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ANTIBODY TESTS:

THEY ARE MORE IMPORTANT THAN WE THOUGHT *

LUÍS GUIMARÃES†

June 30, 2020

Abstract

Antibody testing is a non-pharmaceutical intervention – not recognised so far in the

literature – to prevent COVID-19 contagion. I show this in a simple economic model

of an epidemic in which agents choose social activity under health state uncertainty.

In the model, susceptible agents are more socially active when they think they might

be immune. And this increased activity escalates infections, deaths, and welfare losses.

Antibody testing, however, prevents this escalation by revealing that susceptible agents

are not immune. Through this mechanism, in exercises calibrated to the UK, I find that

antibody testing can save about 8% of COVID-19 related deaths within 12 months.

JEL Classification: D62; E17; I12; I18.
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1 Introduction

The COVID-19 pandemic has virtually stopped the world economy and has led to the death of
more than 400 thousand people worldwide by June 2020. In the hope of constraining the pan-
demic, governments around the world restricted movement, imposed lockdowds and quar-
antines, forced the closure of many businesses and activities, and increased the scale of viral
testing and contact-tracing. In this paper, I argue that there is another non-pharmaceutical
intervention to curb down the pandemic: large-scale antibody testing.

There are two obvious reasons to support antibody testing. First, antibody testing helps in
understanding the extent of the pandemic, its infection-fatality rate, the duration of immu-
nity, and the proportion of asymptomatic. It has been conducted in countries like the UK,
US, and Spain. And the estimates of these studies have guided policy and the calibration of
epidemiological models. Second, by identifying immune individuals, antibody testing may
facilitate reopening the economy after lockdown (e.g., by issuing the so-called “immunity
passports”). Yet, there is another reason to support antibody testing: by revealing that sus-
ceptible and asymptomatic individuals are not immune, it tends to reduce their social activity
lowering the scale of the epidemic.

The economics literature has long emphasised the role of incentives and individual deci-
sion making in shaping the extent and welfare costs of an epidemic. In the context of the
AIDS pandemic, some examples are Philipson and Posner (1993), Kremer (1996), Lakdawalla,
Sood and Goldman (2006), Delavande and Kohler (2015), Gong (2015), Friedman (2018), and
Greenwood et al. (2019). More recently, in the context of the COVID-19 pandemic, some ex-
amples are Eichenbaum, Rebelo and Trabandt (2020a), Farboodi, Jarosch and Shimer (2020),
Garibaldi, Moen and Pissarides (2020), Keppo et al. (2020), Krueger, Uhlig and Xie (2020), and
Toxvaerd (2020). Economic agents in these models face a trade-off that can be broadly sum-
marised as the following: economic and social activity generates a gain but might generate a
loss by increasing exposure to the virus. Thus, unsurprisingly, economic agents refrain them-
selves from many of the activities that they would pursue absent the epidemic, increasing the
duration of the epidemic but significantly lowering life and welfare losses.

Individuals decide under uncertainty, and particularly in the context of an epidemic, they
decide without knowing their health state. For example, more than half of those exposed to
COVID-19 are estimated to be asymptomatic (see references in Eikenberry et al., 2020). And
among the symptomatic, many only develop mild symptoms. Furthermore, in June 2020, it is
estimated that about 6.8% of the UK population have developed antibodies against COVID-
19 but less than 10% have been identified and documented. Similar numbers apply to Spain:
antibody tests suggest that 5.2% of the Spanish population have antibodies against COVID-19
but less than 15% have been identified.1 All this evidence compellingly suggests that many
individuals must decide without knowing whether they are susceptible, (infected but) asymp-

1For the UK figures, I used the COVID-19 Infection Survey of 12 June 2020 conducted by the ONS and available
in https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases. For
Spain, I consulted the link https://english.elpais.com/society/2020-06-05/spains-macro-study-show-just-52-of-population-has-contracted-the-cor
on 17 June 2020.
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tomatic, and (in many cases) immune. Antibody tests end part of this uncertainty by reveal-
ing whether individuals are immune or not.2

In this paper, I build a simple economic model in which agents choose social activity to max-
imise their lifetime utility under health state uncertainty. In the model, agents can be in one
of six health states: susceptible, asymptomatic, symptomatic, recovered undocumented, re-
covered documented, or dead. Susceptible agents do not have antibodies against the virus,
which puts them at risk of an infection. Asymptomatic and symptomatic agents are infected
and may infect others. Recovered undocumented and recovered documented have antibod-
ies against COVID-19 and are, thus, immune. Individuals’ optimal social activity depends on
their health state and uncertainty. In a world with perfect information, susceptible agents
would constrain social activity to reduce exposure to the virus, while recovered agents (both
documented and undocumented) would not. But, under health state uncertainty, agents
are forced to decide based on expectations of their health state: some recovered agents may
choose excessively low social activity and, most importantly for contagion, some susceptible
agents may choose excessively high social activity.

In the model, exposed susceptible agents become asymptomatic. Asymptomatic agents are
infected but show no symptoms; thus, they are unaware of the infection and behave as sus-
ceptible agents. A few days after exposure, some asymptomatic agents develop symptoms
and learn that they are infected while the rest recover without ever developing symptoms.
This latter group of agents is, thus, unaware of the recovery/immunity because they were un-
aware of the infection; these agents – which I call recovered undocumented – can only learn
that they are immune if they do an antibody test. Recovered undocumented agents differ
substantially from agents that recover after developing symptoms. If symptomatic agents re-
cover, they know that they were infected and, thus, know that they are immune; I refer to
these agents as recovered documented.

My model also distinguishes between two groups of economic agents: tested and untested.
The difference between the two is that the former have continuous access to antibody tests
while the latter do not.3 Thus, tested agents always know whether they are immune, whereas
untested agents only know that they are immune if they had symptoms of the infection (i.e.,
are recovered documented). By the same token, tested susceptible agents choose social ac-
tivity knowing that they are not immune, while untested susceptible agents choose social

2The human body can develop immunological memory (become immune) by developing special B and T cells,
which defend the body against pathogens that it has previously encountered (Punt et al., 2018). Antibodies are
produced by B-cells and are detected by antibody (serological) tests; but antibody tests do not detect T cells and
it is theoretically possible that an individual is immune to COVID-19 without developing antibodies thanks to T
cells. As there is not yet, best to my knowledge, concrete evidence of that in the context of COVID-19 infections, I
simplify my analysis and abstract from the possibility that immune individuals do not develop antibodies.

3It is likely that agents have continuous access to antibody tests if there are home anti-
body tests that can be used without medical supervision and with very low marginal cost;
in this regard, there are public and private investments to develop a ‘finger-prick’ type an-
tibody test for home use, similar to a diabetes test, that would satisfy these conditions
(https://www.gov.uk/government/publications/coronavirus-covid-19-antibody-tests/coronavirus-covid-19-antibody-tests
visited on 17 June 2020).
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activity with the doubt that they might be immune. This distinct health state uncertainty
changes optimal decisions. Given that restraining social activity is unwarranted when im-
mune/recovered, untested susceptible agents tend to be more socially active than tested
ones, especially when the probability of being recovered undocumented is large.

Numerical simulations of my model confirm that large-scale antibody testing can substan-
tially raise welfare and save lives. When an epidemic begins, tested and untested susceptible
agents behave similarly for some time. But as the probability of being recovered undocu-
mented builds up, their optimal choices uncouple and untested susceptible agents raise their
social activity. Moreover, as susceptible and asymptomatic agents choose the same social ac-
tivity, the higher social activity of untested asymptomatic agents increases exposure of all
susceptible agents. Therefore, if agents are unaware of recovery, total exposure rises, causing
more deaths and welfare losses. Widespread antibody testing, however, prevents this from
happening: by revealing to susceptible (and asymptomatic) agents that they are not immune,
these agents optimally restrain their social activity. Through this channel and using my pre-
ferred calibration, antibody testing can avoid about 8% (7000) of COVID-19 related deaths in
the UK from June 2020 to June 2021.

