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An Artificial Intelligence (AI)-Readiness and Adoption Framework for

AgriTech Firms

ABSTRACT

With the recent technological advancements, empowered by the self-learning
capabilities of algorithms, and the increasing power of machines computation, Artificial
Intelligence (AI)-driven technologies have become more pervasive and performant, less
costly, and more effective at addressing and solving prevailing business problems. In this
respect, firms operating in the AgriTech sector make no exception and are indeed being
significantly impacted by Al-driven technologies and systems. We argue in this paper that
given the unique characteristics of Al technologies and emerging challenges and aspirations
of the AgriTech sector, there is a need for re-examining traditional theorizations of
technology adoption and readiness within AgriTech firms. Specifically, we develop a
comprehensive Al readiness and adoption empirical framework that delineates the
determinants of Al readiness and uncovers a set of key strategic components that can help
AgriTech firms better manage their readiness process for Al adoption. We employ a mixed-
methods approach and collect through 236 e-surveys and 25 interviews from one of the most
influential conferences in the AgriTech field. Our findings have implications for research and

practice.

Key words: Artificial intelligence; agricultural technology; readiness and adoption; mixed-

methods.



INTRODUCTION

Information systems (IS) scholars have developed throughout the last decades several
empirical models and frameworks, unravelling and theorizing the phenomenon of technology
adoption and implementation within organizations (e.g., Venkatesh et al, 2003; Davis,
Bagozzi, & Warshaw, 1992; Thompson, Higgins, & Howell, 1991). In this regard, the
diffusion of innovation theory (Taherdoost, 2018) has emerged as a key theorization in
explaining the effects of technological characteristics on technology adoption. This initial
theorization led to the development of the perceived characteristics innovating (PCI) theory,
which explains user adoption of technological innovation, using conventional technological
characteristics such as compatibility, trainability, and voluntariness as predictors (Rogers,
1995, 2003; Moore & Benbasat, 1991). While the PCI framework has greatly enhanced our
understanding of the phenomenon of technology adoption within various types of
organizations and for different technologies, there is a need for rethinking and further
elaborating the model to better fit the emergence of cutting-edge technologies such as
Artificial Intelligence (Al) (Jordan, 2017; Keding, 2020), and the unique specificities and

challenges faced by evolving sectors such as the AgriTech sector (Bowen & Morris, 2019).

Disruptive technologies have played a key role in revolutionizing the agricultural
sector, introducing novel solutions, and optimizing operations and processes (Spanaki,
Sivarajah, Fakhimi, Despoudi, & Irani, 2021). In this respect, agricultural technology
(AgriTech), the focus of this research, has recently gained important scholarly attention
(Lezoche et al, 2020), considering its potential for unlocking some the most prevailing global
societal and economic problems (Bowen & Morris, 2019). Also referred to as e-agriculture,
digital farming, or smart farming (CEMA, 2019), the AgriTech field is an emerging area of
research that attracts significant interest from a multitude of institutional actors including

practitioners, governmental actors, and societal constituencies. In this respect, extant research



within the AgriTech sector suggests that technology adoption and implementation is faced
with a number of prevailing challenges including: the need for sustainable, organic,
environmentally-friendly products; emission-cutting production mechanisms; natural resource
optimizing systems; and the strive for exploiting the potential of disruptive technologies,

enabling new possibilities for firms in the sector.

With the recent technological advancements, empowered by the self-learning
capabilities of algorithms (Faraj et al, 2018), availability of big data (George et al, 2014), and
the increasing power of machines computation (Ferras-Hernandez, 2018), Al-driven
technologies have become more pervasive and performant (Brynjolfsson and McAfee, 2016),
less costly (Agrawal et al, 2017), and more effective at addressing and solving prevailing
business and societal problems (Gunasekaran et al, 2017; Lee, 2018; Phan et al, 2017).

In this respect, firms operating in the AgriTech sector make no exception and are
indeed being significantly impacted by Al-driven technologies and systems. Considering the
potential of Al at revolutionizing firms’ internal processes and operations (Agrawal et al,
2017; Jordan, 2017; Keding, 2020), and given the multitude of challenges facing the
AgriTech sector for creating more sustainable, green products, and deploying resource-
optimizing and nature-preserving systems (Bowen & Morris, 2019), there is a need for re-
examining traditional theorizations of technology adoption and implementation within

AgriTech firms (Spanaki et al, 2021).

This research inquiry is motivated by the recent advancements of Al and its power at
transforming firms’ operations (Brynjolfsson & McAfee, 2016; Faraj et al, 2018; George et al,
2014; Keding, 2020). We thus endeavor in this paper to re-think and re-imagine the traditional
mechanisms and processes that shape technology adoption within the AgriTech sector.
Specifically, we aim at exploring two research questions: 1) “What are the determining

perceived characteristics of Al adoption within AgriTech firms? ; and 2) “How AgriTech



firms can maximize their readiness to facilitate the process of Al adoption?”, to gain a better
understanding of the adoption process of Al-driven technologies. In doing so, we focus on
developing an Al-based PCI framework that can better fit the specifies of, and better cope

with the unique challenges faced by AgriTech firms.

While traditional technological innovations are characterized by obsolete technological
characteristics such as (e.g., relative advantage, compatibility, ease of use), Al-driven
technologies are shaped by four main elements: mobility, interactivity, communication, and
autonomy (COMEST, 2017). This significant difference urges for rethinking and eventually re-
configuring the traditional PCI framework to better capture the specific elements characterizing
the contemporary Al-driven technologies and systems.

