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Abstract

Extending the popular HAR model with additional information channels to forecast real-
ized volatility of WTI futures prices, we show that machine learning generated forecasts
provide better forecasting quality and that portfolios which are constructed with these
forecasts outperform their competing models and resulting in economic gains. Analyzing
the selection process, we show that information channels vary across forecasting hori-
zon. Variable selection produces clusters and provides evidence that there are structural
changes with regard to the significance of information channels.
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1. Introduction

As a tangible quantification of uncertainty, the measuring, understanding, and mod-

eling of volatility is a cornerstone of comprehending commodity markets in their func-

tionality, price discovery, and structure of connectedness to other markets. Commodity

markets are inevitably linked to the economic activity and well-being of global and local

economies as they embody the backbone for supply and demand of primary materials

and feedstock for production, biomaterial for agricultural and food industries, and energy

commodities among others. Energy commodity markets in particular play an important

role in research as their understanding is of utmost importance to pricing, security, and

planning of supply, as well as policy design and implications. The link between oil prices

and economic growth is well documented and discussed in literature (Hamilton, 2003,

Kilian, 2009, Charfeddine et al., 2020). In this study, we present novel evidence on the

impact of exogenous information channels on the realized volatility of crude oil futures

prices. Building on the popular Heterogeneous Autoregressive model (HAR) by Corsi

(2009), we show that models incorporating variables that map the equity channel, senti-

ment, or foreign exchange market volatility result in more accurate predictions of realized

volatility than the baseline HAR. In addition, we find that machine learning variants of

the HAR model outperform baseline HAR models by selecting the most useful exogenous

predictors from the set of different information channels; both in view of forecasting per-

formance and economic gain. We also analyze in detail the time variation and importance

of variables to predict oil price volatility. When comparing the variable selection across

forecasting horizons, we find a positive relation between forecasting horizon and number

of different information channels. Looking at the variable importance of those channels,

we find particularly FX to adds to the information contained in past realized volatility.

We contribute to the literature on the connectedness of crude oil markets. It is argued

that there exists an information transmission between the volatility of markets leading

to co-movement of the global oil market (Reboredo, 2011, Kaufmann & Banerjee, 2014,

Luo et al., 2023). In addition, WTI is taking a leading role as global benchmark while

other energy markets such as Brent crude oil follow these movements (Elder et al., 2014,
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Klein, 2018). Adding to the complexity of this research, studies show that exogenous

factors and information channels that cannot be directly associated with energy markets

are also affecting price and volatility behavior (e.g. Nguyen & Walther, 2020). Notably,

other information channels, such as equity markets (Degiannakis & Filis, 2017, Haugom

et al., 2014, Luo et al., 2020) or Google Search Volume (Afkhami et al., 2017) are shown

to provide valuable information to forecast oil volatility with extended HAR models.

In contrast to the extent literature, we test the impact of volatility of different equity

markets, such as the Dow Jones Industrial, the CAC40, and the S&P 500 among others,

commodity futures markets, e.g. Natural Gas and Gold, foreign exchange (FX) markets,

sentiment and volatility indicators such as the OVX and VIX, and finally Google trends

regarding oil price related search terms on realized volatility of the WTI crude oil. As

we utilize an overall number of 28 exogenous channels from five categories resulting in a

total of 84 exogenous HAR factors, model parameter parsimony is—evidently—forgone.

We extend the baseline HAR model with each category of exogenous variables separately.

Then, we introduce a “kitchen sink” approach to obtain the last HAR extension in which

we simultaneously include all exogenous variables. Hence, the number of parameters in

each HAR extension ranges from 16 to 31 for separated channels and 88 for the model

incorporating all channels since each channel element is included in daily, weekly, and

monthly averages. These highly parameterized models are predestined to be combined

with machine learning (ML) methods to filter for the most relevant contributing factors as

well as to overcome multicollinearity within and across information channels. Additionally,

we are tracking the selection of variables across different forecasting horizons for inference

on possibly time-varying impact of equity and sentiment channels on forecasts of realized

volatility of crude oil futures prices.

In addition, we contribute to the literature on modeling and forecasting the (realized)

volatility of oil prices. It is well documented that crude oil volatility behavior is char-

acterized by its time-varying nature, including structural breaks or other time-varying

effects (Fong & See, 2002, Fattouh, 2010, Nomikos & Pouliasis, 2011, Klein & Walther,

2016). This motivates the adaption of models covering these properties. In contrast, some
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studies show that more sophisticated HAR models based on stylized volatility facts do

not necessarily outperform HAR version without extensions or exogenous factors (Sévi,

2014, Prokopczuk et al., 2016, Degiannakis et al., 2022). Related to our paper, Ma et al.

(2018) and Zhang et al. (2019b) show that ML improves volatility forecasts for crude oil

prices using a large set of exogenous predictors. We extend these studies by comparing

various popular ML-based variable selection methods on large predictor sets for crude oil

forecasts and their economic gains. These methods include the widely-applied LASSO and

Bayesian Model Averaging (BMA) as well as novel approaches to HAR models with Boot-

strap Aggregation and Bagging (BAG) and Stochastic Search Variable Selection (SSVS).

In this regard, we also contribute to the general literature of modeling and forecasting

with HAR models.

The remainder of the paper is structured as follows. Section 2 introduces HAR mod-

els, their extensions, and the variable or adaptive selection methodologies of the study.

Section 3 describes the data sets and presents some preliminary analysis of exogenous

information channels. Section 4 reports and discusses the results of the empirical study

while Section 5 concludes.

2. Model and Methodology

2.1. Heterogeneous autoregressive volatility models with adaptable predictors

In order to measure time-varying daily volatility based on the available high-frequency

data sets, we calculate the realized volatility RVt of day t as

RVt =
m∑
i=1

r2
t,i, (1)

where m is the number of observed intraday returns rt,i with i = 1, . . . ,m. This i-th

intraday return of day t is calculated as logarithmic difference of intraday prices as

rt,i = 100× (logPt,i − logPt,i−1) ,

4
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where Pt,i and Pt,i−1 are two consecutive intraday prices. We choose to sample prices at

five minute intervals.1

We follow the approach of Corsi (2009) and exploit the autoregressive character of

daily realized volatility by cascading its memory structure in a short-, medium-, and

long-term component which yields the heterogeneous autoregressive (HAR) model for

realized volatility. Our baseline HAR model uses the specifications outlined in Corsi &

Renò (2012). Here, we run a different regression model for each forecasting horizon h.

This way, long-term forecasts do not have to rely on the relative weights for 1-day ahead

predictions for h > 1 (Ederington & Guan, 2010). In particular, we define

logRV
(h)
t+h =

1

h

h∑
j=1

logRVt+h−j+1 and (2)

logRV
(h)
t =

1

h

h∑
j=1

logRVt−j+1, (3)

where h ∈ {1, ..., 22} denotes the days-ahead forecasting horizons. We distinguish logRV
(h)
t+h,

which is the average realized volatility for time t+ 1 to t+h, from logRV
(h)
t , which is the

average realized volatility for time t− h+ 1 to t. Lastly, logRVt is the realized volatility

at time t and equivalent to logRV
(1)
t .

Our HAR baseline model reads as

logRV
(h)
t+h = β0 + β1 logRVt + β2 logRV

(5)
t + β3 logRV

(22)
t + u

(h)
t+h, (4)

where β0, β1, β2, and β3 are real-valued coefficients corresponding to the intercept and

the short-, medium-, and long-term autoregressive impact of realized volatility and u is

an i.i.d. error term with zero mean. In the standard HAR defined in Eq. (4), RVt then

refers to the realized volatility of the previous day, RV (5)
t to the average realized volatility

over the past five days, and RV (22)
t refers to the 22-day average.

1This choice of sampling frequency is widely adapted in literature as it poses a trade-off between
possible microstructure noise, where sampling frequency is too high, and information loss, where sampling
frequency is too low (Aït-Sahalia & Yu, 2009, Liu et al., 2015).
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As outlined in the introduction, there exist numerous extensions to the HAR model,

in particular in view of modeling realized volatility of commodities.2 In this research, we

focus on an extension of the HAR model framework with exogenous factors following the

notion of Zhang et al. (2019a) and Luo et al. (2022).

We consider five classes of exogenous predictors that might impact the volatility be-

havior of crude oil futures prices. The first class includes equity market volatilities of

eight major economies. The second class refers to market sentiment and uncertainty mea-

sures. The third and fourth class of exogenous variables comprise realized volatility of

related commodity futures—with a documented economic link to crude oil futures—and

foreign currency (FX) markets, respectively. The last class includes a constructed sen-

timent index based on the popularity of different Google search queries. The details on

these exogenous predictors are described in detail in the data description in Section 3.

