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Parametric rules for state contingent claims∗

Siddharth Chatterjee† Sinan Ertemel‡ Rajnish Kumar§

January 2021

Abstract

We study bankruptcy rules in a setting where individuals have state contingent claims. A
rule must distribute shares before uncertainty resolves. Within a wide class of parametric
rules, we first characterize rules of ex–ante form in terms of the way that the rule processes
inherent uncertainty in the individual claims. The key property is: No Penalty for Risk. It
says that the rule does not penalize an individual in a situation that differs from another only
in terms of the this individual’s claim in that the former situation has a risky version of the
riskless claim in the latter situation. With regard to the ex–post characterization, our key
property is: Indifference to Independent Combinations. It says that if an individual is risk
neutral with expected utility preferences then any rule that makes her indifferent between
any bankruptcy problem and a corresponding independent combination of gamble between a
degenerate gamble and a zero game (any bankruptcy game with zero endowment) forces the
rule to be in the ex–post form. Finally, a partial comparative static result is provided which
formalizes the claim that individuals generally find ex–ante rules more appealing when the
level of the resource is sufficiently low.

JEL code: C71, D63, D81

Key words: Rationing, Parametric rules, State contingent claims, Axiomatic characterization

1. Introduction

Consider a resource allocation problem in which individuals’ total claims exceed the amount of

resource available. How to divide a resource when individuals’ objective claims cannot be honored

constitutes arguably the simplest domain of distributive justice. We consider claims problem in a

state contingent framework, where in the first stage every individual submits a claim corresponding

each state of nature (henceforth, a “state contingent claim vector”). The realization of the state
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occurs in the second stage. There are two natural extensions of allocation rules in this setting — (1)

ex–ante rules: first find expected claim of each individual and then apply the rule to the expected

claim vector, and (2) ex–post rules: first find the award of each individual for each state and then

take the expectation of the awards. Our main contribution is to characterize ex–ante rules within a

very broad class of procedures. Additionally, we also provide a simple behavioral characterization

of rules that have the ex–post form.

Ertemel & Kumar (2018) base their characterization of ex–ante and ex–post proportional rules

on Moulin’s (1985) No Advantageous Reallocation (NAR) axiom which says that no group of indi-

viduals can jointly benefit by reallocating their claims among themselves. They obtain the desired

characterizations by extending NAR to state contingent claims framework and adopting some stan-

dard axioms from the literature. In this paper, we consider a more general setting in which we

characterize both classes of ex–ante and all ex–post rules, focusing on a natural and large subclass

of the parametric rules as introduced by Young (1987a). Parametric rules encompass most of the

standard rules in the literature, including proportional, constrained equal awards, constrained equal

losses, Talmud rules and many others. Parametric rules are basically characterized by the Consis-

tency principle which is one of the main tenets of distributive justice. Consistency is an invariance

property whereby when some agents and their rewards are removed from the problem, the same

awards are distributed with the remaining individuals and endowment in the reduced problem as

in the original problem. We use a weaker version of consistency which can also be interpreted as

non–bossiness, whereby individuals leaving the problem with their awards do not affect the remain-

ing individuals’ awards.

Our second axiom is based on Invariance to Claim Truncation which states that a rule is invari-

ant to truncating one individual’s claim to the endowment if she claims more than the endowment

itself. We weaken this axiom by saying that an individual would not be rewarded by irrelevant

claims, i.e., claiming more than the endowment. Finally, we impose claim monotonicity, another

standard axiom satisfied by virtually all allocation rules. It says that if an individual’s claim in-

creases then she would receive an award as much as before. By naturally extending, with substantial

weakening, these axioms to state contingent claims environment, we characterize a wide class of

parametric rules. Note that stochastic extensions of the class of sequential priority rules, priority

augmented constrained equal awards rules, and Talmud rules are members of this family.

Next, we introduce normative axioms that capture how a rule should treat all the risks inherent

in the individuals’ claims within the stochastic environment. The No Penalty for Risk axiom as-

serts that if an individual is faced with a riskier claim vector (i.e., a mean–preserving spread of her
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claims) then she will not receive less award than before. Additionally, we impose a mild regularity

condition called No Sudden Response to Uncertainty. This axiom can be stated as follows: if a rule

coincides with another rule such that each individual’s claim vector is substituted with her expected

claim for some level of endowment to compute the awards, then these two rules keep being identical

when the endowment level changes slightly. The last two axioms pin down our rule down to ex–ante

form. In other words, the rule only considers the vector of expected individual claims.

Finally, we provide axiomatic characterization of ex–post rules; i.e., a rule computes shares of

the endowment for each individual “state–wise” and then allocates each individual an award equal

to their expected share. We make no restrictions in the characterization of ex–post rules in terms

of the stochastic extensions of classical rules. By taking an approach inspired by Roth (1977),

which establishes Shapley Value as an Expected Utility of playing a game, we define gambles over

bankruptcy games. Any bankruptcy problem can then be modelled as a combination of pairs of

independent gambles — one pair corresponding to each state of nature. Each pair constitutes of

degenerate gamble and a zero game (any bankruptcy game with zero endowment). An allocation

rule has to be of the ex–post form, if and only if, for individuals who are expected wealth maximiz-

ers the rule establishes indifference between the original bankruptcy game and the corresponding

independent combination of gambles.

Going back to the classical problem in the deterministic setting, the “claims problem” has

emerged as an intrinsic imbalance between demand and supply (i.e., disequilibrium) disallowing

traditional market mechanisms. Accordingly, the study of design and analysis of methods for re-

solving claims problems call for a normative approach constituting of an investigation of allocation

rules satisfying some desiderata. There are various interpretations for claims problem such as inher-

itance, bankruptcy, and taxation. O’Neill (1982) provides first formal description of this problem

where resource is defined as an inheritance to be distributed among heirs. Aumann and Maschler

(1985), on the other hand, takes the case of a deceased man with debts totalling more than his

estate. Young (1987a, 1987b, 1988, 1990) examines taxation schemes to determine tax liabilities for

each individual according to their taxable income. Aside from these classical examples, there are

obviously many more instances where a resource has to be rationed due to over demand. Emergency

situations, for example, call for rationing of medical supplies and other vital good and services. A

systems manager would allocate capacity, memory, and bandwidth among various nodes in the

network.

In this paper, we study rationing problems where an individual’s claim depends on the state

of the nature where ex–post allocation is not feasible. Here it is essential that resource has to be
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divided ex–ante, namely before uncertainty is resolved. Consider a central government allocating

fiscal budget among various departments and agencies. Evidently, Department of Health’s budget

depends on the probability of an endemic risk. Similarly, the agriculture industry is heavily depen-

dent on the levels of actual realized rainfall. That being said, the fiscal budget allocation must be

necessarily determined before the resolution of uncertainty. Going back to the “network example”,

the requisite bandwidth demand of the nodes depends on the stochastic network traffic. As a matter

of fact uncertainty is indeed a very salient feature in claims problem. Before a systematic study

of rules and normative principles in this stochastic domain, we briefly revisit some of the classic

notions associated with the claims problem.

One possibility is to naively follow the notion of “proportionality”, whereby individuals should

each receive awards proportional to their claims. This accords with Aristotle’s celebrated maxim

that “Equals should be treated equally, and unequals unequally, in proportion to relevant similari-

ties and differences”. Various authors draw on axiomatic characterizations of proportional rules in

claims problems (e.g., O’Neill (1982), Moulin (1987), Chun (1988), and Ju et al. (2007)). Medieval

scholars such as Maimonides, Ibn Ezra, and Rabad refer to Talmud and in turn reveal further

normative principles in the spirit of egalitarianism. The constrained equal awards rule divides the

resource equally, subject to the fact that no agent receives more than her claim. On the other hand,

constrained equal losses rule equalizes the losses (i.e., difference between award and claim) such

that no agent receives a negative award. Axiomatic characterizations of such egalitarian rules can

be found in Dagan (1996), Herrero and Villar (2001), Yeh (2008) among others. There is also a

very large family of rules that shares some characteristics of these three canonical rules. Hougaard

(2009), Moulin (2002) and Thomson (2003, 2015) provide excellent surveys of allocation rules and

their axiomatic characterizations.

The claims problem under uncertainty has been studied in various settings in the literature. For

example, Habis and Herings (2013) extend Transferable Utility Game to stochastic environment

and show that constrained equal awards rule coincides with the weak sequential core defined in

Habis and Herings (2011). Xue (2018) focuses on the waste issue, namely an individual receiving

an award higher than her claim. It turns out that the class of constrained equal awards rules is con-

sistent with expected waste minimization under some normative axioms such as conditional strict

endowment monotonicity, consistency, and strong upper composition. In a more recent paper, Long

et al. (2019) introduces a more general division rule, i.e., equal–quantile rules that similarly focuses

on the waste and deficit issues. In addition to axiomatic characterization, they provide justification

for this rule by maximization of a utilitarian social welfare and minimization of a utilitarian social
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cost function.

Our paper differs from Xue (2018) and Long et al. (2019) in modeling claim uncertainty. These

papers take individual demands as a cumulative distribution function with its support being a

closed interval on the real line. More importantly, they require independence of beliefs among the

individuals. Our model, on the other hand, is more general as it allows for arbitrary joint measures

as individuals’ beliefs. As many real–life allocation problems exhibit correlated claims among indi-

viduals, our model provides a very robust framework to capture inherent uncertainty. In another

recent paper, Hougaard and Moulin (2018) study sharing the cost in a stochastic network where

the allocation should be made ex–ante before the realization of random traffic flows.

The rest of the paper is organized as follows. Section 2 describes the formal model and Section

3 describes the questions tackled, outlining the nature of our proposed solution. Section 4 describes

three axioms from the bankruptcy literature as adapted naturally to the model of uncertainty. Sec-

tion 5 outlines a wide class of rules for resolving bankruptcy problems in the model of uncertainty.

The class defined is later shown to satisfy the axioms outlined in Section 4. The key axioms, con-

sidered of various rules, that pertain to the way those rules process inherent riskiness of claims and

individuals’ risk attitude are presented in Section 6. The main results are presented in Section 7.

Section 8 and 9 present the geometry of the characterization of the ex–ante rule and the strategy

of the characterization of the ex–post form, respectively. The logical independence of the axioms is

discussed in Section 10. Finally, we conclude in section 11. All proofs are relegated to the appendix

which is section 12.

2. Formal model

The set of individuals is a nonempty finite set N = {1, 2, . . . , |N |} typical elements of which shall

be denoted by i, j, . . . and so on. The set of states is a nonempty finite set S typical elements

of which shall be denoted by s1, s2, . . . and so on. A profile of state contingent claims matrix,

c ≡ 〈cis : i ∈ N ; s ∈ S〉 is a map, (i, s) ∈ N × S 7→ cis ∈ R+. The set of profile of state contingent

claims shall be denoted by C . For any individual i, ci ≡ 〈cis : s ∈ S〉 is individual i’s state contin-

gent claim vector ; i.e., the map s ∈ S 7→ cis ∈ R+ as obtained by restriction of the map c to the

set {i} × S. For any state s ∈ S, cs ≡ 〈cis : i ∈ N〉 is the profile of claims in state s; i.e., the map

i ∈ N 7→ cis ∈ R+ as obtained by restriction of the map c to the set N × {s}.

An estate is any element of E := R+ typically denoted by E,E ′, . . . or E1, E2, . . . and so on.