This paper aims at addressing a number of important gaps in the AgriTech and Al
literature. First, AgriTech research has been mainly dominated by conceptual studies
(Lowenberg-DeBoer et al, 2020; Spanaki et al, 2021), and lacks empirical investigations for
validating the initial theorizations in the field (Spanaki, Sivarajah, Fakhimi, Despoudi, &
Irani, 2021). Second, while the adoption and implementation effects of several emerging
technologies on AgriTech firms have been explored (e.g., Wolfert, Ge, Verdouw, & Bogaardt,
2017; Nukala et al, 2016), the impacts of Al-driven technologies and systems is yet to be
explored. Specifically, the perceived role of Al-driven systems in newly developed
agricultural operations and processes has received little scholarly attention (Spanaki,
Sivarajah, Fakhimi, Despoudi, & Irani, 2021). Further, extant research on the adoption and
implementation of Al in business has overlooked the emerging sector of AgriTech (Keding,
2020). Finally, existing theorizations on technology adoption, and implementation do not
fully capture the unique specificities and challenges of the AgriTech sector, and are not fully
adapted to the revolutionary self-learning capabilities of machine learning (ML) algorithms

(Faraj et al, 2018). In light of these research aspirations, we aim at addressing these gaps, and



endeavor to develop an Al-based readiness and adoption framework that can better fit the
emerging needs of AgriTech firms and ongoing evolutions of Al-driven technologies and
systems.

We accomplish our research inquiry through two empirical investigations. First, we
run an e-survey questionnaire to collect insights from a highly diversified pool of respondents,
taking part in one of the most prominent conferences in the AgriTech field: “2021 4th Global
Summit on Agriculture, Food Science, and Technology”. Second, we complemented this
initial quantitative study with an in-depth qualitative investigation with a diversified pool of
interviewees, exploring the narrative judgments of global scholars, managers, experts, and
entrepreneurs from the field of Al and AgriTech.

LITERATURE REVIEW
The Traditional PCI Theoretical Model

During the last decades, numerous behavioral theories and models (e.g., theory of
reasoned action, social cognitive theory, motivational model, uses and gratification theory,
technology-organization-environment, etc.) emerged in the IS literature that explain the
perceived effects of different factors (cognitive, behavior, personality, motivation,
environment, social, psychological) on technology (or new technology) acceptance, intention,
or adoption (Venkatesh et al, 2003; Davis, Bagozzi, & Warshaw, 1992). Such models have been
used for both individual and organizational perspectives. Nevertheless, this research focuses on
the PCI theoretical model. The PCI, which is an extension of the DOI, explicitly explains the
direct effects of different technological characteristics (relative advantage, compatibility, ease
of use, result demonstrability, image, visibility, trialability, and voluntariness) on technology
adoption.

Throughout the years, most of the models mentioned above (and their extensions (e.g.,

unified theory of acceptance and use of technology, technology acceptance model) have been



developed to fit certain contexts and situations; nevertheless, the PCI theoretical model remains
underdeveloped. In the IS literature, scholars have missed the urgent need to innovate the
theoretical model (rather than only extending) to match the rapid diffusion of innovations (e.g.,
Al). The authors believe that the current traditional technological characteristics (i.e., relative
advantage, compatibility, ease of use, result demonstrability, image, visibility, trialability, and
voluntariness), which are antecedents in the PCI framework, can be replaced with other
characteristics that properly analyze the effects of advanced Al technologies.

Instead, this research focused on advanced types of innovation characteristics (mobility,
interactivity, communication, and autonomy) that are more adequate to cutting-edge
technologies (e.g., Al-driven robots) (see Figure 1).

Al-driven robots in agriculture

Only recently managerial and organizational research on Al and robotics began to
develop in the literature (Raj & Seamans, 2019). Previous literature mainly focused on the
technical perspective of Al and robotics.

The concept of Al has witnessed multiple reforms since its introduction in 1955 by
McCarthy (McCarthy et al, 1955; Trunk, Birkel, & Hartmann, 2020). Different academic fields
(e.g., psychology, computer science, cognitive psychology, philosophy, etc.) have different
conceptualizations of Al (e.g., Stephan & Klima, 2020; Goel & Davies, 2020). Nevertheless,
in IS and management disciplines, recent definitions relate to Al as a technology that imitates
human intelligence or a machine (mainly robotics) that performs tasks typically carried out by
humans (Patel, Rai, Das, & Singh, 2021; Bolander, 2019).

Al can be of two general types (i.e., general Al and narrow Al). The first refers to
advanced software capable of independent thinking and decision-making. The second refers to
software dependent on advanced algorithm coding and methods. The latter learns from the input

data to create predictions, discover patterns, and develop its efficiency; hence, also known as



machine learning (Broussard, 2018). Machine learning, among many others such as image
recognition, speech recognition, problem-solving, and natural language processing, is
considered one of the main functions of Al (Kietzmann, Paschen, & Treen, 2018).

Three main approaches through which Al is used in businesses: assisted, augmented,
and autonomous intelligence (Garbuio & Lin, 2019). The first aims at improving and enhancing
the accuracy of the ongoing tasks. The second alters the nature of the task and business model
(through natural language processing and data analysis). It is used for customization, accuracy,
and prevention. The third refers to Al as independent and automated.

Regardless of the approaches, in practice, Al has been integrated into many fields,
operations, processes, industries, and businesses to achieve optimal performance (e.g., e-
commerce, fraud detection, marketing, finance, healthcare, information analysis) (Lee,
Dabirian, McCarthy, & Kietzmann, 2020; Garbuio & Lin, 2019; Xing, Cambria, & Welsch,
2018). The agriculture sector is no different.

The agriculture sector is the most crucial source of food security and sustainability for
the world (Ben Ayed & Hanana, 2021). Nevertheless, certain challenges (e.g., scarcity of
natural resources, quality control, climate change) exist that may hinder the sector’s
development. Thus, to achieve sustainability, growth, and effective decision-making, the use of
advanced technologies (i.e., Al) is a need (Ben Ayed & Hanana, 2021).

In modern times, agriculture involves complex tasks that require automation for
efficiency. Thus, Al-related innovations have been rapidly integrating into the agricultural
sector (Ben Ayed & Hanana, 2021) to forecast weather, analyze crop infections, improve yield,
and enhance farming tasks. One significant illustration of such innovations is robots (Albiero,
2019).

From a general perspective, a robot is defined as any machine that automatically

performs complex labor work or tasks regardless of its level of automation (semi or fully



automated) (Raj & Seamans, 2019). From a technical approach, a robot is a system that draws
on an interplay among multidisciplinary operations and processes (sensing, codes, theories,
etc.) related to Al logic (Albiero, 2019). Three general types of robots have been identified:
industrial (manufacturing), professional (services), and collaborative (direct technology-human
interaction) (Murashov, Hearl, & Howard, 2015).