We extend the basic HAR of Eq. (4) with lagged daily, weekly, and monthly aggregates

of exogenous variables Xk,t as follows:

logRV
(h)
t+h =β0 + β1 logRVt + β2 logRV

(5)
t + β3 logRV

(22)
t

+

NC∑
k=1

α1,kX
C
k,t +

NC∑
k=1

α2,kX
C,(5)
k,t +

NC∑
k=1

α3,kX
C,(22)
k,t + u

(h)
t+h.

(5)

where NC refers to the number of exogenous predictors from category C and α1,k, α2,k,

and α3,k for k = 1, . . . , N1 are the corresponding coefficients of the daily, weekly, and

monthly averages or aggregates of the k-th component of exogenous predictor category

C.

Using model Eq. (5) in combination with our predictor classes, we obtain five different

models, which we label: HAR-Equity, HAR-Sentiment, HAR-Commodity, HAR-FX, and

HAR-Google. For HAR-Equity, we use realized volatilities sampled at a matching 5-

minute interval. We employ squared daily returns of commodity futures and FX rates as

well as the U.S. dollar index to proxy volatilities of commodity futures and FX markets.

2Examples can be found in Sévi (2014), Klein & Todorova (2021), Luo et al. (2022), and Degiannakis
et al. (2022) among others.
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The weekly and monthly volatilities of commodity futures and FX markets are defined

as r2,(5)
i,t and r

2,(22)
i,t which are computed in an identical way as the weekly and monthly

realized volatilities.

In addition to the aforementioned extensions of the baseline HAR model using differ-

ent asset classes and information channels, we employ a model containing all exogenous

factors of this study, which we label HAR-All. This HAR-All contains 84 exogenous

parameters, three endogenous parameters, and the intercept. As we use different ML ap-

proaches for exogenous variable selection, the HAR-All poses an additional opportunity

to compare these differing techniques in terms of forecasting performance and economic

valuation. For further robustness of our findings, we also employ a model class using the

information from the first principal component of each asset/information channel for each

time horizon. This model class is labeled HAR-PCA.

In order to have a very parsimonious benchmark, we also include an autoregressive

(AR) model with lag 1. Doing so allows us to assess to which extent additional and

aggregated information adds predictive power over the information already present in

the last observed realized volatility. Finally, we also add an augmented AR(1) model,

AR(1)-X, which includes the additional information sets similar to the extended HAR in

Eq. 5.

2.2. HAR models with variable selection approaches

There exist some popular approaches in literature with regard to selecting predictors

and shrinking variable dimensions. Our motivation for implementing a range of these

methodologies is two-fold. Firstly, information processing is computationally costly and

the inclusion of insignificant predictors leads to an increasing need of information pro-

cessing capacity. Investors and researchers alike prefer to focus on relevant information

channels via variable selection schemes to simplify economic models (Gabaix, 2014, Luo

& Young, 2016, Zhang et al., 2019a). Secondly, many exogenous and powerful predic-

tors, such as macroeconomic and financial market indicators, are highly correlated, which

can lead to an over-fitting problem and overshadowing of significant parameters through

present multicollinearity. With variable selection methods, only the most relevant vari-
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ables are selected as predictors, thus reducing the risk of over-fitting issues and improving

the forecast accuracy (Campbell & Slack, 2008, Korobilis, 2017, Korobilis & Koop, 2020).

Analyzing the systematic selection of variables also allows us to identify breakpoints of-

fering additional insight on the variability of the statistical and economical benefit of

including exogenous predictors in HAR frameworks.

As outlined in the introduction, we construct a set of competing HAR models based on

several variable selection approaches, including the well known LASSO, BMA, BAG, and

SSVS. These approaches can be further categorized as Bayesian algorithms that include

predictor selection with BMA and SSVS approaches and machine learning with LASSO

and BAG falling in this category. We briefly introduce the selection approaches and use

the abbreviation for the selection method as prefix to the respective HAR variant in what

follows.

For the LASSO-HAR, we employ the R-package ‘glmnet’ of Friedman et al. (2010)

to compute and select the coefficients of the HAR models and its extensions introduced

above. The coefficients are obtained by solving

β̂LASSO = arg min
β0,γ

(
1

2T

T∑
t=1

(yi,t − β0 − Zt−1β)2 + λ
3K∑
j=1

|βj|

)
,

where Zt−1 is a K-dimensional column vector of all the predictor variables in the different

HAR models above and β is a K-dimensional row-vector with the respective coefficients.

The non-negative regularization or penalty parameter λ is selected given the minimum

mean cross-validated error. Eventually, β̂LASSO is the K-dimensional vector of the esti-

mated coefficients from the LASSO regression.

The BMA tackles the problem of model uncertainty and model selection from a

Bayesian perspective. Over a set of modelsMi for i = 1, . . . , 2K (i.e. all combinations ofK

predictors), the BMA determines the posterior probability of each model. The approach

then averages the models using their posterior probability. For the BMA-HAR model,

we follow the setting of Fernández et al. (2001). We specify the g-prior with g = 1/K2.

Markov-chain Monte Carlo methods are used for the estimation of the BMA-HAR models

according to Madigan et al. (1995) and Dellaportas et al. (2002).

8
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The BAG approach reduces the variance of forecasts by averaging the randomness of

variable selection and has been applied widely in the areas of macro and financial forecast-

ing (Lee & Yang, 2006, Inoue & Kilian, 2008, Huang & Lee, 2010, Audrino & Medeiros,

2011, Stock & Watson, 2012). With bagging, the bootstrap method is employed to gen-

erate a large amount of samples from the original data to re-evaluate the selection of

predictors and to produce the bootstrap replications of forecasts and the forecast real-

ized volatilities are obtained by averaging the forecasting values based on the bootstrap

samples. Particularly, we use the same setting and critical values according to Inoue &

Kilian (2008) and Ribeiro (2016). The optimal predictor set is data-dependent in the

sense that the pre-tests in the extended linear HAR model above. The bagging approach

is proceeded as follows:

• Arrange the set of predictors Zt, t = 2, . . . , T , in form of a matrix M of dimension

(T − 1)×K, where K is the number of predictors in Zt.

• Create bootstrap samples of the form {Z ′∗(i)2, . . . , Z
′∗
(i)T}, for i = 1, . . . , B, by drawing

blocks of m rows of M with replacement, where the block size m is selected to

capture the possible dependence in the error term of the realized volatility for oil

futures. Based on Ribeiro (2016), we choose B = 100 replications and a block size

of m = bT 1/4c for the moving block bootstrap procedure.

• Re-estimate the model with the B replicative bootstrap data of the selected predic-

tors, and then use the estimated parameter as well as the original data of predictors

to forecast the realized volatility;

• The final forecast is derived by averaging these bootstrapped forecasts

For the SSVS-HAR, we use the full hierarchical specification of the SSVS prior ac-

cording to George & McCulloch (1993) and in a slightly different context according to

Korobilis (2013) as follows:

p(βi|ξi) ∼ (1− ξi)N(0, τ 2
0 ) + ξiN(0, τ 2

1 ),

P (ξi|π) ∼ Bernoulli(πi).
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These priors are specified with π = 0.5, τ0 = 0.001 and τ1 = 4. Given these priors, the

posterior results of the parameters β, ξ, and σ2 are sampled with the Gibbs sampling

method based on their conditional posterior distributions.

While LASSO and the BAG approach reduce dimensionality of the predictor set, the

BMA and SSVS use a weighting of predictors to select and emphasize the most important

variables. The above selection methods are applied to Eq. (4) and the information class-

model combinations of (5). This includes the baseline HAR model and necessarily the

HAR-RV components in each HAR extension to allow for a deselection of endogenous

variance measures.

2.3. Forecast Evaluation

We measure the out-of-sample performance for three different forecast horizons, i.e.

short-term (1-day ahead, h = 1), medium-term (1-week ahead, h = 5) and long-term (1-

month ahead, h = 22). From the full data set, we use 2/3 as in-sample or initial training

set and use the remainder as out-of-sample set.

The 1-day ahead forecasts are obtained by re-estimating the models on an expanding

training set. For the 5- and 22-day ahead forecasts, we follow Corsi (2009) and Corsi &

Renò (2012) and estimate the aggregated or averaged realized volatility. Alternatively,

one could also forecast h-steps ahead by iterating the model (Marcellino, 2006). However,

this forecast method is seen to be less favorable given a propagation of forecast errors due

to iterating 1-day ahead forecasts (Sizova, 2011, Ederington & Guan, 2010).

In what follows, we evaluate the set of combinations of the HAR model with a variable

selection approach and different sets of exogenous variables presented in Section 2, both

with respect to forecast precision and economic significance.