An assessment of state probabilities, denoted by p ≡ 〈ps : s ∈ S〉, is a map, s ∈ S 7→ ps ∈ [0, 1]
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such that
∑

s∈S ps = 1. Thus, the set of assessments of state probabilities is the |S| − 1 dimen-

sional simplex ∆(S); i.e., p ∈ ∆(S). For any s ∈ S, δs ∈ ∆(S) shall denote the lottery which is

degenerate at the state s. For the map ci and p ∈ ∆(S), define c̄i(p) :=
∑

s∈S(ps · cis); i.e., the

expected claim of individual i. We shall follow the convention that, for any set K, and x,y ∈ RK ,

[x ≥ y] ⇐⇒ (∀k ∈ K)[x(k) ≥ y(k)].1 Also, 0K shall denote the map, k ∈ K 7→ 0 ∈ R+ and 1K

shall denote the map, k ∈ K 7→ 1 ∈ R+.2

A bankruptcy problem is an ordered triple (c, E,p) ∈ C × E × ∆(S) such that, for every

s ∈ S,
∑

i∈N cis ≥ E. The set of bankruptcy problems, D := {(c, E,p) ∈ C × E × ∆(S) :

(∀s ∈ S)[
∑

i∈N cis ≥ E]} shall be called the domain. A rule is a map, φ : D → RN
+ , con-

tinuous in resource, such that, for any (c, E,p) ∈ D ,
∑

i∈N [φ(c, E,p)](i) = E.3 The terms

“[φ(c, E,p)](i)” and “φi(c, E,p)” shall be used interchangeably. φi(c, E,p) shall be called the

share of individual i in the bankruptcy problem (c, E,p) according to the rule φ. Denote by D∗

the set {(x, t) ∈ RN
+ × R+ :

∑
i∈N xi ≥ t}. We define any rule φ to be ex–ante, if and only if, there

exists a corresponding function ψ : D∗ → RN
+ such that

∑
i∈N ψi(x, t) = t for any (x, t) ∈ D∗, and

φ(c, E,p) = ψ(c̄(p), E) for any (c, E,p) ∈ D where c̄(p) := 〈c̄i(p) : i ∈ N〉. A rule φ is defined to

be ex–post, if and only if, for any (c, E,p) ∈ D , φ(c, E,p) =
∑

s∈S ps · φ(c, E, δs).

Denote by V the set C × E . An element of V , v ≡ (c, E), shall be called a situation. For

any situation v ≡ (c, E), the corresponding situation v0 := (c, 0) shall be called the correspond-

ing zero situation. For v ≡ (c, E) and p ∈ ∆(S), we shall identify (v,p) with (c, E,p). Let

D be endowed with the σ–algebra, FD , generated by the class of all finite subsets4 of D . For

any K ∈ N, let π1, π2, . . . , πK ∈ [0, 1] such that
∑K

k=1 πk = 1, and consider any K bankruptcy

problems (v1,p1), (v2,p2), . . . , (vK ,pK) ∈ D . Then [
⊕K

k=1 πk • (vk,pk)] and [π1 • (v1,p1)
⊕

π2 •

(v2,p2)
⊕

. . .
⊕

πK •(vK ,pK)] shall denote the lottery with outcomes (v1,p1), (v2,p2), . . . , (vK ,pK)

in D having probabilities π1, π2, . . . , πK , respectively. Formally, we have the probability mea-

sure [
⊕K

k=1 πk • (vk,pk)], over the measurable space (D ,FD), which is the map D ∈ FD 7→

[
⊕K

k=1 πk • (vk,pk)](D) :=
∑

k∈{1,2,...,K}:(vk,pk)∈D
πk. Let ∆(D) be the family of all probability mea-

sures, over (D ,FD), with finite supports. Thus, elements of ∆(D) are precisely objects of the form

[
⊕K

k=1 πk •(vk,pk)]. Each element of ∆(D) shall be called a gamble. The gamble [
⊕K

k=1 πk •(vk,pk)],

1We may interchangeably write “xk” for “x(k)”, and “yk” for “y(k)”. Thus, all we are saying is [x ≥ y] ⇐⇒
(∀k ∈ K)[xk ≥ yk]. This is the usual partial order over RK of “a vector dominating another componentwise” except
that the set K is abstract.

2That is, 0K is the “vector of zeroes in RK
+ ”, and 1K is the “vector of ones in RK

+ ”.
3Note that RN

+ is the set of all maps with domain N and codomain R+. Thus, for (c, E,p) ∈ D , φ(c, E,p) is
indeed a map from N to R+. Since i ∈ N , one obtains [φ(c, E,p)](i) ∈ R+. Also, see footnote 4.

4That is, the countable–cocountable σ–algebra. By definition, this is the class of subsets that are either countable
or have countable complement.
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under the rule φ, induces the money lottery [
⊕K

k=1 πk • φi(vk,pk)] for each individual i. That is,

the gamble in which, for each k ∈ {1, 2, . . . , K}, the bankruptcy problem (vk,pk) is played with

probability πk, provides the individual i the share φi(vk,pk) with probability πk.

For any M ∈ N, let µ1, µ2, . . . , µM ∈ ∆(D). Then µ1

⊗
µ2

⊗
. . .
⊗

µM and
⊗M

m=1 µm are the

names of the product measure, over the product space (×M

m=1
D ,
⊗M

m=1 FD), obtained from the un-

derlying probability spaces. Any such measure
⊗M

m=1 µm will be called an independent combination

of gambles. Let, for each m ∈ {1, 2, . . . ,M}, µm be the gamble [
⊕Km

k=1 π
m
k
•(vm

k ,p
m
k )]. Then the inde-

pendent combination of gambles
⊗M

m=1 µm provides each individual i the share
∑M

m=1 φi(v
m
km
,pm

km
)

with probability
∏M

m=1 π
m
km

. The class of all independent combinations of gambles shall be denoted

by ID . For each individual i, driven by von Neumann–Morgenstern preferences over money lot-

teries, let %i be the complete and transitive binary relation over ID . Formally, %i is defined, over

ID , as follows. Let ui : R+ → R be any Bernoullian whose expected utility represents individual

i’s preferences. Define a map U : ID → R as follows. Let
⊗M

m=1[
⊕Km

k=1 π
m
k
• (vm

k ,p
m
k )] be an element

of ID . Then define:

U

(
M⊗

m=1

[
Km⊕
k=1

πm
k
• (vm

k ,p
m
k )]

)
:=

∑
〈km≤Km:m≤M〉

[
M∏

m=1

πm
km ] · ui

( M∑
m=1

φi(v
m
km ,p

m
km)
)
.

For any two independent combinations of gambles
⊗M

m=1[
⊕Km

k=1 π
m
k
•(vm

k ,p
m
k )] and

⊗M ′

m=1[
⊕K′m

k=1 π
′m
k
•

(v′mk ,p
′m
k )], we define

⊗M
m=1[

⊕Km

k=1 π
m
k
• (vm

k ,p
m
k )] %i

⊗M ′

m=1[
⊕K′m

k=1 π
′m
k
• (v′mk ,p

′m
k )], if and only if, the

following holds:

U

(
M⊗

m=1

[
Km⊕
k=1

πm
k
• (vm

k ,p
m
k )]

)
≥ U

(
M ′⊗
m=1

[
K′m⊕
k=1

π′
m
k
• (v′

m
k ,p

′m
k )]

)
.

This completes the specification of the formal model and the notations.

3. Core problems

First, we offer characterizations for two wide classes of rules, defined in the context of uncertainty

as above, that are insensitive to the potentially inherent risk in the state contingent claims of some

individuals in a bankruptcy problem. A rule is of the ex–ante form if it takes into consideration

only the vector of expected individual claims for any bankruptcy problem.

Our first theorem states that within the class of rules that satisfy claim monotonicity together

with some weakenings of consistency and truncation of irrelevant claims, those that do not penalize
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an individual for facing risk, under a mild regularity condition, are precisely those that are ex–ante.

The second theorem asserts that the same property of the rule towards risk inherent in claims

characterizes the ex–ante form within the class of rules that satisfy axioms which are dual to those

which define the wider class of the first theorem.

Second, we characterize rules, that initially compute shares “state–wise” and then award every

individual the resulting expectation. Such rules are said to be of the ex–post form because they

process each bankruptcy problem in terms of the expectation of the corresponding collection of

“ex–post problems”. The basis of this characterization is how the rule φ preserves an individual’s

preference over different independent combinations of gambles. Consider, individual i faces the

bankruptcy problem (c, E,p). Alternately, consider that the individual faces an independent com-

bination of gambles in which, independently, with probability ps she faces the problem (c, E, δs)

and with probability 1 − ps she faces the problem (c, 0, δs). The individual observes that in the

first problem, the realization of any state excludes the realization of the other states; i.e., if the

“ex–post problem” (c, E, δs) is realized, then (c, E, δs′) cannot. However, such is not the case in the

second problem due to independence in the combination. Also, the probabilities induced over each

of the “ex–post problems”, (c, E, δs) is the same in both. Furthermore, the rule φ induces a money

lottery, for the individual, corresponding to each of the problems. A risk-neutral individual with

von Neumann–Morgenstern preferences over money lotteries will rank all independent combinations

of gambles using the expected return determined by the rule φ. Our characterization is that the

rule has the ex–post form precisely when it enforces the individual to be indifferent between any

bankruptcy problem and the corresponding independent combination of gambles.

4. Some standard axioms

In this section, three prominent axioms from the bankruptcy literature are considered and adapted

to the model of uncertainty. A statement of each axiom is followed by a brief discussion of its

strength and normative appeal. In addition to Hougaard (2009), Moulin (2002) and Thomson

(2003, 2015), Thomson (2019) provides a comprehensive account.

Claim Monotonicity. If (c, E,p), ((c′i, c−i), E,p) ∈ D and i ∈ N such that ci ≤ c′i, then φi(c, E,p) ≤

φi((c
′
i, c−i), E,p).

This axiom is the most obvious adaptation of the “claim monotonicity” axiom from the bankruptcy
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literature with deterministic claims. Consider two profiles of state contingent claims such that the

profiles differ only in one specific individual’s state contingent claim, whereby that individual’s

claims are greater state–wise in the second profile than that in the first. The rule satisfies the

axiom, if and only if, it provides that individual at least as much in the second profile as it does

in the first. In the deterministic setting, the “claim monotonicity” property holds for many major

rules, including the Priority Augmented Weighted Constrained Equal Awards rules, the Talmud

rule, the Proportional rule. However, several rules do not satisfy this property as can be seen from

the definitions of two particularly wide class of rules: the class of fixed path rules5 and Young’s class

of parametric rules. The first class is important in the characterization of the rules that satisfy the

property of “independence of irrelevant claims” while the second class characterizes the property of

“consistency”. In particular, both classes admit as nonempty proper subclasses of rules that either

do satisfy “claim monotonicity” or do not. The adapted form for the setting with uncertainty has

the same normative justification as is for its deterministic version — it is natural to expect that a

proposed rule, fixing the claims of every other individual, will not award an individual less when

her claim is actually higher. Note that this normative justification is adequate in the axiomatic

framework which does not consider individuals to be strategic; that is, all individuals are assumed

to be truthful in terms of reporting their respective claims so that the profile of individual claims

is common knowledge among all the individuals and the planner.

Weak Consistency. If (c, E,p), ((c′i, c−i), E,p) ∈ D and i ∈ N , then
∑

j∈N\{i} φj(c, E,p) =∑
j∈N\{i} φj((c

′
i, c−i), E,p) implies φj(c, E,p) = φj((c

′
i, c−i), E,p) for every j ∈ N \ {i}.