The gains from antibody testing rise with the number of recovered undocumented agents,
which depends on (i) social activity choices, (ii) the proportion of symptomatic agents, (iii)
COVID-19 contagiousness, and (iv) the scale and effectiveness of other non-pharmaceutical
interventions. For example, my preferred calibration assumes that policies like mandatory
mask use in the UK public transports permanently reduce COVID-19 contagiousness by 40%;
absent that assumption, antibody testing prevents almost 13% (28000) of COVID-19 related
deaths. Furthermore, large scale viral testing and contact-tracing reduce the importance of
antibody tests because these policies tend to identify those who are infected, reducing the
number of recovered undocumented. Yet, as identified by many others (e.g., Hall, Jones and
Klenow, 2020 and Hornstein, 2020), there is much uncertainty surrounding the parameters
of epidemiological models, which critically changes optimal choices and the implications of
non-pharmaceutical interventions. Therefore, we should not take my estimates literally. But
my message that antibody testing can save lives is robust.

Relation with the Literature

The channel in my model through which antibody tests affect decision making has support
in data. Gong (2015) assesses how HIV testing affects individual decision making in Sub-
Saharan Africa and documents that individuals surprised by a negative HIV test decrease their
risky sexual behaviour. Similarly, in my model, agents who think that they are immune and
test negative for antibodies against COVID-19 restrain their social activity.

As in Farboodi, Jarosch and Shimer (2020), Garibaldi, Moen and Pissarides (2020), Keppo
et al. (2020), and Toxvaerd (2020), my model assumes that economic agents directly choose
their social activity to maximise their lifetime utility.4 Among these four models, my model

4Other models like, e.g., Bodenstein, Corsetti and Guerrieri (2020), Eichenbaum, Rebelo and Trabandt (2020a),
and Krueger, Uhlig and Xie (2020) consider more complex economic blocks including a production function,
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is closer to that in Farboodi, Jarosch and Shimer because they assume that economic agents
cannot distinguish between being susceptible or infected whereas the other three assume,
as common in the literature, that agents always know their health state. Nonetheless, Far-
boodi, Jarosch and Shimer crucially assume that agents are always aware whether they are
recovered/immune. In such a setting, it is impossible to study the role of antibody testing in
revealing the health state to economic agents.

The effects of viral testing in the context of COVID-19 have attracted the attention of the liter-
ature (Berger, Herkenhoff and Mongey, 2020; Brotherhood et al., 2020; Eichenbaum, Rebelo
and Trabandt, 2020b; Piguillem and Shi, 2020).5 These papers acknowledge the importance
of health state uncertainty and argue that viral tests play a relevant role in resolving that un-
certainty. They, and in particular Eichenbaum, Rebelo and Trabandt (2020b), offer an enlight-
ening lesson: viral testing only increases welfare if it comes hand-in-hand with quarantining
of infected agents because these agents do not face a trade-off. Viral testing, however, differs
from antibody testing, which is the focus of my paper. A viral test, i.e., a test that identifies
the current presence of an infection, allows individuals to distinguish the states of suscep-
tible and infected without informing individuals of a past infection. An antibody test, i.e., a
test that identifies the past presence of an infection, allows individuals to know whether they
are immune and to distinguish the recovered state from all the other states without inform-
ing individuals of a current infection. This distinction has critical implications because, in
contrast with viral testing, I find that antibody testing always increases welfare. There are
two reasons for that: first, positive antibody tests allow recovered agents to enjoy more social
activity and, second, negative antibody tests reduce the social activity of those that matter in
the propagation of the virus – susceptible and infected agents.

In the context of epidemics, an externality arises from individuals not considering the risk
of infecting others. This externality, which has been emphasised in the literature, leads to
sizeable theoretical gains from central-planning interventions like lockdowns to avoid con-
tagion. For example, in Farboodi, Jarosch and Shimer (2020), a central planner that optimally
sets social activity avoids 75% of deaths relative to the decentralised equilibrium and, in Al-
varez, Argente and Lippi (2020), a central planner that optimally confines individuals avoids
about 40% of deaths relative to a model with no individual choice.6 My paper also incor-
porates the externality emphasised in the literature. But, unlike the literature, my paper em-

labour supply decision, and a decision among differentiated goods implying different social-contact levels. Due
to the epidemic, then, susceptible agents refrain from buying goods that imply much social contact. In essence,
the trade-off is the same as choosing directly social activity. Given my focus on how economic decisions under
uncertainty affect the propagation of the COVID-19 pandemic, I abstract from more complex economic setups.

5To be precise, Eichenbaum, Rebelo and Trabandt (2020b) is, to some extent, different from the other papers
because they simultaneously assess the roles of viral and antibody testing. Yet, their approach does not allow to
single out the role of antibody testing that I emphasise in this paper.

6The result in Farboodi, Jarosch and Shimer (2020) is driven only by the externality whereas the result in Al-
varez, Argente and Lippi (2020) also includes any gains that could arise from individual choices. Yet, Farboodi,
Jarosch and Shimer assume that the central planner has complete control over social activity whereas Alvarez,
Argente and Lippi assume that the central planner cannot confine all individuals and is not entirely effective in
its lockdown policy. For other papers studying how a social planner can maximise welfare in the context of an
epidemic, see, e.g., Acemoglu et al. (2020), Glover et al. (2020), and Hall, Jones and Klenow (2020).
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phasises a new mechanism: absent antibody tests, susceptible and asymptomatic individuals
that think they might be immune prefer to enjoy more social activity. As mentioned above, by
cancelling this mechanism, large scale antibody testing avoids about 8% of COVID-19 related
deaths. This is clearly lower than the numbers in the papers above, but it is not negligible.
Furthermore, and very importantly, these gains from antibody testing arise in the context of
a decentralised equilibrium in which agents are free to choose their social activity. Such a
context becomes even more important as many countries gradually lift lockdown policies.

The rest of the paper is organised as follows. Section 2 presents my model. Section 3 cali-
brates it and Section 4 simulates the epidemic from its start and shows how antibody testing
affects contagion and welfare. Section 5 recalibrates the model to the UK as of June 2020 and
presents a few scenarios for the epidemic evolution in that country. Section 6 discusses how
often agents need to test their antibodies for antibody testing to meaningfully change social
activity. Section 7 concludes the paper.

2 Model

I build a simple economic model in discrete time with two blocks, an epidemiological block
and an utility-maximization block. The epidemiological block is an extended version of the
canonical SIR (Susceptible-Infected-Recovered, Kermack and McKendrick, 1927) model to
include two types of infected individuals, asymptomatic and symptomatic, and the possibil-
ity of death. All individuals who are infected start as asymptomatic but may become symp-
tomatic. And, as common in the literature, all recovered individuals gain permanent im-
munity.7 This block of my model is similar to advanced epidemiological models reviewed
in Hethcote (2000) and used in Ferguson et al. (2020) and Wang et al. (2020) in the context
of the COVID-19 pandemic. Similar epidemiological models are also used in the economics
literature (e.g., Atkeson, 2020, Hornstein, 2020, and Piguillem and Shi, 2020).

To model antibody tests, I assume that there are two groups of economic agents trying to
maximise their lifetime utility.8 Their trade-off is essentially the same: they can increase so-
cial activity to enjoy higher current utility but, by doing so, they raise the probability of an
infection and dying, which lowers their future utility. The only distinction between the two
groups of agents regards their uncertainty about health state. A share ω of agents, whose vari-
ables are denoted by the superscript τ, have their antibodies continuously tested and, thus,
always know whether they are immune/recovered; I think of these agents as having access to
home antibody tests that can be used without medical supervision and with zero marginal
cost; I refer to these agents as tested agents. The remaining 1−ω share of the population,
whose variables are denoted by the superscript o, never test their antibodies and, thus, may

not know whether they are immune/recovered; I refer to these agents as untested agents. My
assumptions imply that some untested agents are immune but, because they are unaware
of it, they still behave as if they face exposure risk; furthermore, some untested susceptible

7For this reason, I use recovered and immune interchangeably throughout the paper.
8In modelling antibody tests, I abstract from imperfect testing; I study antibody tests that perfectly distinguish

those that have antibodies against COVID-19 from those that do not.
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agents may expose themselves excessively because they think they might already be immune.
Most of my analysis will draw on how different levels of ω – affecting how widespread anti-
body testing is – affect the welfare loss and propagation of the epidemic.