10
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2.3.1. Statistical evaluation

We evaluate the forecast accuracy by the mean squared error (MSE) and mean absolute

error (MAE) loss functions, that read

MSE = T−1

T∑
t=1

(
RVt − R̂V t

)2

,

MAE = T−1

T∑
t=1

∣∣∣RVt − R̂V t

∣∣∣ ,
where RVt is the actual realized variance and R̂V t is the forecasted realized variance.

Here, T refers to the out-of-sample number of observations. We then statistically test

whether a model outperforms its peers, by employing the Model Confidence Set (MCS)

by Hansen et al. (2011).3

In addition, we use the out-of-sample R2
OS to measure the proportion of variance

explained by the forecasts and to overcome the scale-depended drawbacks for the loss

functions above (Blair et al., 2001, Campbell & Slack, 2008). The R2
OS is computed as:

R2
OS = 1−

∑T
t=1

(
R̂V t −RV t

)2

∑T
t=1

(
RVt −RV

)2 ,

and can be compared to the well-known in-sample R2.

2.3.2. Economic evaluation

In order to assess the economic relevance of the forecasts, we calculate the economic

gain of the variable selection approaches over the standard AR(1) models. Particularly,

we consider an investor who has the mean-variance utility:

U(Rp) = E(Rp)−
1

2
γV ar(Rp)

3From our full set of models M0 = {M i, i = 1, . . . , k}, the procedure determines a set of models with
superior forecast performance M̂ ∗

1−α. Given a confidence level α, the MCS M̂∗
1−α includes all models

from M0 which are statistically indistinguishable from the best model in the set, i.e. the model with the
lowest MSE or MAE, respectively. We implement the procedure using the TR statistic, the stationary
bootstrap with 10 000 draws, and α levels of 0.1 and 0.25.
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where γ is the risk-aversion rate. The return of the investor’s portfolio is denoted Rp,

E(Rp) is the expected portfolio return, and V ar(Rp) is the portfolio variance.

The risk-averse investor allocates a budget to a portfolio comprising a risky asset and

a risk-free asset. Following Campbell & Thompson (2008), Ferreira & Santa-Clara (2011),

and Neely et al. (2014), the optimal portfolio weights, based on information at time t for

allocations at time t+ 1, should be:

ŵt =
1

γ

(
r̂t+1

σ̂2
t+1

)
,

where r̂t+1 is the forecasted excess return of the oil futures based on a moving average

with a 1-year (256 trading days) rolling window. The forecasted variance σ̂2
t+1 is derived

from the various combinations of the AR and HAR models and variable selection methods

presented in Section 2. In particular, we calculate the portfolio weights at the end of each

month, using the predicted next month’s variance from the various 22-day ahead models.

We repeat the process until the end of our out-of-sample period. Then, the portfolio

return at time t+ 1 is given by:

Rp,t+1 = ŵtrt+1 +Rf
t+1,

where rt+1 and Rf
t+1 are the excess return of the WTI futures and the risk-free return of

a 5-year U.S. treasury note, respectively.

To assess the economic value, we follow Fleming et al. (2001) and Fleming et al. (2003).

Based on the the quadratic utility

U(rp,t, γ) = (1 + rp,t)−
γ

2(1 + γ)
(1 + rp,t)

2

with risk aversion γ and portfolio excess return rp,t, we determine the economic value with

the constant ∆ between two portfolios such that

T∑
t=T1+1

U(rp1,t) =
T∑

t=T1+1

U(rp2,t −∆).

12
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The greater ∆ is, the more return a risk-averse investor is willing to sacrifice to switch

from portfolio p1, representing a benchmark AR(1) model, to p2 being a HAR/variable

selection combination. We follow the literature and use two levels of risk aversion rate for

the investor, the mild risk aversion rate γ = 1 and the strong risk aversion rate γ = 10.

3. Sample and Data

In this study, we make use of high-frequency intraday data of WTI futures in 5-

minute resolution. This data is obtained from the Tick Data Database. We choose the

most liquid crude oil futures contract instead of a fixed maturity to avoid any price and

volatility distortion due to rollover processes.

Following Degiannakis & Filis (2017), we include five different classes of exogenous

factors. The first group referring to equity market volatility comprises of indices for

the U.S. (S&P 500 and DJI), Germany (DAX30), France (CAC40), UK (FTSE), Hong

Kong (HSI), Japan (Nikkei225), China (SSEC), as well as the European Stock index

(STOXX50). The second group includes sentiment and uncertainty measures of financial

markets, such as the Global Economic Policy Uncertainty index (GEPU, Baker et al.,

2016), S&P500 implied volatility (VIX), oil price implied volatility (OVX), and the BofA

Merrill Lynch Global Financial Stress Index (GFSI). The third and the fourth group

contain the volatility—measures as daily squared returns—of other commodity futures

traded at the CME such as Natural Gas, Gold, Corn, and Soybeans as well as foreign

exchange rates with reference U.S. Dollar against the Euro, Japanese Yen, Chinese Yuan,

Russian Ruble, and the UK Pound. Realized volatilities of equity indices of nine major

stock markets are obtained from the Oxford-Man Realized Library (Heber et al., 2009).4

The remaining lower frequency data are acquired from Datastream. The sample spans

the time period from January 5, 2010 to May 11, 2018. By data pre-processing and

synchronization of the data sets, we obtain n = 2 596 daily observations. In order to

capture market attention with regards to oil, we follow Afkhami et al. (2017) and include

Google search volumes for relevant search terms as exogenous variables. Table A.8 in the

4Data is freely available at https://realized.oxford-man.ox.ac.uk/.
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appendix provides an overview and describes the construction.

Summary statistics and preliminary analyses are given in Table 1. For realized volatil-

ities of WTI futures prices, we find the mean and standard deviation to be higher than

those of the financial market realized volatilities. This underlines the observation that

prices in crude oil futures markets are much more volatile than equity indices. Most impor-

tantly, we observe highly significant autorcorrelations of realized volatilities for WTI—and

for all stock market indices to that end. This reinforces our decision to apply heteroge-

neous autoregressive frameworks as in the HAR model in both realized volatility as well as

exogenous factors. The only exception to this present autocorrelation in realized volatil-

ity are Corn futures, where neither 5, 10, nor 22 lags yield sufficient evidence regarding

dependencies between daily realized volatilities. Corn and Natural Gas have the highest

mean and standard deviation across all volatility measures. This translates to very high

intraday returns, possibly triggered by intraday jumps, which is also visible in Figure B.4,

plot (b). All volatility measures are found to be stationary as expected from the con-

struction in Eq. (1). The resolution of Google search volume is in index points. Hence,

summary statistics cannot be compared directly. More importantly for our methodologi-

cal framework, we find highly significant autocorrelations which we utilize in the employed

autoregressive structure of the HAR extensions.

The visualizations of the remainder of the variables is found in the appendix. Figure 1

visualizes the daily realized volatility of WTI futures on our data range. Figure B.3

analogously visualizes volatilities of major stock market indices. We observe clustering of

highly volatile periods in oil markets for 2011 and 2015-2017. These volatility clusters are

also present for equity indices indicating some degree of connectedness which is explicitly

modeled in our model framework. Periods of high and low volatility are also depicted

by specific sentiment indices such as the VIX for equity markets (S&P500) and the OVX

(WTI) visualized in Figure B.4 (a). Highly volatile in general, the commodity futures for

Natural Gas, Gold, Corn, and Soybean—plotted in Figure B.4 (b)—also show clustering of

high- and low-volatility regimes albeit of much higher magnitude and frequency than WTI

and equity futures in our sample. Volatility of FX markets are depicted in Figure B.5 and
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Table 1: Summary statistics and preliminary analyses of all variables with n = 2 596 observations spanning
an observation period from January 5, 2010 to May 11, 2018.

