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Agree to Disagree? Predictions of U.S. Nonfarm Payroll Changes

between 2008 and 2020 and the Impact of the COVID19 Labor

Shock

Tony Kleina,∗

aQueen’s Management School, Queen’s University Belfast, UK

Abstract

We analyze an unbalanced panel monthly predictions of nonfarm payroll (NFP) changes

between January 2008 and December 2020 sourced from Bloomberg. Unsurprisingly, we

find that prediction quality varies across economists and we reject the hypothesis of equal

predictive ability. In an error decomposition, we find evidence of significantly biased fore-

casts. Participation rate in the survey is affecting this bias. We find that survey partici-

pants under-predict job losses in times of market turmoil while also under-predicting the

recovery thereafter, especially during the COVID19 labor shock. For prediction of NFP

changes, autoregressive models are outperformed by a deep learning long short-term mem-

ory network. However, the consensus forecast yields better forecasts than model-based

approaches and are further improved by combining the forecasts of the best performing

economists. The COVID19 labor shock is shown to have adverse effects on the prediction

performance of economists. However, not all economists are affected equally.

Keywords: COVID19, Employment, Forecasting, Machine Learning, Survey Data

JEL classification: G12, G17, J11

1. Introduction

Nonfarm payroll (NFP) figures and monthly changes thereof are important and im-

mediate indicators of the development of the economy in the U.S., particularly the labor

market itself. Published by the Bureau of Labor Statistics (BLS) on a monthly basis,

nonfarm payroll represents the number of payroll jobs and its month-to-month changes.

∗eMail: t.klein@qub.ac.uk.
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The NFP covers most of the non-agricultural industry contributing roughly 80% of the

GDP. As such, the monthly development in the labor market is an important precursor

to the development and publication of other macroeconomic variables. Monthly NFP

releases cause short- and medium term reactions to stock, bond, and FX markets which

is documented in literature (Fleming & Remolona, 1999, Dungey et al., 2009, Dungey &

Hvozdyk, 2012). The released numbers are perceived with a signaling effect, in particular

when released numbers exceed or fall short of (market) expectations. Measuring and cor-

rectly quantifying these expectations—as for any micro- or macroeconomic variable—are

of relevance in view of their impact and more importantly, their economic implications.

However, research and literature on NFP forecasts, their quality, sampling, and sample

composition of forecasters are scarce in general. Forecasts of macroeconomic variables

such as GDP growth and inflation—in particular those of the Survey of Professional

Forecasters (SPF)—attract much more academic attention. For NFP forecasts, there

exists no established nor agreed-on forecast format or expectation measure. Different

data providers offer proprietary—and varying—data sets on forecasts and expectations

derived from questionnaires of (academic) experts, economists, and other participants of

financial markets.

The measure of these expected NFP changes—or a consensus thereof—is of utmost

importance to determine surprises by over- or undershooting expectations. We make

use of raw data of Bloomberg’s qualified economists survey, which collects NFP change

predictions in advance of their official publication from from 70 to 100 mainly U.S. and

EU/UK based economists and academics. This paper is one of the first studies that utilizes

this set of NFP forecasts by a heterogeneous set of economists, in particular in terms of

forecaster bias and shocks within the Davies & Lahiri (1995) framework. The collated

individual forecasts of NFP changes are dissected as unbalanced panel of forecasters.

Focusing on the anatomy of forecast errors, we isolate temporal shocks which affect all

forecasters equally. These shocks generally translate to the difference of expected nonfarm

payroll figures to actual published ones. This quantification of over- and underestimation

of expectations is analyzed in detail. In addition, the utilized framework also offers a
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measure for a systematic idiosyncratic error of each forecaster which is used to address the

question of forecasting quality of new-joiners and leavers in some relation to the findings

of Clements (2021). Further, we directly address the question of equal predicting ability

of this group of predictors with the relative measures of D’Agostino et al. (2012) and find

that some individual forecasters outperform while others systematically underperform.

As all forecasters are financial professionals, academics, and market participants from

institutions worldwide, the obtained data offers a viable and informed cross section of

expectations for the macroeconomic variable at question—nonfarm payroll changes.

NFP figures are published on a monthly basis on the first Friday of each month. These

figures include the numbers for the current period as well as revisions on previously pub-

lished NFP figures. NFP publications for the most recent month base on an incomplete

survey as not all businesses have yet reported their employment numbers. Roughly 70%

to 75% of responses are available for the first release, while the two months later, the

collection rate is between 90% and 95%. Hence, these publication numbers are regularly

revised in subsequent monthly publications to account for additional responses pertaining

to an earlier period and to overcome nonsampling bias. This poses some challenge to an-

alyzing the quality of forecasts as the target variable might change in subsequent months.

We provide evidence that economists in the Bloomberg survey tend to systematically

under-predict these more precise and updated NFP figures compared to its first release.

Arguably, measures of surprise should be based on the first (but likely incomplete) release

given that these numbers are new information anticipated by market participants, causing

an immediate reaction due to a possible mismatch of expected and realized value. As such,

the first release might be the most important one in terms of impact on financial markets.

However, as almost all NFP publications are prone to changes based on updated surveys,

we also consider the NFP figure based on the most complete survey which is usually the

third release. All those figures are seasonally un-adjusted. Accounting for seasonality,

we further include the most recent release which is seasonally adjusted as an additional

benchmark for prediction quality.

As our observation sample spans the worldwide spread of COVID19, we also examine
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its impact on the U.S. labor market with particular focus on the error decomposition and

effect on prediction quality. This helps quantifying the uncertainty and inconclusiveness

of economists around this labor event and its adverse effects on financial markets. We

find that economists fail to predict the true dimension of these job losses and additionally,

the rapid recovery. Ultimately, this yields shock or surprise measures several magnitudes

larger than historic values, which aligns with the extreme market swings and volatility in

equity and fixed income markets observed during this first COVID wave.

The remainder of this paper is structured as follows. Section 2 summarizes and system-

atizes existing literature on forecasts of macroeconomic variables and concepts relevant to

this work. Section 3 introduces nonfarm payroll data in more detail, while we distinguish

between the Establishment Survey Data in Subsection 3.1.1 and the Qualified Economist

Survey outlined in Subsection 3.3. The applied methodology of error decomposition and

prediction quality is detailed in Section 4. Findings are presented in discussed in Sec-

tion 5 while the impact of COVID19 is analyzed in detail in its last subsection. Section 6

concludes this work.

2. Literature Review

Nonfarm payroll publications are an important indicator of the employment situation

in the U.S. and affect equity, fixed-income, and FX markets not only locally but also in

global financial markets. Edison (1997) provides early evidence on the effect of nonfarm

payroll surprises on exchange rates where positive surprises yield an appreciation of the

U.S. Dollar. These findings are further extended in Fleming & Remolona (1999) who

describe the relationship between U.S. bond prices and employment data. Bond price

shocks are linked to publications of employment data that are shown to be the strongest

contributor to shocks. Ramchander et al. (2003) describe the significant relationship

between surprises in several macroeconomic indicators, including NFP changes, on the

volatility of money market instruments. The fact that these monthly changes in NFP

numbers do not only affect the short end of the yield curve is further explored in Dungey

et al. (2009). It is shown that movements across maturities of the U.S. term structure
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can be traced directly to the difference in expected and published NFP numbers, which

trigger a jump in bond prices. Dungey & Hvozdyk (2012) extend these findings to jumps

in high frequency data of other asset classes which are triggered by surprises in the NFP

releases. Gregory & Zhu (2014) address the predictive quality of the Bloomberg consensus

forecast for private sector NFP predictions in comparison to the informational content

of the Automatic Data Processing (ADP) report, as an additional data provider, but do

not focus on individual contributions nor on overall NPF changes due to the nature of

the private sector ADP data published two days prior to the official publication of NFP

figures. It is found that the Bloomberg consensus forecast carries as much informational

content as the ADP data and both are useful in predicting NFP changes.

Overall, there is clear evidence that NFP releases cause intraday reactions as well as

short- to medium-term movements of financial markets. The magnitude and direction of

these reactions is directly related with the surprise caused by the mismatch of expected

and published numbers. The framework of Davies & Lahiri (1995) in which we dissect this

forecast error distinguishes between temporal shock, bias, and idiosyncratic error. This

offers an additional view on rationality of forecasters as shown in Isiklar et al. (2006),

Lahiri & Sheng (2010), and Dovern & Weisser (2011).

When it comes to the analysis of macroeconomic forecasts with regard to prediction

quality, it is usually the Survey of Professional Forecasters that is put in focus of academic

discussion. Montgomery et al. (1998) analyze the quarterly SPF predictions for unem-

ployment rate and identify an asymmetric behavior of unemployment rate itself which

also has an effect on forecasters. Prediction quality and forecasting model performance

differs in economic expansions and contractions. Similar results are found by Koop &

Potter (1999), who document sudden negative shocks to U.S. unemployment rates that

are followed by gradual increases featuring a strong asymmetry. This will be of particular

interest to the discussion of forecaster performance during and after the COVID19 shock

to the labor market.

Capistrán & Timmermann (2009a) address the rationality of forecasters and identify

biased forecasters in inflation forecasts of the SPF. A positive serial correlation in forecast
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errors is found. In addition to the presence of bias, Capistrán & Timmermann (2009b)

further ascertain the frequent entry and exit of experts as a complicating factor while this

fluctuation of participants requires attention in combination forecasts. In a recent study,

Clements (2021) renews this evidence by showing that joiners of the SPF inflation seem to

be less accurate, attributed to individual effects. However, there seems to be no difference

for GDP predictions across joiners and leavers. We make use of these findings and focus on

a possibly differing forecasting ability across participation rates in the Bloomberg survey.

For SPF inflation data, Rich & Tracy (2010) find a positive association of disagreement

in forecasts and the level of inflation. We confirm these findings for NFP numbers, in

particular during the COVID19 labor shock.

D’Agostino et al. (2012) propose a normalized error statistic which accounts for the

unbalanced nature of some panels that source from individual predictors and varying

response numbers. Further, a bootstrapping approach to determine error percentiles is

suggested to address the hypothesis of equal predicting ability across forecasters. We

make use of this approach in a two-fold manner. Firstly, we determine if all forecasters

have similar ability to forecasting NFP changes; if a certain percentile of forecasters shows

lower (higher) prediction errors outside of the confidence interval of bootstrapped values,

it is assumed that the hypothesis of equal forecasting ability is rejected if these percentiles

pertain to the best (worst) performing forecasters. Secondly, we make use of the findings

of Brown et al. (2008) that are of high relevance to this paper. Brown et al. (2008) find

that prediction quality of economists in Bloomberg surveys are usually persistent and

that some conditional consensus forecasts are better than the mean survey prediction.