The way I model antibody testing is naturally a simplification but necessary for tractability.
By partially revealing health state, antibody tests offer information to economic agents. Ei-
ther agents learn that they are immune and start behaving as if there is no epidemic or they
learn that they are not immune and adjust the probability of being in each state based on
the time elapsed since the most recent antibody test. This implies that, if agents are tested
in different periods and with different frequency, there is a growing heterogeneity of optimal
choices, which makes it intractable to solve the model. Eichenbaum, Rebelo and Trabandt
(2020b) find a similar problem. They analyse the role of testing (of both a current infection
and antibodies) in a macroeconomic model. And to allow for testing, they are forced to make
two simplifying assumptions: (i) a fixed proportion of the population is tested every period
and (ii) once tested, economic agents always know their health state. In slight contrast, I as-
sume that some agents have continuous access to antibody tests while others do not, which
is only realistic if agents have access to home antibody tests. Yet, in Section 6, I discuss how
relaxing the assumption of continuous testing likely affects the results.

2.1 Epidemiological Block

In the canonical SIR model, new infections (i.e., transitions from susceptible to infected)
are governed by the number of susceptible and infected individuals and by β (a measure
of the virus’ contagiousness and the number of contacts per person per period absent any
behavioural change or policy). The economics literature has adapted the SIR model to allow
for interactions between the economic and epidemiological blocks, endogenising new infec-
tions. For example, in Bodenstein, Corsetti and Guerrieri (2020), Eichenbaum, Rebelo and
Trabandt (2020a,b) and Krueger, Uhlig and Xie (2020), new infections are a function of con-
sumption choices of individuals; in Alvarez, Argente and Lippi (2020), Barnett, Buchak and
Yannelis (2020), and Piguillem and Shi (2020) new infections depend on the lockdown and
quarantine measures; in Glover et al. (2020) new infections also depend on employment and
co-worker relationships; and in Farboodi, Jarosch and Shimer (2020), Garibaldi, Moen and
Pissarides (2020), Keppo et al. (2020), and Toxvaerd (2020) new infections depend on agents’
social activity choices. I follow the latter group and assume that new infections depend on
the number of susceptible and infected (both asymptomatic and symptomatic) individuals
and their respective social activity choices.

In my model, an agent can be in one of six health states: susceptible, s, asymptomatic, e ,
symptomatic, i , recovered undocumented, r e , recovered documented, r i , and dead, d . I
normalise the size of the population to unity and denote the number of agents in group y =

{τ,o} in state x = {s,e, i ,r e,r i ,d } at time t by N
y
x,t . The same logic applies to social activity,

denoted by 0 ≤ A
y
x,t ≤ 1.

The number of new infections of economic agents in group y at time t is βA
y
s,t N

y
s,t It , where
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It denotes all the social activity of infected agents:

It = (Aτ
e,t Nτ

e,t + Ao
e,t N o

e,t + Aτ
i ,t Nτ

i ,t + Ao
i ,t N o

i ,t ). (1)

All new infections start as asymptomatic, which is a state that lasts an average of 1/γe pe-
riods. Then, a proportion σ develop symptoms while the rest recover without developing
symptoms and move to N

y
re,t . Economic agents that develop symptoms remain infected for

an additional 1/γi periods on average. And when they leave this state, a proportion π dies
while the rest recover and move to N

y

r i ,t . The transitions between all states are summarised
by:

∆N
y
s,t+1 =−βA

y
s,t N

y
s,t It , (2)

∆N
y
e,t+1 =βA

y
s,t N

y
s,t It −γe N

y
e,t , (3)

∆N
y

i ,t+1 =γeσN
y
e,t −γi N

y

i ,t , (4)

∆N
y

re,t+1 = (1−σ)γe N
y
e,t , (5)

∆N
y

r i ,t+1 = γi (1−π)N
y

i ,t , (6)

∆N
y

d ,t+1 =πγi N
y

i ,t . (7)

I assume that symptomatic agents are sure to be infected while asymptomatic agents do not
know.9 When symptomatic agents recover, they are aware of the recovery but asymptomatic
agents are not as they did not develop symptoms. Thus, I use the two recovered states to dis-
tinguish those who know that they are recovered (because they developed symptoms before)
from those who do not know. Then, antibody tests creates a wedge between the two groups of
agents: all agents know whether they are recovered documented but only tested agents know
whether they are recovered undocumented.

2.2 Agents’ Utility Maximization

The utility-maximization block of the model is very close to that in Farboodi, Jarosch and
Shimer (2020) and also close to that in Garibaldi, Moen and Pissarides (2020), Keppo et al.
(2020), and Toxvaerd (2020). The trade-off in my model and in these models is similar: eco-
nomic agents can increase social activity to increase current utility but only at the expense
of lower expected lifetime utility due to higher infection risk. There are, however, important
distinctions. First, in Garibaldi, Moen and Pissarides, Keppo et al., and Toxvaerd, agents are
always aware of their health state while in Farboodi, Jarosch and Shimer they are only aware
of their health state when recovered. In my model, some agents know if they are infected
and not all agents know if they are recovered. Second, their models assume homogeneous
agents whereas I consider two groups of agents with access to different information. These
nuances lead to different optimization problems, which allow me to study the implications
of antibody testing.

9For example, Brotherhood et al. (2020) and Piguillem and Shi (2020) make a similar assumption.
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In what follows, I continue to use capital letters to denote aggregate variables and use small
letters to denote the variables of a specific agent. Thus, a

y
x,t denotes the social activity of one

agent in group y = {τ,o} in state x = {s,e, i ,r e,r i } at time t . And n
y
x,t denotes the (subjective)

probability of an agent in group y of being in state x at time t . As Farboodi, Jarosch and
Shimer, I assume that the utility derived from social activity a is given by u(a), which is single-
peaked; I also normalise the maximum of u(a) at a∗

= 1 with u(a∗) = u′(a∗) = 0. Moreover,
each agent takes aggregate variables as given when deciding social activity.

2.2.1 Tested Economic Agents

Antibody tests partially reveal the health state of economic agents: if the test is positive,
agents learn that they are immune; if negative, then agents do know know whether they
are susceptible or asymptomatic (because I assume that all agents are aware of the infec-
tion if symptomatic). Thus, tested agents can distinguish among all states except between
susceptible and asymptomatic and choose the same social activity when in these two states:
aτ

t = aτ
s,t = aτ

e,t . When these agents are immune (i.e., recover from the infection), they no
longer face a trade-off and stop restraining their social activity; in this case, aτ

re,t = aτ
r i ,t = 1.

If these agents are allowed to freely choose their social activity when (infected) symptomatic,
they choose aτ

i ,t = 1 as they also do not face a trade-off and are not altruistic.10 Yet, there are
a few reasons to think that they could not maximise social activity. One is that they may be
hospitalised or their symptoms prevent them from appreciating the benefits of social activ-
ity. Another is that the government imposes quarantines to these individuals. Thus, I assume
that social activity when symptomatic is fixed at aτ

i
< 1, implying a per-period cost of being

in this state.

Tested economic agents choose aτ
t , nτ

s,t+1, nτ
e,t+1, and nτ

i ,t+1 to maximise

∞
∑

t=0
Λ

t
[

(nτ
s,t +nτ

e,t )u(aτ
t )+nτ

i ,t u(aτ
i )−vγiπnτ

i ,t

]

(8)

subject to

∆nτ
s,t+1 =−βaτ

t nτ
s,t It , (9)

∆nτ
e,t+1 =βaτ

t nτ
s,t It −γe nτ

e,t , (10)

∆nτ
i ,t+1 = γeσnτ

e,t −γi nτ
i ,t . (11)

Using v to denote the value of life, I include the term vγiπnτ
i ,t in Eq. (8) to account for the

cost of dying due to the virus.11
Λ denotes the discount factor. The optimal behaviour of

10Eichenbaum, Rebelo and Trabandt (2020b) reach the same conclusion and add that testing (of a current infec-
tion or antibodies) without quarantines can reduce welfare. This result, however, is solely driven by viral testing.