Mean StD Skew Kurt LB Q(5) LB Q(10) LB Q(22) ADF

Panel A: Oil Price Volatility

WTI 1.6437 2.1386 5.9846 72.07 1328.90∗∗∗ 2154.52∗∗∗ 3902.56∗∗∗ −22.79∗∗∗

Panel B: Stock Market Volatility

DJI 0.6906 1.7313 20.2846 638.60 677.82∗∗∗ 915.44∗∗∗ 1172.76∗∗∗ −28.99∗∗∗

CAC40 1.0420 1.4011 6.4217 68.54 3007.06∗∗∗ 4644.45∗∗∗ 6735.51∗∗∗ −16.00∗∗∗

FTSE 0.8330 1.7036 19.2349 584.26 629.27∗∗∗ 937.99∗∗∗ 1313.33∗∗∗ −29.36∗∗∗

DAX30 1.0383 1.4757 6.4259 68.48 3390.22∗∗∗ 5270.25∗∗∗ 8212.72∗∗∗ −15.70∗∗∗

HSI 0.5594 0.7255 8.4951 109.85 968.97∗∗∗ 1338.56∗∗∗ 1836.23∗∗∗ −21.77∗∗∗

NIK225 0.7241 1.4659 9.6691 136.76 830.84∗∗∗ 1125.37∗∗∗ 1358.30∗∗∗ −25.09∗∗∗

S&P500 0.6808 1.4255 11.5266 232.55 1476.86∗∗∗ 2132.20∗∗∗ 3010.69∗∗∗ −23.51∗∗∗

SSEC 1.3308 2.8446 7.5797 79.72 3647.71∗∗∗ 5241.38∗∗∗ 8480.71∗∗∗ −18.81∗∗∗

ESTOXX 1.2290 1.9335 12.4211 283.72 1456.65∗∗∗ 2210.27∗∗∗ 3167.91∗∗∗ −22.29∗∗∗

Panel C: Commodity Market Volatility

Natural Gas 7.3079 15.1738 6.7816 78.48 101.62∗∗∗ 150.39∗∗∗ 245.00∗∗∗ −35.78∗∗∗

Gold 1.0719 3.2044 15.7551 399.87 43.02∗∗∗ 66.20∗∗∗ 124.05∗∗∗ −37.66∗∗∗

Corn 3.0175 14.3666 34.4336 1416.36 1.42 3.87 5.37 −43.39∗∗∗

Soybeans 1.9011 5.9385 16.4822 402.11 12.74∗∗ 25.52∗∗∗ 70.26∗∗∗ −41.38∗∗∗

Panel D: Currency Market Volatility

USD Ind 0.2154 0.4035 5.0454 43.70 39.98∗∗∗ 75.60∗∗∗ 142.44∗∗∗ −34.35∗∗∗

EUR/USD 0.3441 0.6227 3.8660 23.73 53.34∗∗∗ 110.52∗∗∗ 221.31∗∗∗ −34.23∗∗∗

YEN/USD 0.3815 0.9172 6.8758 67.78 29.96∗∗∗ 52.48∗∗∗ 101.66∗∗∗ −36.96∗∗∗

YUAN/USD 0.0218 0.0992 20.0454 577.77 152.56∗∗∗ 181.70∗∗∗ 209.26∗∗∗ −34.38∗∗∗

RUB/USD 1.1339 7.4884 25.6058 751.43 872.65∗∗∗ 1046.20∗∗∗ 1174.03∗∗∗ −23.73∗∗∗

GBP/USD 0.3301 1.6039 37.3447 1585.73 101.01∗∗∗ 111.08∗∗∗ 115.10∗∗∗ −37.47∗∗∗

Panel E: Sentiment Variables

GFSI 86.6074 8.2043 0.3545 1.65 10590.41∗∗∗ 21029.28∗∗∗ 45525.06∗∗∗ 0.67
VIX 17.1377 5.9161 1.6643 6.36 8783.62∗∗∗ 15907.39∗∗∗ 29015.25∗∗∗ −2.18∗∗

OVX 33.3028 10.6372 0.8036 3.78 9888.71∗∗∗ 18927.99∗∗∗ 37680.58∗∗∗ −1.29
EPU 105.9849 62.8497 1.5436 6.41 3500.21∗∗∗ 6109.56∗∗∗ 11052.43∗∗∗ −10.19∗∗∗

Panel F: Google Search Volume

G1: ‘Oil Production’ 16.8724 11.5640 1.9246 10.54 2415.77∗∗∗ 4227.39∗∗∗ 7041.84∗∗∗ −13.36∗∗∗

G2: ‘Financial Crisis’ 28.0232 12.8161 1.1214 4.89 7446.00∗∗∗ 13463.94∗∗∗ 22717.45∗∗∗ −4.96∗∗∗

G3: ‘Oil Demand’ 12.2505 13.1789 1.3274 5.76 770.13∗∗∗ 1373.19∗∗∗ 2242.12∗∗∗ −22.37∗∗∗

G4: ‘Oil Price’ 14.8950 13.7390 2.0530 8.77 9068.64∗∗∗ 16746.01∗∗∗ 31571.58∗∗∗ −4.26∗∗∗

G5: ‘OPEC Conference’ 2.8353 7.9100 4.6590 36.03 171.30∗∗∗ 287.13∗∗∗ 434.10∗∗∗ −35.15∗∗∗

again, we find highly volatile markets in 2015-2017. Some important events, such as the

sanctions of the U.S. against Russia and China as well as the oil price collapse 2014-2015

are visible as increasingly volatile rate movements in FX markets. Interestingly, this also

aligns with Google search queries, featured as indices in Figure B.6, for “oil production”

(G1), “oil demand” (G3), and “oil price” (G4) which show that there is an increase in

general interest in those topics which we utilize as additional attention measure.
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Figure 1: Realized volatility of WTI futures prices on daily resolution from January 5, 2010 to May 11,
2018, calculated based on Eq. (1).

4. Out-of-sample Results

4.1. Forecasting Accuracy

This section presents the results of the out-of-sample analysis. In particular, we fore-

cast the WTI volatility 1-, 5-, and 22-days ahead using the above mentioned models,

methods, and predictors. We stress the fact, that all information are know at the time to

forecast the next periods volatility (real time).

We start our analysis by assessing the statistical accuracy of the different models. The

results for 1-, 5- , and 22-days ahead forecasts are presented in Table 2 to 4.

For the 1-day ahead forecasts, the best models are BAG-HAR-Google and LASSO-

HAR-All in terms of MSE and MAE, respectively. The 25% MCS for the MSE includes all

models but most of the AR models. Thus, the performance of any other model cannot be

differentiated from the BAG-HAR-Google. For the MAE, the MCS’ are more exclusive.

Only four models belong to the 25% MCS (BMA- and BAG-HAR-Google, LASSO- and

BAG-HAR-All) and an additional two models (BMA-HAR and BMA-HAR-PCA) are

elements of 10% MCS.

Turning to the 5-days ahead forecast, we find a similar pattern in variable selec-

tion. The 10% MCS for the MSE loss function are quite large. However, only four

models are included in the 25% MCS: LASSO-HAR, LASSO-HAR-Sentiment, LASSO-

HAR-Commodity, and LASSO-HAR-FX. The latter is also the best model in terms of
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the lowest MSE and MAE. For the MAE, only five models are part of the 10% and 25%

MCS. Those models include the aforementioned LASSO models as well as AR(1)-All.

The statistical accuracy for 22-days ahead forecasts is almost equal over the entire set

of models. At least the MCS includes all of them for both loss functions. The MSE set

even includes all HAR model variants in the more restrictive 25% set. For MAE, with

some other models, all LASSO variants belong to the 25% MCS. We also find that the

best models for both loss functions are the Google variants.

In contrast to Degiannakis & Filis (2017), we cannot see a clear outperformance of

HAR models incorporating other asset classes channels over the standard HAR models.

For all three forecasting horizons, the HAR and the various HAR-X models are either

together in the MCS or they are not. Thus, we conclude that the machine learning

approaches, on top of the combination of HAR model and information class, is what

makes the difference.

Summarizing, we find an outperformance of the LASSO-HAR variants which are most

of the times included in the even more restrictive 25% confidence sets. The very simple

AR models are only included in two occasions in the most restrictive sets indicating the

value of the long-term components of the HAR models. The LASSO-HAR-All model,

selection out of a set of all information, is included in the 25% MCS for 1- and 22-days

ahead forecast and thus cannot be distinguished from the best performing models in terms

of its forecast accuracy. We will use this model in the following section, to investigate the

time-varying selection of variables.