Weak consistency can be seen as an adaptation of the axiom Non-Bossiness to the framework

involving uncertainty. It is also implied by the Consistency axiom as adapted to our environment

of state contingent claims. We prefer to call it Weak Consistency rather than Non-Bossiness for

two reasons: 1) we abstract from strategic consideration in this paper, and 2) we want to relate our

rules to the ones studied in the literature under deterministic setting.The Consistency axiom is of

wide appeal in the bankruptcy literature with deterministic claims. Many of the major rules satisfy

Consistency, including the class of Priority Augmented Weighted Constrained Equal Awards rules,

the Proportional rule and the Talmud rule. In fact, every rule in Young’s class of parametric rules

satisfies Consistency. However, the Random Order of Arrival rule does not satisfy this property.

To briefly recall the idea of Consistency, consider the shares computed by the rule for a problem

5For applications and axiomatic treatments of fixed path rules please refer to Friedman and Moulin (1999),
Leroux (2007, Kumar (2013) among others.
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involving some set of individuals. When a group of these individuals leaves having obtained their

shares, the property demands that the rule allocates the same shares from the sum of the shares

of the remaining individuals as initially computed. This axiom is not a direct adaptation of the

Consistency property to the setting involving uncertainty. In fact, all it requires is that given that

the sum of individual shares leaving one in two profiles, as computed by the rule, is the same, if the

two profiles differ in terms of the state contingent claim of only that individual, then the shares of

the other individuals is the same in both profiles. This axiom is strictly weaker than Consistency,

and is thus named as such. Note that in our characterization of the ex–ante form, this axiom only

plays a substantial role when there are at least three individuals. This is because it holds vacuously

in a setting with only two individuals owing to “budget balancedness”, as the rule must fully divide

the resource into individual shares.

No Reward for More Irrelevant Claims. If (c, E,p) ∈ D and i ∈ N such that mins∈S cis ≥ E, then

δci ≥ 0S implies φi(c, E,p) ≥ φi((ci + δci, c−i), E,p).

This axiom is an adaptation to the setting with uncertainty of a slight weakening of the “indepen-

dence of irrelevant claims” property which is also known as “truncation of irrelevant claims”. The

idea is that, given individual claims and a resource, any claim matters only as long as it does not

exceed the resource. If an individual’s claim does exceed the resource, then her claim is “truncated”

in the sense that the rule considers her claim to be the level of the resource itself. Many important

rules satisfy “truncation of irrelevant claims”, including the class of Priority Augmented Weighted

Constrained Equal Awards rules, the Talmud rule, and the Minimal Overlap rule. In fact, the class

of fixed path rules admits a large subclass each element of which satisfies the property. However,

some important rules do not satisfy “truncation of irrelevant claims”. Examples include the Pro-

portional Rule and the Constrained Equal Losses rule. We claim that our axiom is an adaptation

of a mild weakening of the “truncation of irrelevant claims” property. To see this note, the above

property only demands that if every of the state-wise claims of an individual exceed the resource,

then the individual does not gain more than what she would had her state–wise claims equalled

the resource. We note that the combination of claim monotonicity and no reward for more irrele-

vant claims implies the natural adaptation of the “truncation of irrelevant claims” property to the

setting with uncertain claims.

5. A class of parametric rules
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The purpose of this section is to define a class of rules over the domain D , which shall be denoted

by Φ, such that any rule φ ∈ Φ satisfies each of the standard axioms described in Section 4. Our

claim is that the class Φ is a subclass of all those rules that satisfy the axioms. This is the content

of Theorem 1 stated in the Section 6. The definition of the class Φ requires some preliminaries.

An abstract definition of the class is discussed to illustrate that it is a very large class. Members

of the class Φ are constructed by the composition of rules, from a family contained in the class of

Young’s “parametric rules”, with a profile of R–valued functions, which map pairs (c,p) ∈ C×∆(S)

satisfying specific conditions. Typical profiles shall be denoted by T ≡ 〈Ti : i ∈ N〉, and the class

of all such profiles shall be denoted by T .

Let T ≡ 〈Ti : i ∈ N〉 ∈ T , if and only if, for every i ∈ N , Ti : C ×∆(S)→ R is a map, and, for

any i ∈ N and any (c,p) ∈ C ×∆(S), each of the following conditions hold:

R.1
∑

i∈N Ti(c,p) ≥ mins∈S
∑

i∈N cis.

R.2 Ti(c,p) ≥ mins∈S cis.

R.3 If c′i > ci, then Ti((c
′
i, c−i),p) > Ti(c,p).

Recall that D∗ = {(x, t) ∈ RN
+ × R+ :

∑
i∈N xi ≥ t} is the class of determinsitic bankruptcy

problems. As previously indicated, since profiles of form T ∈ T shall be deployed as a proxy for

“claims” in deterministic rules, we enforce condition R.1 to ensure that (T (c), E) ∈ D∗ whenever

(c, E,p) ∈ D . Looking ahead, the condition R.2 is enforced to assist the achievement of the no

reward for more irrelevant claims. Observe that R.2 ensures: if i ∈ N and mins∈S cis ≥ E, then

Ti(c,p) ≥ E. Thus, if a deterministic rule acts on the profile T , then the resulting rule satisfies

no reward for more irrelevant claims whenever the deterministic rule satisfies “independence of

claims truncation”. Finally, condition R.3 is enforced to assist in obtaining claims monotonicity. In

particular, if the determinisitic rule chosen satisfies “claim monotonicity”, then the rule produced

by its composition with T satisfies claim monotonicity if R.3 holds. As will be seen, this condition

also assists in ensuring that the resulting rule satisfies weak consistency.

Observe, the class T is closed under (finite) convex combinations. The class T is indeed

very large. To create a family of concrete examples of T ∈ T , for any r ≥ 1, let ‖(x,p)‖r :=

(
∑

s∈S ps · xrs)1/r where x ≡ 〈xs ∈ R+ : s ∈ S〉. Now, fix any (c,p) ∈ C ×∆(S). For every i ∈ N ,

let Ki ∈ N. For any fixed 1 ≤ r1 < r2 < . . . < rKi
and αi

0(p), αi
1(p), . . . , αi

Ki
(p) ∈ [0, 1] such that

11



∑Ki

k=0 α
i
k(p) = 1, define:

Ti(c,p) := αi
0(p) ·max

s∈S
cis +

Ki∑
k=1

αi
k(p) · ‖(ci,p)‖rk

Thus, we have defined a profile T := 〈Ti : i ∈ N〉 of maps, where Ti : C × ∆(S) → R for every

i ∈ N . Now, for any x ∈ RS, we have maxs∈S xs ≥ xs ≥ mins∈S xs for any s ∈ S. We obtain:

S.1
∑

i∈N maxs∈S cis ≥
∑

i∈N cis ≥ mins∈S
∑

i∈N cis for any s ∈ S.

S.2 maxs∈S cis ≥ mins∈S cis.

S.3 If c′i > ci, then maxs∈S c
′
is > maxs∈S cis.

Also, for any r ≥ 1, by Jensen’s inequality, we have ‖(x,p)‖r ≥ ‖(x,p)‖1, as the map ζ ∈ R+ 7→

ζ1/r ∈ R+ is convex. Now, ‖(x,p)‖1 ≥ mins∈S xs. Thus, we obtain: ‖(ci,p)‖r ≥ mins∈S cis.

Further,
∑

i∈N ‖(ci,p)‖1 =
∑

s∈S(ps · [
∑

i∈N cis]) ≥ mins∈S
∑

i∈N cis. Hence,
∑

i∈N ‖(ci,p)‖r ≥

mins∈S
∑

i∈N cis. Hence, for any k ∈ {1, 2, . . . , Ki}, we have:

T.1
∑

i∈N ‖(ci,p)‖rk ≥ mins∈S
∑

i∈N cis.

T.2 ‖(ci,p)‖rk ≥ mins∈S cis.

T.3 If c′i > ci, then ‖(c′i,p)‖r > ‖(ci,p)‖r.

where the last one is obvious. Observe, for any fixed (c,p), any convex combination of the corre-

sponding inequalities, from the lists 〈S.1, S.2, S.3〉 and 〈T.1, T.2, T.3〉, holds. Thus, T ∈ T . Recall,

we observed that the class T is closed under convex combinations. Given the choices available in

the definition of the profile T , it is clear that indeed T is very large.

Now, we shall specify a certain subclass of rules inspired by Young’s “parametric rules”. Let

h ≡ 〈hi : i ∈ N〉 ∈H , if and only if, there exists θ∗, θ
∗ ∈ R with θ∗ < θ∗ such that, for every i ∈ N ,

hi : [θ∗, θ
∗]× R+ → R+ satisfies each of the following:

H.1 For any x ∈ R+, hi(θ∗, x) = 0 and hi(θ
∗, x) = x.

H.2 For any x ∈ R+, the map θ ∈ [θ∗, θ
∗] 7→ hi(θ, x) is continuous.

H.3 For any x ∈ R+, the map θ ∈ [θ∗, θ
∗] 7→ hi(θ, x) is strictly increasing.

H.4 For any x, x′ ∈ R+ with x < x′ and any θ ∈ [θ∗, θ
∗], hi(θ, x) < hi(θ, x

′).
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For any h ∈H , we define a corresponding map ψh : D∗ → RN
+ as follows. For every i ∈ N , and for

any (x, t) ∈ D∗, let ψh
i (x, t) := hi(θ,min{xi, t}) where θ ∈ [θ∗, θ

∗] solves
∑

i∈N hi(θ,min{xi, t}) = t.

Set ψh := 〈ψh
i : i ∈ N〉. Observe, for any problem (x, t) ∈ D∗, the resulting profile of “truncated

claims” xt := 〈min{xi, t} : i ∈ N〉 defines some θ ∈ [θ∗, θ
∗] that solves

∑
i∈N hi(θ, x

t
i) = t by the

properties H.1 and H.2. That such a solution is unique follows from property F.3. That is, ψh is

indeed a rule over the domain D∗ if h ∈ H . That only the “truncated claims” are processed by

ψh is obvious. Hence, ψh satisfies “independence of irrelevant claims”. Property H.4 is enforced

to ensure that ψh satisfies “claim monotonicity”. This point is presented in detail in the proof of

Theorem 1 in the appendix. Finally, observe that ψh satisfies “consistency”. This case follows from

the observations that, given a level of the resource t, the rule ψh only processes “truncated claims”

and with the fixed resource level the rule is a Young’s (1987a) “parametric rule”. These rules are

somewhat similar to a class of rules studied by Juarez and Kumar (2013). Recall, the specialization

of weak consistency to the setting of detereministic problems is strictly weaker than “consistency”.

Given the above preliminaries, observe that, for any T ∈ T and any h ∈H , the corresponding

map φh,T : D → RN
+ defined by:

φh,T (c, E,p) := ψh(T (c,p), E), for every (c, E,p) ∈ D .

Based on the above discussion, it follows that φh,T is a rule, in the setting of bankruptcy problems

with uncertainty, such that the properties weak consistency, claim monotonicity and no reward for

more irrelevant claims holds. We are now in a position to define the class of rules Φ. Let M ∈ N.

For every p ∈ ∆(S), let β1(p), β2(p), . . . , βM(p) ∈ [0, 1] such that
∑M

m=1 βm(p) = 1. Also, for each

m ∈ {1, 2, . . . ,M}, let hm ∈H and Tm ∈ T . Define φ : D → RN
+ as follows:

φ(c, E,p) :=
M∑

m=1

βm(p) · φhm,Tm(c, E,p), for every (c, E,p) ∈ D .