11In this maximization problem as well as that of untested agents below, I implicitly assume that agents do not
readjust the probability of being in each health state based on the probability of dying. Yet, given thatπ is low, this
approximation is not very costly and helps to avoid clutter in my exposition. It would be equivalent to assume
that dead agents pay the value of life to stay as recovered in the model. Another alternative would be to merge
recovered documented and dead, which is close to the option followed in Garibaldi, Moen and Pissarides (2020).
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agents with access to antibody tests is then determined by

(nτ
s,t +nτ

e,t )u′(aτ
t ) = (V τ

s,t −V τ
e,t )βnτ

s,t It , (12)

Λ
−1V τ

s,t = u(aτ
t+1)+V τ

s,t+1 − (V τ
s,t+1 −V τ

e,t+1)βaτ
t+1It+1, (13)

Λ
−1V τ

e,t = u(aτ
t+1)+V τ

e,t+1 −γe (V τ
e,t+1 −σV τ

i ,t+1), (14)

Λ
−1V τ

i ,t = u(aτ
i )+V τ

i ,t+1 −γi (vπ+V τ
i ,t+1), (15)

where V
y

x,t is the (shadow) value of agents in group y = {τ,o} of being in state x = {s,e, i ,r e}.
Because aτ

i
is fixed, the value of being symptomatic, V τ

i ,t , is constant and clearly negative due
to the imposed social distance and the possibility of dying.

The trade-off faced by economic agents is summarised in Eq. (12). This equation shows that
economic agents equal the marginal gain from social activity (which is the marginal utility of
social activity weighted by the probability of being susceptible and asymptomatic) with the
marginal cost of social activity (which depends on the shadow values, β, and the total social
activity of infected agents, It , and is weighted by the probability of being susceptible). Fur-
thermore, because I restrict my analysis to the cases in which the value of being susceptible,
V τ

s,t , exceeds that of being asymptomatic, V τ
e,t , (as in Garibaldi, Moen and Pissarides, 2020)

economic agents will optimally reduce their social activity to prevent exposure. As shown by
Farboodi, Jarosch and Shimer (2020) this decentralised response of economic agents critically
lessens the costs and the propagation of the pandemic. And it is in line with their evidence
and the evidence reported in, e.g., Kaplan, Moll and Violante (2020) and Maloney and Taskin
(2020) of behavioural changes in the US prior to lockdown and quarantining policies.

2.2.2 Untested Economic Agents

The maximization problem of untested economic agents is similar to the one in the previous
section. There is, however, one key difference. Because untested agents do not test their an-
tibodies and only know that they are recovered when they develop symptoms, they cannot
distinguish the state of recovered undocumented from the states of susceptible and asymp-
tomatic. Thus, they optimally choose the same level of social activity when in these three
states: ao

t = ao
s,t = ao

e,t = ao
re,t . It is also optimal for them to choose maximum social activity

when they are recovered documented, ao
r i ,t = 1. And, again, I assume that their social activity

when symptomatic is restricted (ao
i
< 1). Thus, untested economic agents maximise

∞
∑

t=0
Λ

t
[

(no
s,t +no

e,t +no
re,t )u(ao

t )+no
i ,t u(ao

i )−vγiπno
i ,t

]

(16)

subject to

∆no
s,t+1 =−βao

t no
s,t It , (17)

∆no
e,t+1 =βao

t no
s,t It −γe no

e,t , (18)

∆no
i ,t+1 = γeσno

e,t −γi no
i ,t , (19)
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∆no
re,t+1 = (1−σ)γi no

i ,t . (20)

The optimal behaviour of these agents is then determined by

(no
s,t +no

e,t +no
re,t )u′(ao

t ) = (V o
s,t −V o

e,t )βno
s,t It , (21)

Λ
−1V o

s,t = u(ao
t+1)+V o

s,t+1 − (V o
s,t+1 −V o

e,t+1)βao
t+1It+1, (22)

Λ
−1V o

e,t =u(ao
t+1)+V o

e,t+1 −γe

[

V o
e,t+1 −σV o

i ,t+1 − (1−σ)V o
re,t+1

]

, (23)

Λ
−1V o

i ,t = u(ao
i )+V o

i ,t+1 −γi (vπ+V o
i ,t+1), (24)

Λ
−1V o

re,t = u(ao
t+1)+V o

re,t+1.. (25)

There are three differences between the set of equations governing the optimal behaviour
of tested and untested agents. First, untested agents must keep track of the value of being
recovered undocumented, Eq. (25), whereas tested agents know that their value in the re-
covered undocumented state is permanently the maximum possible (normalised to zero).
Second, comparing Eqs. (12) and (21) shows that untested agents attach, ceteris paribus, a
higher weight to the marginal utility of social activity than tested agents. This increases the
incentives of untested agents to raise social activity (relative to that of tested agents), espe-
cially when no

re,t is large. Third, comparing Eqs. (14) and (23) shows that the value of being
recovered undocumented reduces the value of being asymptomatic. This, in turn, raises the
right-hand side of Eq. (21), which tends to reduce the social activity of untested agents. Yet,
in my numerical analysis, I find that this last force usually plays a minor role and untested
agents end up choosing higher social activity when no

re,t is slightly positive. All these three
differences result from health state uncertainty and the information asymmetry between the
two groups and tend to dwarf the lifetime utility of untested agents relative to tested agents.

2.3 Equilibrium

All agents within each group have the same preferences and access to the same information.
Thus, at all t , their social activity, a

y
t and a

y

i
, equals aggregate social activity, A

y
t = A

y
s,t = A

y
e,t

and A
y

i
= A

y

i ,t . This, in turn, implies that the probability of being in each state must equal the

proportion of the population in that state: n
y
x,t = N

y
x,t at all t .

A decentralised equilibrium corresponds to a path of social activities, {Aτ
t , Ao

t , It }, state vari-
ables, {Nτ

s,t , N o
s,t , Nτ

e,t , N o
e,t , Nτ

i ,t , N o
i ,t , N o

re,t }, and shadow values, {V τ
s,t ,V o

s,t ,V τ
e,t ,V o

e,t ,V τ
i ,t ,V o

i ,t ,V o
re,t },

that satisfy Eqs. (1-5), (12-15), and (21-25).

3 Calibration

I calibrate the model to daily data and summarise my parameter choices in Table 1. I set
Λ =

1
1+ρ

1
1+δ , where ρ is the time discount rate and δ is the probability of finding a cure-for-

all (a treatment that would work simultaneously as vaccine and cure). I set ρ = 0.05/365 and
δ= .67/365 reflecting an yearly discount rate of 5% and the probability of finding the cure-for-
all of 67% within a year (e.g., Alvarez, Argente and Lippi, 2020; Farboodi, Jarosch and Shimer,
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2020).

Table 1: Benchmark Calibration

Discount factor: Λ=
1

1+0.05/365
1

1+0.67/365
Curvature of the utility function: α= 1
Value of Life: v = 30,000
Measure of contacts and infectiousness: β= 3/14
Average number of days as symptomatic: γ−1

i
= 18

Average number of days as asymptomatic: γ−1
e = 14−σγ−1

i
Proportion of asymptomatic agents that develop symptoms: σ= 0.3
Death probability conditional on being symptomatic: π= 0.0064σ−1

Social activity of symptomatic agents: Ao
i
= Aτ

i
= 0.6

I assume the following functional form for the utility of social activity:

u(A)=
A1−α

−1

1−α
− A+1, α> 0, (26)

which guarantees that u(a) is single-peaked with maximum at A = 1 and u(1) = u′(1) = 0. As
my benchmark, I set α = 0, which delivers the same utility function as in Farboodi, Jarosch
and Shimer. I also closely follow Farboodi, Jarosch and Shimer to find the value of life, v , in
model units. I start by using a value of a prevented fatality in the UK of £1.8 Million (Thomas
and Waddington, 2017) and by interpreting this number as agents being willing to pay £1.8
thousand to avoid a death probability of 0.1% or, equivalently, £0.247 per day (using the yearly
discount rate of 5%). Given UK consumption per capita of £22.2k , this implies that agents are
willing to permanently trade 0.41% of their consumption for a permanent reduction in their
death probability of 0.1%. Assuming that the utility of consumption refers to the first term on
the right-hand side of Eq. (26) (and using α= 1) implies that the value of life must satisfy the
following indifference condition:

log(1)

1− 1
1+0.05/365

−0.001v =

log(1−0.0041)

1− 1
1+0.05/365

,

and, thus, v = 30,000. This is lower than the value found by Farboodi, Jarosch and Shimer
because I assume a relatively low value of prevented fatality.

