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Abstract

We study the welfare consequences of merging disjoint Shapley–Scarf hous-
ing markets. We obtain tight bounds on the number of agents harmed by
integration and on the size of their losses. We show that, in the worst-case
scenario, market integration may harm the vast majority of agents, and that
the average rank of an agent’s house can decrease (asymptotically) by 50%
of the length of their preference list.

We also obtain average-case results. We exactly compute the expected
gains from integration in random markets, where each of the preference pro-
files is chosen uniformly at random. We show that, on average, market
integration benefits all agents, particularly those in smaller markets. Using
the expected number of cycles in the top trading cycles algorithm, we bound
the expected number of agents harmed by integration. In particular, the
expected fraction of agents harmed by integration is less than 50% if each
market has the same size and this is below 26 (independent of the number
of markets that merge). We conclude by providing a preference domain that
ensures that those harmed by market integration are a minority.
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1. Introduction

Shapley–Scarf markets, in which agents own one house each which they
can exchange among themselves without using monetary transfers, have been
helpful to analyse several real-life allocation problems, such as kidney ex-
changes involving donor-patient pairs that are incompatible with each other
(Roth et al., 2004). A common complication in these allocation problems is
that a big market is fragmented into several small and disjoint ones, causing
inefficiencies. For example, Agarwal et al. (2019) document that most kidney
exchanges in the US are conducted locally, despite the existence of central-
ized clearinghouses, which if used could increase the number of transplants
by up to 63 percent. However, despite these potential large gains from in-
tegration, some American hospitals refrain from participating in centralized
allocation schemes because they expect to match more of their donor-patient
pairs internally (Ashlagi and Roth, 2014).

Motivated by this observation, we investigate theoretically the effects of
integrating disjoint Shapley–Scarf markets, where before and after integra-
tion occurs the unique core allocation is implemented. In our model, there
are k Shapley–Scarf markets with nj agents each (nj is potentially different
for each market) and n agents in total. Before integration occurs, each agent
obtains their core allocation within their initial market. However, after in-
tegration occurs, agents obtain their core allocation in the market where all
agents are allowed to trade their initial endowments.

Our first result (Proposition 1) states that up to, but not more than, n−k
agents may be harmed by integration, i.e. they receive a house they prefer
more when trade is only allowed within their own disjoint markets. This
upper bound holds for any choice of n and k. It shows that Shapley–Scarf
markets may fail to integrate because doing so could generate more losers
than winners. Consequently, if market integration would be decided by a
majority vote, our result implies that integration may not be achieved.

Our second result (Proposition 2) concerns the size of the gains from
integration in terms of house rank. For example, if an agent receives her 3rd
best house before integration, but her 1st best after integration, the size of
her gains from integration is 3 − 1 = 2. Even if most agents are harmed by
the merge of disjoint markets, integration may still be justified if the size of
the gains from integration experienced by a few is substantially larger than
the size of the losses from many. We show that, in the worst-case scenario,
the size of the average gains from integration may be down to, but not less
than, −n

2+n+k2+k
2n2 . This lower bound can be achieved for any choice of n

and k, and shows that, asymptotically, integration may reduce the average
assigned house rank by 50% of the size of agents’ preference lists.
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Taken together, our first two results show that there are real obstacles
to the integration of Shapley–Scarf markets. For example, if we have three
small markets that merge into one with 60, 30 and 10 agents respectively,
up to 97 agents may obtain a worse house after integration occurs, and on
average (across all agents) each agent may receive a house 50 positions down
on her preference list, equivalent from going from her top choice to her 51st
choice.

However, these results are obtained in worst-case scenarios, which occur
only when preferences are very specific. Consequently, studying the expected
gains from integration across all possible preference profiles may be more
informative. Therefore, our third result studies the size of the expected
gains from integration in random Shapley–Scarf markets, in which agents’
preferences over houses are drawn uniformly and independently.

In our third result (Proposition 3), we compute the exact expected gains

from integration, which equal
(n+1)[(nj+1)Hnj−nj ]

nj(nj+1)n
− (n+1)Hn−n

n2 ; (Hn is the n-

th harmonic number). This result immediately shows that the expected
welfare gains from integration are positive for all agents, and larger for agents
belonging to smaller markets. Going back to our example of three markets
integrating with 60, 30 and 10 agents, the agents of the market with size
ten go up 16 positions in their expected house rank, whereas those in the
market of size sixty also increase their expected allocated house rank, but
only by 2 rank positions. Our third result, which we confirm with the use
of simulations, puts some context to our first two propositions, and shows
that on average we should expect an overall positive effect from integration
in Shapley–Scarf markets for agents from all disjoint markets.