It is immediate that φ so defined is indeed a rule satisfying all the three axioms. Then Φ is defined

to be the collection of rules precisely of the form of φ. Theorem 1, stated in section 7, formally

records this conclusion of the present section.

Before closing this section, we point out two particular subclasses of Φ. The first one is a subclass

of rules that have the ex–ante form. To see that this is indeed the case, we consider T ∈ T as follows.

Let T ≡ 〈Ti : i ∈ N〉 where, for every individual i ∈ N , the map Ti : C ×∆(S)→ R+ is defined as:

Ti(c,p) := ‖(ci,p)‖1. Recall, ‖(ci,p)‖1 =
∑

s∈S ps ·cis by definition. Thus, for any choice of h ∈H ,

the resulting rule φh,T has the ex–ante form. We shall call this rule the ex–ante rule defined by h.
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Given the definition of the class H , the ex–ante versions of many prominent rules, including the

Talmud rule, the Minimal Overlap rule and the family of Priority Augmented Weighted Constrained

Equal Awards rules studied in Flores-Szwagrzak (2015) which includes Constrained Equal Awards

rule and weighted Constrained Equal Awards rules are contained in the class Φ. Some rules are,

however, not in Φ. For instance, the Proportional rule, the Constrained Equal Losses rule, the

Reverse Talmud rules (van den Brink et al. 2013, van den Brink and Moreno-Ternero 2017) and

the Random Order of Arrival rule do not belong to this class.

Next, we observe that a subclass of rules, having the ex–post form, are also contained in Φ.

Define M := |S|. For every s ∈ S, we define Ts ∈ T as follows. Fix s ∈ S. Let Ts ≡ 〈Ts,i : i ∈ N〉,

where, for any i ∈ N , Ts,i(c,p) := cis for every (c,p) ∈ C × ∆(S). Also, for any s ∈ S, define

βs(p) := ps for every p ∈ ∆(S). Clearly,
∑

s∈S βs(p) = 1. Fix any h ∈ H , and define the map

φ : D → RN
+ as follows:

φ(c, E,p) :=
∑
s∈S

βs(p) · ψh,Ts(T (c,p), E), for every (c, E,p) ∈ D .

It follows that φ, so defined, is in the class Φ. Note that, by construction, rule φ has the ex–post

form. We shall call this rule the ex–post rule defined by h. In particular, it follows that the ex–post

versions of the Talmud rule, the Minimal Overlap rule and any member of the Priority Augmented

Weighted Constrained Equal Awards rules are elements of the class Φ. Again, the Constrained

Equal Losses rule and the Random Order of Arrival rule do not belong to this class.

6. Axioms on rules pertaining to risky claims and individuals’ risk attitude

In this section, we present two axioms that are relevant in the characterization theorems of rules

that have the ex–ante form. A formal statement of each axiom is followed with a brief discussion

regarding its interpretation, normative justification and remarks on the strength. These axioms de-

scribe aspects, a rule may satisfy, regarding the way uncertainty inherent in claims may be treated.

No Penalty for Risk. If (c, E,p), ((c′i, c−i), E,p) ∈ D and i ∈ N such that c′i = c̄i(p) · 1S, then

φi(c, E,p) ≥ φi((c
′
i, c−i), E,p).

To see the interpretation of this axiom, fix the claims of every other individual and consider two

state contingent claims of the individual that differ only in that the first claim is “risky” while the

second is not. In particular, the first claim is a mean–preserving spread of the second. Observe,
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the notion of “riskier claim” is equivalent to second–order stochastic dominance which in turn is

much weaker than the notion of mean–preserving spread. This is so as second–order stochastic

dominance is obtained by any sequence of mean–preserving spreads. As a result, the axiom has in

its hypothesis a predicate that is strictly stronger than what it should be as per the suggestion of

its name. That is, the axiom is indeed weaker than what its name seems to suggest. Then the rule

that satisfies the above property does not allocate the individual less in the first profile than what

it would in the second profile. The normative justification for this stems from the idea that if the

planner proposes a rule to individuals, who may later potentially find themselves in a bankruptcy

problem, then the individuals would care to have a rule that does not punish them just because

they face a risky version of some claim.

No Sudden Response to Uncertainty. If c, c′ ∈ C and E† ∈ R++ such that c′i = c̄i(p) · 1S for every

i ∈ N , and (c, E†,p), (c′, E†,p) ∈ D , then φ(c, E,p) = φ(c′, E,p) for every E ≤ E† implies that

φ(c, E,p) = φ(c′, E,p) for any E in some neighborhood of E†.

to interpret this axiom, we consider two state contingent profiles of individual claims as follows.

The second of the two is the “equivalent deterministic profile” in that every individual’s claim is

the same across every state of nature equalling the risk free mean claim. Now, suppose it is case

that the two profiles are treated identically by the rule in that every individual is awarded the same

in both profiles under the rule as long as the resource is up to some strictly positive level. The rule

then satisfies this axiom, if and only if, the rule continues to process the two profiles identically in

some neighborhood of that level. The essence that the axiom captures is that the rule does not start

to show a response suddenly to the inherent uncertainty that may be present in individual claims

of the first profile. This achieves some regularity in the response of the rule to “indeterminacy”.

Such a property is of normative appeal to the individuals, who know that they may potential have

claims with inherent uncertainty, to whom the planner has to propose a rule to divide. Observe, for

this axiom to have any bite, it is essential to establish, given a state contingent profile of individual

claims and the “equivalent deterministic profile”, the rule process the two profiles identically for

every possible resource up to a non–trivial level.

Now, we present the only axiom that characterizes the ex–post form of rules. Again, a formal

statement of the axiom is followed with a brief discussion regarding its interpretation, normative

justification and remarks on the strength.
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Indifference to Independent Combinations. If (v,p) ∈ D and q ∈ ∆(S), then
⊗

s∈S[ps •(v, δs)
⊕

(1−

ps) • (v0,q)] ∼i (v,p).

Recall, any rule φ induces the preference %i, over the class of independent combination of games

of bankruptcy problems, for the risk neutral individual i who has von Neumann–Morgenstern

preferences over monetary lotteries. For any bankruptcy problem (c, E,p), let v and v0 de-

note the situations (c, E) and (c, 0), respectively. The independent combination, denoted by⊗
s∈S[ps • (v, δs)

⊕
(1− ps) • (v0,q)], is just the independent conducted of the lottery of “ex–post”

problems (v, δs) and (v0,q)] ∼i (v,p) with probabilities ps and 1−ps. Thus, each of the “ex–post”

problems has a probability of realization equal to ps which is the probability assessed for the real-

ization of the state s. Thus, an individual perhaps may percieve of the corresponding independent

combination of gambles as presenting more opportunities than there would be in the original problem

(v,p). This may be justified by the observation that, while in the original problem the realization

of any one state excludes the realization of the others, with independence the manifestation each

of the “ex–post” problem is independent of the manifestation of the others. However, these are the

only opportunities, provided under the independent combination of gambles, as everything else is

just the corresponding zero problem. The question arises to what degree does the rule substantiate

this perception of such individuals. The axiom says the the rule makes such an individual indif-

ferent between the two possibilities. As shall be seen, this axiom characterizes rules that have the

ex–post form. For this to be the key, the notion of corresponding zero problems is essential as they

act as “absorbers” of remaining probabilities in the sense that, no matter what there likelihood of

occurrence, they always result in a zero share of every individual under any rule. We emphasize the

last point as this feature is not present in every setting where ex–post forms seek a characterization.

Bankruptcy problems do present such an instance where the feature exists.

7. Main Results

We present our main results below. All the proofs are relegated to the appendix. We begin with

Theorem 1 which states that the class of parametric rules Φ, described in Section 4, satisfy the

three axioms: claim monotonicity, weak consistency and no reward for more irrelevant claims. As

section 4 already makes a case that the class Φ is very large, the point of Theorem 1 is to indicate

that the scope of applicability of Theorem 2 is at least as large as the class Φ.
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Theorem 1. Any rule φ ∈ Φ satisfies claim monotonicity, weak consistency and no reward for

more irrelevant claims.

Within the class of rules that satisfy the axioms of claim monotonicity, weak consistency and no

reward for more irrelevant claims, Theorem 2 is the main result that characterizes those rules that

have the ex–ante form. Since the class Φ is a subclass of such rules according to Theorem 1, we

conclude that the characterization achieved by Theorem 2 pins down the critical feature, centering

around the way rules process the inherent riskiness that manifest in the state contingent claims of

the individuals, that ex–ante rules within this class have.

Theorem 2. Consider any rule that satisfies claim monotonicity, weak consistency and no reward

for more irrelevant claims. The rule satisfies no penalty for risk and no sudden response to uncer-

tainty, if and only if, it is an ex–ante rule.

In the light of Theorem 1 and Theorem 2, the following corollary is immediate.

Corollary 1. Any rule φ ∈ Φ has the ex–ante form, if and only if, φ satisfies no penalty for risk

and no sudden response to uncertainty.

The key to the proof of Theorem 2 is the Lemma 1 which is stated next. For the statement of the

following lemma, we now define the notion of the “equivalent deterministic profile”. Define the map,

(c,p) ∈ C ×∆(S) 7→ c∗(c,p) ∈ C as c∗(c,p) := 〈c̄i(p) ·1S : i ∈ N〉. Then c∗(c,p) is the equivalent

deterministic profile of c at the assessment of state probabilities p ∈ ∆(S). Lemma 1 describes the

properties of the equivalent deterministic profile which are used in the proof of Theorem 2.

Lemma 1. If a rule φ satifies no penalty for risk, claim monotonicity, weak consistency and no

reward for more irrelevant claims, then for any (c, E,p) ∈ D such that E ≤ mini∈N c̄i(p) each of

the following hold:

1. (c∗(c,p), E,p) ∈ D .

2. φ(c, E,p) = φ(c∗(c,p), E,p).

Having described our characterization theorem for the ex–ante form, now we proceed to describe
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Theorem 3 which characterizes the ex–post form of rules. Since the characterization is based on

considerations of the way a rule makes an individual perceive different configurations consisting of

bankruptcy problems, we bring to fore these considerations before the statement of Theorem 2.

Recall, the class of all independent combinations of gambles has been denoted by ID . For each

individual i, driven by von Neumann–Morgenstern preferences over money lotteries, %i denotes the

induced preference over ID .6

Theorem 3. The rule φ has the ex–post form, if and only if, the induced %i satisfies indifference

to independent combinations for every risk neutral i ∈ N .

Remark. Here we point out that the theorem above is not a mere statement of definitional equiv-

alence of two notions: “ex–post rule” and “Indifference to Independent Combinations”. A rule

is required to make an individual indifferent between the original problem and its corresponding

“independent combination of gambles” version only if that individual is risk neutral. The rule is

silent about how an individual compares these two versions of a problem if he is not risk neutral.

Further, it is not required that at least one or more individuals are risk neutral.

The next result offers a partial comparative static between the ex–ante and the ex–post forms of a

rule induced by some h ∈H . Recall, from the section 5, many rules such as the Talmud rule, the

Minimal Overlap rule and any member of the class of Priority Augmented Weighted Constrained

Equal Awards rule admit natural ex–ante and ex–post versions through this mechanism. The theo-

rem below says, for all low enough levels of the resource, if all but one individuals have deterministic

claims, then the ex–ante rule defined by h awards a larger share to the odd individual than does

the ex–post rule defined by h. In this sense, perhaps when the planner proposes a choice between

the ex–ante and the ex–post versions of one of the standard rules, it is possible that individuals

may be more inclined to accept the ex–post version.