Atkeson (2020) and Wang et al. (2020) calibrate an epidemiological model close to that in
Section 2.1 by assuming that asymptomatic individuals take on average 5.2 days to develop
symptoms and, after developing symptoms, they take on average 18 days to recover or die.
This calibration has influenced much of the parameter choices in the economics literature.
For example, Acemoglu et al. (2020), Alvarez, Argente and Lippi, and Eichenbaum, Rebelo
and Trabandt (2020a) abstract from the asymptomatic state and assume that it takes on av-
erage 18 days for an infected individual to either recover or die. Glover et al. (2020) add an

12



hospitalization state to the model in Wang et al. (besides other changes) and split the 18 days
from infection to recovery (or death) in 10 days of flu-like symptoms and 8 days of hospital-
ization. But there is one important difference between my model and that of Wang et al.: my
model allows for the possibility that some asymptomatic agents recover without developing
symptoms whereas, in their model, all asymptomatic agents eventually develop symptoms.12

In light of this difference, I set γ−1
i

= 18 but, instead of setting γ−1
e = 5.2, I find γe as a residual

to target an average exposure time of 14 days, which is the WHO guideline for the duration
of COVID-19-related quarantines. Given that individuals stay exposed asymptomatic for γ−1

e

periods and a proportion σ of them remain infected (but symptomatic) for an additional γ−1
i

days, I obtain γe using γ−1
e +σγ−1

i
= 14.

In epidemiological models, the basic reproduction number, R0, is key to determine the num-
ber of infections and herd immunity to a virus. R0 equals the number of new infections from
one infected individual absent any behavioural change or non-pharmaceutical interventions
and assuming that all the population is susceptible. And I use it to calibrateβ. In the epidemi-
ological literature surveyed by Atkeson, R0 is estimated between 2 and 3.25. But the lowest
estimates are likely already affected by behavioural changes and by lockdown and quaran-
tine measures. On the other hand, Alvarez, Argente and Lippi set R0 = 3.6 while Farboodi,
Jarosch and Shimer target an initial growth rate of the stock of infected of 30%, implying
R0 = 3.1 given their choice of an average infection duration of seven days. Based on this, I
target R0= 3, which implies β= 3/14.

I fix σ = 0.3, implying that 70% of all infected agents do not develop symptoms or, at least,
do not have access to a viral test confirming the change in health state. σ = 0.3 is close to
the lower bound (0.15) of the early estimates reviewed in Eikenberry et al. (2020) and Stock
(2020). But σ= 0.3 agrees with the recent findings of Emery et al. (2020) that more than 70%
of individuals who tested positive for COVID-19 on board of the Diamond Princess cruise
ship did not develop symptoms. And it also agrees with the proportion of estimated asymp-
tomatic individuals in the UK based on the ONS (Office for National Statistics) survey.13 The
estimated share of asymptomatic in Spain is, however, lower (less than 40%). But given that I
assume that symptomatic agents are sure of being infected, it is also important to look at the
proportion of those with antibodies that were diagnosed with the infection when they were
infected. The ONS survey suggests that, in June 2020, about 7% of the UK population had
developed antibodies against COVID-19 but less than 0.5% of the population was diagnosed
with an infection. In Spain, comparable numbers are 5.2% and 0.6%, respectively. In light of
these numbers, I believe it is reasonable to set σ = 0.3 but I test how a higher σ affects my
results.

Meyerowitz-Katz and Merone (2020) conduct a meta-analysis of published estimates of COVID-

12Another difference between the two models is that only symptomatic can infect susceptible agents in Wang
et al. (2020) while all exposed agents can infect susceptible agents in my model. In this way, my model is closer to
that in Piguillem and Shi, 2020. I could assume that there is a prior exposed state in which agents cannot infect
others but, for simplicity, I abstract from that.

13This evidence is reported in https://www.ft.com/content/033745f3-2d78-4869-9690-ea46fcc9cb3d, which I
consulted on 17 June 2020.
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19 infection-fatality rates and conclude that about 0.064% of those infected with the virus,
die. I use this number to fix π= 0.0064/σ, implying that slightly more than 2% of symptomatic
agents end up dying due to the virus. To calibrate the social activity of symptomatic agents, I
follow the calibrations of lockdown measures and lockdown effectiveness in Acemoglu et al.
(2020) and Alvarez, Argente and Lippi (2020). Based on that, I set Ao

i
= Aτ

i
= 0.6.

I use a shooting algorithm as detailed in Garibaldi, Moen and Pissarides (2020) to solve the
model. I start the algorithm by assuming that there is an initial number of asymptomatic
agents of Nτ

e +N o
e = 1e −6 while the rest of the population is susceptible. To put this number

into perspective, looking at the UK, I start the algorithm in a scenario in which approximately
67 individuals have been exposed the virus but do not yet display symptoms.

I do not impose a value for the proportion of untested agents, ω. My objective is to test for
the interval of ω ∈ [0,1] to see how different values affect the results. I also conduct several
robustness checks to changes in the parameters of the model.

4 Results

How important are antibody tests in response to a pandemic? Do they significantly affect the
number of infected individuals and welfare? In this section, I use my model to answer these
questions.

4.1 Main Results

Figure 1 summarises how the the share of tested agents, ω, affects three indicators of the ef-
fects of an epidemic under the benchmark calibration. On the left, it presents the total num-
ber of infected agents within the first year, irrespective of their current health state, which
corresponds to 1−N o

s,365 −Nτ
s,365; although some of these agents are infected precisely after

one year, most are recovered or dead. In the middle, it presents a measure of welfare loss of
tested agents; in particular, the proxy that I report is V τ

s,1, which measures how costly it is for
a tested agent to be susceptible in the beginning of the epidemic. On the right, it presents a
measure of the difference in welfare loss between tested and untested agents; as an indica-
tor I use V o

s,1 −V τ
s,1, which measures how more costly it is for an untested agent (relative to a

tested agent) to face the epidemic when it begins.

The model suggests that, if all agents are continuously tested, 49.9% of the population is ex-
posed to the virus within one year, which contrasts with 56.6% if no agent is ever tested. In
other words, within the first year of the epidemic, it is possible to reduce the number of ex-
posed individuals and, thus, deaths by 11.7% if there is widespread and continuous testing,
a scenario that would likely occur if virtually all households in the economy had easy access
to home antibody tests. Using again the UK to put numbers into perspective, widespread
and continuous testing would prevent about 29000 deaths. Therefore, as shown in Figure 1,
large-scale antibody testing (i.e., high ω) leads to sizeable welfare gains for both tested and
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Figure 1: Main Results
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Note: This figure shows total infected after one year, 1−No
s,365 −Nτ

s,365, welfare of tested suscepti-

ble agents in period 1, V τ
s,1, and difference in welfare loss between tested and untested susceptible

agents in period 1, V o
s,1 −V τ

s,1, as a function of the share of tested agents, ω. The model is calibrated
using the benchmark calibration.

untested agents because it reduces exposure to the virus and life losses.14

To understand why antibody testing reduces total exposure and welfare losses, Figure 2 con-
trasts the social activity of tested agents with that of untested agents when half of the popula-
tion is tested (ω= 0.5) and under multiple calibrations of the model. The key takeaway from
this figure is that tested agents restrain their social activity by more than untested agents,
Aτ

< Ao , especially about 100 days after the beginning of the epidemic (in the benchmark
case). The reason was already hinted in Section 2.2: as the probability of being recovered un-
documented enlarges, untested susceptible and asymptomatic agents start increasing social
activity with the hope that they are immune but are unaware of it. Therefore, by replacing
untested with tested agents, antibody testing lowers the average social activity of suscepti-
ble agents and, very importantly, the total social activity of infected agents, It ; this implies,
respectively, a direct and an externality effect reducing total exposure to the virus and the
welfare losses of all agents. Thus, even if there is no centralised offer of antibody tests, indi-
viduals that take advantage of private sourcing of antibody tests end up benefiting themselves
but also others.15

Figure 1 also shows that untested agents suffer more from the epidemic than tested agents
(Welfare Loss Difference is negative). Even though untested agents enjoy more social activ-
ity, the losses from the higher exposure to the virus and higher probability of death escalate
their losses. Yet, somewhat surprisingly, antibody testing increases the welfare of untested
agents by more than that of tested agents (the slope of the Welfare Loss Difference curves is

14There is also a direct welfare gain by replacing untested agents with tested agents as the latter enjoy more
social activity when recovered undocumented.