Robots have been successfully used in several industrial applications before their
successful implementation in agriculture (Vamshidhar Reddy, Vishnu Vardhan Reddy,
Pranavadithya, & Kumar, 2016). Because of such success, the global market of agricultural
robots is estimated to reach 20 billion by 2025 (M&M, 2020). Agricultural robots have been
shown to increase agricultural efficiency and productivity (Zhao, Yang, Zheng, & Dong, 2020;
Albiero, 2019). Agricultural robots are of multiple types (e.g., field, aerial, swarm) and used
for various tasks (e.g., mainly inspection, cutting, harvesting, cultivation, milking, pruning, and
spraying) (Shamshiri et al, 2018). This research did not focus on any specific task or type.
RESEARCH MODEL & HYPOTHESES DEVELOPMENT

Advanced Al characteristics (mobility, interactivity, communication, and autonomy),
which are antecedents in this research, are considered with high impact on the AgriTech sector
(Pesce et al, 2019).

Mobility empowers a robot (semi or fully automated robot) to function and process tasks like
humans (walking, swimming, flying) in any setting. Interactivity is the characteristic that
distinguishes an advanced technology from a conventional one (computers, software,
programs). It involves the use of sensors and micromotors that scan the environment for
information and thus characterizing the robot with humanistic traits (senses of sight, touch,
hear, etc.). Communication characteristic refers to the use of natural language processing by
robots to communicate with humans. Such a characteristic functions through gestures, voice,

or speech recognition algorithms. Lastly, autonomy refers to the capacity for a machine or robot



to fully function without (or with very minimal) human intervention, command, or control
(Bekey, 2012).

Nevertheless, to date, there is no unifying theory of innovation adoption (Johnk,
WeilBlert, & Wyrtki, 2021). The PCI theory focuses more on system features rather than the
prediction of outcomes (Taherdoost, 2018). Therefore, this research further extends the
theoretical framework with organizational readiness for change (ORC) theory. The ORC theory
suggests that achieving a high level of innovation adoption is dependent on the level of
readiness (Snyder-Halpern, 2001) (see Figure 1). Readiness may be either organizational or
individual (employees) readiness (Parasuraman, 2000).

Innovation characteristics and Al readiness relationships

Organizational readiness has multiple definitions and measures (Miake-Lye et al, 2020).
At an individual level, it is referred to as the degree to which individuals/employees are
mentally and behaviorally set for organizational change (Weiner, 2009). At an organizational
level, it is defined as a comprehensive attitude for change (Holt, Feild, & Harris, 2007). From
an information systems (IS) approach, readiness (e-readiness or technology readiness) refers to
organizational (or individual) ability/capability to adopt and benefit from technological
innovation (Richey, Daugherty, & Roath, 2007; Parasuraman, 2000) and thus gaining
competitive advantage in the market (Wiesbock & Hes, 2020).

In this research, Al-driven robots are the disruptive innovation in focus. Specifically,
this research identifies Al as a set of underlying techniques that allow an entity to react or
behave intelligently (Russell, Norvig, Davis, & Edwards, 2016), and Al readiness as a degree
of preparedness for any change involving Al (AlSheibani, Cheung, & Messom, 2018).

From a general perspective, first, in IS research, innovation has been recognized as one
of the primary sources of competitive advantage and sustainability (Bullinger, Auernhammer,

& Gomeringer, 2004). Furthermore, other studies showed that Al technology characteristics



(e.g., relative advantage and compatibility) positively relate to Al readiness (AlSheibani,
Cheung, & Messom, 2018). Second, in sustainability research, digital capabilities have shown
to positively relate to organizational readiness and organizational readiness positively relates to
digital innovation (Zhen, Yousaf, Radulescu, & Yasir, 2021).

From a specific stance, mobility can be directly related to dynamism or dynamic
capability. This multidimensional characteristic refers to the likelihood to systematically
resolve problems and take decisions through resource configuration. Such a construct is
characterized by sensing, learning, coordinating, and integrating (Pavlou & El Sawy, 2011).
These same traits, which are organization-oriented, are found in Al-driven robots. The dynamic
capability has been directly related to competitive advantage (Barreto, 2010), innovation
(Ellonen, Wikstrom, & Jantunen, 2009), and disruptive innovation (Pandit, Joshi, Gupta, &
Sahay, 2017).

Interactivity is considered one of the most significant characteristics in technology-
mediated environments (Javornik, 2016). Interactivity has been characterized into user—
machine, user—user, or user—message interaction (Cho & Leckenby, 1997). Nevertheless,

different understandings of interactivity are found in multiple research streams (see Table 1).

Table 1 : Conceptualizations of interactivity

Conceptualization Research Source
Continuous technology-mediated Marketing Day (1998)
communication strategy
Predominant explanatory construct for the Marketing Deighton & Kornfeld
undertaken tasks strategy (2009)
Feature-based driver - interface functionality Consumer Sundar (2004); Mollen
that allows synchronisation of communication behaviour & Wilson (2010)
Complex concept consisting of machine E-Business Suntornpithug &
interactivity and person interactivity Todorovic (2010)
User perception - perception towards the Consumer Song & Zinkhan
features of technology during interaction behaviour / (2008); Mollen &
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Marketing / Wilson (2010);
Media Voorveld, Neijens, &
Smit (2011)

Modality/medium type - functional view that Digital Sundar, Jia, Waddell,
is related to technological features and technologies & Huang (2015)
functions that permit users for taking actions
and initiate interactions
Message type - tool that provides message Digital Sundar, Jia, Waddell,
exchanges between different parties technologies & Huang (2015)
Source type - degree the technology Digital Sundar, Jia, Waddell,
establishes the wuser as the source of| technologies & Huang (2015)
communication and the one in control, either
through selection of content
or its creation and customisation

Regardless of the diverse conceptualizations and research streams of interactivity,
throughout the last two decades, interactivity has been identified as the most prominent
characteristic that positively relates to digital (Deighton & Kornfeld, 2009; Sundar, Jia,
Waddell, & Huang, 2015) and advanced technologies (augmented and virtual realities) (Lakkis
& Issa, 2021).