Theorem 4. Let φEP and φEA be the ex–post and ex–ante rules defined by some h ∈H . Consider

any individual i ∈ N , and any (c, E,p) ∈ D such that E ≤ minj∈N c̄j(p) and cj is deterministic

for every j ∈ N \ {i}. Then φEA
i (c, E,p) ≥ φEP

i (c, E,p). For E > mins∈S cis, given a profile of

claims, if p ∈ ∆o(S) and ci non–deterministic, then the inequality is strict.7

6See the last paragraph of section 2 for the complete definition of %i.
7For any subset K, of a topological space (X,TX), Ko denotes the interior of K.
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Theorems 2 and 3 provide a very top–level characterization of the ex–ante and the ex–post forms

of rules for resolving bankruptcy problems. One way to think of the relevance of these theorems is

that whenever a rule — or a class of rules — from the standard bankruptcy literature in the “deter-

ministic” setting, is considered for extension to the setting involving “uncertainty”, then standard

characterizations of the corresponding “deterministic” versions are adaptable to characterizations of

the corresponding “ex–ante” and “ex–post” forms. The key idea is whether the rule being proposed

should be chosen so as to satisfy either the property of no penalty for risk or that of indifference to

independence combinations. Within the class Φ, the two choices are not compatible.

8. Geometry of the characterization of the ex–ante form

To demonstrate geometrically the characterization argument of the ex–ante form, consider a set

up with three individuals and four states of nature. Since any profile of state contingent claims

is a tuple consisting of one profile of individual claims for each state, it is possible to represent

such a profile of state contingent claims as a collection of points in the first orthant of an Euclidean

space with dimension equal to the number of individuals. Each point of the collection represents the

profile of individual claims corresponding to one state. Thus, for a typical profile of state contingent

claims, the collection has points equal in number to that of the states. However, given a profile of

state contingent claims, it is possible for some of these points to coincide. For any two states, the

points representing them coincide precisely when the profile of individual claims in the two states

are identical; i.e., any individual’s claims are the same in both states. With these comments in

place, consider Figure 1.
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Figure 1: A Bankruptcy Problem — The axes labelled 1,2 and 3 correspond to three individuals.
The four dots labelled P , Q, R and S correspond to the state-wise profile of individual claims for four
states of nature. The circled dot M indicates the vector of individual claims given the four state-wise
profile of individual claims and an assessment of state probabilities p. The corner of the square shaped
box with dark edges which is farthest from the origin is the vector all whose coordinates equal the smallest
component of the vector of expected individual claims M . The shaded triangular surface is the resource
level E because any point on it has the sum of coordinates as E.

Since the demonstration considers four states of nature, the figure consists of four points labelled

P , Q, R and S with each point representing one such state. The points are considered in the first

orthant of a three dimensional Euclidean space since we have three individuals. The axes are

labelled 1, 2 and 3. The interpretation for any such point is that the orthogonal component of the

point along the axis corresponding to any individual is the individual’s claim in that state. For

any assessment of state probabilities, the vector of expected claims of the individuals is a point in

the convex hull of the state-wise profile of claims. This is illustrated as the point labelled M . The

shaded triangular surface represents those points of the first orthant whose sum of coordinates is

resource, say E. For the given profile of state contingent claims and the resource, together with the

fixed assessment of state probabilities, to constitute a bankruptcy problem, it must be the case that

the state-wise sum of individual claims is at least as much as the resource. That this is indeed the

case is ensured by positioning each of the four points “above” the triangular surface. For purposes

of this demonstration, we consider the resource to be at most the smallest expected claim across

individuals. This is captured by having the triangular surface enclosed in the cube whose edges are
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shown with dark lines. Therefore, the vector of individuals’ expected claims is on the extended face

of the cube which is parallel to the plane defined by axes 2 and 3. Now, consider Figure 2.
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2(a): Intermediate Profile. 1
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2(b): Final Profile.

Figure 2: First individual processed — The first coordinates of Q and R are increased to that of M
to obtain figure 2(a) from figure 1. Next, the first coordinates of P and S are decreased to that of M to
obtain figure 2(b) from figure 2(a). Thus, in figure 2(b), each of P , Q, R, S and M are in the same plane
which is parallel to the plane defined by the axes labelled 2 and 3.

The profile shown in Figure 2(a) differs from Figure 1 in that the first coordinates of the

points Q and R are increased to that of M . Since the claims of individuals 2 and 3 for every state

is unchanged, by claims monotonicity, individual 1 gets at least as much in the profile of Figure

2(a) as she does in the profile of Figure 1. The profile shown in Figure 2(b) differs from that of

Figure 2(a) in that the first coordinates of the points P and S are decreased to that of M . The

state-wise claim of individual 1 is at least as much as the resource in both profiles of Figure 2(a)

and Figure 2(b). By no reward for more irrelevant claims, individual 1 gets at most as much in the

profile of Figure 2(a) as she does in the profile of Figure 2(b). Thus, individual 1 gets at least

as much in the profile shown in Figure 2(b) as she does in the profile shown in Figure 1. Notice,

from the perspective of individual 1, the profile in Figure 2(b) is riskless and has the same mean

as the profile in Figure 1 which is shown to be risky. Since the state-wise claims of individuals 2

and 3 are the same across the two profiles, by no penalty for risk, individual 1 gets at least as much

in the profile of Figure 1 as she does in the profile of Figure 2(b). Together with the earlier

conclusion, the individual is seen to obtain the same across both profiles of Figure 1 and Figure

2(b). By weak consistency, individuals 2 and 3 also get the same across the two profiles. Thus, the

rule treats both profiles shown in Figure 1 and Figure 2(b) identically. Now, consider Figure 3.
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Figure 3: Second individual processed — The second coordinates of P and R are increased to that
of M to obtain figure 3(a) from figure 2(b). Next, the second coordinates of Q and S are decreased to that
of M to obtain figure 3(b) from figure 3(a). Thus, in figure 3(b), each of P , Q, R, S and M are in the same
line which is normal to the plane defined by the axes labelled 1 and 2.

The profile shown in Figure 3(a) differs from Figure 2(b) in that the second coordinates of the

points P and R are increased to that of M . Since the claims of individuals 1 and 3 for every state

is unchanged, by claims monotonicity, individual 2 gets at least as much in the profile of Figure

3(a) as she does in the profile of Figure 2(b). The profile shown in Figure 3(b) differs from that

of Figure 3(a) in that the second coordinates of the points Q and S are decreased to that of M .

The state-wise claim of individual 2 is at least as much as the resource in both profiles of Figure

3(a) and Figure 3(b). By no reward for more irrelevant claims, individual 2 gets at most as much

in the profile of Figure 3(a) as she does in the profile of Figure 3(b). Thus, individual 2 gets

at least as much in the profile shown in Figure 3(b) as she does in the profile shown in Figure

2(b). Notice, from the perspective of individual 2, the profile in Figure 3(b) is riskless and has the

same mean as the profile in Figure 2(b) which is shown to be risky. Since the state-wise claims of

individuals 1 and 3 are the same across the two profiles, by no penalty for risk, individual 2 gets

at least as much in the profile of Figure 2(b) as she does in the profile of Figure 3(b). Together

with the earlier conclusion, the individual is seen to obtain the same across both profiles of Figure

2(b) and Figure 3(b). By weak consistency, individuals 1 and 3 also get the same across the two

profiles. Thus, the rule treats both profiles shown in Figure 2(b) and Figure 3(b) identically.

Now, consider Figure 4.
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Figure 4: Third individual processed — The third coordinates of P and Q are increased to that of
M to obtain figure 4(a) from figure 3(b). Next, the third coordinates of R and S are decreased to that of
M to obtain figure 4(b) from figure 4(a). Thus, in figure 4(b), each of P , Q, R, and S coincide with M .

The profile shown in Figure 4(a) differs from Figure 3(b) in that the third coordinates of the

points P and Q are increased to that of M . Since the claims of individuals 1 and 2 for every state

is unchanged, by claims monotonicity, individual 3 gets at least as much in the profile of Figure

4(a) as she does in the profile of Figure 3(b). The profile shown in Figure 4(b) differs from that

of Figure 4(a) in that the third coordinates of the points R and S are decreased to that of M .

The state-wise claim of individual 3 is at least as much as the resource in both profiles of Figure

4(a) and Figure 4(b). By no reward for more irrelevant claims, individual 3 gets at most as much

in the profile of Figure 4(a) as she does in the profile of Figure 4(b). Thus, individual 3 gets

at least as much in the profile shown in Figure 4(b) as she does in the profile shown in Figure

4(a). Notice, from the perspective of individual 3, the profile in Figure 4(b) is riskless and has the

same mean as the profile in Figure 3(b) which is shown to be risky. Since the state-wise claims of

individuals 1 and 2 are the same across the two profiles, by no penalty for risk, individual 3 gets

at least as much in the profile of Figure 3(b) as she does in the profile of Figure 4(b). Together

with the earlier conclusion, the individual is seen to obtain the same across both profiles of Figure

3(b) and Figure 4(b). By weak consistency, individuals 1 and 2 also get the same across the two

profiles. Thus, the rule treats both profiles shown in Figure 3(b) and Figure 4(b) identically.

From the concluding statements of the last three paragraphs, it follows that the rule treats

the profiles shown in Figure 1 and Figure 4(b) identically. Thus, it is concluded that the rule

processes any bankruptcy problem through the resulting vector of expected claims of the individuals.
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This is the content of Lemma 1.

9. Strategy for characterizing the ex–post form

Characterization of the ex–post form is based on the way a chosen rule, to resolve bankruptcy prob-

lems, makes a certain class of individuals perceive different situations that they may find themselves

in which are different configurations built out of several bankruptcy problems. In particular, we en-

visage the individuals to be driven by von Neumann–Morgenstern preferences over money lotteries.

Now, fixing a rule under consideration, say φ, let (c, E,p) be a bankruptcy problem. Recall, the

resulting pair (v, E) is denoted by v and is called a situation. Also, we have a corresponding zero

situation, denoted by v0, which is the pair (c, 0). That is, for the situation v, the correponding zero

situation is obtained by changing the level of the resource to zero. Since a rule to divide the resource

never awards negative shares to any individual, when the level of the resource is zero it must award

every individual the share zero. This feature of bankruptcy problems is critical in identifying the

notion of zero situation as then, for every individual i, we know that φi(v0,q) for any assessment

of state probabilities q ∈ ∆(S). As will be seen, it is the existence of this natural notion of zero

situation corresponding to any situation is what makes our characterization of the ex–post possible

with such generality.

µ

•
•

•

•

π1

π2

πk

πK

•
•
•

•
•
•

φi(v1,p1)

φi(v2,p2)

φi(vk,pk)

φi(vK ,pK)

5(a) A general gamble.

µs

•

•

ps

1 − ps

φi(v, δs)

φi(v0,q) = 0

5(b) A special gamble.

Figure 5: Gamble over Bankruptcy Problems — Using a randomization device having K mutually
exclusive and exhaustive outcomes, with probabilities π1, . . . , πK , the decision makers are made to engage
in the kth. bankruptcy problem (vk,pk) inducing a monetary outcome of φi(vk,pk), for individual i, with
probability πk. The monetary outcomes are indicated to the right of the terminal nodes. This is a general
“gamble over bankruptcy problems” as illustrated in part (a). Part (b) illustrates a very special gamble.
Starting with bankruptcy problem (v,p), two new bankruptcy problems are derived which are (v, δs) and
the corresponding zero problem (v0,q). These two problems are played with probabilities ps and 1 − ps,
respectively. Note, the zero problem gives individual i a monetary return of zero as the resource in the
situation v0 is zero.