Our fourth result (Proposition 4) establishes a connection between the
number of trade cycles that occur in the top trading cycles algorithm before
integration and the expected number of agents harmed by integration. We
use this connection to show that the expected number of agents harmed
by integration in each economy is less than nj −

√
2πnj + O(log nj), and

consequently the expected number of agents harmed by integration in the
grand economy is smaller than n −

√
2π(
∑k

j=1

√
nj) + O(log

∏k
j=1 nj). In

our example regarding the integration of markets with size 60, 30 and 10,
our result implies that the expect number of agents harmed by integration is
less than 59 in the entire economy, and furthermore less than 41, 16, and 2
for each respective market. A direct consequence of our result is that, when
all markets are of the same size, the expected fraction of agents harmed by
integration is less than 50% whenever each market has less than 8π ≈ 25.13
agents, independent of the number of markets integrating.

A different approach to ensure that integration does not harm a majority
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of agents is to focus on specific preference domains. We find a preference
domain that achieves this purpose, called sequential dual dictatorship, which
enforces a high correlation among agents’ preferences. When preferences
satisfy this particular property, we can guarantee that no more than 50% of
agents in any individual market are harmed by integration (which implies
that no more than 50% of the total agents in the grand economy are harmed,
see Proposition 5). The sequential dual dictator property is equivalent to
assigning the title of dictator to two agents at each step of the top trading
cycle algorithm, therefore bounding the length of cycles that can occur.

We conclude the paper by showing that, although implementing the core
allocation for the grand economy cannot guarantee not harming any agent (a
property which we call integration monotonicity), there is no other matching
rule that is clearly better. In particular, there is no matching rule that is
integration monotonic, Pareto optimal and strategy-proof (Proposition 6).

Structure of the paper. Section 2 discusses the relevant literature. Section
3 introduces our model. Section 4 presents worst-case results. Section 5
presents average-case results. Section 6 discusses preference domains. Section
7 concludes.

2. Related Literature

A few other papers study the effects of integration on variations of Shapley–
Scarf markets. For example, Ashlagi and Roth (2014) study the incentives
for hospitals to fully reveal their patient–donor pairs to a centralized clearing-
house by constructing a model in which the set of agents is partitioned into
sets of hospitals. In their model, agents do not have preferences but only di-
chotomous compatibility restrictions, whereas hospitals have preferences over
the number of exchanges involving agents affiliated to them. Thus, welfare
is measured by the size of the matching rather than by ranks, and there-
fore our proof techniques are different and unrelated. They obtain worst-
and average-case results that have a similar flavour to ours: the average-case
cost for hospitals to fully integrate into a centralized clearinghouse is small,
but the worst-case cost is high. In the same framework as them, Toulis
and Parkes (2015) propose a mechanism that is efficient and asymptotically
individually rational for hospitals.

Another paper that relates to the integration of Shapley–Scarf markets
is by Ehlers et al. (2002). They focus on slightly different markets in which
agents may own several houses. In this setup, they study allocation rules that
are population monotonic, i.e. those in which reducing the set of agents has
a positive effect for all agents. Although population monotonicity is a hard
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property to satisfy, they characterize the set of rules satisfying population
monotonicity, efficiency and strategy-proofness.

Our paper is also related to a series of recent articles that have stud-
ied the integration of other types of markets without money, in particular
for Gale–Shapley one-to-one matching markets (Ortega, 2018, 2019), Gale–
Shapley many-to-one matching markets with applications to school choice
(Manjunath and Turhan, 2016; Doğan and Yenmez, 2019; Ekmekci and Yen-
mez, 2019; Turhan, 2019; Aue et al., 2020), exchange economies (Chambers
and Hayashi, 2017, 2020) and networking markets (Gersbach and Haller,
2019; Ghelfi, 2019; Bykhovskaya, 2020). Among these, the closest to ours
are Ortega (2018, 2019). He shows that, in Gale–Shapley marriage markets,
market integration never harms more agents than it benefits, even though
the average rank of an agent’s spouse can decrease by 37.5% of the length of
agents’ preference list. He also provides an approximation for the gains from
integration in random markets. Although some of our results parallel his
for Gale–Shapley marriage markets, ours are substantially better as: i) they
provide tight bounds on the welfare losses, ii) they apply to the integration
of markets of different sizes, thus providing useful comparative statics and
iii) in the case of the gains from integration in random markets, our results
are exact rather than approximations.