In the marketing and media domains, communication is interrelated within the concept
of interactivity. Interactivity refers to the extent to which two or more entities communicate
with synchronized degrees of influence (Liu & Shrum, 2002). Nevertheless, in the Al field,
communication is more closely related to the system’s information processing capacity.
Information could be linguistic, textual, or any other type. Information processing capacity,
which is derived from information technology (IT) resources/capabilities, relates to the ability
to gather, analyze, merge, and diffuse the input data to cope with uncertainty (Huang, Pan, &
Ouyang, 2014). Such types of IT capabilities are efficient in removing communication
restrictions (Brown & Duguid, 2001). Information processing capacity is also closely related to
the conceptualization of learning (i.e., machine/deep learning in the case of Al). It consists of

codifying, integrating, storing, and assessing big data/information in the form of input and
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output (Amalina, Suhaimi, & Abas, 2020); thus, directly associated with information
management. Furthermore, merged with machine learning, natural language processing, an Al-
driven method, can design systems that learn to perform tasks independently and understand
human language.

Autonomy first emerged as an individual/personality trait (psychology), then advanced
to work-related tasks (design), and recently integrated into innovation (characteristic and
capabilities) (e.g., autonomous vehicles, robots, or machines). In early literature, autonomy has
been identified as the degree of freedom to complete work-related tasks (Hackman & Oldham,
1976) and directly linked to independence (self-determination) in decision-making (Morgeson
& Humphrey, 2006). In the IS literature, autonomy is identified as a system’s non-functional
feature that outlines other functions while constantly adjusting its actions and behavior to
changes in the environment (Janiesch, Fischer, Winkelmann, & Nentwich, 2019). From a
technical perspective, autonomy requires pre-configured automation to perform independent
decisions (Janiesch et al., 2019). Autonomy has shown to be a significant antecedent to work
satisfaction, high performance, motivation, and user service innovation (Ye & Kankanhalli,
2018), in which its absence leads to reduced readiness to adapt to new environments, tasks, or
tools (Sonnentag, Volmer, & Spychala, 2008).

Therefore, in alignment with these arguments, the authors raise the following
hypotheses:

Hypothesis 1: Mobility positively relates to Al readiness.
Hypothesis 2: Interactivity positively relates to Al readiness.
Hypothesis 3: Communication positively relates to Al readiness.
Hypothesis 4: Autonomy positively relates to Al readiness.

Al readiness and Al adoption relationship

12



Al readiness and adoption research is embryonic and underdeveloped (Johnk, Weillert,
& Wyrtki, 2021). Yet, multiple recent studies (empirical and conceptual) have shown that Al
readiness is positively related to Al adoption (Johnk, Weillert, & Wyrtki, 2021; Pumplun,
Tauchert, & Heidt, 2019; Alsheibani et al., 2018). Therefore, based on the literature, it is
plausible to hypothesize the following:
Hypothesis 5: Al readiness positively relates to Al adoption.

Figure 1: Research model and proposed hypotheses

Next-generation PCI framework
L
! ORC theory A
A

H5

Traditional PCI framework
A

Result demonstrability L

Visibility
Trialability

Conventional technological characteristics (independent variable) Dependent variable

=¥ Technology adoption

EMPIRICAL STUDIES
Study 1: Quantitative Investigation

For the quantitative study, data was analyzed using SPSS 23.0, AMOS 23.0, and
smartPLS3. STATA 14.2 was further implemented to double-check and verify the findings.
Several software tools were implemented because each software delivers diverse aspects of
validity and no general acknowledgment exists yet on types of tests that reflect adequate

validity standards (Lombard et al., 2015).
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An E-survey questionnaire was implemented to examine the proposed hypotheses. The
questionnaire was developed to be compact and short in length to encourage a high response
rate. The survey consisted of 19 constructs’ items (see Table 2) and seven demographics
(gender, age, nationality, level of education, type of profession, technology/innovation
experience, agriculture experience). All the items followed a seven-point Likert scale (strongly
disagree, disagree, somewhat disagree, neither agree nor disagree, somewhat agree, agree, and

strongly agree).

Table 2. Questionnaire items

Mobility (adopted from dynamic capability of innovation; Pandit, Joshi, Gupta, & Sahay,
2017; Paviou & EIl Sawy, 2011)

MO 1 The advanced machines are effectively able to spot, understand, and pursue
opportunities or tackle threats at the workplace (sensing capability)

MO 2 The advanced machines are able to restructure existing functional competencies
with new knowledge (learning capability)

MO 3 The advanced machines are able to integrate individual knowledge and inculcate
it into the operational capabilities via collective sense-making (integrating
capability)

MO 4 The advanced machines are able to facilitate reconfiguration by assigning and

organising tasks and resources in the new operational capability set up
(coordinating capability)

Interactivity (adapted from media characteristics; Yuping, 2003)

INT 1 The advanced machines facilitate multi-communication channels among the users

INT 2 The needed information is received without any delay

INT 3 When using the advanced machines, receiving instantaneous information is
guaranteed

Communication (adapted from information management ; Devece-Caranana, Peris-Ortiz,
& Rueda-Armengot, 2015)

14



COM 1

COM 2

COM 3

The advanced machines are efficient in capturing relevant and up-to-date
information from the environment (collecting information)

The advanced machines have procedures to systematically codify and store
information (assessing information)

The advanced machines can transmit and developing knowledge through
communication, dialogue, and debate (identifying and distributing information)

Autonomy (adapted from design autonomy, decision-making autonomy, Morgeson &
Humphrey, 20006)

AUT 1

AUT 2

AUT 3

The advanced machines are effectively able to choose their own method to
develop applications and finish tasks

The advanced machines have full control over which type of applications to
design or tasks to complete

The advanced machines are fully capable to decide on their own what/which
applications should be designed or tasks to finish first

AI Readiness (adapted from technology readiness, Berndt, Saunders, & Petzer, 2010)

AIR 1

AIR 2

AIR 3

I prefer the use of the most advanced technology available.

I enjoy the challenges of figuring out how high-tech gadgets work.

I feel confident that machines will do what you tell them to do.

Al Adoption (adapted from intention to adopt; Brown & Venkatesh, 2005, Venkatesh et al.,

2003)

AID 1 I can imagine using advanced technologies (Al-driven) regularly in my
workplace.