Now, consider Figure 5. Demonstrated in Figure 5(a) is a gamble over bankruptcy problems.
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What is meant is that via some randomization device, which offers K possible mutually exclu-

sive and exhaustive outcomes with repsective probabilities π1, π2, . . . , πK , the bankruptcy problem

(vk,pk) ∈ D is realized for k ∈ {1, 2, . . . , K}. The gamble is formally denoted by [
⊕K

k=1 πk •(vk,pk)].

As a result, the realization of the problem (vk,pk) implies a monetary reward of φi(vk,pk) for in-

dividual i. Since the individual envisaged is driven by von Neumann–Morgenstern preference over

monetary outcomes, if individual is risk neutral then she perceives this gamble via its impied ex-

pected wealth, namely
∑K

k=1 πk · φi(vk,pk). Now, Figure 5(b) presents a very specific gamble.

Given the bankruptcy problem (v,p) and any state s ∈ S, this gamble results in the problem

(v, δs) with probability ps and the problem (v0,q) with probability 1 − ps. As we have already

seen that φi(v0,q), we conclude that this special gamble presents individual i with expected wealth

ps · φi(v, δs).
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•
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Figure 6: Independent combination of Gambles — Two gambles, µ and µ′ are conducted indepen-
dently. Thus, the subtree rooted at any any outcome of the gamble µ is not dependent on the resulting
outcome. The terminal nodes represent the outcomes of the independent combination of the two gambles.
The money receieved by individual i is indicated to the right of each terminal node. The probability of
the realization of any terminal node is the product of the probabilities indicated along the edges leading
to that terminal node from the root of the tree.

Now, consider Figure 6. Demontrated is an independent combination of gambles starting with

two gambles over bankruptcy problems. The first gamble is denoted by µ which is [
⊕K

k=1 πk •

(vk,pk)]. That is, there are K bankruptcy problems, with the kth. problem having a probability

of realization πk. The second gamble is denoted by µ′ which is [
⊕K′

k=1 π
′
k
• (v′k,p

′
k)]. That is, there

are K ′ bankruptcy problems, with the kth. problem having a probability of realization π′k. Since

independence is in the sense of probability theory, no matter what the outcome of the first gamble

is, the gamble following is the same. This independent combination of gambles is formally denoted

by [
⊕K

k=1 πk • (vk,pk)]
⊗

[
⊕K′

k=1 π
′
k
• (v′k,p

′
k)]. Since for any k ∈ {1, 2, . . . , K} and k′ ∈ {1, 2, . . . , K ′}

the terminal node is realized with probability πk · πk′ , the expected wealth of individual i from this
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independent combination of gambles is the weighted sum of terms of the form φi(vk,pk)+φi(v
′
k,p

′
k)

with respective weights being πk · πk′ . In this figure, only the independent combination of two

gambles has been illustrated. The notion of “independent combinations of gambles” stand defined

analogously for arbitrarily many finite number of gambles over bankruptcy problems. The number

of gambles, in any independent combination, corresponds to the depth of the tree.

µ

•

•

ps

1− ps

µ′

•

•

ps′

1− ps′

µ′
•

•

ps′

1− ps′

φi(v, δs) + φi(v, δs′)

φi(v, δs) + φi(v0,q
′) = φi(v, δs)

φi(v0,q) + φi(v, δs′) = φi(v, δs′)

φi(v0,q) + φi(v0,q
′) = 0

Figure 7: The Special Combination — For the state space to consist only of two states s and s′,
for some bankruptcy problem (v,p), the independent combination of independent gambles presented here
has the feature that the monetary outcomes φi(v, δs) and φi(v, δs′) have independent probabilities of
realization as ps and ps′ , respectively. Notice, this is the case precisely because the corresponding zero
situation v0 is such that, for any q,q′ ∈ ∆(S), φi(v0,q) and φi(v0,q

′) are both zero. This is so as v0 is
obtained from v by setting the resource to zero.

Finally, consider Figure 7. For exactly two states of nature s and s′, and any bankruptcy

problem (v),p, two gambles are obtained corresponding to each of the two “ex–post” problem.

That is, the first gamble randomzises between (v, δs) and the corresponding zero problem (v0),q

with probabilities ps and 1 − ps, respectively. The second gamble randomzises between (v, δs′)

and the corresponding zero problem (v0),q
′ with probabilities ps′ and 1 − ps′ , respectively. Since

the zero problems result in zero share for the individual i, we conclude that the realized monetary

rewards for individual i are φi(v, δs) +φi(v, δs′), φi(v, δs) and φi(v, δs′) (the remaining probability

being on the reward of zero) with probabilities ps · ps′ , ps · (1− ps′) and (1− ps) · ps′ , respectively.

The expression for the implied expected wealth then simplifies to ps · φi(v, δs) + ps′ · φi(v, δs′).

Further, the original problem (v, δs) implies a wealth φi(v, δs) for this individual. Thus, the rule φ

has the ex–post form, if and only if, the risk neutral individual i is indifferent between the original

problem and the independent combination of gambles as described in the figure. This is the content

of Theorem 3.

10. Logical Independence of Axioms

Given our characterization results, namely, Theorem 2 and Theorem 3, in this section we provide
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two examples of rules. The first example satisfies the axioms no penalty for risk, claim mono-

tonicity, weak consistency and no reward for more irrelevant claims but violates the property of

no sudden response to uncertainty. The second example satisfies the axioms no sudden response

to uncertainty, claim monotonicity, weak consistency and no reward for more irrelevant claims but

violates the property of no penalty for risk.

Example 1. Define the map φ∗ : D → RN
+ as follows. Fix any problem (c, E,p) ∈ D . For

every i ∈ N , let φ∗i (c, E,p) := min{‖(ci,p)‖2 , λ}. Here, λ satisfies
∑

i∈N min{‖(ci,p)‖2 , λ} = E.

Since
∑

i∈N ‖(ci,p)‖2 ≥
∑

i∈N ‖(ci,p)‖1 =
∑

s∈S[ps ·
∑

i∈N cis], it follows that
∑

i∈N ‖(ci,p)‖2 ≥ E.

Thus, such a λ indeed exists. λ is unique if the inequality is strict. If the inequality is indeed

an equality, then all solutions define the same value of the map at the problem. Thus, the rule is

indeed well–defined. Observe, the map φ∗ is continuous in E. Hence, φ∗ is indeed a rule according

to our definition in section 2.

Consider any c′i ≥ ci. Let λ′ satisfy min{‖(c′i,p)‖2 , λ′} +
∑

j∈N\{i}min{‖(ci,p)‖2 , λ′} = E.

Since c′i ≥ ci, we have ‖(c′i,p)‖2 ≥ ‖(ci,p)‖2. If min{‖(c′i,p)‖2 , λ′} < min{‖(ci,p)‖2 , λ}, then

λ′ < λ. Hence, for every j ∈ N \ {i}, it follows that min{‖(cj,p)‖2 , λ
′} < min{‖(cj,p)‖2 , λ}.

Hence, we have: min{‖(c′i,p)‖2 , λ′}+
∑

j∈N\{i}min{‖(cj,p)‖2 , λ
′} <

∑
j∈N min{‖(cj,p)‖2 , λ}. By

definition of λ′ and λ both sides of the above inequality respectively equal E. Since this is a con-

tradiction, our supposition has to be wrong. That is, φ∗ satisfies claim monotonicity.

Consider any c′i such that φ∗i ((c
′
i, c−i), E,p) = φ∗i (c, E,p). Let λ′ satisfy min{‖(c′i,p)‖2 , λ′} +∑

j∈N\{i}min{‖(ci,p)‖2 , λ′} = E. Assume, without loss of generality, λ′ ≥ λ. Hence, for every j ∈

N \ {i}, min{‖(cj,p)‖2 , λ
′} ≥ min{‖(cj,p)‖2 , λ}. Since min{‖(c′i,p)‖2 , λ′} = min{‖(ci,p)‖2 , λ},

we obtain min{‖(c′i,p)‖2 , λ′} +
∑

j∈N\{i}min{‖(cj,p)‖2 , λ
′} ≥

∑
j∈N min{‖(cj,p)‖2 , λ}. By def-

inition of λ′ and λ, respectively, both sides of the last inequality equal E. Hence, to avoid a

contradiction, we must have: min{‖(cj,p)‖2 , λ
′} = min{‖(cj,p)‖2 , λ} for every j ∈ N \ {i}. From

the definition of the rule φ∗, we have: φ∗j((c
′
i, c−i), E,p) = φ∗j(c, E,p) for every j ∈ N \ {i}. That

is, the rule φ∗ satisfies weak consistency.

Observe, ‖(ci,p)‖2 ≥ mins∈S cis. Hence, mins∈S cis ≥ E implies ‖(ci,p)‖2 ≥ E. No reward for

more irrelevant claims follows now by the definition of φ∗. Since ‖(x,p)‖2 ≥ ‖(x,p)‖1 for every

x ∈ RS
+ and p ∈ ∆(S), it follows that no penalty for risk is true for the rule φ∗. In fact, note that

‖(ci,p)‖22 = σ2(ci,p) +‖(ci,p)‖21, where σ2(ci,p) :=
∑

s∈S ps · (cis− c̄i(p))2. Thus, it is not possible

that φ∗ is a rule that is of the ex–ante form. Since φ∗ satisfies all the four axioms discussed, by

Theorem 2, it must violate no sudden response to uncertainty. The presentation of this example is
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complete. �

Example 2. Define the map φ∗∗ : D → RN
+ as follows. Fix an arbitrary state s0 ∈ S. Fix

any problem (c, E,p) ∈ D . For every i ∈ N , let φ∗∗i (c, E,p) := min{cis0 , λ}. Here, λ satisfies∑
i∈N min{cis0 , λ} = E. Since (c, E,p) ∈ D , it follows that

∑
i∈N cis0 ≥ E. Thus, such a λ indeed

exists. λ is unique if the inequality is strict. If the inequality is indeed an equality, then all solutions

define the same value of the map at the problem. Thus, the rule is indeed well–defined. Observe,

the map φ∗∗ is continuous in E. Hence, φ∗∗ is indeed a rule according to our definition in section 2.

Consider any c′i ≥ ci. Let λ′ satisfy min{c′is0 , λ
′} +

∑
j∈N\{i}min{cjs0 , λ′} = E. Since c′i ≥ ci,

we have c′is0 ≥ cis0 . If min{c′is0 , λ
′} < min{cis0 , λ}, then λ′ < λ. Hence, for every j ∈ N \ {i}, it

follows that min{c′js0 , λ
′} < min{cjs0 , λ}. Hence, we have: min{c′is0 , λ

′} +
∑

j∈N\{i}min{cjs0 , λ′} <∑
j∈N min{cjs0 , λ}. By definition of λ′ and λ both sides of the above inequality respectively equal

E. Since this is a contradiction, our supposition has to be wrong. That is, φ∗∗ satisfies claim

monotonicity.

Consider any c′i such that φ∗∗i ((c′i, c−i), E,p) = φ∗∗i (c, E,p). Let λ′ satisfy min{c′is0 , λ
′} +∑

j∈N\{i}min{cjs0 , λ′} = E. Assume, without loss of generality, λ′ ≥ λ. Hence, for every j ∈

N \ {i}, min{cjs0 , λ′} ≥ min{cjs0 , λ}. Since min{c′is0 , λ
′} = min{cis0 , λ}, we obtain min{c′is0 , λ

′} +∑
j∈N\{i}min{cjs0 , λ′} ≥

∑
j∈N min{cjs0 , λ}. By definition of λ′ and λ, respectively, both sides of the

last inequality equal E. Hence, to avoid a contradiction, we must have: min{cjs0 , λ′} = min{cjs0 , λ}

for every j ∈ N \{i}. From the definition of the rule φ∗∗, we have: φ∗∗j ((c′i, c−i), E,p) = φ∗∗j (c, E,p)

for every j ∈ N \ {i}. That is, the rule φ∗∗ satisfies weak consistency.