Our average-case results rely on two seminal papers from the computer
science literature regarding random Shapley–Scarf markets with uniform and
independent preferences. The first of these, by Frieze and Pittel (1995), com-
putes the expected number of iterations that the top trading cycles algorithm
takes to find the unique core allocation and the number of cycles created in
the process. The second paper, by Knuth (1996), finds the expected sum of
ranks of obtained houses and establishes the equivalence between the core
allocation obtained from random endowments and the random serial dicta-
torship mechanism with no property rights.1 Che and Tercieux (2019) use a
similar random market approach to show that, in a related two-sided model,
the top trading cycles algorithm achieves efficiency and stability asymptot-
ically when agents’ preferences are independent, and propose a variation of
this algorithm that achieves both properties even when preferences are cor-
related.

1The latter result was also independently discovered by Abdulkadiroğlu and Sönmez
(1998).
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3. Model

Preliminary definitions. We study the housing markets proposed by Shapley
and Scarf (1974), where there are n agents, each of them owning an indivisible
good (say a house). The agents have strict ordinal preferences over all houses,
including their own, and no agent has any use for more than one house.2

Formally, letN := {1, . . . , n} be the set of agents and let ω := {ω1, . . . , ωn}
be the initial endowment of the market. Let �i denote the strict preference of
agent i and let �:= (�i)i∈N . As usual, the weak preference corresponding to
�i is denoted by <i. A housing market (HM) is a pair (N,�). An allocation
x = {x1, . . . , xn} is any permutation of the initial endowment. Allocation x
dominates allocation y if ∃S ⊆ N such that

1. {xi : i ∈ S} = {ωi : i ∈ S}

2. xi �i yi ∀i ∈ S

The first condition says that coalition S is effective for the allocation
x, and the second condition says that every member of coalition S strictly
prefers x to y. A core allocation is one that is undominated. An allocation
x is individually rational if xi <i ωi for all i ∈ N . An allocation x is Pareto
optimal if, for every alternative allocation x′ such that x′i � xi for some i ∈ N ,
there exists some j ∈ N for which xj �j x′j. A matching mechanism M is a
map from HMs to allocations, and is said to be a core one (resp. individually
rational, Pareto optimal) if it produces a core (resp. individually rational,
Pareto optimal) allocation for every HM. The mechanismM is strategy-proof
if, for every i,�′i,�, Mi(N,�) <iMi(N, (�′i,�−i)).

For any housing market, there is always a unique core allocation that
can be found with an algorithm known as top trading cycles (TTC) (Shapley
and Scarf, 1974; Roth and Postlewaite, 1977), which works by repeating the
following two steps until all agents have been assigned a house.

1. Construct a graph with one vertex per agent. Each agent points to the
owner of his top-ranked house among the remaining ones. At least one
cycle must exist and no two cycles overlap. Select the cycles in this
graph.

2We only consider the case where agents have strict preferences; for an analysis of
housing markets with weak preferences, see Quint and Wako (2004); Alcalde-Unzu and
Molis (2011); Aziz and De Keijzer (2012); Jaramillo and Manjunath (2012) and Saban and
Sethuraman (2013).
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2. Permanently assign to each agent in a cycle the object owned by the
agent he points to. Remove all agents and objects involved in a cycle
from the problem.

TTC is the only mechanism satisfying individual rationality, Pareto-
efficiency and strategy-proofness on the strict preference domain (Ma, 1994).

New definitions. We study extended housing markets (EHM), which consist
of a HM and a partition of the set of agents into k disjoint communities
C1, . . . , Ck. This is, an EHM is a triple (N,�, C), where C := {C1, . . . , Ck}.
An integrated allocation is any allocation for the HM (N,�), whereas a seg-
regated allocation is an allocation for (N,�) in which every agent receives
a house owned by an agent in her own community. This is, a segregated
allocation x is such that {xi : i ∈ S} = {ωi : i ∈ S} ∀S ∈ C. A matching
scheme σ is a map from EHMs into an integrated and a segregated allocation,
denoted by σ(·, C) and σ(·,Ω), respectively.3

For agent’s i ∈ Cj preference �i, we denote its restriction to Cj by �̃i.
In other words, �̃i is the strict ranking of agent i on all the houses belonging
to agents in community Cj (including his own) that is consistent with �i.
The matching scheme σ∗ is the core matching scheme if σ∗(·,Ω) is the core
matching for the HM (N,�) and, for every community Cj, σ

∗(·, Cj) is the
core matching for the HM (Cj, �̃Cj

), where �̃Cj
:= (�̃i)i∈Cj

. Example 1
presents the core matching scheme for a EHM.