AID 2 | Iplan to use advanced technologies (Al-driven) in the future.

AID 3 I intend to use advanced technologies (Al-driven) in everyday work.

15



Common method bias

Before the regression analysis, common method bias was not found to be a major issue
(see Table 3). Furthermore, several technical remedies and statistical control tests were
implemented (i.e., separation of the criterion and predictor measures; CLF method within the
CFA model) (Podsakoff, Mackenzie, Lee, & Podsakoff, 2003) to rule out the possibility of

common method bias.

Table 3. Harman's One Factor Test

Total Variance Explained
Initial Eigenvalues Rotation Sums of Squared Loadings
Component
Total % of Cumulative Total % of Cumulative %
Variance % Variance

1 3.903 20.541 20.541 2.879 15.152 15.152
2 3.303 17.382 37.923 2.674 14.075 29.227

3 2.405 12.660 50.583 2.556 13.454 42.681

4 1.998 10.516 61.100 2.218 11.675 54.356

5 1.727 9.091 70.191 2.111 11.110 65.466
6* 1.189 6.260 76.450 2.087 10.985 76.450

7 701 3.688 80.139

* Eigenvalues > 1.0; cumulative 76.450%, No single or general factor emerged for most of the variance
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Factor loadings showed significant correlations (see Table 4). Convergent and
discriminant validity showed satisfactory estimates (see Table 5). Finally, the appropriateness

of the model was assessed providing an adequate overall measurement model fit (see Table 6).

Table 4. Factor loadings

1 2 3 4 5 6
INT1 .094 .015 -.021 110 -.114 .863
INT2 .343 174 -.013 -.091 .096 711
INT3 .015 .060 -.022 .089 -.017 816
MO1 .760 167 -.160 .022 -.015 262
MO2 802 -.090 .070 -.002 -.087 .000
MO3 855 .079 -.033 .026 -.062 179
MO4 868 -.029 .021 217 -.090 -.006
COM1 -.105 -.149 .091 185 787 -.099
COM2 -.045 .005 .143 -.088 800 -.055
COM3 -.081 -.144 .083 .036 813 .084
AUTI1 .100 131 124 673 227 159
AUT2 .087 .056 -.073 912 .039 -.039
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AUT3 .031 .060 .021 889 -.109 .046
AID1 .024 144 879 021 .061 -.023
AID2 -.037 .083 905 .051 153 -.017
AID3 -.051 .179 902 -.015 127 -.022
AIR1 .014 917 .103 .086 -.119 107
AIR2 .025 911 171 .094 -.022 .088
AIR3 .048 .894 .150 .070 -.159 .038
Table 5. Descriptive statistics, Convergent & Discriminant validity
Mean | St.Dv AVE
CR* * MSV*x [ AID MO INT COM | AUT AIR
2.423 1.392
AID 904 | .758 .088 871
5.600 | 1.126
MO .861 611 127 -.071 781
INT | 14| R34 g6a | so1 | 127 | 050 | 357 | 722
2.735 1.314
COM 764 | 22| 072 | 268 | -206 | -121 | 723
4.209 1.066
AUT 816 | .607 .031 -.009 177 .095 114 779
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4.559 | 1.373
AIR 928 | .811 .088 297 .106 212 | =233 ] 155 900

*CR > 0.70 & AVE > 0.50 (Fornell & Larcker, 1981); Convergent validity is satisfactory
**MSV < AVE (Fornell & Larcker, 1981; Discriminant validity is satisfactory)

Endogeneity

Durbin-Wu—Hausman (DWH) test (augmented regression test) for endogeneity
concerns and Durbin—Watson (DW) test for autocorrelation issues were implemented. No
endogeneity was found since the Durbin (score) chi2(1) > 0.05 and Wu-Hausman > 0.05.
Hence, since both p values are greater than 0.05, we accept the null hypothesis that states there
is “no correlation between the variables”. In addition, autocorrelation was not found to exist
among the constructs (Durbin-Watson (d) estimate provided 2.0).
Hypothesis testing

In terms of hypothesis testing, the empirical analysis provided several interesting
insights. H1 (MO-AIR) was not supported (t= -.433; p= -.029; p> .05); H2 (INT-AIR) was
supported (t=2.523; f=.167; p<.05); H3 (COM-AIR) was not supported (t=-3.121; f=-.199;
p< .05); H4 (AUT-AIR) was supported (t = 2.861; B = .183; p< .05); H5 (AIR-AID) was

supported (t=4.365; B=.274; p<.05) (see Table 6 & Figure 2).

Table 6: Regression analysis

Variables Al Readiness (AIR)
t Stnd 3 Unst. 3 Hypotheses
Mobility (MO) -.433 -.029 -.036 HI Not supported
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Interactivity (INT) 2.523%* 167* 221% H2 Supported
Communication (COM) | -3.121%* -.199* -.208%* H3 Not supported
Autonomy (AUT) 2.861%* .183* 235% H4 Supported
Al Adoption (AID)
Al Readiness (AIR) 4.365* 274%* 278% HS5 Supported
R 317 R 274
R? .100 R? 075
Adjusted R? .085 Adjusted R .071
VIF** 1.12 VIF** 1.08
Model fit
CMIN/DF 2.603 (<3) (Hair et al., 2010)
CFI 908 (>.900) | (Hairetal., 2010)
RMSEA .080 (<.080) | (Hooper et al., 2008)

*<.05, **VIF estimates 1/(I1-R2) < 5 (Gruber, Heinemann, Brettel, & Hungeling, 2010); thus,
multicollinearity is not a concern

Figure 2: Empirically tested research model (t values, Beta values)
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Therefore, H1 and H4 showed to be positively significant whereas H3 showed to be negatively
significant. Nevertheless, H1 showed to be insignificant. Such a finding led the authors to further
investigate the effect of mobility on Al readiness. Thus, the authors examined the possibility of a
curvilinear relationship between mobility and Al readiness. The results showed that mobility nonlinearly
affects Al readiness (see Table 7). In other terms, a cubic (s-shaped) relationship exists in which Al
readiness changes (increases and decreases) depending on the constant increase in perceived mobility

(see Figure 3).

