one of most advanced levels of digital 

transformation. For instance, ML algorithms drive their predictive and self-learning 

capabilities from the availability of big data. As such, a firm’s capacity for collecting, 

filtering, and categorizing colossal amounts of data proves to be a key competence when it 

comes to preparing the proper ground for AI adoption. Such a unique competence for efficient 

data management is yet a longstanding challenge for many firms with the AgriTech sector due 

to the limitations of their internal computing and data processing capabilities. 

Given the multiplicity and complexity of tasks performed by AI systems within the 

AgriTech field ranging from robotic self-operation to hyper-precise weather forecasting, and 

supply chain hyper-efficient management, AI adoption compels adopting companies to build 

extremely reliable and performant technological infrastructures. Specifically, we found that 

the process of extracting raw data and converting it to a usable strategic asset is a key 

prerequisite to the success of any AI adoption. While many AgriTech firms sit on treasures of 

unstructured data, yielding the maximum benefits of AI adoptions can be almost unachievable 

unless the valuable asset of data is properly extracted, filtered, organized, categorized, and 

translated to workable formats. 
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“Artificial intelligence’s power stems from the availability of data. Say, I want to train 
a ML algorithm to solve a specific business problem, then I have to supply it with 
tremendous amounts of appropriate, meaningful data which can fit the specific 
characteristic of my algorithm.”                                         
“Most firms sit on giant pools of proprietary data. But, very few would take the time 
and the energy to mind through it. In order to do that, they need to build the right 
infrastructures. They need to deploy a team of data experts to filter all the junk they 
have in their backyard. And, that is consequent in terms of time and money.”            
(AI expert 1)

In data-driven organizations operating in the AgriTech field, managers can make 

proper strategic decisions, only if they devote sufficient time to thoroughly examine the 

numerous data pieces they have access to. In this vein, it is crucial for AgriTech firms, as part 

of their AI readiness process, to build sustainable data processing channels that can in turn be 

coupled with the self-learning and self-improvement capabilities of ML algorithms following 

AI adoption. This way AgriTech firms can derive the most value of their AI adoptions, thus 

becoming more efficient at solving day-to-day prevailing business problems.  

DISCUSSION

Implications for Research

While our quantitative study sheds light on the perceived characteristics of AI 

innovations in relation to the organizational process of AI adoption, and the role of AI 

readiness in shaping the relationship between the independent and dependent variables, the 

complementary qualitative analysis explores how AI readiness can be maximized to facilitate 

and prepare the ground for an optimized AI adoption process. Using a mixed-methods 

approach increases the robustness and reliability of research (Cameron, 2008; Clark et al., 

2019; Vergne, 2012). As such, this mixed-methods approach has led us to constructing a 

comprehensive empirically grounded framework that plausibly explains the key mechanisms 

of AI readiness and adoption within AgriTech firms. 

Our study has a number of key contributions. First, our empirical model delineates the 
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relationships between a set of AgriTech-specific AI perceived characteristics and AI adoption, 

as well as the mediating role of the AI readiness construct. This empirical framework can 

potentially better fit the characteristics of the AI technology (Faraj et al, 2018; (Ferràs-

Hernández, 2018; George et al, 2014), and better capture the unique challenges and emerging 

aspirations of the AgriTech sector (Bowen & Morris, 2019; Shepherd et al., 2018). Further, it 

complements and enriches the traditional PCI model (Rogers, 2003) and represents a more 

suitable strategic tool for AI-driven organizations. Second, our qualitative analysis portrays 

some of the best practices that firms within the AgriTech sector implement through the 

process of AI readiness and AI adoption. Our framework provides key propositions and 

practical recommendations for how firms can better prepare the ground for AI adoption 

within their internal processes and operations, linking the AI transformation to the firms’ core 

strategy (Kane et al., 2015; Schallmo et al., 2017; Warner & Wäger, 2019).  

Figure X illustrates our empirical framework for AI readiness and adoption. 

Figure 4: An illustration of AI readiness and adoption framework for AgriTech firms. 

Our quantitative study relies on a micro-analysis perspective as it places the user at the 

center of its focus. We explored the relationships between AI innovating characteristics and 

AI adoption from a user-centric perspective. As such, we provide insight to how technology 
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users in AgriTech firms can better cope with disruptive tools and devices that are powered by 

the automation and self-operation of AI systems. On the other hand, our qualitative analysis 

focuses on a macro-analysis perspective. It sheds lights on the key organizational process of 

disruptive technology adoption. As such, it uncovers some of the key components of the AI 

readiness process. We delineate a set of important elements and strategic actions that 

AgriTech firms should focus on to maximize their readiness and facilitate the process of AI 

adoption. Our qualitative analysis has enabled us to enrich our initial empirical framework 

from study 1, and led to developing a more comprehensive framework for AI readiness within 

the AgriTech field. This way, we add to the global debate on disruptive technology adoption 

(Appio et al., 2021; Colbert et al., 2016) within the AgriTech field (Bowen & Morris, 2019; 

Shepherd et al., 2018). 

Implications for Practice 

Our research delivers two key practical implications. First, from an AI design and 

development perspective, this study provides a set of propositions and practical 

recommendations in relevance to creating the ideal conditions for successful AI adoptions 

within the Agritech field. Focusing on a user-centric perspective, our quantitative findings shed 

light on the key must-have characteristics that AI tools, devices, and systems should incorporate 

to maximize user acceptance and adoption within an AgriTech firm. As such, AI developers 

can focus on incorporating these key elements in the conception and design process of AI 

innovations. 

Second, our empirically grounded model provides AgriTech managers and decision-

makers with a set of key components that shape the readiness process for AI adoption within 

the field. Our framework constitutes a strategic tool that can help AgriTech entrepreneurs better 

manage the AI readiness process, linking eventual AI adoption to their firms’ key strategic 

needs and goals. 
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Limitations and Future Research

Our research has a few limitations that can be addressed by future research. First, our 

data is collected from one of the most influential conferences in the AgriTech sector. While this 

setting is highly suitable for collecting data from relevant respondents and interviewees, it limits 

the size of our sample for both the quantitative and qualitative investigations. In this regard, 

future research in the field can test our hypotheses and qualitative findings within larger 

samples and within other organizational settings. One path, could be to target international 

firms, managers, entrepreneurs, experts, and scholars from the field of AI and AgriTech, and 

aim at assessing the collective perceptions and discourse of such audiences on the topic of AI 

adoption within AgriTech firms. Within this vein, the process of AI adoption is often seen as 

the primary phase of a rigorous strategic process of implementation and achievement (Bromley 

& Powell, 2012; Jabbouri et al., 2019; Wijen, 2014). As such, the post-adoption phase of AI 

could be explored to unravel some of the implementation challenges and goal achievement 

barriers. 
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