The rank of house ωh in the preference order of agent i is defined by
rki(ωh) := |{j ∈ N : ωj <i ωh}|. The gains from integration for agent i under
the matching scheme σ are defined as γi(σ) := rki(σ(i, C)) − rki(σ(i,Ω)).
The total gains from integration are given by Γ(σ) :=

∑
i∈N γi. If these

are negative, we speak of the total losses from integration. The average
percentile gains from integration are denoted by Γ(σ) := Γ(σ)

n2 . We divide by
n2 to account for both the number of agents (n) and the length of preference
list (which is also n). Thus, Γ(σ) ∈ (−1, 1), where Γ(σ) = −1 means that
everybody was harmed by integration and moved from their best possible
house to the worst possible one.

We use N+(σ) := {i ∈ N : σ(i,Ω) �i σ(i, C)} to denote the set of agents
who benefit from integration. Similarly, N0(σ) := {i ∈ N : σ(i,Ω) = σ(i, C)}
and N−(σ) := {i ∈ N : σ(i, C) �i σ(i,Ω)} denote the set of agents that are
unaffected and harmed by integration, respectively. For all j ∈ {1, . . . , k},
we define N+

Cj
(σ) := {i ∈ Cj : σ(i,Ω) �i σ(i, C)} to be the set of agents in

3Matching schemes are similar to the concept of assignment schemes in cooperative
game theory (Sprumont, 1990).
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Example 1: An EHM with N = 7, k = 2, C1 = {a, b, c} and C2 = {d, e, f, g}.
The integrated (resp. segregated) core allocation appears in a diamond (resp. circle).

a b c d e f g

d c a a f g d

b a d e a a a
... d c

... d d c

g
... b b g

b c c
...

... g f

e e

community Cj who benefit from integration. The sets N0
Cj

(σ) and N−Cj
(σ)

are defined analogously.
Henceforth we focus on σ∗, i.e. we study the gains from integration that

occur when the allocation obtained before and after integration occurs is the
unique core allocation.

4. Results

Unfortunately, the integration of housing markets may harm the vast
majority of agents. In the worst-case scenario, up to n−k agents are harmed
by integration, and this upper bound is tight.

Proposition 1. For any pair (n, k), there exists an EHM in which |N−(σ∗)| =
n− k; whereas there is no EHM in which |N−(σ∗)| > n− k.

Proof. The EHM in Example 1 illustrates an EHM showing that the n − k
bound is attainable. In such example, there are two communities with three
and four agents each, such that one agent from each community (in this
case a and d) is assigned to their second best house in the segregated core
allocation, whereas all remaining agents are assigned to their most preferred
house. However, when both communities integrate, a and d exchange their
houses, each obtaining their most preferred house, and provoking that all
other agents are assigned to their own house (which they prefer less than
the segregated core allocation). Keeping this structure, we can extend the
construction of this example to arbitrary values of n and k to guarantee
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that n − k agents strictly prefer the core segregated allocation to the core
integrated one.

To see that the n− k upper bound is tight, assume by contradiction that
more than n− k agents are harmed by integration, which implies that there
is one community in which all agents are harmed by integration, say Cj. But
then σ∗(·,Ω) is not a core allocation for (N,�), because any alternative allo-
cation x such that xi = σ∗(i, C) ∀i ∈ Cj dominates it (since Cj is effective for
allocation x and every agent in Cj prefers the segregated over the integrated
allocation). That the integrated core allocation is not a core allocation is a
contradiction, which terminates the proof.

Proposition 1 implies that, if market integration is decided via majority
voting (where agents who benefit from integration vote in favor of it, and
those who are harmed by integration vote against it), integration may not be
achieved in Shapley–Scarf housing markets. This is a striking observation,
since the integration of Gale–Shapley marriage markets (in which two sets of
agents are matched to each other) always benefits more agents than those it
harms, and thus it can implemented via majority voting (see Proposition 2
in Ortega (2018), also Gale and Shapley (1962); Gärdenfors (1975)).