Table 7 : Nonlinear regression analysis (curve estimation)

Variables Al Readiness (AIR)
t Stnd 3  Unst. B
Mobility -1.436 -2.356  -2.872 | Not significant

Mobility squared *2 | 1.831 6.879 .810 | Not significant

Mobility cubed *3 | -2.066* -4.507* -.065* Significant

R .199

R? .040
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‘ Adjusted R? ‘ .027 ‘ ‘

*<.05

Figure 3: Mobility - Al readiness s-shaped (cubic) relationship
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Mediation analysis

Mediation effects were also examined. Submodel 1 showed partial mediation effects. Thus, MO
has both direct and indirect relationships with AID (the path from MO to AID is reduced in absolute
size but is still different from zero when AIR is introduced). Whereas, submodels 2, 3, & 4 showed full
mediation effects. In other words, the characteristics only have indirect effects on AID (i.e., the
characteristics no longer affect AID after AIR is controlled) (see Table 8).

Table 8 : Mediation analysis

Submodel Lower CI | Upper CI | Point | P value Result
(1) MO-AIR-AID -.0118 .0922 .0300 | >.05 | Partial mediation
(2) INT-AIR-AID .0170 1517 0754 | <.05 Full mediation
(3) COM-AIR-AID | -.1407 -0160 [-.0661 [ <.05 Full mediation
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(4) AUT-AIR-AID .0105 .1483 0642 | <.05 Full mediation

* Medcurve macro analysis (SPSS); If zero is not found within the interval, then there is a significant
mediating effect (i.e., full mediation) (Preacher & Hayes, 2004, 2008)

Study 2: Qualitative Investigation

Approach taken

We complement our primary quantitative investigation with an in-depth qualitative
analysis (Cameron, 2008; Clark et al., 2019; Vergne, 2012) organizations maximize their
readiness for Al adoption. We aim at unravelling some of the key areas and elements on
which firms have to focus as part of their preparation process for adopting Al-based
technologies. In doing so, we employ a set of grounded theory procedures that draw from
both the ‘Straussian’ and ‘Glaserian’ schools of thought. Specifically, we adopt Strauss and
Corbin’s (1990b) interpretation of grounded theory, which allows for the emergence of
important themes and patterns in the data while assuming some prior knowledge through
broad questions identified in the literature. We use this complementary methodological
approach to fill some of the voids and address some of the shortcomings of our primary
quantitative analysis (Cameron, 2008; Clark et al., 2019; Vergne, 2012). The main aim is to
seek in-depth qualitative insights from a diversified pool of subject matter experts on the field

under investigation.

Research Setting and Sources of Evidence

We investigate our research question within the AgriTech sector, which provides,
given its unique characteristics, newly emerging needs and challenges (Shepherd, et al.,
2018), a unique opportunity for exploring the ways in which Al-driven organizations can

manage their adoption of this revolutionary technology.
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To explore our research question, we collected interview data from one of the most
influential conferences within the field of AgriTech: “2021 4th Global Summit on Agriculture,
Food Science, and Technology”. We rely on an in-depth analysis of 25 interviews with a highly
diversified sample of interviewees comprising managers, entrepreneurs, scholars, and experts
from the field of AI and AgriTech. The speakers were solicited and interviewed to share their
insights on how firms within the AgriTech sector can maximize their readiness for the adoption
of state-of-the-art AgriTech Al-powered systems and technologies.

Sampling method

We use the purposeful sampling strategy, which aims at including information-rich
cases that have knowledge and expertise relevant to the phenomenon being explored
(Breckenridge & Jones, 2009; Coyne, 1997; Glaser & Strauss, 1967; Suri, 2011). Our
sampling strategy consisted of selecting participants by virtue of their capacity to provide
richly-textured insights about the subject under investigation. As such, we focused on Al and
AgriTech managers, entrepreneurs, scholars, along with experts to uncover the Al readiness

key components that can facilitate the process of Al adoption.

Data Analysis and Coding Methodology

We pursued a grounded theory approach to data analysis (Strauss and Corbin, 1990).
The analysis process involved three main stages: 1) Identifying relevant segments of text
through ‘micro-analysis’; ii) creating a large set of codes through ‘open coding’; and iii)
Identifying the key themes for Al readiness through ‘axial coding’.
Phase 1: Identifying relevant segments of text through ‘micro-analysis’

Following Strauss and Corbin (1990), the first phase started by a microanalysis, which
consisted of screening the sources of evidence that have been collected to identify segments of
texts that were relevant to the mechanisms and strategic action that were involved in the

readiness process for Al adoption. This micro-analysis was performed by two co-authors
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independently. The authors agreed to maintain only the accounts that were consensually judged

relevant to the investigated research question.

Phase 2: Creating a large set of codes through ‘open coding’

The second phase started by ‘open coding’ (Strauss and Corbin, 1990), which consisted
of creating a large set of codes that classify the identified Al readiness accounts from phase 1.
Specific codes were used to label and summarize the identified accounts for the construction of
Al readiness key components. This process was performed by two co-authors in isolation to
minimize the subjective interpretation of the data and better capture all the Al readiness
accounts embedded in the interview data. A comparison of the two coding schemes was

accomplished, resolving eventual inconsistencies between the two coders.

Phase 3: Inductive analysis of the Al readiness key components.

In phase 3, open coding was followed by what Strauss and Corbin (1990) refer to as
axial coding, which involved grouping the large set of codes under broader theoretical
categories, that we label as: Al readiness key components. They constitute the main categories

in our empirical framework of Al readiness.

Findings

Our analysis has led to the identification of a set of three Al readiness components that
delineate how firms operating within the AgriTech field manage their readiness process for
Al adoption. We label these key readiness components as: /) Established human-machine
collaboration mindset,; 2) Pre-identified Al strategic impacts; and 3) Robust technological
infrastructures and data management capabilities. We analyse our data in light of the
findings from study 1 in relevance to the role of the Al readiness construct in shaping the

relationship between Al adoption and technology perceived characteristics, and aim at
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uncovering deeper qualitative insights to construct a comprehensive framework for Al

readiness within the AgriTech sector.