4.2. Economic Value

From a statistical point of view, the standard HAR models are outperformed by their

ML-augmented counterparts. In the next step, we evaluate the economic value of the

model augmentations. In particular, we focus on portfolio construction based on volatility

forecasts produced by all predictive models. We assess the annualized return which a

risk averse investor would sacrifice in order to switch from a benchmark portfolio—AR(1)

models without ML-driven variable selection—to any other portfolio, including those that

are produced by the augmented models. The results for the different forecast horizons
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Table 2: Statistical evaluations of various volatility models for 1-step forecasts

Model MSE MAE R2
OS

AR(1) 3.3568 (0.1558) 1.1461 (0.0125) 0.5492
HAR 2.7912 (0.5952) 1.0142 (0.0938) 0.6251
LASSO-HAR 3.0235 (0.3811) 1.0271 (0.0938) 0.5939
BMA-HAR 2.9122 (0.3811) 1.0088 (0.2217) 0.6089
BAG-HAR 2.7914 (0.5952) 1.0142 (0.0938) 0.6251
SSVS-HAR 2.8062 (0.3811) 1.0075 (0.0938) 0.6231

AR(1)-Equity 3.8988 (0.1558) 1.1875 (0.0938) 0.4764
HAR-Equity 2.9388 (0.3811) 1.0413 (0.0938) 0.6053
LASSO-HAR-Equity 2.9864 (0.3811) 1.0215 (0.0938) 0.5989
BMA-HAR-Equity 5.5407 (0.3811) 1.0915 (0.0938) 0.2559
BAG-HAR-Equity 2.7979 (0.3811) 1.0019 (0.0988) 0.6242
SSVS-HAR-Equity 2.8050 (0.3811) 1.0078 (0.0938) 0.6233

AR(1)-Sentiment 3.3205 (0.1558) 1.1425 (0.0125) 0.5540
HAR- Sentiment 2.7944 (0.4838) 1.0040 (0.0938) 0.6247
LASSO-HAR-Sentiment 2.9876 (0.3811) 1.0217 (0.0938) 0.5987
BMA-HAR-Sentiment 2.7981 (0.5952) 1.0024 (0.0938) 0.6242
BAG-HAR-Sentiment 2.7868 (0.5952) 1.0080 (0.0938) 0.6257
SSVS-HAR- Sentiment 2.8070 (0.3811) 1.0073 (0.0938) 0.6230

AR(1)-Commodity 3.3389 (0.1558) 1.1389 (0.0091) 0.5516
HAR-Commodity 2.8099 (0.3811) 1.0211 (0.0938) 0.6226
LASSO-HAR-Commodity 3.0269 (0.3811) 1.0253 (0.0938) 0.5935
BMA-HAR-Commodity 2.7984 (0.4838) 1.0139 (0.0938) 0.6242
BAG-HAR-Commodity 2.7975 (0.3811) 1.0150 (0.0938) 0.6243
SSVS-HAR-Commodity 2.8054 (0.3811) 1.0078 (0.0938) 0.6232

AR(1)- FX 3.3670 (0.1558) 1.1546 (0.0325) 0.5478
HAR- FX 3.2294 (0.3811) 1.0521 (0.0938) 0.5663
LASSO-HAR-FX 2.9660 (0.3811) 1.0187 (0.0938) 0.6017
BMA-HAR-FX 2.7426 (0.5952) 1.0131 (0.0938) 0.6317
BAG-HAR-FX 2.7843 (0.5952) 1.0028 (0.0953) 0.6261
SSVS-HAR-FX 2.8035 (0.3811) 1.0075 (0.0938) 0.6235

AR(1)-Google 3.3051 (0.1558) 1.1427 (0.0325) 0.5561
HAR-Google 2.7542 (0.5952) 1.0023 (0.0953) 0.6301
LASSO-HAR-Google 2.9671 (0.3811) 1.0161 (0.0938) 0.6015
BMA-HAR-Google 2.7162 (0.5952) 0.9897 (0.5070) 0.6352
BAG-HAR-Google 2.7075 (1.0000) 0.9897 (0.5070) 0.6364
SSVS-HAR-Google 2.8041 (0.3811) 1.0064 (0.0938) 0.6234

AR(1)-All 3.0871 (0.3811) 1.0954 (0.0938) 0.5854
HAR-All 3.1935 (0.3811) 1.1077 (0.0938) 0.5711
LASSO-HAR-All 2.7787 (0.5952) 0.9734 (1.0000) 0.6268
BMA-HAR-All 2.7324 (0.5952) 1.0898 (0.0325) 0.6330
BAG-HAR-All 2.7337 (0.5952) 0.9822 (0.5070) 0.6328
SSVS-HAR-All 2.7986 (0.4838) 1.0066 (0.0938) 0.6241

AR(1)-PCA 3.1650 (0.1558) 1.0782 (0.0344) 0.5749
HAR-PCA 2.8896 (0.3811) 1.0117 (0.0938) 0.6119
LASSO-HAR-PCA 2.9953 (0.3811) 1.0215 (0.0938) 0.5977
BMA-HAR-PCA 2.8386 (0.3811) 1.0033 (0.1035) 0.6188
BAG-HAR-PCA 2.7992 (0.3811) 1.0085 (0.0938) 0.6240
SSVS-HAR-PCA 2.8047 (0.3811) 1.0070 (0.0938) 0.6233

Note: This table presents the mean squared error (MSE), the mean average error (MAE) loss results and
the R2

OS for short-term forecasts of WTI volatility. Lower values of MSE and MAE loss functions imply
higher forecast precision. The corresponding MCS p-values are listed in parentheses on the right sides
of the MAE and MSE results, with pMCS ≥ 0.1 implying an inclusion in the MCS at 10% confidence
while pMCS ≥ 0.25 implies inclusion in the MCS at the 25% confidence level. The R2

OS measures the

proportion of variance explained by the forecasts: R2
OS = 1 −

∑t=T
t=T1

(R̂V t−RVt)
2∑t=T

t=T1
(RVt−RV )

2 . Higher values of R2
OS

suggest higher forecast precision.
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Table 3: Statistical evaluations of various volatility models for 5-step forecasts

Model MSE MAE R2
OS

AR(1) 1.3563 (0.0899) 1.0005 (0.0207) 0.6131
HAR 1.2262 (0.1700) 0.9738 (0.0207) 0.6502
LASSO-HAR 1.0817 (0.5343) 0.9077 (0.4274) 0.6914
BMA-HAR 1.2606 (0.1700) 0.9315 (0.0207) 0.6404
BAG-HAR 1.2276 (0.1352) 0.9744 (0.0207) 0.6498
SSVS-HAR 1.2408 (0.1284) 0.9560 (0.0207) 0.6460

AR(1)-Equity 2.6016 (0.0899) 1.0409 (0.0207) 0.2578
HAR-Equity 1.2215 (0.1700) 0.9654 (0.0207) 0.6515
LASSO-HAR-Equity 1.1642 (0.2327) 0.9438 (0.0207) 0.6679
BMA-HAR-Equity 1.3090 (0.1352) 0.9487 (0.0207) 0.6266
BAG-HAR-Equity 1.2593 (0.1284) 0.9918 (0.0182) 0.6408
SSVS-HAR-Equity 1.2350 (0.0899) 0.9553 (0.0207) 0.6477

AR(1)-Sentiment 1.3264 (0.0899) 0.9941 (0.0207) 0.6216
HAR- Sentiment 1.2425 (0.1352) 0.9835 (0.0207) 0.6455
LASSO-HAR-Sentiment 1.0913 (0.5343) 0.9107 (0.4274) 0.6887
BMA-HAR-Sentiment 1.2521 (0.0899) 0.9577 (0.0207) 0.6428
BAG-HAR-Sentiment 1.2337 (0.1352) 0.9781 (0.0207) 0.6480
SSVS-HAR- Sentiment 1.2411 (0.1284) 0.9561 (0.0207) 0.6459

AR(1)-Commodity 1.3505 (0.0899) 0.9982 (0.0207) 0.6147
HAR-Commodity 1.2310 (0.1352) 0.9788 (0.0207) 0.6488
LASSO-HAR-Commodity 1.0835 (0.5343) 0.9087 (0.4274) 0.6909
BMA-HAR-Commodity 1.2441 (0.1284) 0.9525 (0.0207) 0.6451
BAG-HAR-Commodity 1.2291 (0.1352) 0.9751 (0.0207) 0.6494
SSVS-HAR-Commodity 1.2355 (0.1284) 0.9557 (0.0207) 0.6475

AR(1)- FX 1.3719 (0.0899) 1.0043 (0.0207) 0.6086
HAR- FX 1.1413 (0.1700) 0.9484 (0.0207) 0.6744
LASSO-HAR-FX 1.0624 (1.0000) 0.8946 (1.0000) 0.6969
BMA-HAR-FX 1.1952 (0.1700) 0.9312 (0.0207) 0.6590
BAG-HAR-FX 1.2697 (0.0899) 1.0078 (0.0068) 0.6378
SSVS-HAR-FX 1.2347 (0.0899) 0.9541 (0.0207) 0.6478

AR(1)-Google 1.2448 (0.1700) 0.9864 (0.0207) 0.6449
HAR-Google 1.3549 (0.0899) 0.9978 (0.0207) 0.6135
LASSO-HAR-Google 1.1934 (0.1700) 0.9356 (0.0207) 0.6595
BMA-HAR-Google 1.3016 (0.0899) 0.9647 (0.0207) 0.6287
BAG-HAR-Google 1.3103 (0.0899) 0.9900 (0.0207) 0.6262
SSVS-HAR-Google 1.2424 (0.0899) 0.9563 (0.0207) 0.6456

AR(1)-All 1.4600 (0.0899) 0.9527 (0.0207) 0.5835
HAR-All 1.2649 (0.1284) 0.9780 (0.0207) 0.6392
LASSO-HAR-All 1.1733 (0.1700) 0.9527 (0.0207) 0.6653
BMA-HAR-All 1.2582 (0.1352) 0.9513 (0.0207) 0.6411
BAG-HAR-All 1.2898 (0.0899) 0.9944 (0.0182) 0.6320
SSVS-HAR-All 1.2140 (0.1284) 0.9559 (0.0207) 0.6537