A key property of the EHM in Example 1 that allows us to find n − k
agents who are harmed by integration is that, when computing the segregated
core allocation using TTC, there is only one trade cycle in each community.
This is an interesting observation to which we will come back later on when
studying random markets.

Given the negative result in Proposition 1, we may think that integration
can still be justified if the size of the welfare gains experienced by a minority
are much larger than the size of the welfare losses suffered by a majority.
Unfortunately, in the worst-case scenario, the size of the loses from integra-
tion is much larger than the size of the gains from integration. In particular,
we show below that the agents’ average welfare loss may be negative and
asymptotically equivalent to an increase in ranking of 50% of the length of
agents’ preference list. We provide a tight lower bound on the size of agents’
average welfare loss.

Proposition 2. For any pair (n, k), there exists an EHM in which Γ(σ∗) =
−n2+n+k2+k

2n2 ; whereas there is no EHM in which Γ(σ∗) < −n2+n+k2+k
2n2

Proof. Example 1 shows that our lower bound for Γ(σ∗) is attainable. The
agents who experience welfare gains (namely a and d) go from their second to
their first best after integration occurs, obtaining a rank gain of +1. However,
agent c goes from his first to his third best (a change of -2 in rank), agent
g goes from his first to his fourth best (a change of -3 in rank), and so on,
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until agent e who goes from his best to his worst option (a change of -6 in
rank). When we add the total welfare losses (+1 + 1− 2− 3− 4− 5− 6), we
obtain −1

2
(n2 − n − k2 − k) = −18. Dividing -18 by n2 = 49, we obtain an

average welfare reduction of 36.7% of the length of agents’ preferences.
We constructed the EHM in Example 1 in such a way that the minimum

possible number of agents gain from integration (i.e. k, per Proposition 1),
and that the size of such gains is as small as possible (+1). On the other
side, the welfare losses of the remaining n − k individuals go from −2 to
−n+1 (the largest possible welfare loss). We can replicate such construction
for EHMs with arbitrary values of n and k to obtain:

Γ(σ∗) =
1

n2

(
k ∗ 1−

n−k∑
i=1

n− i

)
(1)

= − 1

2n2
(n2 − n− k2 − k) (2)

Which establishes that our lower bound can be attained for arbitrary
values of n and k. It is interesting that our lower bound does not depend
on the size of each community relative to the size of the whole society. Note
that when n grows and k remains constant, Γ(σ∗) ∼ −1/2.

We now show that our lower bound for Γ(σ∗) is tight, with the help of
some additional definitions and two auxiliary lemmas. Given a core allocation
x∗ for a HM (N,�) and an integer r such that 1 ≤ r ≤ n, let m(r, x∗) :=
|{i ∈ N : rki(x

∗
i )} = r|. Similarly, let M(r, x∗) := |{i ∈ N : rki(x

∗
i )} ≥ r|.

Lemma 1. In any core allocation x∗, rki(x
∗
i ) ≤ rki(ωi).

Proof. This is a well-known fact due to any core allocation being individually
rational.

Lemma 2. In any core allocation x∗, m(r, x∗) ≤ n− r + 1.

Proof. For r = n, our lemma says m(n, x∗) ≤ 1. Note that if rki(x
∗
i ) = n,

then xi
∗ = ωi because of Lemma 1. Therefore, we cannot have m(n, x∗) > 1,

as otherwise two agents are assigned their own house but they would like to
exchange their house with each other, and thus x∗ is not a core allocation.

For r = n−1, suppose by contradiction that m(n−1, x∗) > 2. Then there
exists three agents j, l, h for which rk(x∗i ) = n− 1 for all i ∈ {j, l, h}. But for
each of those agents, there exists a house ω′i ∈ {ωj, ωl, ωh} such that ω′i �i x∗i
and ω′i �i ωi for all i ∈ {j, l, h}. Therefore, x∗ is not a core allocation,
since there is a reallocation of houses among j, l, h that is effective for such
coalition and that is strictly preferred.
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The same argument applies for any other values of r < n−1. Suppose by
contradiction that there exist some r′ ≤ n−1 such that m(r′, x∗) > n−r′+2.
Then there are n− r′ + 2 agents for which rk(x∗i ) = r′. But for each of these
agents i, there exists a house ωj belonging to one of these n− r′ + 2 agents
such that ωj �i x∗i and ωj �i ωi. Therefore, x∗ is not a core allocation, since
there is a reallocation of houses among those n−r′+2 agents that is effective
for such coalition and that is strictly preferred. Hence, the argument holds
for all r.