15Many private clinics in the UK and around the world are already offering their
services for antibody testing at a relatively low price. An example of that is in
https://www.londondoctorsclinic.co.uk/services/private-coronavirus-test/ consulted in 17 June 2020.
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Figure 2: Social Activity Under Different Calibrations
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Note: This figure shows social activity of tested and untested susceptible agents under six calibra-
tions of the model and assuming that half the population is tested, ω= 0.5. The six calibrations are,
respectively, benchmark, σ= 0.7, β= 6/14, Ao

i
= Aτ

i
= 0.9, Λ=

1
1+0.05/365

1
1+0.33/365 , and v = 120000.

positive). In other words, untested agents benefit marginally more than tested agents if there
is an increase in the share of tested agents, ω. The cause is, once more, the externality effect
of antibody testing on It , which reduces exposure of all susceptible agents to the virus and
allows them to enjoy more social activity.16 Because Ao

t > Aτ
t , the fall in It turns out to be

especially important to reduce exposure of untested agents.

To sum up, antibody testing lowers the contagion of the virus, increases welfare, and reduces
inequality. It does so by increasing the information available to economic agents. And this
information improves the well-being of all agents even if only a few agents have access to
it. The reason is simple: susceptible and asymptomatic agents who know that they are not
immune tend to curtail their social activity.

16There are some opposing indirect effects as well but they are of second-order importance. For example, tested
agents restrain their social activity by less when ω is high as It is lower due to the higher weight of tested agents.
Yet, these general-equilibrium effects do not change the qualitative results.
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4.2 Robustness Checks

This section presents my sensitivity analysis to changes in the parameters of the model. It
demonstrates that my qualitative results are robust to different calibrations but also that
some parameters substantially change the quantitative results.

The green dashed lines in Figure 3 present the case of σ= 0.7, i.e., 70% of asymptomatic in-
dividuals eventually become symptomatic. This may be the case if most individuals develop
symptoms that are perfectly distinguishable from those of other diseases. But I also use this
experiment to assess the consequences of large-scale viral testing (to detect the presence of
an infection in many asymptomatic agents) and very efficient contact-tracing allowing for
an early identification of most infected individuals even if asymptomatic.17 Comparing the
results under the benchmark calibration (blue solid lines) with those with σ= 0.7 shows a re-
duction in the (absolute) slope of the lines; this indicates that the gains from antibody testing
depend negatively on σ. The reason is simple: if σ is large, most recovered individuals know
that they are immune even without antibody tests. Thus, antibody tests offer much less in-
formation to economic agents if (i) most agents easily identify that they are infected, and/or
(ii) viral testing is conducted in large scale, and/or (iii) contact tracing is very efficient. But,
even if σ= 0.7, my simulations suggest that antibody testing can prevent up to 4% of deaths
(corresponding to 6400 individuals in the UK) in the first year.

The value of a prevented fatality that I use to reach a measure of the value of life, v , is rel-
atively low. It is slightly higher than in Alvarez, Argente and Lippi (2020) and slightly lower
than in Hall, Jones and Klenow (2020) but much lower than in, e.g., Eichenbaum, Rebelo and
Trabandt (2020a,b) and Farboodi, Jarosch and Shimer (2020). I use the red dot-dashed lines
in Figure 3 to show the implications of v = 120,000, which is four times larger than my bench-
mark and implies a value of life closer (relative to consumption terms) to the higher targets
used in the literature. The implications for the number of susceptible agents after one year
are staggering. Within the first year, the total number of exposed agents is about 36% of that
implied by v = 30,000 because all economic agents persistently strongly constrain their social
activity (see Figure 2). But, more importantly for the purposes of this paper, the welfare gains
of antibody testing are still substantial: even though antibody testing prevents less deaths,
the value attached to each life is four times higher.

I also experimented with a basic reproduction number of R0 = 6 (implying a β twice that
in my benchmark), which is extreme. I report the results using the green dashed lines in
Figure 4. Unsurprisingly, the effect on the number of infected agents is very large: about
80% of agents are infected within one year. In this case, moving from no antibody testing
to continuous and widespread antibody testing is even more important; it would save about

17This is naturally a simplification. First, I assume that only asymptomatic agents are tested for the presence
of the virus such that viral tests do not offer information to susceptible agents. If I do not make this assumption,
then I would need to conduct a different optimization problem, which is beyond the scope of the paper. Second,
in the model, asymptomatic agents are infected for less days (on average) than symptomatic agents. Thus, mod-
elling the effects of large-scale viral testing and very efficient contact-tracing as a transition from asymptomatic
to symptomatic is also not entirely accurate. Yet, I adjust the death probability according to σ and I interpret the
extra days of infection as quarantine imposed by the national authorities.
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Figure 3: Robustness Checks I
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Note: This figure shows total infected after one year, 1−No
s,365 −Nτ

s,365, welfare of tested suscepti-

ble agents in period 1, V τ
s,1, and difference in welfare loss between tested and untested susceptible

agents in period 1, V o
s,1 −V τ

s,1, as a function of the share of tested agents, ω. Solid blue lines present
the results under the benchmark calibration. The other two lines change one parameter relative to
benchmark: green dashed lines assume σ= 0.7 and red dot-dashed lines assume v = 120000.

41000 lives within the first year (using the UK as benchmark). Thus, the more contagious is
the virus, the more important are antibody tests.

Figure 4 also reports the implications of a social activity of symptomatic agents of Ao
i
= Aτ

i
=

0.9 (50% larger than in my benchmark) and a cure-for-all probability of 33% per year (half
that in my benchmark). Increasing Ao

i
= Aτ

i
(red dot-dashed lines) increases the total expo-

sure to the virus and reduces welfare, which agrees with Eichenbaum, Rebelo and Trabandt
(2020b): quarantining of detected infected individuals is paramount for viral testing to in-
crease welfare. But this experiment shows that the gains from antibody testing do not change
substantially. I also do not find substantial changes to the benefits of antibody testing if the
probability of a vaccine is relatively low (see orange dotted lines).

My final robustness checks relate with α, the parameter governing the curvature of the utility
of social activity. I report the results in Figure 5. One important message is that the extent of
the epidemic depends substantially on α. For example, relative to α = 1, assuming α = 0.5
lowers total infections by about 30 percentage points while assuming α = 2 rises infections
by about 15 percentage points in the first 12 months. The logic is that a lower α reduces
the curvature of the utility function; thus, it implies that agents are willing to significantly
adjust their social activity in response to the epidemic.18 The gains of antibody testing are
still sizeable: widespread and continuous antibody testing would prevent between 8% (in the
case of α= 0.5) and 10% (in the case of α= 1) of COVID-19 related deaths.

18In the limit, if α=∞, then agents would not adjust their social activity and my model would only include its
epidemiological block.
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Figure 4: Robustness Checks II
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Figure 5: Robustness Checks III
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My results also help to distinguish the roles of antibody and viral testing. Eichenbaum, Re-
belo and Trabandt (2020b) study tests with a dual purpose: they simultaneously indicate viral
presence (viral tests) and immunity (antibody tests). Instead, I focus on antibody tests, which
only indicate immunity. This difference implies divergent results. Eichenbaum, Rebelo and
Trabandt conclude that their dual-purpose tests can be nefarious for welfare unless there are
quarantining measures. But this result only follows from the fact that diagnosed infected
agents face no trade-off and (if unconstrained) increase their activity, leading to a rise in in-
fections and lower welfare. In contrast, antibody testing unambiguously reduces the average
social activity of susceptible and asymptomatic agents, implying an unambiguous welfare
gain.