AR(1)-PCA 1.1660 (0.2327) 0.9162 (0.4274) 0.6674
HAR-PCA 1.2578 (0.1284) 0.9969 (0.0120) 0.6412
LASSO-HAR-PCA 1.0958 (0.2327) 0.9202 (0.0207) 0.6874
BMA-HAR-PCA 1.2570 (0.0899) 0.9642 (0.0207) 0.6414
BAG-HAR-PCA 1.2486 (0.1284) 0.9921 (0.0182) 0.6438
SSVS-HAR-PCA 1.2409 (0.1284) 0.9562 (0.0207) 0.6460

Note: This table presents the mean squared error (MSE), the mean average error (MAE) loss results
and the R2

OS for medium-term forecasts of WTI volatility. Lower values of MSE and MAE loss functions
imply higher forecast precision. The corresponding MCS p-values are listed in parentheses on the right
sides of the MAE and MSE results, with pMCS ≥ 0.1 implying an inclusion in the MCS at 10% confidence
while pMCS ≥ 0.25 implies inclusion in the MCS at the 25% confidence level. The R2

OS measures the

proportion of variance explained by the forecasts: R2
OS = 1 −

∑t=T
t=T1

(R̂V t−RVt)
2∑t=T

t=T1
(RVt−RV )

2 . Higher values of R2
OS

suggest higher forecast precision.
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Table 4: Statistical evaluations of various volatility models for 22-step forecasts

Model MSE MAE R2
OS

AR(1) 0.9316 (0.2538) 0.9087 (0.0743) 0.6040
HAR 0.7596 (0.3160) 0.7691 (0.6133) 0.6771
LASSO-HAR 0.7127 (0.5850) 0.7536 (0.8506) 0.6970
BMA-HAR 0.7494 (0.5850) 0.7831 (0.8131) 0.6814
BAG-HAR 0.7612 (0.3160) 0.7701 (0.1741) 0.6764
SSVS-HAR 0.7413 (0.3160) 0.7851 (0.1741) 0.6849

AR(1)-Equity 3.3078 (0.0586) 1.0013 (0.1741) −0.4061
HAR-Equity 0.7240 (0.5850) 0.7686 (0.1741) 0.6922
LASSO-HAR-Equity 0.7356 (0.3779) 0.7607 (0.8506) 0.6873
BMA-HAR-Equity 0.7413 (0.3779) 0.7835 (0.1741) 0.6849
BAG-HAR-Equity 0.7353 (0.3779) 0.7665 (0.6133) 0.6875
SSVS-HAR-Equity 0.7405 (0.3160) 0.7729 (0.1741) 0.6852

AR(1)-Sentiment 0.8986 (0.3160) 0.9041 (0.1575) 0.6180
HAR- Sentiment 0.7556 (0.3160) 0.7697 (0.6133) 0.6788
LASSO-HAR-Sentiment 0.7245 (0.5850) 0.7575 (0.8506) 0.6920
BMA-HAR-Sentiment 0.7318 (0.3779) 0.7813 (0.1741) 0.6889
BAG-HAR-Sentiment 0.7594 (0.3160) 0.7714 (0.1741) 0.6772
SSVS-HAR- Sentiment 0.7411 (0.3160) 0.7851 (0.1741) 0.6850

AR(1)-Commodity 0.9407 (0.2520) 0.9121 (0.0655) 0.6001
HAR-Commodity 0.7733 (0.3160) 0.7751 (0.1741) 0.6713
LASSO-HAR-Commodity 0.7406 (0.3160) 0.7626 (0.8131) 0.6852
BMA-HAR-Commodity 0.7503 (0.3160) 0.7824 (0.1741) 0.6811
BAG-HAR-Commodity 0.7743 (0.3160) 0.7750 (0.1741) 0.6709
SSVS-HAR-Commodity 0.7268 (0.3779) 0.7724 (0.6133) 0.6911

AR(1)- FX 0.9652 (0.0586) 0.8985 (0.1741) 0.5897
HAR- FX 0.7704 (0.3160) 0.7773 (0.1741) 0.6725
LASSO-HAR-FX 0.7235 (0.5850) 0.7575 (0.8506) 0.6925
BMA-HAR-FX 0.7451 (0.3160) 0.7900 (0.1741) 0.6833
BAG-HAR-FX 0.7722 (0.3160) 0.7754 (0.1741) 0.6718
SSVS-HAR-FX 0.7457 (0.3160) 0.7752 (0.1741) 0.6830

AR(1)-Google 0.8153 (0.3160) 0.8919 (0.1741) 0.6535
HAR-Google 0.6851 (0.9752) 0.7476 (1.0000) 0.7088
LASSO-HAR-Google 0.7228 (0.5850) 0.7570 (0.8506) 0.6928
BMA-HAR-Google 0.6811 (1.0000) 0.7595 (0.8506) 0.7105
BAG-HAR-Google 0.6885 (0.5850) 0.7492 (0.8506) 0.7074
SSVS-HAR-Google 0.7369 (0.3779) 0.7836 (0.1741) 0.6867

AR(1)-All 1.7713 (0.0586) 0.9155 (0.1741) 0.2471
HAR-All 0.7471 (0.3160) 0.7786 (0.1741) 0.6824
LASSO-HAR-All 0.7451 (0.3160) 0.7691 (0.6133) 0.6833
BMA-HAR-All 0.7245 (0.5850) 0.7766 (0.6133) 0.6920
BAG-HAR-All 0.7469 (0.3160) 0.7687 (0.6133) 0.6825
SSVS-HAR-All 0.7426 (0.3779) 0.7617 (0.8506) 0.6843

AR(1)-PCA 0.8703 (0.3160) 0.8518 (0.1741) 0.6300
HAR-PCA 0.7714 (0.3160) 0.7781 (0.1741) 0.6721
LASSO-HAR-PCA 0.7410 (0.3160) 0.7640 (0.6133) 0.6850
BMA-HAR-PCA 0.7539 (0.3160) 0.7862 (0.1741) 0.6795
BAG-HAR-PCA 0.7842 (0.3160) 0.7827 (0.1741) 0.6667
SSVS-HAR-PCA 0.7418 (0.3160) 0.7855 (0.1741) 0.6847

Note: This table presents the mean squared error (MSE), the mean average error (MAE) loss results and
the R2

OS for long-term forecasts of WTI volatility. Lower values of MSE and MAE loss functions imply
higher forecast precision. The corresponding MCS p-values are listed in parentheses on the right sides
of the MAE and MSE results, with pMCS ≥ 0.1 implying an inclusion in the MCS at 10% confidence
while pMCS ≥ 0.25 implies inclusion in the MCS at the 25% confidence level. The R2

OS measures the

proportion of variance explained by the forecasts: R2
OS = 1 −

∑t=T
t=T1

(R̂V t−RVt)
2∑t=T

t=T1
(RVt−RV )

2 . Higher values of R2
OS

suggest higher forecast precision. The best model per measure is highlighted in bold face.
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are presented in Table 5.

In contrast to the statistical superiority of the LASSO variants, we observe that this

outperformance does not translate to the best economic value. We find that the BMA

models are superior and allow a risk averse investor with a quadratic utility function

to improve their overall utility. In particular, the BMA-HAR-FX yields the highest an-

nualized return. This model also results in the highest economic value compared to an

AR(1) model. An investor with γ = 1 would be willing to switch from a standard AR(1)

model to a BMA-HAR-FX model up to 5.28%. Even to switch from the standard HAR

model, the opportunity to incorporate more information than just past realized volatility

would be worth more than 1% (5.28%− 4.22%). In risk adjusted terms, however, we find

BAG models to have the highest Sharpe ratios. The BAG-HAR-All produces the highest

Sharpe ratio in our out-of-sample exercise (0.0678). The LASSO variants, which yielded

the highest statistical accuracy, perform similarly to the standard HAR models. The

variable selection does not appear to be able to translate the higher accuracy to economic

performance.

In terms of adding other information channels, we find economic value in incorporating

such information in volatility models. While we did not necessarily find an outperformance

on a statistical accuracy, additional information result in higher economic value in the

majority of cases. For example, the HAR model has a smaller economic value and Sharpe

Ratio than its sentiment, commodity, and FX augmented counterparts as well as the

HAR-All and HAR-PCA. Similar patterns can be observed between the ML estimated

HAR models and their variants with additional information.