Hence, we construct NFP predictions conditional on previously best performing subsets

of forecasters based on percentiles constructed with the methodology of D’Agostino et al.

(2012). Clements (2020) applies D’Agostino et al. (2012) methodology on SPF histogram

and point forecasts of GDP growth rates and the deflator and finds differences in fore-

casting ability of the SPF participants. However, Demetrescu et al. (2021) raise the issue

of a time-varying effect in forecasting ability and by not accounting for this phenomenon,

tests for forecasting ability might be biased.
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A relatively recent strand of literature focuses on the prediction quality of exogenous

factors, in particular those linked to an individuals’ employment and economic situation.

Vosen & Schmidt (2011) use different approaches to forecasting private consumption and

finds that models including categorized Google search volume outperform survey fore-

casts. In D’Amuri & Marcucci (2017), it is shown that monthly U.S. employment rate

forecasts are dominated by models based on Google search indices, which outperform

conventional models. This is confirmed in Maas (2020) who presents evidence on the

short-term usefulness of Google search data for job market growth, however, this useful-

ness decreases with longer forecasting horizons. Similar findings are presented in Borup

& Schütte (2020) where Google search activity outperforms macroeconomic forecasts for

future employment growth. In a more general setting, Kotchoni et al. (2019) show for

employment growth among other macroeconomic variables, data-rich models help fore-

casting in the long-run but in the short run, simple univariate models perform reasonably

well.

Reactions to macroeconomic shocks of survey participants is an important issue when

examining forecasting quality and analyzing the dissection of error and bias. Coibion &

Gorodnichenko (2012) show that mean forecasts of SPF data fail to completely adjust

on impact to shocks. There is a significantly delayed response of economists to including

shocks in their expectation formation process. This is caused by information rigidities,

which for a broader setting is shown again in Coibion & Gorodnichenko (2015). In rela-

tion to this reaction to shocks and information rigidities, the revisions of macroeconomic

variables might also play a role in the expectation formation process. Beckmann & Czu-

daj (2020) further demonstrate that the expectation formation process features spillovers

across variables. Clements & Galvão (2021) show, based on SPF data, that data revi-

sions affect and contaminate expectation shock estimations. This is relevant to this paper

as NFP numbers are usually revised three times, including a seasonal adjustment. This

certainly affects how expectation shocks are quantified and processed by participants in

terms of the available and individual information set.

In addition to the error decomposition analysis, we compare the predictive quality of
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the Bloomberg survey and its individual economists with time-series models as well as a

deep-learning based network. For the network approach, we utilize a Long Short-Term

Memory (LSTM) network of Hochreiter & Schmidhuber (1997) to reveal dependencies

within the NFP data structure. Krauss et al. (2017), for example, show that deep learning

applications are effective in times of market turmoil. Overall, we find the LSTM network

to provide superior in-sample fit on the data and to outperform the autoregressive models

and even the consensus forecasts. However, the out-of-sample prediction quality of the

LSTM in ochanges does not benefit from this application.

3. Data

3.1. Nonfarm Payroll Data Sources and Revisions

3.1.1. The Establishment Survey Data

Nonfarm payroll data are obtained from the Employment Situation Summaries (ESS)

of the U.S. Bureau of Labor Statistics (BLS). We focus on these monthly reports published

between January 2008 and December 2020. The ESS consists of two separate survey parts.

The first section bases on Household Survey Data which is not addressed in detail in this

research. The second section of the ESS reports on the Establishment Survey Data which

sources its data from private, local, state, and federal businesses. This monthly survey

spans roughly 700 000 worksites from 145 000 businesses and government agencies across

the USA.1 The survey reports how many employees are on payroll based on responses

from each work site for the pay period including the 12th of each month. The ESS is

made public every first Friday of the month at 8:30 AM (EST).2 The release is highly

anticipated as the report serves as a regular indicator for the state of the U.S. economy,

pooling information on employment and unemployment numbers. However, as with most

surveys, the provided information is prone to several sources of bias (Bureau of Labor

Statistics, 2020), most importantly the nonsampling bias. Following corrections of the

1Noteworthy, roughly 40% of businesses have fewer than 20 employees. More information on industries
and areas included in the Current Employment Statistics—and their rotation—are found on https:

//www.bls.gov/ces/.
2If Friday is a bank holiday, the report is usually published on Thursday.
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nonfarm payroll numbers in the subsequent months are revisions which correct preliminary

values. In the next subsection, we address these systematic revisions in detail and highlight

their importance to the economist surveys sourced from Bloomberg.

3.1.2. Nonfarm Payroll Revisions

As previously outlined, the deadline for reporting payroll information to the BLS is

the 12th of each month and refers to the payroll period including the deadline date.

After approximately three weeks, the BLS then reports the so-called first preliminary

estimate for this month. This relatively short window to report is a contributing factor

to the nonsampling bias. Respondents might fail to report numbers in time. Other

causes for this bias are incorrect reporting by respondents, errors during collection and

processing of the data, or sectoral clustering of non-responses. In order to overcome

this bias, respondents are asked to report corrections to preliminary responses in the

next survey. Each EES contains the first estimate or release for the current month,

a revision for the previous month—the so-called second release—and a revision of the

payroll information two months ago—the so-called third release. Hence, each month is

revised twice resulting in three possibly different estimates in three consecutive reports.

After these two revisions, the survey of this month is considered final.

For example, the December 2019 nonfarm payroll is published on January 10, 2020 and

reports the first estimate for December 2019 (NFP +145 000). In the January 2020 ESS

released on February 7, 2020, the December 2019 NFP is revised by +2 000 to +147 000,

which is the second release for this month. The third revision is published in the February

2020 ESS on March 6, 2020, and revises the NFP by +37 000 to +184 000 which is now

the third—and final—release for NFP changes in December 2019.

Lastly, all labor data is benchmarked annually and realigned with unemployment data

as well as seasonally adjusted. This yields a final NFP change figure which is referred to

as most recent in the available data set.3 This further extends the available data structure

as two preliminary and seasonally unadjusted figures (first and second release), a final yet

3For further details, we refer to the benchmark documentation of the BLS found at https://www.

bls.gov/web/empsit/cestn.htm#section7.
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seasonally unadjusted third release, and finally a seasonally adjusted and benchmarked

most recent release.

3.2. Nonfarm Payroll Data

We obtain raw data on monthly vintages for nonfarm employee numbers from the

Federal Reserve Bank Philadelphia from November 2007 published the following December

to December 2020.4 From this matrix, we extract the first, second, third, and most recent

changes to NFP.5 For our data set, the first observation refers to first release of NFP

changes for December 2007 published on January 4, 2008. This starting date is chosen

as a compromise between availability of individual predictions with a certain degree of

coverage in the unbalanced panel of survey participants (see Section 3.3) and features of

the series itself.

Figure 1 visualizes the response rate (or completion rate) averaged for the January to

December survey each year for the first release and the subsequent two revisions. It is

apparent why the first and second release of NFP data are considered preliminary by the

BLS. For the first release, average completion rates range between 66% and 78%, while

we observe the highest rates in the years 2013–2015. In recent years, completion rates are

below 75%. This translates to the released NFP numbers being based on incomplete first

surveys as only roughly 3 out of 4 employers reported numbers thus far. Hence, released

numbers are prone to different biases as discussed before. The second release in the

subsequent ESS appears to be much more reliable as completion rates range between 85%

(2007) and 95% (2014). Recently, second release completion rates are around 90%. The

third release—considered final before the regular updates such as seasonal adjustments—

incorporates responses of 90-97% of businesses in the poll. These differences in response

rates are the main contributing factor to the variation in NFP numbers across their

4This raw data is shaped as a (158 × 158) upper triangular matrix A = (ai,j)
158
i,j=1 with the first

releases on its main diagonal ({ai,i}158i=1), the second releases on the minor diagonal to the right of the
main diagonal ({ai,i+1}158i=1) and so forth. This matrix is then used to calculate changes in the NFP

resulting in a (157× 157)-dimensional diagonal matrix of month-to-month changes Ã.
5This data is publicly available at https://www.philadelphiafed.org/surveys-and-data/

real-time-data-research/employ. We note that the data on the first, second, third, and most re-
cent release of NFP changes is readily available from the same source.
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Figure 1: Averages over all months per sample year of the BLS collection rates across first, second, and
third release.

Figure 2 visualizes the first, second, and third release in our data set.7 Evidently,

almost all first releases (yellow) are revised in the second (orange) and third (blue) release.

In 61.8% of releases, the absolute value of changes is corrected upwards from first to second

release. From second to third release, the correction is observed in 62.4% of releases. More

important to our analysis of the surveys is the difference of the final estimate—before

seasonal corrections—to the first preliminary release as we compare the performance of

Bloomberg’s qualified economists to the preliminary NFP as well as final numbers. This

upward correction of absolute values between first and final release happens in 61.8% (97

out of 157) of all observed monthly NFP releases in our sample.

In five instances, the sign of the NFP change is revised from either increase to decrease

or vice versa from the first to the third release. A recent example of such a significant

revision is September 2017 with the first NFP change release of −33 000, the revised

second release corrected to +18 000, and the third final release of +38 000, yielding a

total correction from first to third release of +71 000.

6Data for response rates is available at https://www.bls.gov/web/empsit/cesregrec.htm.
7We note that a similar figure published by the BLS compares first to third to newest estimate

here: https://www.bls.gov/web/empsit/cesvininfo.htm. However, given the nature of the predictive
survey data described in the next section, we make use of the closest available data for each prediction
survey.
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Figure 2: Nonfarm payroll changes in thousands as published by the BLS in the first release (yellow),
second release (orange), and third release (blue) for December 2017 to December 2020 for differing scaling
of the ordinate.

3.3. Nonfarm Payroll Survey Data (QES)

We source monthly survey data on month-to-month changes of the nonfarm payroll

from Bloomberg—which we refer to as qualified economist survey (QES). We note that

the SPF also offers predictions of nonfarm payroll employment on a quarterly resolution.8

Due to the nature of the applied framework here, we opt for a larger set of predicting

economists on a monthly publication schedule of the Bloomberg survey. In what follows,

we address the one-period ahead forecasts in nonfarm payroll changes simply as NFP data

predictions. We process the responses of k∗ = 239 individual economists who predict these

8The SPF processes quarterly NPF predictions of around 30 professional forecasters and offers average
monthly changes only.
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changes roughly five to seven trading days ahead of the official first release of the BLS.9

Usually, there is one submitting individual per institution per period. However, this

submitter might change throughout the sampling period. Ultimately, the cleaned data

set consists of k = 181 submitting accounts. Details on additional cleaning of the raw

data set is found in Appendix A.1.