Observe, cis0 ≥ mins∈S cis. Hence, mins∈S cis ≥ E implies cis0 ≥ E. No reward for more irrele-

vant claims follows now by the definition of φ∗∗. Now, φ∗∗ satisfies no sudden response to uncertainty

vacuously. Also, for any “generic problem” (c, E,p) ∈ D , consider the corresponding profile c′ in

which, for a particular i ∈ N , c′i := c̄i(p) · 1S and c′j := cj for every j ∈ N \ {i}. If c̄i(p) ≤ E and

cis0 < c̄i(p), then φ∗∗i (c, E,p) < φ∗∗i (c′, E,p). Since c̄i(p) = c̄′i(p) and c′j = cj for every j ∈ N \ {i},

this constitutes a violation of no penalty for risk. The presentation of this example is complete. �

11. Conclusion

Within a framework of state contingent claims, where the resource must be divided before the state

is realized, we introduce and characterize two broad classes of rules, namely, ex–ante and ex–post

rules. To characterize these classes of rules we use adaptations of standard axioms from the literature
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as well as some natural axioms on uncertainty and risk. With a finite set of states representing

contingent claims, we model a very general setting that allows heterogeneity and correlation among

individual beliefs.

We first introduce and characterize the ex–ante forms of a class of parametric rules. The salient

feature of these rules is invariance to more irrelevant claims which has a huge normative appeal.

This axiom leaves us with a wide range of a very rich class of rules, notable examples of which

include ex–ante forms of Talmud rules and priority augmented constrained equal awards rules.

Next, we establish that the ex–post forms of rationing rules are equivalent to a condition satisfied

by the preferences of risk neutral individual which we term indifference to independent combinations

of gambles. This axiom, relating to a risk neutral individual’s preference, establishes the precise

normative characteristic of any ex–post rule. Finally, we provide a partial comparative static

showing that individuals will prefer an ex–ante rule to an ex–post rule, whenever the level of the

resource to be divided is sufficiently low.

We identify two interesting directions for future research. Although, the No Reward for More

Irrelevant Claims is a compelling axiom, it does exclude some of the rules; e.g., proportional rules. It

would be interesting to venture into the possibility of obtaining a slightly more general result which

would include such rules within this framework. Finally, it would be a natural excercise to deploy the

general characterizations presented in this article in combination with standard axiomatic analysis

of the classical theory to pin down specific families of rules with the ex–ante and the ex–post forms.

12. Appendix — Proof of results

Proof of Theorem 1. Observe, it is enough to argue, for any h ∈ H and any T ∈ T , φh,T is

indeed a rule and satisfies weak consistency, claim monotonicity and no reward for more irrelevant

claims. We proceed to establish each of these four objectives in turn.

Claim 1. φh,T is a rule and satisfies no reward for more irrelevant claims : Fix any problem

(c, E,p) ∈ D . By condition R.1, we have (T (c,p), E) ∈ D∗ as
∑

i∈N cis ≥ E for every s ∈ S.

Define t := E. For every i ∈ N , denote by xti the “truncated claim”; i.e., xti := min{Ti(c,p), t}. By

conditions H.1 and H.2, it follows that there exists a unique θ ∈ [θ∗, θ
∗] that solves the equation,

in θ,
∑

i∈N hi(θ, x
t
i) = t. Thus, the map φh,T in indeed a rule. Further, it is clear that the rule

satisfies no reward for more irrelevant claims by condition R.2. To see this, note that Ti(c,p) ≥ E

if mins∈S cis ≥ E. This completes the proof of claim 1.
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Claim 2. φh,T satisfies weak consistency : Fix any problem (c, E,p) ∈ D . By condition R.1, we have

(T (c,p), E) ∈ D∗ as
∑

i∈N cis ≥ E for every s ∈ S. Define t := E. For every i ∈ N , denote by xi

the “truncated claim”; i.e., xi := min{Ti(c,p), t}. For c′i ≥ ci, let x′i := min{Ti((c′i, c−i),p), t}. Let

θ and θ′ satisfy
∑

j∈N hj(θ, xj) = t and hi(θ
′, x′i) +

∑
j∈N\{i} hj(θ, xj) = t, respectively. We consider

c′i such that hi(θ
′, x′i) = hi(θ, xi). We must argue: hj(θ

′, xj) = hj(θ, xj) for every j ∈ N \ {i}.

If θ = θ′, then we have nothing to show. Hence, we consider θ 6= θ′. Assume, without loss

of generality, θ′ > θ. By condition H.3, hj(θ
′, xj) > hj(θ, xj) for every j ∈ N \ {i}. Hence,∑

j∈N\{i} hj(θ
′, xj) >

∑
j∈N\{i} hj(θ, xj). Since hi(θ

′, x′i) = hi(θ, xi), we obtain:

hi(θ
′, x′i) +

∑
j∈N\{i}

hj(θ
′, xj) >

∑
j∈N

hj(θ, xj).

However, both sides of the inequality equal t by definition of θ′ and θ, respectively. Thus, we have

a contradiction. Hence, our supposition that θ′ > θ is wrong. This completes the proof of claim 2.

Claim 3. φh,T satisfies claim monotonicity : Fix any problem (c, E,p) ∈ D . By condition R.1,

we have (T (c,p), E) ∈ D∗ as
∑

i∈N cis ≥ E for every s ∈ S. Define t := E. For every

i ∈ N , denote by xi the “truncated claim”; i.e., xi := min{Ti(c,p), t}. Also, let c′i ≥ ci, and

let x′i := min{Ti((c′i, c−i),p), t}. Observe, by condition R.3, Ti((c
′
i, c−i),p) ≥ Ti(c,p). Thus,

x′i ≥ xi. Let θ and θ′ satisfy
∑

j∈N hj(θ, xj) = t and hi(θ
′, x′i) +

∑
j∈N\{i} hj(θ, xj) = t, respectively.

We must argue: hi(θ
′, x′i) ≥ hi(θ, xi).

If θ = θ′, then we have nothing to show. Hence, we consider θ 6= θ′. Suppose, θ′ > θ.

By condition H.3, hj(θ
′, xj) > hj(θ, xj) for every j ∈ N . As x′i ≥ xi, it follows from con-

dition H.4 that hi(θ
′, x′i) ≥ hi(θ

′, xi). Hence, we obtain hi(θ
′, x′i) ≥ hi(θ, xi). Thus, we have:

hi(θ
′, x′i) +

∑
j∈N\{i} hj(θ

′, xj) >
∑

j∈N hj(θ, xj). However, both sides of the inequality equal t by

definition of θ′ and θ, respectively. Thus, we have a contradiction. Hence, our supposition that

θ′ > θ is wrong. Therefore, θ′ < θ. Then hj(θ
′, xj) < hj(θ, xj) for every j ∈ N \ {i}. It follows:∑

j∈N\{i} hj(θ
′, xj) <

∑
j∈N\{i} hj(θ, xj). Together with the definition of θ and θ′, we conclude that

x′i > xi as required. This completes the proof of claim 3. �

Proof of Lemma 1. The proof entails the construction of a list of |N | new profile of claims,

recursively by starting with a given problem, such that the analogues of implications 1 and 2 are

preserved across any two successive profiles. Then, implications 1 and 2 of the lemma shall be
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claimed to be established by showing that the |N |th. element of the list is indeed equal to c∗(c,p).

The argument is organized via several steps. Fix any (c, E,p) ∈ D such that E ≤ minj∈N c̄j(p).

Step 1: We construct a list of profiles 〈ck : k ∈ {0, 1, . . . , |N |}〉 as follows:

C.1 For (c, E,p) ∈ D , define c0 := c.

C.2 Suppose, for some k ∈ {1, . . . , |N |}, ck−1 has been defined. Then ck is obtained as follows:

define ck := 〈cki ∈ RS
+ : i ∈ N〉, where, for any i ∈ N , cki is defined by:

cki :=

c̄
k−1
k (p) · 1S ; if i = k;

ck−1i ; if i 6= k.

This completes the construction.

Step 2: We shall now show, for any k ∈ {1, 2, . . . , |N |}, the truth of the statement St[k] which is

the conjunction of the following statements:

k.1 (ck, E,p) ∈ D .

k.2 φ(ck, E,p) = φ(ck−1, E,p).

k.3 ckk = c̄k−1k (p) · 1S.

k.4 For any k ∈ {1, 2, . . . , |N |} and any i ∈ N \ {k}, cki = ck−1i .

k.5 c̄kk(p) ≥ E.

First, we prove St[1]; i.e., k = 1. Observe, 1.3 and 1.4 are trivial by the definition of c1i in C.2.

To establish 1.1, we must argue that
∑

i∈N c
1
is ≥ E for every s ∈ S. So, fix any s ∈ S. By C.1,

we obtain c01 = c1. Thus, c̄01(p) = c̄1(p). By C.2, we have c11s = c̄1(p). Since mini∈N c̄i(p) ≥ E,

it follows c11s ≥ E which also proves 1.5. Hence,
∑

i∈N c
1
is ≥ c11s ≥ E. Thus, 1.1 stands proven.

With 1.1 established, both φ(c1, E,p) and φ(c0, E,p) are well–defined. We next argue that 1.2

holds; i.e., the two allocations are equal. For this, it will be enough to argue that φ1(c
1, E,p) =

φ1(c
0, E,p); for then

∑
i 6=1 φi(c

1, E,p) =
∑

i 6=1 φi(c
0, E,p) which, by weak consistency, implies

φi(c
1, E,p) = φi(c

0, E,p) for every i 6= 1. To argue that φ1(c
1, E,p) = φ1(c

0, E,p), we begin by

defining c′1 := 〈c′1s ∈ R+ : s ∈ S〉 by c′1s := max{c01s, c̄01(p)} for every s ∈ S. Thus, c′1 ≥ c01. By

claim monotonicity, we have φ1((c
′
1, c

0
−1), E,p) ≥ φ1(c

1, E,p). Since E ≤ minj∈N c̄j(p) and c0 = c,
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we have c̄01(p) ≥ E. Hence, mins∈S c
′
1s ≥ E. By no reward for more irrelevant claims, we have

φ1((c
′
1, c

0
−1), E,p) ≤ φ1(c

0, E,p). Thus, φ1(c
1, E,p) ≤ φ1(c

0, E,p). Since c11 = c̄01(p) · 1S, by no

penalty for risk it follows that φ1(c
1, E,p) ≥ φ1(c

0, E,p). Hence, φ1(c
1, E,p) = φ1(c

0, E,p). This

completes the proof of St[1].

Now, for any k ∈ {2, 3, . . . , |N |}, we prove St[k] assuming the truth of St[l] for every l ∈

{1, 2, . . . , k − 1}. Observe, k.3 and k.4 are trivial by the definition of cki in C.2. To establish

k.1, we must argue that
∑

i∈N c
k
is ≥ E for every s ∈ S. So, fix any s ∈ S. By the con-

junction of l.4 of St[l] for every l ∈ {1, 2, . . . , k − 1}, we have ck−1k = c0k. Together with C.1,

we obtain ck−1k = ck. Thus, c̄k−1k (p) = c̄k(p). It follows from k.3 that ckks = c̄k(p). Since

mini∈N c̄i(p) ≥ E, it follows ckks ≥ E which also proves k.5. Hence,
∑

i∈N c
k
is ≥ ckks ≥ E. Thus,

k.1 stands proven. With k.1 established, and the truth of St[k − 1] assumed, both φ(ck, E,p) and

φ(ck−1, E,p) are well–defined. We next argue that k.2 holds; i.e., the two allocations are equal.