4.3. Time-Varying Drivers

In order to understand the time-variation of different information classes, we investi-

gate the selection of variables over our entire out-of-sample period. In particular, we want

to understand 1) which are the most important variables (and at which frequency-average)

when making no prior choice, 2) how sticky are those variables, and 3) can other infor-

mation classes replace the own realized volatility (i.e. the WTI RV at 1, 5, and 22-days

average).
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Table 5: Economic evaluations

γ = 1 γ = 10
rp

rp
σp

∆1 ∆2 rp
rp
σp

∆1 ∆2

AR(1) −1.7566 −0.0338 0.0000 0.0000 1.3663 0.2558 0.0000 0.0000
HAR 2.4220 0.0541 4.2157 4.2157 1.7842 0.3849 0.4402 0.4402
LASSO-HAR 1.9851 0.0443 3.7714 3.7714 1.7405 0.3757 0.3938 0.3938
BMA-HAR 1.3423 0.0243 3.1058 3.1058 1.6762 0.2960 0.3242 0.3242
BAG-HAR 2.4014 0.0536 4.1947 4.1947 1.7821 0.3843 0.4380 0.4380
SSVS-HAR 2.7588 0.0500 4.5450 4.5450 1.8179 0.3203 0.4745 0.4745

AR(1)-Equity 2.3220 0.0434 0.0000 4.1024 1.7742 0.3225 0.0000 0.4283
HAR-Equity 2.1395 0.0467 −0.1733 3.9270 1.7559 0.3706 −0.0180 0.4100
LASSO-HAR-Equity 2.0429 0.0455 −0.2693 3.8299 1.7463 0.3758 −0.0281 0.3999
BMA-HAR-Equity 2.0508 0.0364 −0.2768 3.8225 1.7471 0.3019 −0.0289 0.3990
BAG-HAR-Equity 2.3699 0.0528 0.0596 4.1625 1.7790 0.3827 0.0063 0.4346
SSVS-HAR-Equity 3.1705 0.0605 0.8574 4.9694 1.8590 0.3443 0.0895 0.5188

AR(1)-Sentiment −1.3490 −0.0253 0.0000 0.4041 1.4071 0.2567 0.0000 0.0422
HAR- Sentiment 2.5591 0.0566 3.9464 4.3549 1.7979 0.3845 0.4120 0.4547
LASSO-HAR-Sentiment 2.1009 0.0469 3.4811 3.8890 1.7521 0.3781 0.3634 0.4060
BMA-HAR-Sentiment 2.7992 0.0506 4.1773 4.5861 1.8219 0.3207 0.4361 0.4788
BAG-HAR-Sentiment 2.5643 0.0567 3.9517 4.3601 1.7984 0.3846 0.4126 0.4552
SSVS-HAR- Sentiment 2.7580 0.0499 4.1355 4.5442 1.8178 0.3202 0.4317 0.4744

AR(1)-Commodity −2.0925 −0.0410 0.0000 −0.3328 1.3327 0.2539 0.0000 −0.0347
HAR-Commodity 3.0198 0.0653 5.1612 4.8237 1.8440 0.3858 0.5389 0.5037
LASSO-HAR-Commodity 2.4507 0.0539 4.5811 4.2441 1.7871 0.3797 0.4783 0.4431
BMA-HAR-Commodity 3.2071 0.0572 5.3392 5.0016 1.8627 0.3232 0.5574 0.5222
BAG-HAR-Commodity 3.0205 0.0652 5.1617 4.8242 1.8440 0.3848 0.5389 0.5037
SSVS-HAR-Commodity 2.6341 0.0497 4.7581 4.4210 1.8054 0.3307 0.4967 0.4615

AR(1)- FX −3.7883 −0.0749 0.0000 −2.0091 1.1632 0.2236 0.0000 −0.2096
HAR- FX 2.9859 0.0653 6.8364 4.7896 1.8406 0.3893 0.7138 0.5001
LASSO-HAR-FX 2.2795 0.0506 6.1131 4.0704 1.7699 0.3800 0.6382 0.4250
BMA-HAR-FX 3.4803 0.0596 7.3270 5.2775 1.8900 0.3151 0.7649 0.5510
BAG-HAR-FX 2.8013 0.0615 6.6471 4.6014 1.8221 0.3867 0.6940 0.4804
SSVS-HAR-FX 2.4326 0.0469 6.2610 4.2174 1.7853 0.3344 0.6536 0.4403

AR(1)-Google −2.5096 −0.0461 0.0000 −0.7515 1.2910 0.2309 0.0000 −0.0784
HAR-Google 2.3959 0.0541 4.9514 4.1897 1.7816 0.3887 0.5170 0.4375
LASSO-HAR-Google 2.0954 0.0468 4.6446 3.8835 1.7515 0.3783 0.4849 0.4055
BMA-HAR-Google 2.7495 0.0507 5.2993 4.5369 1.8169 0.3257 0.5532 0.4736
BAG-HAR-Google 2.5362 0.0571 5.0944 4.3325 1.7956 0.3904 0.5319 0.4524
SSVS-HAR-Google 2.7582 0.0500 5.3068 4.5444 1.8178 0.3205 0.5540 0.4744

AR(1)-All −0.5690 −0.0110 0.0000 1.1862 1.4851 0.2787 0.0000 0.1237
HAR-All 2.8910 0.0603 3.4924 4.6900 1.8311 0.3697 0.3647 0.4897
LASSO-HAR-All 3.0138 0.0660 3.6203 4.8182 1.8434 0.3899 0.3781 0.5031
BMA-HAR-All 3.2646 0.0596 3.8635 5.0622 1.8685 0.3315 0.4034 0.5285
BAG-HAR-All 3.1723 0.0678 3.7804 4.9789 1.8592 0.3847 0.3948 0.5199
SSVS-HAR-All 2.1335 0.0462 2.7254 3.9204 1.7553 0.3676 0.2846 0.4093

AR(1)-PCA −1.4749 −0.0280 0.0000 0.2795 1.3945 0.2576 0.0000 0.0292
HAR-PCA 2.7687 0.0608 4.2853 4.5682 1.8189 0.3858 0.4474 0.4770
LASSO-HAR-PCA 2.2566 0.0502 3.7648 4.0472 1.7677 0.3798 0.3931 0.4226
BMA-HAR-PCA 3.0610 0.0550 4.5697 4.8527 1.8481 0.3228 0.4770 0.5066
BAG-HAR-PCA 2.7372 0.0601 4.2532 4.5360 1.8157 0.3851 0.4441 0.4736
SSVS-HAR-PCA 2.7722 0.0502 4.2758 4.5587 1.8192 0.3205 0.4464 0.4759

Note: Results for 22-step ahead forecasts for the economic evaluation. We present the annualized average
excess portfolio return rp, the average portfolio Sharpe Ratio rp

σp
and the economic value ∆ of the portfolio

over the standard AR model within the models class. Here, ∆1 and ∆2 refer to the economic value
compared to AR(1) model with the asset class information and the standard AR(1) model, respectively.
The model with the highest economic value is highlighted in bold face.
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The top plot in Figure 2 displays the 1-day ahead forecasts variable selection with the

LASSO-HAR-All over the whole forecast period. All three RV horizons (red) are selected

throughout the out-of-sample period. In addition, we find that the most consistent vari-

ables are the OVX (oil price uncertainty) at 5 and 22 days horizon and the Google search

volume for “Oil Price” the day before.

The middle plot in Figure 2 shows the 5-days ahead forecast variable selection. We find

that the RV of the WTI the day before is never selected. Only the weekly and monthly

RV appear to be relevant for the forecast. Other variables at daily horizon are selected,

probably replacing the RVs as a more suitable variable for prediction. While we do not

find a persistent variable on the short-term, weekly and monthly averages of the Chinese

stock market (SSEC), sentiment (OVX, VIX, EPU), commodities (corn, soybean, natural

gas), and FX (USD, Yen/USD, GBP/USD) are selected almost through-out the entire

sample.

A look at the bottom plot of Figure 2 for 22 days ahead reveals that the LASSO-HAR-

All uses many different variables throughout the sample at different time horizons, e.g.

NIKKEI and SSEC, VIX, OVX, natural gas, soybeans, and the Google search volumes

for “Financial Crisis” and “OPEC Conference”.

With increasing forecasting horizon, LASSO identifies an increasing number of exoge-

nous predictors to be useful for volatility forecasting. This ML approach also shows that

the selection of variables is variable over time. Apart from the more persistent variables

mentioned above, several exogenous variables only play a role for a limited period of time

and we observe clustering of variable selections. This culminates in the observation that

for the 22-days forecasting horizon, there appears to be a structural break in variable

selection at the end of 2016. Stock market volatility, which was significant until this date,

is not being chosen by LASSO while some commodity- and FX-related variables are in-

tegrated in the forecasts. As to why LASSO discards several exogenous predictors at the

same time is not within the scope of this work and we leave this question open for future

research.