5 UK Scenarios

In this section, I apply my model to the UK as of 12 June 2020. I believe my model can offer a
good reference point for how the COVID-19 pandemic might evolve as the UK government is
gradually lifting lockdown measures and individual decision making becomes more impor-
tant in the propagation of the virus. In this regard, my analysis complements that in Pichler
et al. (2020) and Costa Dias et al. (2020).19 Both take different approaches to assess how to
lift lockdown policies and reopen the UK economy while I focus on the pandemic evolution
taking into account how agents are likely to react over time. In this section, I also examine
how important antibody tests can be in shaping the remaining evolution of the COVID-19
pandemic in the UK. My conclusion is that antibody testing can avoid about 8% of COVID-19
related deaths from June 2020 to June 2021.

5.1 Starting Point

Relative to Section 3, I recalibrate the starting point of my simulations. As of June 12, the
UK government reported approximately 41000 deaths associated with COVID-19.20 I use this
number to set N o

d ,1+Nτ
d ,1 = 0.0006 and use ω to split deaths between the groups. On the same

day, the ONS reported that about 6.8% of the population had antibodies (95% confidence
interval: [5.21%,8.64%]). These estimates are, however, from the period between 26 April
and 24 May and might be low. Thus, I use a slightly higher target for recovered individuals:
N o

re,1 +Nτ
re,1 +N o

r i ,1 +Nτ
r i ,1 = 0.075. To split the recovered among the two health states of the

two groups, I use ω and σ; in particular, I set N o
re,1 = (1−σ)(1−ω)0.075. Also on June 12, the

ONS reported that about 0.06% of the English population had COVID-19 between May 25 and
June 7 (95% confidence interval: [0.02%,0.12%]). Yet, given that these estimates are based on
only 11 individuals testing positive for COVID-19 in a survey with 19933 participants, I prefer
to be conservative and set N o

e,1 +Nτ
e,1 +N o

i ,1 +Nτ
i ,1 = 0.0012. I use ω to split between the two

groups and assume that N
y

i ,1 = 0.5N
y

e,1. Susceptible agents, N
y

s,1, are the residual.

19See also Ferguson et al. (2020) for an early epidemiological model for the evolution of COVID-19 in the UK.
20https://coronavirus.data.gov.uk , consulted in 17 June 2020.
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5.2 Scenarios

I consider two main scenarios. One is the unconstrained scenario in which I use the bench-
mark calibration as in Section 3 and still include quarantine for symptomatic agents. The
other is a constrained scenario in which I assume a permanently lower β because the UK gov-
ernment imposes policies that might restrict contagion like mandatory mask use in public
transport.21 For example, Mitze et al. (2020) document that mandatory mask use strongly
reduced contagiousness in Germany and Eikenberry et al. (2020) estimate and simulate an
epidemiological model and find that mask use could significantly reduce new cases in New
York and Washington.

It is very hard to quantify how much lower should β be in the constrained scenario relative to
the unconstrained one. And this uncertainty has huge implications for any simulations that
I can make. For example, if β falls to the point that R0 < 1, then any epidemiological model
would suggest that the epidemic will soon vanish in the UK. That, however, seems unlikely;
for example, countries like China and South Korea (that were very efficient in attenuating
contagion in the beginning of the epidemic) imposed stringent policies than the UK and still
repeatedly report surges in new cases. Furthermore, if policies stop before herd immunity is
achieved and all possible contagion sources are eradicated, then the epidemic restarts.

To find a reasonable β in constrained scenarios, I build on Eikenberry et al. (2020). They re-
view the evidence on the filtering efficiency of different types of masks (from home-made to
N95) to design multiple scenarios for the impact of mask use on β. Their simulations suggest
that mask use can significantly reduce β: for example, in the extreme circumstance that all
individuals properly wear N95 masks at all times, β would fall to virtually zero. Yet, mask use
is only mandatory in public transport in England (it recommended in Northern Ireland, Scot-
land, and Wales) and the government does not recommend the use of surgical masks. Thus,
these policies might not be very effective especially if most workers cannot continue to work
from home. Given that, and the simulations in Eikenberry et al., my constrained scenario
assumes that β is 40% lower than in the unconstrained one: β= 1.8/14. This, arguably, might
be optimistic. But my main point is to devise a scenario that takes into account, at least to
some extent, the effect of the policies of the UK government.

For completeness, I also analyse how a high value of life, v = 120000, and a higher proportion
of symptomatic (and identified) agents, σ= 0.5, change the results. I study the case of a high
v because, as argued above, the value of a prevented fatality that I use to calibrate the model
is relatively low; it is likely that agents attach a higher value to their own life. I also study
σ = 0.5 because there might be substantial improvements in the scale of viral testing (that
identify the presence of a COVID-19 infection) and in the efficiency of contact tracing.

Finally, to grasp the implications of antibody testing, I split each scenario into two: continu-
ous and widespread antibody testing (ω= 1) and zero antibody testing (ω= 0).

21https://www.bbc.com/news/health-51205344, consulted in 17 June 2020.
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5.3 Simulations for the UK as of 12 June 2020

The results of my main simulations of the COVID-19 pandemic in the UK until July 2022 are
presented in Figure 6. Blue solid lines represent the scenarios with continuous and widespread
antibody testing (ω= 1) and the greed dashed lines represent the scenarios without antibody
testing (ω = 0). In Panels A and B, I show the unconstrained scenarios (β = 3/14) and con-
strained scenarios (β = 1.8/14), respectively. Each panel shows total exposure to the virus,
the number of currently infected (both symptomatic and asymptomatic), and social activity
of susceptible and asymptomatic agents.22

Figure 6: Simulations for the UK as of 12 June 2020
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Both scenarios suggest that there will be a large second wave of infections unless a cure or

22In the case of ω = 0, the social activity of recovered undocumented equals that of susceptible and asymp-
tomatic agents; in the case of ω= 1, their social activity is the maximum possible, normalised to unity.
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vaccine is discovered soon. This result already takes into account that agents reduce their
social activity, which significantly reduces the scale of the epidemic.23 And antibody testing
does not have the firepower to prevent it; it only has the firepower to mitigate it.

As is well-known, the choice of β plays a fundamental role in epidemiological models. Based
on my simulations, the constrained scenario implies a reduction of 20 percentage points in
total exposure after two years and reduces the peak infection rate to less than a third while
postponing it in time. Moreover, economic agents do not need to constrain their social activ-
ity by as much, which improves welfare.24 Thus, if the policies conducted by the UK govern-
ment do reduce β by 40%, those policies save many lives and gain time to search for a cure or
vaccine.

Antibody testing has a non-negligible effect in reducing exposure and peak infections. In
particular, the simulations of the model suggest that widespread and continuous antibody
testing lower additional exposure and deaths by 12.6% and 7.7% in the unconstrained and
constrained scenarios in the first 12 months, respectively. In absolute terms, this corresponds
to 28000 and 7000 lives. The gains of antibody testing become less impressive with time but
are persistent; thus, antibody testing crucially gains some time for a cure and/or vaccine to
be discovered.

In Figures A1 and A2 in the Appendix, I report the simulations for the UK if v = 120000 and
σ = 0.5, respectively. In both cases, the extent of the epidemic in the UK is lower. And this
is especially clear in the case of high v due to very strong and persistent reduction in social
activity. Furthermore, compared with Figure 6, antibody testing saves less lives in the two
cases for the reasons identified in Section 4.2. Yet, in both cases, there are still visible gains
from large scale antibody testing especially after the first 10 months.

6 Random & Periodic Testing

Arguably, the gains from antibody testing in revealing the health state to individuals sug-
gested by my model are hard to reach if home antibody tests that can be used without medical
supervision and with very low marginal cost are not available. Even though some antibody
testing is better than nothing, most of the gains of antibody testing seem to require that a
sizeable share of the population is tested every day (at least until they develop antibodies).
Without home antibody tests, this seems impracticable; it would be more realistic to assume
that agents are tested in different days and with different periodicity. As explained in Sec-
tion 2, however, considering this scenario makes the model intractable. The main reason is
general equilibrium effects: all agents’ decisions affect all other agents’ decisions through to-
tal social activity of infected agents, It . But, in this section, I bypass this problem to show

23I simulated, in parallel, an epidemiological model like mine with Ao
t = Aτ

t = 1 for all t and continued to impose
that Ao

h
= Aτ

h
= 0.6. In the unconstrained scenario, 90% of agents are exposed in less than 200 days. And in the

constrained one, 56% are exposed in 400 days.
24Arguably, the policies imposed by the UK government like mandatory mask use in public transport might

reduce welfare. I am not measuring those costs in my analysis.
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that there are sizeable gains to testing agents at least once and that most of the gains from
continuous antibody testing can be harvested if agents are periodically tested.