For this, it will be enough to argue that φk(ck, E,p) = φk(ck−1, E,p); for then
∑

i 6=k φi(c
k, E,p) =∑

i 6=k φi(c
k−1, E,p) which, by weak consistency, implies φi(c

k, E,p) = φi(c
k−1, E,p) for every i 6= k.

To argue that φk(ck, E,p) = φk(ck−1, E,p), we begin by defining c′k := 〈c′ks ∈ R+ : s ∈ S〉

by c′ks := max{ck−1ks , c̄k−1k (p)} for every s ∈ S. Thus, c′k ≥ ck−1k . By claim monotonicity, we

have φk((c′k, c
k−1
−k ), E,p) ≥ φk(ck, E,p). By (k − 1).5, c̄k−1k (p) ≥ E. Hence, mins∈S c

′
ks ≥ E.

By no reward for more irrelevant claims, we have φk((c′k, c
k−1
−k ), E,p) ≤ φk(ck−1, E,p). Thus,

φk(ck, E,p) ≤ φk(ck−1, E,p). Since ckk = c̄k−1k (p) · 1S, by no penalty for risk it follows that

φk(ck, E,p) ≥ φk(ck−1, E,p). Hence, φk(ck, E,p) = φk(ck−1, E,p). This completes the proof of

St[k] assuming the truth of St[l] for every l ∈ {1, 2, . . . , k− 1}. As St[1] has already been shown to

be true above, we conclude that St[k] holds for every k ∈ {1, 2, . . . , |N |}.

Step 3: We shall argue that c|N | = c∗(c,p); i.e., we must argue c
|N |
i = c∗i (c,p) for any i ∈ N . Fix

any i ∈ N . By definition, c∗i (c,p) = c̄i(p) · 1S. Hence, we must argue that c
|N |
i = c̄i(p) · 1S. Let

k := i. By the conjunction of the statements St[1] to St[k − 1], we have ck−1k = c0k. Also, c0k = ck

by C.1. Thus, ck−1k = ck; hence, c̄k−1k (p) = c̄k(p). By k.3 of St[k], we obtain ckk = c̄k(p) · 1S.

If k = |N |, then c
|N |
k = ckk. However, if k ∈ {1, 2, . . . , |N | − 1}, then by the conjunction of the

statements St[k + 1] to St[|N |] we have c
|N |
k = ckk. Thus, c

|N |
k = c̄k(p) · 1S. Since k was defined to

be i, we have established that c
|N |
i = c∗i (c,p). As i ∈ N was arbitrary, we have c|N | = c∗(c,p).

Step 4: We conclude by showing that implications 1 and 2 of the lemma indeed hold. Since

(c, E,p) ∈ D and c0 = c by C.1, via the conjunction of k.1 of St[k] for every k ∈ {1, 2, . . . , |N |}
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we have (c|N |, E,p) ∈ D . Now, by an argument obtained by replacing “k.1” with “k.2” in the

previous sentence, we obtain φ(c|N |, E,p) = φ(c, E,p). Finally, by the previous step, we conclude

that (c∗(c,p), E,p) ∈ D and φ(c∗(c,p), E,p) = φ(c, E,p). This completes the proof. �

Proof of Theorem 2. The “if” part is obvious. We proceed to establish the “only if” part. First,

we define a map ψ : D∗ → RN
+ . For any (x, t) ∈ D∗ with x ≡ 〈xi ∈ R+ : i ∈ N〉, let E := t

and c := 〈ci ∈ RS
+ : i ∈ N〉, where ci := xi · 1S for every i ∈ N . Observe, (c, E,p) ∈ D . Then

set ψ(x, t) := φ(c, E,p). Since φ satifies
∑

i∈N φi(c, E,p) = E, we obtain
∑

i∈N ψi(x, t) = t. To

complete the proof, it is enough to show that φ(c, E,p) = ψ(c̄(p), E) for any (c, E,p) ∈ D , where

c̄(p) ≡ 〈c̄i(p) : i ∈ N〉. Fix any (c, E,p) ∈ D . By definition of D , it follows that the corresponding

(c̄(p), E) ∈ D∗. If E ≤ mini∈N c̄i(p), then by Lemma 1 we obtain φ(c, E,p) = ψ(c̄(p), E). Observe,

c∗(c,p) = c̄(p). Thus, for any E ≤ mini∈N c̄i(p), we have established φ(c, E,p) = ψ(c̄(p), E).

Suppose, for the sake of contradiction, the set S := {E ∈ E : φ(c, E,p) 6= ψ(c̄(p), E)} is not

empty. Since S is bounded below by mini∈N c̄i(p), E∗ := inf S exists and E∗ ≥ mini∈N c̄i(p).

Without loss of any generality, by continuity of φ, we shall assume p ∈ ∆o(S). If mini∈N c̄i(p) = 0,

then φj(c, E,p) = 0 for any j ∈ arg mini∈N c̄i(p). Thus, we may assume without any loss of

generality that mini∈N c̄i(p) > 0, Hence, E∗ is strictly positive. From the definition of E∗, for

any E < E∗, φ(c, E,p) = ψ(c̄(p), E). Now, ψ being defined via φ, is also continuous. Thus,

φ(c, E∗,p) = ψ(c̄(p), E∗). By no sudden response to uncertainty, there exists ε > 0 such that, for

any E ∈ [E∗, E∗ + ε), it must be that φ(c, E,p) = ψ(c̄(p), E). This violates the definition of E∗ as

the infimum of the set S . Thus, we have a contradiction to the supposition that S is not empty.

This completes the proof. �

Proof of Theorem 3. Consider an individual i who is driven by von Neumann–Morgenstern

preferences over money lotteries. Since the class of all Bernoullians whose expected utility represents

such a preference is invariant under postitive affine transformations, we consider a Bernoullian

ui : R+ → R such that ui(0) = 0 and ui(1) = 1. Let the individual be risk neutral. Thus, ui(x) = x

for every x ∈ R+. Recall, the definition of the map U : ID → R. For any
⊗M

m=1[
⊕Km

k=1 π
m
k
•(vm

k ,p
m
k )]

element of ID :

U

(
M⊗

m=1

[
Km⊕
k=1

πm
k
• (vm

k ,p
m
k )]

)
:=

∑
〈km≤Km:m≤M〉

[
M∏

m=1

πm
km ] · ui

( M∑
m=1

φi(v
m
km ,p

m
km)
)
.
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Since ui(x) = x for every x ∈ R+ and
∑Km

k=1 πk = 1 for every m ∈ {1, 2, . . . ,M}, it follows that:

∑
〈km≤Km:m≤M〉

[
M∏

m=1

πm
km ] · ui

( M∑
m=1

φi(v
m
km ,p

m
km)
)

=
M∑

m=1

Km∑
k=1

πm
k · φi(v

m
k ,p

m
k ).

Hence, U(
⊗M

m=1[
⊕Km

k=1 π
m
k

• (vm
k ,p

m
k )]) =

∑M
m=1

∑Km

k=1 π
m
k · φi(v

m
k ,p

m
k ). Consider any two ele-

ments
⊗M

m=1[
⊕Km

k=1 π
m
k
• (vm

k ,p
m
k )] and

⊗M ′

m=1[
⊕K′m

k=1 π
′m
k
• (v′mk ,p

′m
k )] in ID . By definition of %i,⊗M

m=1[
⊕Km

k=1 π
m
k
• (vm

k ,p
m
k )] %i

⊗M ′

m=1[
⊕K′m

k=1 π
′m
k
• (v′mk ,p

′m
k )] is, therefore, equivalent to the following

inequality:
M∑

m=1

Km∑
k=1

πm
k · φi(v

m
k ,p

m
k ) ≥

M ′∑
m=1

K′m∑
k=1

π′
m
k · φi(v

′m
k ,p

′m
k ).

With this expression in place, for a risk neutral individual i, we proceed to establish the claim of

the theorem.

First, we prove the “if” part. Let, for every i ∈ N , the induced preference %i satisfy indifference

to independent combinations. Fix any (v,p) ∈ D . We must argue: φi(v,p) =
∑

s∈S ps · φi(v, δs)

for any i ∈ N . Fix any i ∈ N . Recall, for v ≡ (c, E), the corresponding zero situation is

v0 ≡ (c, 0). By the definition of a rule, we have φi(v0,q) = 0 for any q ∈ ∆(S). Thus, for

any s ∈ S, ps · φi(v, δs) + (1 − ps) · φi(v0,q) = ps · φi(v, δs). Hence,
∑

s∈S[ps · φi(v, δs) +

(1 − ps) · φi(v0,q)] =
∑

s∈S ps · φi(v, δs). Since %i satisfies indifference to independent com-

binations, (v,p) ∼i

⊗
s∈S[ps • (v, δs)

⊕
(1 − ps) • (v0,q)]. By the definition of %i, we obtain

φi(v,p) =
∑

s∈S ps · φi(v, δs). Since i ∈ N is arbitrary, the proof of the “if” part is complete.

Second, we prove the “only if” part. Let φ satisfy: for any (v,p) ∈ D and any i ∈ N , φi(v,p) =∑
s∈S ps ·φi(v, δs). Fix any i ∈ N . We must argue:

⊗
s∈S[ps • (v, δs)

⊕
(1−ps) • (v0,q)] ∼i (v,p) for

any (v,p) ∈ D and q ∈ ∆(S). Fix (v,p) ∈ D and q ∈ ∆(S). By the definition of a rule, we have

φi(v0,q) = 0 for any q ∈ ∆(S). Thus, for any s ∈ S, ps ·φi(v, δs)+(1−ps) ·φi(v0,q) = ps ·φi(v, δs).

Hence,
∑

s∈S[ps ·φi(v, δs)+(1−ps)·φi(v0,q)] =
∑

s∈S ps ·φi(v, δs). That is,
∑

s∈S[ps ·φi(v, δs)+(1−

ps)·φi(v0,q)] = φi(v,p). By definition of %i, we obtain
⊗

s∈S[ps •(v, δs)
⊕

(1−ps)•(v0,q)] ∼i (v,p).

This completes the proof of the “only if” part. �

Proof of Theorem 4. Fix h ∈ H and i ∈ N . Let φEA and φEP be the ex–ante and the ex–post

rules defined by h, respectively. Fix any (c, E,p) ∈ D such that cj is deterministic for every

j ∈ N \ {i}. Define c′i := c̄i(p) · 1S. Since ‖(ci,p)‖1 = ‖(c′i,p)‖1, it follows that φEA(c, E,p) =

φEA((c′i, c−i), E,p). Since the profile (c′i, c−i) consists of deterministic claims by every individual, we

have φEA((c′i, c−i), E,p) = φEP ((c′i, c−i), E,p). That is, φEA(c, E,p) = φEP ((c′i, c−i), E,p). Since
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E ≤ minj∈N c̄j(p), from the proof of Lemma 1, we conclude that φEP ((c′i, c−i), E,p) ≥ φEP (c, E,p).

Hence, we obtain φEA(c, E,p) ≥ φEP (c, E,p). Since h is made of strictly increasing maps hi for

any individual i, it follows that the inequality is indeed strict whenever E > mins∈S cis holds. �
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