The cleaned QES data is visualized in Figure 3. From the left-hand side plot in this

figure it becomes apparent that not all economists enter a prediction for all months or

stop doing so completely while for others, responses begin later as they are rotated into

the qualified economists group by Bloomberg. The plot on the right-hand side of Figure 3

visualizes the sorted number of responses. Evidently, we face a heavily unbalanced panel

of response data prone to participation or non-response bias.

Sorted from minimum to maximum number of responses
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Figure 3: Left: Raw data of responses of Bloomberg’s Qualified Economists (k = 181) with numerical
identifiers to predict monthly changes (n = 157) in nonfarm payroll employment for the ESS releases of
January 2008 to December 2020. Each blue square is a response for the respective survey month. Right:
Economists sorted from minimum to maximum number of total responses.

Figure 4 visualizes a histogram of responses (NFP predictions) per economist/submitter

(left-hand side plot) and the total number of responses for each NFP change survey month

(right-hand side plot). Note that the maximum number of possible responses is 157. Fewer

than 50 responses are recorded for 78 economists. Thirty-seven economists predict 50 to

9The raw data set consists of a unique identifier, the full name, the institution, the response date, and
the response value for each economist.
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100 surveys while 66 economists participate in more than 100 monthly surveys. In relative

terms, 89 economists predict more than 50% of the sampled months.

Figure 4: Left: Histogram of survey responses per economist, corresponding to the cardinality of T ∗
i .

Right: Number of responses from Bloomberg’s qualified economists recorded for each NFP release from
January 2008 to January 2021, which corresponds to the cardinality of the index sets I∗t .

We further deepen the analysis by implementing an exclusion threshold of the num-

ber of predictions made by an economist and compare the prediction performance across

subgroups of economists with more than 50 as well as more than 100 predictions. By

comparing these groups, we address the question if regular participants perform differ-

ently from new joiners and leavers. We discuss the effect of this exclusion on the error

decomposition outlined in Subsection 4.1 in detail.

3.4. COVID19 and NFP data

From Figure 2, it becomes apparent how extreme the job loss in March and April

2020 is. The dimension of job losses and subsequent recovery in in the following months is

unprecedented in the history of the U.S. labor situation. Due to this black swan-like labor

event, we split the sample and separate the analysis of the impact of COVID19 on NFP

prediction error decomposition, the QES, and model- and network-based predictions. The

split is introduced after the publication of the February 2020 figures, which coincides with

the time the COVID19 pandemic started spreading and impacting economies world-wide.

Hence, the non-COVID19 sample set ends with February 2020 NFP changes, effectively

reducing the number of monthly NFP changes to 147. We later make use of the full sample
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of 157 monthly NFP observations and discuss implications of such extreme events on the

frameworks outlined in this work, in particular in view of calculation of idiosyncratic bias

and shocks across predictions made by economists for these months.

4. Methodology

4.1. Average predictions and error decomposition

We adapt identical nomenclature as in Davies & Lahiri (1999) and denote the actual

published nonfarm payroll figure in month t with At for t = 1, . . . , T . The prediction

made by economist i for time t, with i = 1, . . . , k, is referred by Fi,t. In what follows,

we adapt the framework of Davies & Lahiri (1995), subsequently extended in Davies &

Lahiri (1999) and Davies (2006), among others. Note that our data structure implies

h = 1 without adjunct or overlapping prediction horizons. Hence, the present model

framework is a special and less complex case of the original framework of Davies & Lahiri

(1995).

The number of predictions for each month varies as shown before. We define and index

set I∗t := {i = 1, . . . , k|Fi,t ∈ R} which contains the indices (identifiers of the economist

in the QES) of all numerical predictions that were made for month t. Hence, the average

prediction F t for month t is defined as

F t =

∑
i∈I∗t

Fi,t

|I∗t |
, (1)

where the cardinality |I∗t | translates to the total number of predictions made for month t.

Analogously, we define the set T ∗i := {t = 1, . . . , T |Fi,t ∈ R}, which contains the indices

of all predictions made by economist i in the QES. Its cardinality then refers to the total

number of predictions for forecaster i.

Davies & Lahiri (1995) formulate a decomposition of the individual forecasting error

at time t, At − Fi,t, into three components. These components refer to a temporal shock

affecting all forecasters with the same magnitude, a forecaster-specific bias which might

vary across forecasters but remains constant for the observed period, and an idiosyncratic
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error for a specific point in time for each forecaster. This decomposition is formalized as

At − Fi,t = λt − φi − εi,t (2)

for forecaster i = 1, . . . , k and time t = 1, . . . , T . The idiosyncratic forecaster bias over all

predictions is referred to by φi. If φi > 0, then the predictor systematically over-predicts

NFP changes and vice versa. This bias varies across predicting economists. Cumulative

shocks are modeled by including λt which affect all predicting economists. Cumulative

shocks describe the divergence of the information set at the prediction time and the

actual NFP figures published at a later date, translating to an unforcastable component.

If λt > 0, then a positive shock occurred in t translating to actual NFP figures being higher

then predictions adjusted for idiosyncratic bias. In our data setting, this cumulative shock

might be affected by nonsampling bias and revisions made across monthly publication.

The idiosyncratic error of economist i at time t is denoted εi,t.

Following Davies & Lahiri (1995), the expected values of the prediction error compo-

nents can be estimated by calculating

−φ̂i =
1

|T ∗i |
∑
t∈T ∗

i

At − Fi,t, (3)

λ̂t =
1

|I∗t |
∑
i∈I∗t

At − Fi,t + φ̂i, and (4)

ε̂i,t = −At + Fi,t,h − λ̂t + φ̂i, (5)

for all i ∈ {I∗t } and all t ∈ T ∗i , which translates to all prediction made by economists.

Note that our notation slightly varies from Davies & Lahiri (1995) as we work on a

strictly unbalanced panel, where not all economists make a prediction for every month,

yielding
∑k

i=1 |T ∗i | =
∑k

t=T |I∗t | =: M < kT . In fact, we have M = 13 241 predictions of

kT = 28 417 total possible economist-month predictions.

Similar to Davies & Lahiri (1999), we have to compress the error variance-covariance
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matrix Σ which reads in its original form without compression induced by missing data

Σ =



A1 B B . . . B B

B A2 B . . . B B

...

B B B . . . B Ak


kT×kT

,

where Ai = σ2
εi
IT +B. The variance of the idiosyncratic error for economist i is denoted by

εt and IT refers to the identity matrix of dimension T ×T . The matrix B then comprises

of submatrices b to g that describe covariances across targets and horizons.10 Given the

simple structure of our data without any overlapping prediction/publication windows and

a forecast that only predicts one period ahead, b degenerates to a scalar while matrices

c to g become zero. The compressed variance-covariance matrix Σ is then used in a

generalized method of moments estimation to determine the standard errors of the error

components, in particular the idiosyncratic bias φi.
11 We apply the framework of Davies

& Lahiri (1995) of Eq. (2) with the error component estimators in Eq. (3)-(5) on the full

sample with and without the inclusion of the COVID19 labor shock.

It is noteworthy that the prediction horizon of the economists is not exactly one-

period ahead. The prediction is made at a time between the months t and t + 1 for the

publication in t+ 1, and the submission time varies across economists. This implies that

the information sets vary across economists given the difference in time of the survey

entry. It also implies that the economists have a larger information set than the following

model approaches that strictly base their predictions on the information set at time t,

Ωt. It is not within the scope of this work to determine the value of this informational

advantage of the survey, in particular in view of individual information rigidities.12

10An overview is found in Davies (2006), p. 385.
11For reasons of brevity, no further details on the methodology are included as Davies & Lahiri (1999),

Section 6, describes all necessary steps for a similar missing-data and compression problem.
12I thank an anonymous reviewer for raising this.
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4.2. Model-based predictions

Time series models, in particular of autoregressive structure are widely applied to

model and predict macro-economic variables, if stationarity has been confirmed. For

example, Ang et al. (2007) include Autoregressive Moving Average (ARMA) models in

their prediction analysis of inflation rate surveys. In the vein of the usual notation in

time series analysis, we set yt := At.

The Autoregressive Moving Average model—in general ARMA(p, q) notation (Box &

Jenkins, 1976)—is defined as

φ(L)yt = µ+ θ(L)ut, (6)

where φ(L) describes the autoregressive lag polynomial and θ(L) the moving average lag

polynomial. The disturbance ut has zero mean. We test different combination of p and

q following the Box-Jenkins approach and find p = q = 1 to feature the lowest BIC.13

Hence, we subsequently set p = q = 1, such that Eq. (6) reads

yt = µ+ φ1yt−1 + θ1ut−1 + ut.

The ARMA model is compared to the mean forecasts in terms of in-sample fit and out-

of-sample prediction performance given a loss function, outlined in subsequent sections.

For the out-of-sample prediction, the model is trained on an extending training window

used to produce one period-ahead forecasts, yt+1, of NFP changes. That is, we make use

of all available data of NFP changes to predict the next NFP change figure for every time

period in the out-of-sample period.14

4.3. Predictions based on deep learning

We use the long short-term memory (LSTM) network as an example of applied deep

learning. As RNNs suffer from some degree of memory loss across longer dependency

13Additionally, we compared ARIMA(1, d, 1) and seasonal ARIMA (sARIMA) models, which all showed
a lower quality of fit for the job market figures, be it First of Most Recent release.

14An alternative to this expanding window is a rolling window estimation of model parameters, in
which the size of the training window is held constant across all prediction periods. All forecasts were
additionally carried out with a rolling of 48 months for the ARMA. The loss functions only differed
marginally. These results are available upon reasonable request.
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structures (Bengio et al., 1994, Hochreiter, 1998), their application seems unfruitful for

data sets in which long-memory or elevated persistence—either in levels, differences, or

variances—is expected.

Long short-term memory networks, first introduced in Hochreiter & Schmidhuber

(1997), solve common issues of RNNs by allowing for longer dependencies across sequences

of information by incorporating long-term memory channels. LSTMs are commonly ap-

plied in speech and handwriting recognition where longer sequences are a common feature.

LSTMs are also applied in Finance to uncover patterns stock performance, see for example

Fischer & Krauss (2018). While portfolio selection based on other machine learning tech-

niques, such as deep neural networks, is already shown to outperform the market portfolio

for larger indices (Moritz & Zimmermann, 2016, Krauss et al., 2017), LSTMs might be

capable of further improving prediction accuracy as suggested in Fischer & Krauss (2018).