Lastly, we also consider ranking exogenous variables with regard to variable impor-
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Figure 2: Variable selection over time with the LASSO-HAR-All.
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tance. We follow Narajewski & Ziel (2020) and calculate the average variable importance

over the out-of-sample by

V I i = T−1

T∑
t=1

V It,i,

V It,i =

∣∣∣β̂(t)
i

∣∣∣∑N
i=1

∣∣∣β̂(t)
i

∣∣∣ ,
where T is the number of out-of-sample observations, N the number of variables, and

β̂
(t)
i refers to the estimated coefficent of variable i for the out-of-sample at observation t.

Note that for the LASSO estimation all variables are standardized. Hence, we are able to

compare the individual contribution based on these estimates. Table 6 lists the ten most

important variables per forecast horizon.

Rank 1 day VI 5 days VI 22 days VI

1 RV WTI 22 47.8% RV WTI 22 53.6% RV WTI 22 66.4%
2 RV WTI 5 30.9% FX Yuan/USD 22 9.4% FX EUR/USD 22 5.6%
3 RV WTI 1 8.9% RV WTI 5 7.4% FX Yuan/USD 22 4.1%
4 FX USD 5 5.1% S OVX 22 5.2% FX Yen/USD 22 2.8%
5 S OVX 22 3.5% FX Yen/USD 5 4.6% E NIKKEI 22 2.7%
6 S VIX 5 2.0% FX Yuan/USD 5 4.3% E HSI 22 2.6%
7 FX USD 22 0.7% FX GBP/USD 22 3.0% S GFSI 22 1.6%
8 FX USD 1 0.6% FX USD 5 2.7% RV WTI 5 1.5%
9 G Oil Price 1 0.5% FX USD 22 2.2% FX GBP/USD 22 1.3%
10 S OVX 1 <0.1% FX Yen/USD 22 2.0% C Soybean 22 1.3%

Table 6: Ranked variable importance of individual variables (top 10) across the applied forecasting
horizons.

While there exists some correlation between the rankings of selections and importance,

there are also major differences. We find the RVs of the WTI itself always in the ranking

of 22-days, 5-days, and 1-day. The most important variable over all forecast horizons is

the 22 day RV of the WTI which contributes about 50% to the forecasted RV (or more).

We find the FX channel to have a fair share of importance, especially in comparison the

other information channels. Sentiment indices (VIX, OVX, and GFSI) are also among

the top 10 for all forecasting horizons. In contrast to the frequency of selection, however,

Google search volumes do not carry much variable importance for forecast beyond 1-day.
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In fact, the Google attention measures are not even in the top 25.

This observation is also confirmed, when looking at the aggregated channel level. In

Table 7, we report the sum of the variable importance per variable of a information channel

(i.e. per variable and time aggregated). Especially for longer horizons, the contribution

of FX is quite substantial. Again, we find little support for Google search volume. We

also point out the contrast between the variable importance of the commodity channel

and the frequency of selection for commodity variables. Finally, the variable aggregates

over 22-days hold valuable information for all forecasting horizons.

Rank 1 day VI 5 days VI 22 days VI

1 RV 87.6% RV 60.0% RV 68.2%
2 FX 6.3% FX 28.8% FX 17.2%
3 Sentiment 5.6% Sentiment 6.9% Equity 8.6%
4 Google 0.5% Equity 2.2% Sentiment 3.5%
5 Equity <0.1% Commodity 1.5% Commodity 2.6%
6 Commodity 0.0% Google 3.0% Google 1.1%

Table 7: Ranked variable importance of (aggregated) information channels across the applied forecasting
horizons.

We summarize, that for all forecasting horizons, the realized volatilities of the WTI

are the most important variables to predict future realized volatility of the WTI. However,

the observed other information channels do contribute to the predictions and in this way

either substitute or add information on top of the RVs. In particular, FX appears to be

an important source of information.

5. Conclusion

This paper demonstrates how extending existing models of realized volatility with ad-

ditional information from other channels and recent ML techniques benefits the quality of

forecasts and subsequent portfolio performance. We focus on modeling realized volatility

of the most liquid WTI crude oil futures prices. Existing HAR models (Corsi, 2009) are

firstly augmented with exogenous factors, which has been shown to improve the forecast-

ing performance across different horizons (Ma et al., 2018, Luo et al., 2022). Motivated by

Degiannakis & Filis (2017), we include several different information channels that include
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major stock markets, relevant FX market pairs, sentiment indices, other linked commod-

ity markets, and a Google search volumes for relevant search terms. We then extend these

models with four machine-learning approaches which pick the most suitable factors for

forecasting realized volatility over one day, one week, and one month. The model set is

completed by a PCA variant and a model including all possible exogenous variables.

We present several novel findings. First and foremost, including ML to choose from a

set of exogenous variables improves the quality of realized volatility forecasts. In partic-

ular LASSO variants show significant improvements. Secondly, we find that the variable

selection process depends strongly on the forecasting horizon. While for short-term fore-

casts, endogenous factors dominate the selection of predictors, the number of predictors

increases when increasing the forecasting horizon. Sentiment variables, such as the EPU

or OVX, realized volatility of other stock markets and commodities as well as FX markets

become increasingly important for longer horizons. We also show that a combination of

short, medium, and long-term averages of text-based Google indicators are relevant exoge-

nous factors which are included in the predictor set generated by ML algorithms. Thirdly,

we show that portfolios that are constructed with ML-HAR variants (particularly BMA)

provide higher returns than the baseline AR and HAR models and its extensions with

exogenous factors. Surprisingly, forecast accuracy does not necessarily imply the highest

portfolio outperformance. Lastly, we show that the selection process with its dynamic

implementation is time-varying with respect to the variable choices. Variable selection

mostly clusters while these clusters differ across forecasting horizons. In particular for the

stock market channel, the results point towards structural changes, especially for longer

time horizons. While the most important variables remain the past (aggregates) of re-

alized volatility of the WTI, a great deal of information is coming from the FX channel

(especially for longer forecast horizons). In contrast Google search volume and other com-

modity volatilities does not carry large fractions of variable importance for the forecast

of WTI realized volatility.

Future research might focus on as to why these structural changes in the variable

selection process exist and why these changes materialize differently across forecasting
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horizons. Having shown that superior fit does not necessarily translate to superior port-

folio performance in our portfolio selection application, future work could for example

address an exploitation of ML generated forecasts of realized volatility for other commod-

ity or asset classes or extend our framework to other ML models such as reinforcement

learning (see e.g. Lavko et al., 2023).
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Appendix A. Additional Tables

Table A.8: Constructions of exogenous predictors

Category Data Variable construction

Financial market volatility DJI, CAC40, FTSE, DAX30, HSI,
Nikki225, S&P500, SSEC, STOXX50

We obtain the realized volatilities of the 9
stock indices come from Oxford-Man Insti-
tute’s “realized library”

Sentiment VIX, OVX, US EPU, GFSI index We obtain the four indices from Datastream
database. The first-difference of the vari-
ables are used as the predictors.

Commodity market Natural gas, Gold, Corn, Soybean The daily prices of the four commodity fu-
tures are obtained from Wind database.
The return is computed by rt = 100 ·
(logPt − logPt−1). We use the square re-
turns r2t of the four commodity futures as
the predictors.

Currency market US dollar index, Euro/US exchange rate,
Japanese Yan/US exchange rate, Chinese
Yuan/US exchange rate, Russia Rouble/US
exchange rate, UK pound/US exchange
rate

The daily prices of US dollar index and the
5 foreign exchange rates are obtained from
Wind database. The return is computed
by rt = 100 · (logPt − logPt−1). We use
the square returns r2t of the US dollar in-
dex and the 5 foreign exchange rates as the
predictors.

Google search volume Oil production, Financial crisis, Oil de-
mand, Oil price, OPEC conference

The google search volume indices are down-
loaded from the Google index database.
We employ the first-difference of the google
search indices for the key words as the pre-
dictors.

Note: VIX and OVX denote the implied volatility index for S&P 500 and WTI, US EPU is the economic
policy uncertainty index for the US and GFSI index is the global financial stress index.

Appendix B. Additional Figures
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Figure B.3: Realized volatility of stock indices on daily resolution from January 5, 2010 to May 11, 2018,
obtained from the Oxford-Man Realized Library.
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Figure B.4: Sentiment indices as index points and realized volatility of commodity markets, proxied
by squared daily returns, on daily resolution from January 5, 2010 to May 11, 2018, obtained from
Datastream.
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Figure B.5: Realized volatility of FX markets, proxied by squared daily returns, on daily resolution from
January 5, 2010 to May 11, 2018, obtained from Datastream.
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Figure B.6: Google search volume indices on daily resolution from January 5, 2010 to May 11, 2018,
obtained from Google.
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