Al readiness first component: Established human-machine collaboration mindset

AgriTech firms strive for finding practical tools that optimize their internal practices
and operational systems. In this vein, the integration of human and algorithmic intelligence
seems to be an important block in constructing future AgriTech Al-driven business models.
However, in light of the evident differences in the nature of human’s and machine’s
capabilities, a number of adoption and implementation challenges surface.

Our findings reveal that Al scholars and AgriTech experts predict human-machine
collaboration to be a fundamental prerequisite for successful Al adoptions within the
AgriTech sector. While machines are better at scanning complex environments and
processing large amounts of unstructured data, humans are better at performing tasks that
requires high levels of creativity and novelty. As such, AgriTech firms are faced with a real

strategic opportunity for driving performance thanks to the synergies that can be potentially

obtained from using the best of what machines can do and coupling that with the best of what

humans can do in the field.

“The aim is not a total replacement of our human capital. As opposed to what some
experts may claim, many of the tasks that workers perform in the field can be hardly
substituted by technology.”

(AgriTech expert 1)

“It is important to promote the spirit of collaboration between workers and robots. This

kind of mindset is a key element that can facilitate the process of technology acquisition.

For that to happen, most agricultural workers need to go through a process of training to
acquire the relevant skills.”

(AgriTech manager 3)

While some sectors may opt for a full machine delegation and decision-making

automation, AgriTech firms would privilege employing “human-confirmation modes”,

namely when it comes to important and risky decisions in the field. Human confirmation of
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Al decisions can help build the trust between the human and the Al and prepares the ground
for an effective collaboration between the two.
“From our experience, people have often a hard time trusting the Al for taking the final
decision. To address this problem, new features have been integrated to the system to
build the trust. It is called the “human-confirmation mode”. The app says -- a threat was
detected and here is what the Al wants to do about it, do you confirm? -- The trust is built

through time as the person sees that the Al is taking the right decision every time.”
(Al scholar 2)

There is another important dimension to human-machine collaboration. Most firms are faced
with significant opposition and scrutiny after launching their strategies for Al adoptions.
There is a dominant belief that artificially intelligent robots will still away people’s jobs. As
such, human-Al collaboration emerges as an “ethical”, “socially acceptable” adoption strategy
for AgriTech companies that aim at enhancing the capabilities of their employees and
managers, as supposed to the radical alternative of an integral replacement of their human
collaborators. Thus, promoting the human-machine mind-set can assure employees and
maximize Al readiness. Human-machine collaboration seems to prevail as a wiser strategic
option for “socially-responsible” AgriTech firms that aim at simultaneously yielding the
benefits of AI’s unique capabilities on the one hand, and preserving their valuable human
capital and corporate legitimacy on the other.

Al readiness second component: Pre-identified strategic impacts

Many contemporary organizations adopt external practices as a response for
institutional pressures (Bromley and Powell, 2012). Such firms would implement cutting edge
technological practices, which have an ambiguous links to the firms’ core goals (Jabbouri et
al., 2019; Wijen, 2014).

In this respect, it is highly important for organizations that seek to yield the maximum
benefits of Al capabilities, to undergo a thorough strategic analysis. This preliminary process
aims at diagnosing the firms’ most prevailing business problems, that can be potentially
addressed through Al implementation. Organizations should not fall in the trap of adopting Al
as a “symbolic action” (Bromley and Powell, 2012), to cope with increasing pressures for
being “technology-driven” (Jabbouri et al., 2019).

Adoption of cutting edge technologies requires mobilizing significant resources. As

such, it is important to link these strategic choices to the most prominent strategic needs of the
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firm. This way the firm can avoid decoupling the adopted technology from the daily practices
and internal processes. Our qualitative accounts portray some of these arguments:

“For many agricultural firms, Al has become a must, not an option. But, saying this

you still want to do it right. You need to ask the right questions: how am I going to do

it; who 1s going to be involved with the Al; which department, which business unit;
which people?”

“It’s part of the process to specify all these elements before you dive into it.”

(Al expert 4)

Our findings suggest that Al adoption needs to be preceded by a set of strategic
diagnoses, that can help AgriTech managers clarify the utility, usefulness, and impact of Al
adoption on their firms. This constitutes identifying the most imminent strategic needs that
can be potentially resolved through Al implementation, as well as the business units,
production lines, processes, and collaborators that would be directly or indirectly impacted by
Al adoption.

“The way I see it 1s that I wouldn’t go for it (Al) if I don’t see an actual impact. You know
these Al systems demand significant investments. You have got to install it (Al system),
make it operational, then maintain it over time.”

“My starting point would be the ROI. If it’s worth it then, am totally in.”

(AgriTech entrepreneur 2)

The high rate of failure of technology adoption and implementation (Jabbouri et al.,
2019) compels AgriTech firms to devote more effort into preparing the ground and
maximizing their readiness for future adoptions. In this regard, the Al readiness process
comprises a set of strategic actions to be performed prior to the Al adoption. This includes

assessing the ROI, the estimated impact on performance and operations, and the specific

strategic needs that can eventually be addressed through Al.

Al readiness third component: Robust technological infrastructures and data management

capabilities.
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Al is a complex technology of which the implementation requires a robust
technological infrastructure. In this respect, the adoption of Al technologies within AgriTech
firms necessitates the existence of a number of fundamental technological blocks; robust and
effective technological infrastructures that are key to the proper functioning of a Al-driven
firm’s operational systems, production lines, and internal processes.

“If you’re thinking of adopting a certain Al tool to improve your business, you need to

make sure you have the appropriate ground for that. First, are your collaborators

familiar with the basic technological functioning? Second, have you already used
other technological tools in your managing your operations at all?”

“The idea here is that your adoption of technology should be done in a progressive

manner. You need to build the right culture for that and make sure that your business

units are smoothly digesting newly employed technologies.”

(AgriTech scholar 3)

Our findings reveal that Al can be considered as one of most advanced levels of digital
transformation. For instance, ML algorithms drive their predictive and self-learning
capabilities from the availability of big data. As such, a firm’s capacity for collecting,
filtering, and categorizing colossal amounts of data proves to be a key competence when it
comes to preparing the proper ground for Al adoption. Such a unique competence for efficient
data management is yet a longstanding challenge for many firms with the AgriTech sector due
to the limitations of their internal computing and data processing capabilities.