Here, we apply a simple sequence-to-sequence regression LSTM; that is, we train

the network to predict one-step ahead NFP changes. This is achieved by shifting the

standardized NFP observation vector (sequence input, (yt)
T−1
t=1 ) forward by one period to

represent the response ((yt)
T
i=2) onto which the model is trained. The LSTM then learns

to predict the value at the next time step of the input sequence (regression output layer).

The number of features and responses is one in this case. We compare the in-sample

performance as well as the out-of-sample performance of one-period ahead predictions.

For the latter, we update the network on an expanding observation window that aligns

with the expanding information set available to the other model-based approaches.

4.4. Loss function and prediction quality

For each individual forecaster i, we calculate the root mean squared error (RMSE) as

loss functions, which are defined as

RMSEi =

√√√√ 1

|T ∗i |
∑
t∈T ∗

i

(At − Fi,t)2, (7)
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The loss function for the average or consensus prediction defined in Eq. (1) reads

RMSEavg =

√√√√ 1

T

T∑
t=1

(
At − F t

)2
.

Loss functions for times series models and the deep learning LSTM model are defined

accordingly, where Fi,t is replaced with the fitted value for the in-sample analysis. For the

out-of-sample analysis, the one period-ahead prediction is used in these loss functions, in

which the summation of RMSE summands is only carried out across the out-of-sample

period.

As the model-individual and economist-individual RMSE are sensitive to outliers, e.g.

very large prediction-realization differences, forecasting performance can be sufficiently

evaluated with the model confidence set (MCS) of Hansen et al. (2011) incorporating

bootstrapped re-sampling that reduces the impact of bias induced by loss function outliers.

The MCS then yields a set of models or combinations of forecasters that significantly

outperform—with respect to the chosen loss function—those that are not an element of

this model confidence set.

However, since our data is an unbalanced panel as not all economists predict for

each month, the number of observations the RMSE is calculated on varies, rendering a

bootstrapped re-sampling of losses infeasible on an individual basis. We apply the MCS

on the mean, the mean of the best economists, and model-based monthly predictions for

the in-sample and out-of-sample exercises.

As an individual-level alternative, we sort the prediction performance of each economist

into clusters or in our case—intervals—which are produced by a simple one-dimensional

k-means algorithm which belongs to the category of unsupervised learning.15 This un-

supervised learning technique now allocates economists in groups of similar prediction

performance. The above problem of bias caused by outliers still persists but we aim to

gain better understanding of performance groups by compression and comparing centroid

15The k-means algorithm partitions data—here the individual loss function performance—into k clus-
ters where each in-cluster variance across cluster elements is minimized. We use this clustering to induce
a grouping of the prediction performance of economists.
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values (cluster or interval means) across the produced intervals. The value of k = 5

is chosen to obtain a cluster separation between lowest loss values (cluster 1), medium

(cluster 3), and highest loss values (cluster 5).

Given that the panel is unbalanced, we additionally make use of the test statistic

outlined in D’Agostino et al. (2012) who define a normalized squared error statistic as

Ei,t =
(At − Fi,t)2

|I∗t |−1
∑I∗t

i=1 (At − Fi,t)2
, (8)

with the average defined as

Si =
1

|T ∗i |
∑
t∈T ∗

i

Ei,t. (9)

Following the bootstrapping approach of D’Agostino et al. (2012), we then randomly

reassign each individual normalized squared error Ei,t to a set of |I∗t | simulated forecasters

at time t. This step is repeated for all t. This way, we end up with a simulated panel

of forecast errors, that are randomly allocated, with an identical number of forecasts per

period and number of predicted periods per economist. Note that forecast errors are

not reshuffled across periods. We also follow D’Agostino et al. (2012) by sampling with

replacement. We generate N = 10 000 simulations of this panel and for each simulation,

we calculate the average normalized score Sji according to Eq. (9) for all forecasters for

a random panel j, with j = 1, . . . , 10 000, yielding 10 000 distributions of these scores.

These simulations are then used to calculate percentiles and their confidence intervals

that allow to answer the question if some forecasters are truly better than others.

According to D’Agostino et al. (2012), the intuition behind this shuffling of errors is

as follows. If there are forecasters that are truly superior to others—that is, we reject the

null hypothesis of equal predicting ability—their historical performance measured by Si,

defined in Eq. (9), should be significantly different from those obtained by the random

reshuffling. We calculate confidence intervals for the average normalized squared error for

the bootstrapped 5%, 25%, 50%, 75%, and 95% percentile and additionally, for the single

best and worst forecaster.16 We reject the null hypothesis of equal predicting ability if

16While D’Agostino et al. (2012) describe a simple bootstrap percentile method that might be prone to
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average realized error measures are found to be outside of the 10% confidence interval of

the bootstrap percentiles.

5. Findings

5.1. Survey error decomposition of the QES

5.1.1. The role of shocks

Following the framework of Davies & Lahiri (1999), in which we allow for predictor-

individual bias in addition to a general shock that affects all predictions made in t − 1

for NFP changes in month t, we focus firstly on the temporal shocks λt. Estimates are

calculated according to Eq. (4) for the sample that ends before the impact of COVID19,

yielding a sample size of 147 monthly observations. In some contrast to the original

framework of Davies & Lahiri (1995), extended in Davies & Lahiri (1999), shocks do not

affect prediction as they do not overlay with prediction horizons. Predictions are made

between t − 1 and t for t, translating to a simple one-period ahead prediction. Hence,

shocks do not affect predictions for future periods, such as for t + 1, as the predicting

individual incorporates the shock in the available information set. This only holds for our

data set; for multi-period prediction, for example inflation rates (Davies, 2006, Ang et al.,

2007, Boero et al., 2008), shocks affect several forecasts at differing horizons yielding an

accumulative effect of shocks.

We focus on the predominant shock in our data structure that is observable to predict-

ing economists, the shock calculated based on the first publication of NFP figures. We

put focus on this measure as this shock affects not only predicting entities directly but

is also observed as most recent news impacting equity and fixed income markets around

the publication date. Shocks based on the second or third revised NFP figure would be

available only with the next publication dates with a diminishing surprise or news affect

as these figures would not refer to the most recent publication. Hence, we attribute the

highest relevance to the figures of the first publication.

bias, this paper calculates the confidence interval based on the Bias Corrected and accelerated percentile
method (BCa) of DiCiccio & Efron (1996).
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Given its construction, the estimate for the temporal shock λt, affecting all predicting

economists at time t, is the average forecasting error across all (participating) economists

adjusted for the individual bias estimate φ̂t. As such, it is directly related with the mean

prediction made by economists. This is visualized in Figure 5. Shocks are presented

as orange line in comparison to the first release of NFP figures (yellow bars) and the

QES mean (black, dashed line). The sign of the shocks λ̂t correspond directly to the

direction of the news or surprise. If a job market figure is lower than expected, translating

to bad news or a negative, unexpected effect, the sign of λ̂t is negative. If published

numbers are exceeding the expectations of forecasters and market participants, the sign is

positive as we face good news. In Figure 5, we observe an alternating pattern of estimated

shocks λ̂t. During the financial crisis in the U.S., it becomes evident that predictors have

underestimated the effects on the labor situation in the beginning of a prolonged phase

of negative developments, yielding negative shocks. However, during the recovery phase,

predicting economists also underestimate the decline in job losses, which is picked up as

good news as fewer than anticipated jobs were lost.

Additionally, Figure 5 shows that average predictions, which are a main contributor

to the shock estimation, vary only little and show high autocorrelation and a lagged

reaction to shocks. Several examples exist in the present sample. The survey mean does

not predict larger deviations from a trend, which yields several positive and negative

spikes in temporal shocks λ̂t, while individually, some economists have strong fluctuations

in their predictions.

Most importantly, we find that shocks show some degree of seasonality in its pattern in

which winter figures are usually over-estimated yielding negative shocks. For the majority

of years, we also observe positive shocks in summer and fall. This might indicate that

economists do not incorporate seasonal patterns in their predictions on average.17 In

order to to control for seasonality, we estimate temporal shocks with respect to the most

recent, seasonally adjusted job market figures. We find differences in these estimates, in

17We find elevated autocorrelations for lag 11 and 12, albeit of no statistical significance. For reasons
of brevity, these results are not reported in detail.
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particular for peak values of shocks which seem to be higher for the seasonally adjusted

figures in absolute terms. However, we also find that the alternating pattern remains

mainly intact. This is visualized in the Appendix in Fig. B.9. We detect statistically

significant autocorrelation in the first difference of the shock series’ for the first lag, both

for shocks based on the seasonally unadjusted first release and the most recent, seasonally

adjusted release. This might be an indicator for the effect of large errors on the forecasters.

However, as this effect is also present in the most recent releases,18 it is more likely that

this is a residual of the significant autocorrelation of the mean forecast across the panel.
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Figure 5: Temporal shocks λ̂t (orange line) estimated as defined in Eq. (4), NFP changes of the first
publication (yellow bars), and QES mean (black dashed line) for NFP changes published from December
2017 to February 2020.

5.1.2. Individual bias of economists

We estimate the individual bias of each economist according to Eq. (3). A forecaster

systematically over-predicts with a significant φ̂i > 0. In our sample, we find several

economists who show a statistically significant bias, either positive or negative. Figure 6

visualizes the bias estimates φ̂i for all economists with more than 50 survey entries. Red

squares are marking bias that is statistically significantly different from zero. Evidently,

18These most recent releases are not available to the economists at the lag of the detected autocorre-
lation.
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most of the elevated biases in absolute terms are significant and indicate some dissociation

from a rational forecast. Notably, the number of predictions made varies and as such,

there is no universal threshold bias to determine significance jointly for all economists.
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Figure 6: Idiosyncratic bias φ̂i across economists with at least 50 predictions based on the first publication
of NFP numbers. Red squares indicate a statistically significant bias at the 10% significance level.

For the bias estimation, we find that the choice of publication figure plays a major

role. This is in some contrast to the shock measure in the previous subsection. In what

follows, we discuss this bias for all economists and for groups of economists with at least

50 or 100 predictions, respectively. We compare the bias across the first and the final

figure of NFP changes.

The estimated bias is visualized in Figure 7. We sort the bias estimates from lowest

to highest, as the order of economist identifiers is of no interest for this analysis. The

three subplots refer to three nested groups of economists. The left-hand plot visualizes

φ̂i for all economists. If the number of predictions is low, the estimate might be prone

to small sample bias. The remaining two figures calculate the bias for economists with a

reasonable number of predictions which ultimately reduces the number of economists to

103 and 66, respectively.