In this section, I study the problem of a marginal untested susceptible agent who is unsure
whether she is currently asymptomatic or whether she has recovered without developing
symptoms. Because this agent corresponds to a very tiny fraction of the population, her
decisions have insignificant effects on It ; thus, to continue, I assume that those effects are
zero, implying that the optimal decisions of all other agents are unchanged. I consider two
scenarios. In one scenario, I study how the marginal agent reacts if she unexpectedly tests
her antibodies at some point in time; I present the results in Figure 7. In the other scenario, I
study how the marginal agent reacts if she knows that she is tested every T periods; I present
the results in Figure 8. In both scenarios, the marginal agent decides given an equilibrium
path for It , which I obtain using my benchmark calibration and setting ω= 0.01 (only 1% are
continuously tested).25

Figure 7: Random Antibody Testing of a Marginal Economic Agent
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Note: This figure contrasts the social activity of the marginal untested agent when tested only once
(red dot-dashed lines) with the social activity of continuously tested agents (blue solid line) and of
untested agents (greed dashed lines).

To grasp how random and periodic testing affects decision making, Figures 7 and 8 contrast
the social activity of the marginal agent (red dot-dashed line) with that of continuously tested
agents (blue solid line) and that of untested agents (green dashed line). Figure 7 shows that if
an agent is randomly tested at some period, she permanently reduces her social activity rel-
ative to never being tested because she learns that she is in a riskier position than previously
thought (she can either be susceptible or asymptomatic; she is not immune). This concurs

25In practice, after obtaining It , I reset Nr e, j where j denotes the dates in which the agent is tested. I do it
because if the agent tests positive, her utility is normalised to zero from that period on, while if she tests negative,
she learns that she is not recovered undocumented. If the agent is aware that she will be tested, I also set Vr e, j−1 =

0 because, in the day before the test, the agent is unconstrained. Furthermore, given that the agent knows that
she is under a periodic testing regime, setting Nr e, j = 0 and Vr e, j−1 = 0 affects all other periods recursively.
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with the results documented in Gong (2015) as he reports that if individuals are surprised by
a negative HIV test, they reduce their risky sexual exposure. Figure 7 also shows that most of
the reduction in social activity caused by random immunological testing occurs if the test is
not conducted when the epidemic starts but rather a few months later. The reason is that, in
the first few months, the probability of being recovered undocumented is low; thus, agents
behave similarly irrespective of testing. It is only when the probability of being recovered
undocumented builds up that random antibody testing significantly lowers social activity.
Another interesting result in Figure 7 is that the marginal agent temporarily constrains her
social activity by more than continuously tested agents. She does that because she inter-
nalises the future loss of being recovered undocumented, which dominates for low nre (see
the discussion in Section 2.2.2).

Figure 8: Periodic Antibody Testing of a Marginal Economic Agent
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Note: This figure contrasts the social activity of the marginal untested agent when tested periodically
(red dot-dashed lines) with the social activity of continuously tested agents (blue solid line) and of
untested agents (greed dashed lines).

Figure 8 shows that periodic antibody testing remarkably lowers social activity. In fact, if the
marginal agent is tested every 30 days, her social activity is almost indistinguishable from
agents tested every day. Furthermore, even if the marginal agent is tested every 90 days, her
optimal path of social activity falls significantly and is notably close to that of tested agents
after the first nine months of the epidemic. Therefore, given that the marginal agent behaves
similarly to tested agents, these experiments suggest that the benefits of large scale antibody
testing can be collected if all agents are tested every 30 or 60 days. Furthermore, these ex-
periments suggest that it is possible to approximate the social activity of the marginal agent
to that of the tested agent if: 1) there are no immunological tests in the first few months of
the epidemic; 2) there is frequent antibody testing during the period in which there are more
infections; and 3) there is a gradual reduction in the periodicity of testing as the epidemic
fades.26

26The actual timing of these phases depend on the calibration of the model.
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7 Concluding Remarks

In the context of the COVID-19 pandemic, the literature has advocated many non-pharmaceutical
interventions to reduce the scale of the pandemic and, if possible, its economic costs. Alvarez,
Argente and Lippi (2020) and Glover et al. (2020) argue that lockdowns and quarantines can
be optimised to increase welfare; Acemoglu et al. (2020) and Gollier (2020) argue that age-
specific lockdown and quarantine policies are far better than age-indifferent ones; Mitze et al.
(2020) document that mandatory mask use reduces deaths; Berger, Herkenhoff and Mongey
(2020), Brotherhood et al. (2020), Eichenbaum, Rebelo and Trabandt (2020b), and Piguillem
and Shi (2020) argue that the combination of testing and quarantining increases welfare. In
this paper, I argue that antibody testing is another non-pharmaceutical intervention – not
recognised so far in the literature – that can save lives and increase welfare.

I use a simple economic model in which agents are uncertain about their health state to show
the importance of antibody testing. In the model, agents are optimally more socially active
when they have a slightly positive perceived probability of having recovered from a COVID-19
infection without developing symptoms. Although some did recover and are immune, most
are still susceptible or asymptomatic individuals. Thus, this surge in social activity increases
both directly and indirectly the exposure of susceptible agents. The final effects of this health
state uncertainty is a higher proportion of the population exposed to the virus, more death,
and greater welfare losses. Yet, antibody testing, by revealing whether individuals are im-
mune or not, stops this chain of events at the start. In simulations calibrated to the UK, my
model suggests that antibody testing prevents about 8% of COVID-19 related deaths between
June 2020 and June 2021.

My model also hints that the welfare gains of antibody testing and its efficacy in preventing
COVID-19 contagion depends:

• Positively on the contagiousness of the virus because the effects of increased activity in
the absence of antibody tests compound quickly;

• Positively on the probability of being asymptomatic because it increases the probability
that agents are unaware that they are immune;

• Negatively on viral testing and contact tracing because (i) these policies increase the
number of individuals aware of recovery absent antibody tests and (ii) also reduce con-
tagiousness;

• Negatively on other interventions that likely lower contagiousness like mandatory mask
use.

My simulations suggest that antibody testing is not a relevant tool to lower contagion in the
beginning months of the epidemic. It only becomes important when a sufficiently large pro-
portion of the population is immune but unaware of its immunity. This is precisely the case
in countries like the UK and Spain but, even more clearly, in cities like London and New
York where more than 15% of the population is estimated to be immune. Those numbers,
although staggering, fall significantly short of herd immunity. Thus, my model flags the im-
portance to distinguish those who are immune from those who are not to curb down the
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future propagation of COVID-19.

There is much uncertainty about COVID-19. For example, what is the actual case fatality rate?
What is the proportion of asymptomatic? How contagious is the virus? How does it propa-
gate? We have learned a lot in the past six months and I have used that knowledge as best as
I could in designing and calibrating my model. But one critical source of uncertainty, which
will likely not be resolved soon, regards the duration of immunity. I follow the economics lit-
erature and assume that recovered individuals are permanently immune. Yet, there is not yet
conclusive evidence that immunity is permanent. If it is not, then the role of antibody testing
likely depends on the type of tests available. In particular, if immunity is short-lived, then
large public and private investments in developing easy-to-use and reliable home antibody
tests seems extremely important for agents to identify when they become immune and when
they lose that immunity.
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A Other UK Scenarios

Figure A1: Simulations for the UK as of 12 June 2020 – High v
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i ,t , and social activity of susceptible agents in the cases of ω = 1 (all agents
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Figure A2: Simulations for the UK as of 12 June 2020 – High σ
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s,t , infected agents,
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e,t + No

i ,t + Nτ
i ,t , and social activity of susceptible agents in the cases of ω = 1 (all agents

are tested; blue solid lines) and ω = 0 (all agents are untested; green dashed lines). Panels A and B
assume, respectively, that β= 3/14 and β= 1.8/14. Both panels assume that σ= 0.5.
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