Given the multiplicity and complexity of tasks performed by Al systems within the
AgriTech field ranging from robotic self-operation to hyper-precise weather forecasting, and
supply chain hyper-efficient management, Al adoption compels adopting companies to build
extremely reliable and performant technological infrastructures. Specifically, we found that
the process of extracting raw data and converting it to a usable strategic asset is a key
prerequisite to the success of any Al adoption. While many AgriTech firms sit on treasures of
unstructured data, yielding the maximum benefits of Al adoptions can be almost unachievable

unless the valuable asset of data is properly extracted, filtered, organized, categorized, and

translated to workable formats.
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“Artificial intelligence’s power stems from the availability of data. Say, I want to train
a ML algorithm to solve a specific business problem, then I have to supply it with
tremendous amounts of appropriate, meaningful data which can fit the specific
characteristic of my algorithm.”

“Most firms sit on giant pools of proprietary data. But, very few would take the time
and the energy to mind through it. In order to do that, they need to build the right
infrastructures. They need to deploy a team of data experts to filter all the junk they
have in their backyard. And, that is consequent in terms of time and money.”

(Al expert 1)

In data-driven organizations operating in the AgriTech field, managers can make
proper strategic decisions, only if they devote sufficient time to thoroughly examine the
numerous data pieces they have access to. In this vein, it is crucial for AgriTech firms, as part
of their Al readiness process, to build sustainable data processing channels that can in turn be
coupled with the self-learning and self-improvement capabilities of ML algorithms following
Al adoption. This way AgriTech firms can derive the most value of their Al adoptions, thus

becoming more efficient at solving day-to-day prevailing business problems.

DISCUSSION

Implications for Research

While our quantitative study sheds light on the perceived characteristics of Al
innovations in relation to the organizational process of Al adoption, and the role of Al
readiness in shaping the relationship between the independent and dependent variables, the
complementary qualitative analysis explores how Al readiness can be maximized to facilitate
and prepare the ground for an optimized Al adoption process. Using a mixed-methods
approach increases the robustness and reliability of research (Cameron, 2008; Clark et al.,
2019; Vergne, 2012). As such, this mixed-methods approach has led us to constructing a
comprehensive empirically grounded framework that plausibly explains the key mechanisms

of Al readiness and adoption within AgriTech firms.

Our study has a number of key contributions. First, our empirical model delineates the
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relationships between a set of AgriTech-specific Al perceived characteristics and Al adoption,
as well as the mediating role of the Al readiness construct. This empirical framework can
potentially better fit the characteristics of the Al technology (Faraj et al, 2018; (Ferras-
Hernandez, 2018; George et al, 2014), and better capture the unique challenges and emerging
aspirations of the AgriTech sector (Bowen & Morris, 2019; Shepherd et al., 2018). Further, it
complements and enriches the traditional PCI model (Rogers, 2003) and represents a more
suitable strategic tool for Al-driven organizations. Second, our qualitative analysis portrays
some of the best practices that firms within the AgriTech sector implement through the
process of Al readiness and Al adoption. Our framework provides key propositions and
practical recommendations for how firms can better prepare the ground for Al adoption
within their internal processes and operations, linking the Al transformation to the firms’ core

strategy (Kane et al., 2015; Schallmo et al., 2017; Warner & Wiger, 2019).

Figure X illustrates our empirical framework for Al readiness and adoption.

Figure 4: An illustration of Al readiness and adoption framework for AgriTech firms.
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Our quantitative study relies on a micro-analysis perspective as it places the user at the

center of its focus. We explored the relationships between Al innovating characteristics and

Al adoption from a user-centric perspective. As such, we provide insight to how technology
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users in AgriTech firms can better cope with disruptive tools and devices that are powered by
the automation and self-operation of Al systems. On the other hand, our qualitative analysis
focuses on a macro-analysis perspective. It sheds lights on the key organizational process of
disruptive technology adoption. As such, it uncovers some of the key components of the Al
readiness process. We delineate a set of important elements and strategic actions that
AgriTech firms should focus on to maximize their readiness and facilitate the process of Al
adoption. Our qualitative analysis has enabled us to enrich our initial empirical framework
from study 1, and led to developing a more comprehensive framework for Al readiness within
the AgriTech field. This way, we add to the global debate on disruptive technology adoption
(Appio et al., 2021; Colbert et al., 2016) within the AgriTech field (Bowen & Morris, 2019;

Shepherd et al., 2018).

Implications for Practice

Our research delivers two key practical implications. First, from an Al design and
development perspective, this study provides a set of propositions and practical
recommendations in relevance to creating the ideal conditions for successful Al adoptions
within the Agritech field. Focusing on a user-centric perspective, our quantitative findings shed
light on the key must-have characteristics that Al tools, devices, and systems should incorporate
to maximize user acceptance and adoption within an AgriTech firm. As such, Al developers
can focus on incorporating these key elements in the conception and design process of Al
innovations.

Second, our empirically grounded model provides AgriTech managers and decision-
makers with a set of key components that shape the readiness process for Al adoption within
the field. Our framework constitutes a strategic tool that can help AgriTech entrepreneurs better
manage the Al readiness process, linking eventual Al adoption to their firms’ key strategic

needs and goals.
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Limitations and Future Research

Our research has a few limitations that can be addressed by future research. First, our
data is collected from one of the most influential conferences in the AgriTech sector. While this
setting is highly suitable for collecting data from relevant respondents and interviewees, it limits
the size of our sample for both the quantitative and qualitative investigations. In this regard,
future research in the field can test our hypotheses and qualitative findings within larger
samples and within other organizational settings. One path, could be to target international
firms, managers, entrepreneurs, experts, and scholars from the field of Al and AgriTech, and
aim at assessing the collective perceptions and discourse of such audiences on the topic of Al
adoption within AgriTech firms. Within this vein, the process of Al adoption is often seen as
the primary phase of a rigorous strategic process of implementation and achievement (Bromley
& Powell, 2012; Jabbouri et al., 2019; Wijen, 2014). As such, the post-adoption phase of Al
could be explored to unravel some of the implementation challenges and goal achievement

barriers.
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