Several important observations are drawn from Figure 7. Firstly, we find that with a

higher participation rate, that is with a higher number of predictions made, the individual

bias seems to be decreasing. By removing economists with predictions below the threshold

of 50 or 100, we remove some of the extreme values of positive and negative bias as
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well. This is of interest as it shows that we find a reduction in systematic over- or

under-prediction the more predictions an economist enters into the survey. These findings

suggest that the more regularly an economist enters survey responses in the QES, the lower

the systematic error. This could indicate differing information sets to other economists

based on learning effects from past prediction differences or differing information rigidities.

As a second important observation, we find the individual bias to differ significantly if

we base the calculation on the third and final publication of NFP figures. Bias calculated

based on the third publication are plotted in blue in Figure 7. We observe a downward

shift and a generally negative bias. The NFP figures are more precise as the response rates

of businesses reported job numbers are much higher than for the first publication. This

underlines a tendency to under-predict true or more precise values of NFP changes. The

magnitude of this effect can only be partially explained by the observed upward correction

in absolute terms from first to third revision in roughly 60% of the observations, which

would causes the bias to decrease as At increases for some t. Of course, some of this

increase would also be offset by a downward correction of releases. Hence, it is suggested

that the role of the final figures for NFP changes play a less important role for the

prediction of economists and the focus remains on the first release. Additionally, we find

that the impact of these revisions affects the temporal shock λ̂ to a lesser extent than the

bias component φ̂.

5.2. Prediction performance

5.2.1. In-sample analysis

We now turn to the individual prediction quality and firstly, focus on an in-sample

view covering all observations from December 2007 to February 2020 and in a second

in-sample analysis, to December 2020 to analyze the impact of COVID19. Based on the

individual predictions of economists, loss functions are calculated and results based on

the first release are presented. As outlined previously, the number of predictions made

by each forecaster varies which proves challenging for an evaluation of outperformance.

To separate prediction quality implied from RMSE, a k-means clustering is applied on

(1) all economists with at least 50 observations (|Ti|∗ ≥ 50), which yields 101 economists
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Figure 7: Idiosyncratic bias φ̂i across all economists (left), economists with at least 50 predictions (mid-
dle), and economists with at least 100 predictions (right), sorted from low to high for each subplot. Yellow
lines refer to the bias based on the first publication of NFP changes. Blue lines refer to bias based on the
third and final publication of NFP figures, published in t+ 2 for period t.

remaining in the sample and (2) all economists with at least 100 observations (|Ti|∗ ≥ 100),

which further reduces the sample to 63 economists. The number of clusters or in this

specific data set—intervals—is chosen to be k = 5 as motivated in Subsection 4.4.

For RMSE figures for economists with at least 50 predictions, we find the majority of

economists in the second and third cluster. The best performing economists are grouped

in the first cluster, whose RMSE ranges from 57.5 to 64.3 while for the worst performing

cluster, RMSE ranges from 91.7 to 99.2. Centroid values and cluster boundaries vary

only marginally for the first three groups of economists with at least 100 observations.

We cannot directly infer on outperformance of economists in the first cluster compared

to all others but we can certainly say that they predict better, on average, than those in

the fifth cluster. Interestingly, we find that if we only focus on economists with a higher

number of predictions, this homogeneity of loss functions increases with the intercluster

distance decreasing, which can be partly attributed to a smaller sample and the exclusion

from economists with fewer predictions. This, in turn, indicates that economists with

fewer predictions might produce higher losses. Detailed results are found in the appendix

in Table C.10. These findings further motivate an analysis of equal predicting ability

across economists and also justify filtering economists by participation.
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The in-sample fits of the QES means, the QES means based on the selection of best

performing economists following D’Agostino et al. (2012), the ARMA(p,q) model, and the

deep learning network as introduced in Subsection 4.2 and 4.3 for both in-sample periods

are presented in the in-sample columns of Table 1.

For both in-sample periods, the QES mean of all economists and their reduction to

only include those with 50 or 100 predictions performs similar with respect to the RMSE.

The no-change forecast, the prevailing mean over three, six, and twelve months, and the

ARMA(1,1) perform much worse. We find the LSTM network to show superior data fit

which is due to the nature of training of the model itself. The LSTM is the only model

included in the MCS, and as such, significantly outperforms all others. If we exclude

the LSTM from the model selection, all QES mean forecasts that are produced from the

selection of the best, the best 5%, and the best 25%—based on the relative error and

selection of D’Agostino et al. (2012)—are included in the MCS. This indicates that these

forecasts provide a better prediction quality than standard QES means, which extends

the findings of Brown et al. (2008) based on the measure of D’Agostino et al. (2012). In

the subsequent section, we address this evident rejection of the equal predictive ability

hypothesis. However, this outperformance only holds for the pre-COVID19 sample. For

the sample which includes COVID19, we find no model to perform statistically better

than others since errors are exceptionally high, with the exception of the LSTM network

approach.

Loss Model In-sample 1 In-sample 2 Out-of-sample 1 Out-of-sample 2

RMSE

QES mean all 64.26 808.0 65.52 1 683
QES mean 50 64.14 808.4 65.34 1 684
QES mean 100 63.98 799.8 65.08 1 666
QES best* 62.12/61.87/61.23 698.8/731.4/786.9 66.39/66.90/65.55 1 697/1 687/1 676
QES best 50* 61.34/61.60/61.48 753.9/740.5/794.5 66.35/68.55/65.52 1 921/1 942/1 717
QES best 100* 63.31/61.79/61.45 734.8/708.6/807.5 72.00/64.80/64.44 1506/1 564/1510

No-change 108.7 2 446 119.89 5 105
mean (3/6/12) 108.4/122.9/141.7 2 097/1 934/1 861 87.71/81.15/77.80 4 333/3 955/3 726

LSTM 33.99 354.8 72.84 2 999
ARMA(1,1) 100.7 1687 103.0 7 208

Note: In-sample 1 refers to the data set that ends in February 2020 (pre-COVID) with n1 = 147 and In-Sample 2 refers to
the full data set covering the COVID19 crisis ending in December 2020 with n2 = 157. ∗For the QES best series’, the best,
the best 5%, and the best 25% of economists based on the squared loss over the respective sample are used as predictor for
in-sample performance. For the out-of-sample exercise, the best series are updated monthly based on an expanding window,
allowing for changes in the set of forecasters across the out-of-sample period.

Table 1: In-sample and out-of-sample RMSE for QES mean predictions and time-series models.

28



5.2.2. Equal predictive ability

We address the hypothesis of equal predictive ability of the participants of the Bloomberg

survey and follow the approach of D’Agostino et al. (2012). We compare the findings ob-

tained from using the first publication of NFP changes with the forecasting performance

benchmarked against the most recent and seasonally-adjusted release. Table 2 shows the

distribution of the average normalized squared error across the best, 5%, 25%, 50%, 75%,

95%, and worst percentile including bootstrap 10% confidence intervals, based on the

first publication of NFP changes. We reject the hypothesis of equal predicting ability by

finding statistically significant evidence of better-performing economists. For example,

the best 25% of economists, even when controlling for survey participation, is shown to

perform better than the remainder. In addition, by only including economists that par-

ticipate regularly, we even find the group of the best 5% to be statistically significantly

better than the remainder. Similar to D’Agostino et al. (2012), we further identify groups

of economists that perform significantly worse.

Table 3 repeats this analysis but bases the error measure on the most recent, seasonally-

adjusted publication. The results of a rejection of the equal predictive ability of economists

are confirmed. We even observe an even higher spread between significantly better per-

forming economists and the worst performing economists. By restricting the sample by

the participation rate, we find the significance of over-performance to increase as well.

Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.1028 0.5994 0.7068 0.8139 0.9557 1.3813 3.5633
CI (0.0421; 0.4215) (0.5221; 0.6372) (0.7404; 0.7829) (0.8314; 0.8714) (0.9262; 0.9834) (1.1425; 1.3777) (1.5819; 4.5791)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5141 0.6246 0.7237 0.8139 0.9510 1.3670 3.5633
CI (0.3661; 0.5806) (0.6078; 0.6833) (0.7549; 0.7934) (0.8351; 0.8733) (0.9213; 0.9745) (1.0953; 1.2701) (1.3523; 2.3176)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5730 0.6310 0.7227 0.8095 0.8905 1.2655 3.5633
CI (0.5612; 0.6756) (0.6705; 0.7256) (0.7651; 0.8023) (0.8272; 0.8648) (0.8929; 0.9403) (0.9986; 1.0989) (1.0879; 1.3897)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.6288 0.6450 0.7265 0.8118 0.8874 1.2643 1.3722
CI (0.6221; 0.7139) (0.6895; 0.7442) (0.7645; 0.8042) (0.8148; 0.8549) (0.8665; 0.9141) (0.9410; 1.0233) (0.9840; 1.1578)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table 2: Distribution of the forecasting performance relative to the first publication of NFP changes for
the in-sample period from December 2007 to February 2020.
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Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.3442 0.5942 0.7352 0.8379 0.9495 1.4565 3.2762
CI (0.1564; 0.5162) (0.5755; 0.6646) (0.7587; 0.7932) (0.8390; 0.8729) (0.9256; 0.9763) (1.1110; 1.2914) (1.4462; 3.4634)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5002 0.6261 0.7383 0.8376 0.9446 1.4669 3.2762
CI (0.4079; 0.5848) (0.6245; 0.6934) (0.7664; 0.7998) (0.8396; 0.8725) (0.9181; 0.9654) (1.0722; 1.2159) (1.2789; 2.1816)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5548 0.6539 0.7394 0.8290 0.9057 1.1488 2.6415
CI (0.5789; 0.6863) (0.6831; 0.7345) (0.7733; 0.8064) (0.8312; 0.8645) (0.8914; 0.9335) (0.9894; 1.0833) (1.0759; 1.3437)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.6283 0.6799 0.7550 0.8206 0.8920 1.1061 1.2978
CI (0.6472; 0.7285) (0.7070; 0.7550) (0.7737; 0.8083) (0.8190; 0.8529) (0.8645; 0.9044) (0.9303; 1.0027) (0.9692; 1.1207)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table 3: Distribution of the forecasting performance relative to the seasonally-adjusted, most recent
publication of NFP changes for the in-sample period from December 2007 to February 2020.

As those findings could be affected by exceptionally worse performing subgroups of

economists, we drop the worst performing 20% of economists of each group and repeat

the bootstrap. Results are shown in Table 4 for the first publication and in Table 5

for the most recent revision. By removing the worst performing 20%, we reduce the

average error and the levels of confidence intervals as large errors are excluded from the

bootstrap. We find our previous results to be robust. The best performing economists

are significantly better than others, in particular for the groups that only include those

economists who participate more regularly. Results with respect to the third release are

found in Table C.11 and C.12.

Hence, we reject the hypothesis of equal predictive ability of economists of the QES, in

line with what D’Agostino et al. (2012) found for the SPF. These findings also corroborate

the impact of the significant bias of some forecasters, which are found within the Davies

& Lahiri (1995) framework. We further show that these results hold across revisions of

the NFP changes, while the for the most recent, seasonally-adjusted release we obtain the

most compelling results.

5.2.3. Out-of-sample analysis

We now compare the one period-ahead prediction performance of the QES, individually

and as mean, with the performance of time series model and deep learning. We run
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Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.1028 0.5884 0.6830 0.7864 0.8448 0.9665 1.0065
CI (0.0424; 0.4446) (0.5090; 0.6175) (0.6900; 0.7240) (0.7576; 0.7872) (0.8235; 0.8659) (0.9724; 1.1444) (1.2091; 3.2170)

Panel A: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5141 0.6176 0.6961 0.7928 0.8446 0.9537 0.9936
CI (0.3923; 0.5769) (0.5860; 0.6507) (0.6982; 0.7305) (0.7574; 0.7868) (0.8168; 0.8563) (0.9334; 1.0581) (1.0822; 1.6166)

Panel A: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5730 0.6267 0.6957 0.7781 0.8211 0.9052 0.9500
CI (0.5364; 0.6345) (0.6209; 0.6702) (0.6975; 0.7289) (0.7456; 0.7757) (0.7936; 0.8306) (0.8702; 0.9560) (0.9321; 1.1645)

Panel A: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.6288 0.6444 0.7115 0.7864 0.8211 0.9152 0.9508
CI (0.5995; 0.6797) (0.6504; 0.7021) (0.7134; 0.7487) (0.7542; 0.7889) (0.7946; 0.8342) (0.8493; 0.9189) (0.8779; 1.0064)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table 4: Distribution of the forecasting performance relative to the first publication of NFP changes for
the in-sample period from December 2007 to February 2020, restricted to the best 80% of forecasters.

Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.3442 0.5747 0.7032 0.7931 0.8690 0.9553 0.9954
CI (0.1892; 0.5229) (0.5566; 0.6408) (0.7157; 0.7462) (0.7806; 0.8084) (0.8467; 0.8880) (0.9949; 1.1414) (1.1963; 2.6436)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5002 0.5949 0.7133 0.7944 0.8689 0.9505 0.9942
CI (0.4339; 0.5780) (0.5971; 0.6616) (0.7211; 0.7507) (0.7802; 0.8071) (0.8397; 0.8768) (0.9559; 1.0716) (1.0879; 1.5848)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5548 0.6408 0.7185 0.7931 0.8588 0.9082 0.9444
CI (0.5636; 0.6581) (0.6478; 0.6956) (0.7258; 0.7546) (0.7721; 0.7994) (0.8182; 0.8521) (0.8921; 0.9699) (0.9497; 1.1624)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.6283 0.6700 0.7274 0.7957 0.8564 0.8980 0.9105
CI (0.6312; 0.7055) (0.6788; 0.7256) (0.7371; 0.7691) (0.7752; 0.8062) (0.8128; 0.8482) (0.8629; 0.9274) (0.8899; 1.0060)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table 5: Distribution of the forecasting performance relative to the seasonally-adjusted, most recent
publication of NFP changes for the in-sample period from December 2007 to February 2020, restricted
to the best 80% of forecasters.

an out-of-sample analysis on two overlapping windows. The first window contains 36

predictions and runs from January 20217 to December 2019. The second out-of-sample

window runs from January 2018 to December 2020 and includes the COVID19 shock. We

separate these two prediction windows to disentangle the effect of the labor shock on the

prediction quality.

Overall, we find the prediction performance of the ARMA, the LSTM, the no-change

forecast, and the prevailing mean to be insufficient as none of these models is included in

the MCS, while the LSTM shows the relative best performance of this group. Simple QES
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mean predictions and a selection of best economists produce much lower losses. The MCS

reveals that the mean forecasts built on the best performing 5% and 25% of economists,

that very regularly participate, yield superior forecasts. The simple QES mean of the

same subgroup of economists is also included in the MCS. This expands the findings of

Brown et al. (2008) by showing that we are able to construct superior forecasts based

on a selection of the best performing economists. It further shows that the framework

outlined in D’Agostino et al. (2012) offers a viable choice as a survey combination method

to improve prediction quality. Lastly, it complements Clements (2021) as we show that

there is a difference between those economists that participate very regularly and those

who drop in and out.

The out-of-sample performance during the period of COVID19 is discussed separately

in Subsection 5.3.

5.3. The impact of COVID19

The impact of COVID19 on the U.S. job market is comparable with the characteristics

of a black swan event; an unpredictable incident with negative consequences for a majority

of a population. COVID19 started its rapid and lethal spread throughout every state of the

U.S. in February, if not earlier. Fatalities and infection rates increased in the beginning of

March19 to which drastic counter measures were rolled out (Janiak et al., 2021). Closures

of businesses, in particular in the hospitality sector, as well as close-contact industries,

shut-downs of plants, and a recession followed shortly after. However, Albanesi & Kim

(2021) highlight that this recession effect is unlike anything previously observed as close-

contact businesses and in particular women are asymmetrically affected. In addition, this

effect was nation-wide, causing a joint economic disruption across the U.S. (Rojas et al.,

2020). The impact on the U.S. job market is unprecedented as absolute job losses of

this magnitude have never been recorded before. In turn, the subsequent recovery due

to re-opening of businesses (Bartik et al., 2020) and a generally different approach to

dealing with the pandemic caused an increase in jobs of previously unknown and unseen

19See for example https://covid.cdc.gov/covid-data-tracker/.
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dimensions as well.

Table 6 gives an overview of these numbers. In the first NFP publication for March

2020, a loss of 701 000 jobs is reported. Underlining the abnormality of the situation, this

number is later revised to roughly double that loss, at 1 373 000 jobs lost published in the

third release and further corrected in the seasonally-adjusted recent release to 1 683 000

jobs lost. The largest effect on the job market is recorded for April 2020, with a loss of

20 500 000 jobs which is corrected to 20 679 000 in the recent release. Job losses that large

have never been recorded before. For comparison, job losses accumulated from January

2008 to December 2009, the peak of the financial crisis in terms of job market impact,

equal 6 887 000 over a period of two years, see Figure 2, panel (a). In May to August,

some of these lost jobs are reclaimed and a recovery of 2 833 000 in May and 4 846 000 in

June are observed. This strong recovery continues until November, albeit still in a net

loss due to April 2020. This job market recovery is of a previously unknown and abnormal

magnitude as well, see Figure 2, panel (b).

March April May June July August Sept. Oct. Nov. Dec.

Release

first −701 −20 500 2 509 4 800 1 763 1 371 661 638 245 −140
second −870 −20 687 2 699 4 791 1 734 1 489 672 610 336 −227
third −1 373 −20 787 2 725 4 781 1 761 1 493 711 654 264 −306
recent −1 683 −20 679 2 833 4 846 1 726 1 583 716 680 264 −306

Obs. 148 149 150 151 152 153 154 155 156 157

Table 6: Nonfarm payroll changes from March to December 2020.

Naturally, these extreme events also impact the forecasting error decomposition. Due

to the scaling of the data during the COVID19 sub-sample, a visual representation of the

complete sample becomes unfeasible. As such, Fig. 8 limits the view on 2020 and shows

that the forecasting error follows suit in terms of magnitude. Table 7 shows the QES mean

prediction for each month and the temporal shocks during these months following the

error decomposition of Davies & Lahiri (1995). It is evident that the survey participants,

on average, underestimated the immediate impact of COVID on the U.S. job market in

March. The resulting temporal shock λ̂March takes the highest negative value on record

with λ̂March = −593 000, translating to an extreme negative shock at that time of under-

predicting job losses by half-a-million jobs. Surprisingly, the prediction for April roughly
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aligns in terms of dimensions but this time, significantly over-predicts job losses. This

in turn yields a positive shock as not as many jobs are lost as anticipated. The largest

deviation from prediction to realized value is recorded for May 2020. The QES mean

predicts a loss of approximately 7.3 million jobs while the actual number of jobs increased

by 2.5 million. This causes a positive shock of 9.7 million jobs. In June, the QES

again under-predicts NFP changes incurring a shock of 1.2 million jobs. With regard to

individual forecaster bias φi, the estimates are now negatively biased due to the large

deviations in these four months. Additionally, we observe some evidence for information

rigidities as forecasters first underestimate the situation in March but then repeatedly

overestimate job losses or underestimate the recovery, in particular in May, yielding a

repeated occurrence of positive shocks. This slow reaction of economists is also found

for inflation predictions during this time as demonstrated in Armantier et al. (2021).

Forecasters, on average, produce more conservative predictions after April 2020. While

the estimates for the shock variable λ in Table 7 are estimated across the full sample, we

note that by construction—particularly in view of the forecaster bias estimated in Eq. (3)

and the shock itself in Eq. (4)—the shock variable is now biased downwards due to the

pivotal difference of expected labor development and realized numbers in March, April,

May, and to some extend in June. These few but large outliers in differences are affecting

the idiosyncratic bias with a negative shift. This also shifts the temporal shock variable

downwards. When estimated across the whole sample including the COVID19 period,

almost all temporal shocks are negative, underlining their biasedness due to these large

outliers compared to those estimates obtained with the non-COVID19 sample.

March April May June July August Sept. Oct. Nov. Dec.

NFP Change (first) −701 −20 500 2 509 4 800 1 763 1 371 661 638 245 −140
QES mean −237 −21 944 −7 357 3 389 1 424 1 343 897 616 456 43
QES mean 50 −254 −22 132 −7 344 3 448 1 467 1 360 897 617 458 42

Shocks λ̂allt −593 1 314 9 725 1 289 209 −98 −361 −100 −335 −307

Shocks λ̂50
t −538 1 540 9 753 1 261 205 −77 −322 −66 −299 −275

Table 7: Nonfarm payroll changes from March 2020 to December 2020, during the first wave of COVID19
with the QES mean of all economists as well as those with at least 50 predictions and temporal shock
estimates λ̂t of these economists.

Turning to the prediction quality of the QES, its means, the best selection, and the
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Figure 8: Temporal shocks λ̂t (orange line) estimated as defined in Eq. (4), NFP changes of the first
publication (yellow bars), and QES mean (black dashed line) for NFP changes published from July 2019
to December 2020.

model approaches, we revisit the fourth column of Table 1, and focus on the Out-of-

sample 2 performance. We observe elevated RMSE figures and find distinctive differences

between the consensus forecast and the model based approaches. The QES mean forecast

produces similar prediction quality while only the forecasts produced by a selection of

the best economists are elements of the MCS, translating to a statistically significant

outperformance relative to all other predictions. In detail, predictions based on the best

25% of economists that regularly participate produce significantly lower losses and are

superior to the other predictions. This again documents the existence of smart predictions

as in Brown et al. (2008), even in times of extreme differences of expected and realized

value. It further confirms that forecasters that regularly participate seem to have better

predicting ability, in some relation to the findings of Capistrán & Timmermann (2009a)

and Clements (2021).

The model-based predictions are unable to cope with the March loss and due to the

stationarity restrictions, under-predict the April loss as they react too slow to these new

values. These models also cannot predict the sudden change to recovery. The LSTM

network shows a lagged reaction and predicts positive NFP changes for March and April

while prediction are negative for May and June. All model-based approaches are pro-

ducing very large residuals for these months that drive the RMSE far beyond what is

observed from the QES consensus figures. This is, however, expected behavior of model-
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based predictions as labor events surrounding COVID19 are unexpected shocks, in which

the structure of data evolution changes completely. By its very nature, none of these

models are included in the MCS. In light of the extreme magnitude of this event, the

prediction behavior is in line with past observations. Economists tend to under-predict

losses, while the turn to a recovering job market is predicted with lagged periods as ob-

served after the financial crisis—at lower levels. During the months of the labor shock,

very high standard deviations across individual predictions are observed and very high

prediction errors both on individual and on consensus level follow. This phenomenon is

known from inflation predictions (Rich & Tracy, 2010) and shown to be present in these

NFP predictions as well.

In what follows, we briefly address the distribution of the forecasting performance

across performance percentiles of forecasters with regard to the equal predictive ability

hypothesis. Tables 8 and 9 show the percentiles and bootstrap confidence intervals, for

all economists and a limited set by dropping the worst performing 20% as argued above.

Including the COVID19 labor shock until December 2020 does not change the qualitative

result of rejecting the hypothesis of equal predictive ability. We still find that the best

5% and 25% of economists with more than 50 or 100 survey entries predict better than

the bootstrap distribution would suggest, even when controlling for negative outliers by

removing the worst performing 20%. These findings are robust to the choice of release as

shown in Tables C.13 - C.16 in the Appendix. This is evidence that not all economists

are affected equally by the uncertainty surrounding the true impact of COVID19 on the

labor market in March, April, and the following months.

6. Concluding Remarks

We analyze an unbalanced panel of nonfarm payroll predictions from January 2008

to December 2020 from 181 forecasters. Based on the framework of Davies & Lahiri

(1995), we decompose the forecasting error of each forecaster into three components, of

which two are further studied. Firstly, we focus on the temporal shock component that

affects all forecasters equally per forecasting period. These shocks, a general over- or
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Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.1028 0.6020 0.7197 0.8173 0.9606 1.3750 3.5633
CI (0.0440; 0.4357) (0.5298; 0.6457) (0.7449; 0.7869) (0.8353; 0.8748) (0.9308; 0.9883) (1.1476; 1.3886) (1.5907; 4.5369)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4794 0.6144 0.7293 0.8173 0.9514 1.3582 3.5633
CI (0.3444; 0.5747) (0.6092; 0.6862) (0.7582; 0.7969) (0.8385; 0.8768) (0.9256; 0.9793) (1.1002; 1.2803) (1.3645; 2.5128)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5737 0.6303 0.7295 0.8059 0.8985 1.2953 3.5633
CI (0.5601; 0.6765) (0.6722; 0.7280) (0.7672; 0.8046) (0.8298; 0.8670) (0.8952; 0.9441) (1.0029; 1.1049) (1.0943; 1.3933)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.6095 0.6307 0.7299 0.8065 0.9123 1.2845 1.3590
CI (0.6164; 0.7097) (0.6865; 0.7408) (0.7631; 0.8024) (0.8146; 0.8537) (0.8673; 0.9151) (0.9441; 1.0318) (0.9907; 1.1758)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table 8: Distribution of the forecasting performance relative to the first publication of NFP changes for
the in-sample period from December 2007 to December 2020.

Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.1028 0.5884 0.6799 0.7774 0.8502 0.9737 1.0212
CI (0.0440; 0.4664) (0.5201; 0.6261) (0.6943; 0.7286) (0.7607; 0.7916) (0.8284; 0.8722) (0.9778; 1.1536) (1.2183; 2.9947)

Panel A: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4794 0.6106 0.6965 0.7901 0.8505 0.9554 1.0096
CI (0.3546; 0.5713) (0.5814; 0.6506) (0.7000; 0.7321) (0.7603; 0.7903) (0.8222; 0.8638) (0.9473; 1.0862) (1.1044; 1.7648)

Panel A: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5737 0.6261 0.6972 0.7686 0.8390 0.9141 0.9419
CI (0.5392; 0.6360) (0.6246; 0.6730) (0.7002; 0.7315) (0.7478; 0.7778) (0.7956; 0.8327) (0.8730; 0.9546) (0.9336; 1.1582)

Panel A: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.6095 0.6294 0.7043 0.7704 0.8296 0.9160 0.9419
CI (0.5904; 0.6717) (0.6445; 0.6947) (0.7083; 0.7428) (0.7490; 0.7837) (0.7901; 0.8299) (0.8468; 0.9178) (0.8774; 1.0099)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table 9: Distribution of the forecasting performance relative to the first publication of NFP changes for
the in-sample period from December 2007 to December 2020, restrcited to the best 80% of forecasters

under-prediction of all forecasters for a particular month represents a news effect where

an under-prediction of job increases is considered a positive shock and vice versa. From

these estimated shocks, we find that the sample of predicting economists under-estimate

job losses in times of prolonged market turmoil. In addition, recovery phases are under-

predicted as well, leading to positive shocks.

In general, we find that the mean predictions are rather stable, causing the shock

estimate to alternate regularly. Secondly, we focus on the individual bias, which describes

a systematic over- or under-prediction of a particular forecaster. We find the bias of
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several forecasters to be statistically significant. More importantly, we find that with

increasing participation rate, the individual bias is decreasing, yielding a lower prediction

error. This indicates that economists that regularly make predictions are incorporating

differing information sets than those with very few predictions. If we decompose the

forecast errors based on a more precise measure for job market figures, the most recent

publication, we observe a downward shift and a generally negative bias, underlining a

tendency to under-predict true or more precise values of NFP changes. This suggests

that forecasters make limited use of subsequent revisions of NFP changes and their focus

remains on the initial and preliminary numbers. In view of the applied framework, we

find that the impact of these revisions affects the temporal shock to a lesser extent than

the individual bias.

We apply several model-based approaches and compare their in-sample fit and out-

of-sample prediction quality with the predictions made in the survey. Additionally, we

employ a deep learning LSTM network. The LSTM shows superior in-sample fit and

outperforms the time series models in the out-of-sample forecasting. However, compared

to the mean forecast of the qualified economists, the quality of these model-based predic-

tions is lower. This implies that exogenous factors play a major role for nonfarm payroll

forecasts. Additionally, we show that smart consensus forecasts that base on the selection

of the best performing economists identified with the methodology of D’Agostino et al.

(2012) outperform all other forecasts. This outperformance is statistically significant.

These findings are in line with Brown et al. (2008). This rejects the hypothesis of equal

predictive ability and we find stronger evidence against this hypothesis for economists

with higher participation rates. This relates to Clements (2021).

We analyze the impact of COVID19 on the U.S. labor market and highlight the abnor-

mal character of these job market figures, which is shown for temporal shocks in the error

decomposition. It is evident that the survey participants, on average, underestimate the

immediate impact of COVID but also under-predict the following recovery. However, this

is a known prediction pattern; job losses are under-predicted at first while later on, the

recovery is also predicted to be lower than realized, which had been observed for earlier
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labor shocks already. Additionally, we find that extreme outliers in the difference between

expected and realized NFP changes in April, May, and June have adverse effects on the

estimation of idiosyncratic bias of economists and temporal shocks within the Davies &

Lahiri (1995) framework. The shock estimates are negatively biased due to the impact of

COVID19. Including COVID19 in addressing the hypothesis of equal predicting ability

across different groups of economists further strengthens the evidence for rejecting this

hypothesis, which is robust to the choice of release and seasonally-adjustment. To further

study the effects of COVID19 on information rigidities and the behavior of survey par-

ticipants, private nonfarm payroll changes could be focused on due to the asymmetrical

impact on small-sized firms and the service industry. It is left for further research if the

predictions made for the private NFP changes draw a better picture of the actual decline

and recovery.

The findings presented herein are of relevance as it is suggested that NFP consensus or

survey forecasts suffer in precision when forecasters are participating less frequently. We

further show that autoregressive models, unlike for other macroeconomic variables, show

insufficient prediction quality. A deep learning network yields superior in-sample fit but

does not outperform the consensus forecast in an out-of-sample exercise. Future research

could address how a combination approach of time series models and consensus forecasts,

as carried out in Ang et al. (2007) for example, benefits the prediction of nonfarm payroll

changes. Having shown that the LSTM network yields superior fit but lower prediction

performance than the consensus forecast, the LSTM should be extended in the number of

features aiming for an improvement of prediction quality. In view of the effects of nonfarm

payroll announcements on financial markets, additional attention could be dedicated to

the shocks identified in the Davies & Lahiri (1995) framework to further dissect nonfarm

payroll news impact.
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Appendix A.

Appendix A.1. Data Cleaning

As mentioned above, the raw panel of monthly predictions contains k∗ = 239 submit-

ting accounts with a large number of entries and exits of submitting economists. In some

instances, these submitting economists change within a submitting entity such as a bank

or financial firm or rotate out and back in at a later point.

For example, the QES entries of Morgan Stanley originate from four individuals who

report their estimates. The raw data set contains these submission as four separate, non-

overlapping series. Hence, the raw data is processed to account for changes in the sub-

mitting account of an institution and merges these responses, if they are non-overlapping.

This reduces spurious non-sampling bias due to differing economist identifiers of one sub-

mitting institution. However, this might also affect how individual bias is calculated as

merging these non-overlapping predictions assumes that the forecasters are prone to the

same forecasting bias within the Davies & Lahiri (1995) framework. On the other hand,

we argue that the information set available to the forecaster should be very similar, if not

identical, as they stem from the same firm. Note that we do not merge predictions if the

affiliation is identical but the location or branch differs. This, for example, is the case

with some submission by economists of different branches of UBS or JPMorgan, among

others.

We further restrict the sample to submitting economists with at least three consecutive

submissions to the survey. The merging as outlined above and this threshold reduces the

panel to k = 181 participants in the QES. During the analysis, we further restrict this

sample to economists with at least 10, 50, and 100 survey submissions and compare the

results across these different groups.
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Appendix B.

Appendix B.1. Additional Figures

12/2007 12/2008 12/2009 12/2010 12/2011 12/2012 12/2013 12/2014 12/2015 12/2016 12/2017 12/2018 01/2020

Year

-400

-300

-200

-100

0

100

200

300

T
e

m
p

o
ra

l 
s
h

o
c
k
s
 

t, 
T

h
o

u
s
a

n
d

s

Shocks 
t
 w.r.t. First

Shocks 
t
 w.r.t. Most Recent

Figure B.9: Shock estimates λt based on the first release (orange line) and on the most recent, seasonally
adjusted release (blue line).

Appendix C.

Appendix C.1. Additional Tables

Cluster

Loss |T ∗
i | 1 2 3 4 5

∑
i nC(i)

RMSE

≥ 50
nC(i) 18 37 32 12 2

101[C(i)] [57.5, 64.3] [64.6, 69.2] [69.4, 74.4] [74.8, 80.0] [91.7, 99.2]

C(i) 62.1 67.1 71.7 77.4 95.4

≥ 100
nC(i) 10 14 17 17 5

63[C(i)] [61.7, 64.6] [64.9, 67.3] [67.7, 70.4] [71.1, 75.0] [76.3, 79.2]

C(i) 63.3 66.5 68.7 72.7 77.9

Table C.10: In-sample RMSE clusters of all economists with more than 50 or more than 100 predictions
based on a k-means algorithm with k = 5 number of clusters. The number of economists per cluster is
denoted by nC(i). The cluster boundaries are given as interval [C(i)] with cluster centroid C(i).
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Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.5610 0.6678 0.7747 0.8942 1.3791 2.8301
CI (0.0849; 0.4261) (0.5043; 0.5947) (0.6946; 0.7337) (0.7865; 0.8224) (0.8849; 0.9428) (1.1162; 1.3475) (1.5471; 4.3220)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.5751 0.6819 0.7861 0.8930 1.3542 2.8301
CI (0.3945; 0.5425) (0.5681; 0.6299) (0.7081; 0.7438) (0.7895; 0.8252) (0.8790; 0.9311) (1.0684; 1.2423) (1.3230; 2.3658)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5693 0.5927 0.6779 0.7659 0.8732 1.1353 2.4819
CI (0.5061; 0.6128) (0.6115; 0.6680) (0.7163; 0.7523) (0.7815; 0.8171) (0.8495; 0.8957) (0.9638; 1.0739) (1.0661; 1.3973)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5693 0.6104 0.6926 0.7659 0.8669 1.1217 1.3509
CI (0.5919; 0.6755) (0.6537; 0.7034) (0.7243; 0.7615) (0.7730; 0.8104) (0.8237; 0.8699) (0.9005; 0.9875) (0.9463; 1.1397)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table C.11: Distribution of the forecasting performance relative to the third publication of NFP changes
for the in-sample period from December 2007 to February 2020.

Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.5505 0.6518 0.7433 0.8152 0.9007 0.9265
CI (0.0957; 0.4336) (0.4798; 0.5717) (0.6500; 0.6843) (0.7245; 0.7542) (0.7994; 0.8440) (0.9712; 1.1529) (1.2333; 2.9347)

Panel A: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.5724 0.6650 0.7509 0.8232 0.8990 0.9265
CI (0.4066; 0.5356) (0.5456; 0.6020) (0.6616; 0.6925) (0.7276; 0.7558) (0.7946; 0.8356) (0.9356; 1.0666) (1.0930; 1.6948)

Panel A: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5693 0.5833 0.6628 0.7494 0.8050 0.8787 0.8929
CI (0.4912; 0.5843) (0.5737; 0.6240) (0.6636; 0.6948) (0.7178; 0.7470) (0.7699; 0.8062) (0.8605; 0.9586) (0.9401; 1.2036)

Panel A: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5693 0.6081 0.6810 0.7510 0.7959 0.8723 0.8887
CI (0.5728; 0.6488) (0.6223; 0.6702) (0.6835; 0.7163) (0.7234; 0.7551) (0.7621; 0.8001) (0.8165; 0.8867) (0.8467; 0.9836)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table C.12: Distribution of the forecasting performance relative to the third publication of NFP changes
for the in-sample period from December 2007 to February 2020, restricted to the best 80% of forecasters.
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Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.5625 0.6855 0.7785 0.9049 1.4149 2.8301
CI (0.0961; 0.4476) (0.5237; 0.6142) (0.7074; 0.7451) (0.7953; 0.8308) (0.8916; 0.9483) (1.1193; 1.3570) (1.5480; 4.1882)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.6034 0.6933 0.7827 0.9075 1.3934 2.8301
CI (0.3910; 0.5600) (0.5850; 0.6465) (0.7183; 0.7541) (0.7973; 0.8330) (0.8856; 0.9395) (1.0734; 1.2502) (1.3376; 2.6176)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5626 0.6097 0.6902 0.7693 0.8681 1.1764 2.4561
CI (0.5112; 0.6241) (0.6218; 0.6786) (0.7243; 0.7600) (0.7882; 0.8232) (0.8546; 0.9014) (0.9684; 1.0781) (1.0695; 1.3987)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5626 0.6080 0.6925 0.7693 0.8674 1.1467 1.4240
CI (0.5801; 0.6724) (0.6515; 0.7038) (0.7263; 0.7641) (0.7767; 0.8139) (0.8286; 0.8754) (0.9070; 0.9969) (0.9555; 1.1476)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table C.13: Distribution of the forecasting performance relative to the third publication of NFP changes
for the in-sample period from December 2007 to December 2020.

Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.3442 0.6140 0.7383 0.8366 0.9647 1.4565 3.2762
CI (0.2273; 0.5362) (0.5952; 0.6804) (0.7651; 0.8000) (0.8439; 0.8776) (0.9295; 0.9801) (1.1162; 1.3024) (1.4467; 3.4516)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4904 0.6335 0.7408 0.8348 0.9541 1.4700 3.2762
CI (0.3961; 0.6040) (0.6380; 0.7048) (0.7723; 0.8059) (0.8445; 0.8778) (0.9232; 0.9707) (1.0788; 1.2228) (1.2993; 2.3497)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5938 0.6485 0.7478 0.8281 0.9137 1.1405 2.6088
CI (0.5710; 0.6892) (0.6874; 0.7390) (0.7778; 0.8106) (0.8347; 0.8682) (0.8949; 0.9376) (0.9913; 1.0851) (1.0781; 1.3496)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5938 0.6532 0.7407 0.8205 0.9054 1.0838 1.3816
CI (0.6385; 0.7248) (0.7037; 0.7531) (0.7729; 0.8074) (0.8188; 0.8536) (0.8652; 0.9070) (0.9344; 1.0126) (0.9771; 1.1365)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table C.14: Distribution of the forecasting performance relative to the seasonally-adjusted, most recent
publication of NFP changes for the in-sample period from December 2007 to December 2020.
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Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.3442 0.5944 0.7220 0.7936 0.8654 0.9731 1.0020
CI (0.2833; 0.5498) (0.5813; 0.6613) (0.7249; 0.7550) (0.7869; 0.8153) (0.8527; 0.8945) (0.9993; 1.1488) (1.2060; 2.6355)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4904 0.6265 0.7252 0.7945 0.8658 0.9728 0.9954
CI (0.4284; 0.6000) (0.6151; 0.6761) (0.7278; 0.7564) (0.7849; 0.8124) (0.8450; 0.8829) (0.9659; 1.0847) (1.1070; 1.7066)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5938 0.6455 0.7252 0.7934 0.8475 0.9236 0.9572
CI (0.5529; 0.6579) (0.6479; 0.6971) (0.7276; 0.7569) (0.7741; 0.8015) (0.8201; 0.8541) (0.8931; 0.9689) (0.9505; 1.1540)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5938 0.6387 0.7250 0.7885 0.8447 0.9124 0.9340
CI (0.6207; 0.6976) (0.6723; 0.7188) (0.7322; 0.7629) (0.7696; 0.8001) (0.8071; 0.8426) (0.8594; 0.9241) (0.8875; 1.0086)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table C.15: Distribution of the forecasting performance relative to the seasonally-adjusted, most recent
publication of NFP changes for the in-sample period from December 2007 to December 2020, restricted
to the best 80% of forecasters.

Panel A: All Economists

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.5577 0.6606 0.7433 0.8283 0.9164 0.9487
CI (0.1081; 0.4508) (0.5001; 0.5904) (0.6621; 0.6955) (0.7329; 0.7626) (0.8061; 0.8539) (0.9833; 1.1746) (1.2618; 2.9553)

Panel B: Economists with more than 10 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.4583 0.5803 0.6745 0.7572 0.8334 0.9227 0.9570
CI (0.4004; 0.5520) (0.5614; 0.6185) (0.6731; 0.7036) (0.7359; 0.7645) (0.8028; 0.8444) (0.9455; 1.0858) (1.1116; 1.7774)

Panel C: Economists with more than 50 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5626 0.6080 0.6727 0.7408 0.8058 0.8735 0.8966
CI (0.4942; 0.5933) (0.5821; 0.6329) (0.6702; 0.7010) (0.7231; 0.7521) (0.7747; 0.8114) (0.8677; 0.9641) (0.9473; 1.2023)

Panel D: Economists with more than 100 predictions

Best 5% 25% 50% 75% 95% Worst

QES 0.5626 0.6080 0.6711 0.7426 0.7960 0.8678 0.8749
CI (0.5597; 0.6418) (0.6169; 0.6653) (0.6811; 0.7137) (0.7216; 0.7535) (0.7610; 0.7990) (0.8176; 0.8884) (0.8486; 0.9884)

Distribution of the forecasting performance measured with the average normalized squared error proposed in D’Agostino et al. (2012). Numbers
in parentheses are the bootstrap 10% confidence interval obtained from the BCa of DiCiccio & Efron (1996).

Table C.16: Distribution of the forecasting performance relative to the third publication of NFP changes
for the in-sample period from December 2007 to December 2020, restricted to the best 80% of forecasters.
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