Lemma 3. In any core allocation x∗, M(r, x∗) ≤ n− r + 1.

Proof. For r = n, the statement in Lemma 3 is the same as in Lemma 2.
For r = n− 1, assume by contradiction that M(n− 1, x∗) > 2. By Lemma 2
we cannot have that two agents are allocated a house ranked n for both, or
that three agents are allocated a house ranked n− 1. Thus, it must be that
one agent gets a house ranked n (agent j) and two agents get a house ranked
n − 1 (agents h and l). Then we have xj = ωj by Lemma 1. Furthermore,
for i ∈ {h, l}, there are two houses x′i, x

′′
i ∈ {ωj, ωh, ωl} such that x′i �i xi

and xi �i x′′i , where x′i 6= ωi per Lemma 1. If, for either agent h or l,
x′i = ωj, then j and such agent would like to exchange their endowments
and would be strictly better off, and thus rkh(ωj) = rkl(ωj) = n. But
because rkh(xh) = rkl(xl) = n − 1, they must be getting their own houses,
i.e. xh = ωh and xl = ωl. But then, agents h and l are better of by trading
their endowments, and thus x∗ is not a core allocation, a contradiction. The
same argument applies for all other values of r < n− 1.

Armed with these three auxiliary lemmas, we are ready to prove that
Γ(σ∗) ≥ −n2+n+k2+k

2n2 . By Proposition 1, at most n−k people may experience
negative gains from integration. These are defined, for each agent i, as
γi(σ

∗) := rki(σ
∗
i (i, C))−rki(σ

∗
i (i,Ω)). To make γi(σ

∗
i ) as small as possible, we

need to fix σ∗i (i, C) = 1 and make σ∗i (i,Ω) as large as possible. But Lemma
3 shows that σ∗i (i, C) = n for at most one agent, σ∗i (i, C) ≥ n − 1 for at
most two agents, and so on. Thus, in the worst case scenario, the sum of the
welfare gains from integration among those n− k agents equals

−
n−k∑
i=1

(n− i) =
−n2 + n+ k2 − k

2
(3)

Similarly, the smallest positive gains from integration for the remaining
k agents (which must exists by Proposition 1) are equal to 1. Thus, the
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smallest possible value for Γ(σ∗) is

Γ(σ∗) = − 1

2n2
(n2 − n− k2 − k) (4)

Proposition 2 can be compared to an analogous result in Gale–Shapley
marriage markets. The average welfare gains may also be negative in Gale–
Shapley markets, but only up to 37.5% of the length of preference lists (Or-
tega, 2019). Taken together, Propositions 1 and 2 show that the integration
of Shapley–Scarf housing markets can be hard to achieve, an in particular
is more difficult to obtain (in the worst-case scenario) than in Gale–Shapley
marriage markets.

5. Random Housing Markets

In the previous section we found out two negative results regarding the
integration of housing markets; however both results are about worst-case
scenarios. Whereas these results are interesting, one may argue that these are
knife-edge scenarios, and wonder whether the integration of housing markets
would generate welfare gains on average.

To answer this question, we study random housing markets (RHM). Given
a set of agents, a RHM is generated by drawing a complete preference list
for each agent independently and uniformly at random. Similarly, a random
extended housing market (REHM) is a RHM where the set of agents is par-
titioned into disjoint communities Ci, . . . , Ck, each of size n1, . . . , nk (where
n = n1 + . . . + nk). Random housing markets were first studied by Frieze
and Pittel (1995) and Knuth (1996). The latter proved the following seminal
result.

Lemma 4 (Knuth, 1996). In a RHM, E(
∑n

i=1 rki(x
∗
i )) = (n + 1)Hn − n,

where Hn is the n-th harmonic number, i.e. Hn :=
∑n

i=1
1
i
.

We can use Knuth’s theorem to find the expected size of the average
welfare gains in REHMs. Let us define the total gains from integration for
community Cj as ΓCj

(σ) :=
∑

i∈Cj
γi. The average percentile gains from

integration for community Cj are denoted by ΓCj
(σ) := Γ(σ)

nnj
. We divide

by nj to take the average across all agents in community Cj, and by n to
normalize by the length of agents’ preference lists. Equipped with these new
definitions, we can show that the average gains from integration are positive
for agents belonging to any community.
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Proposition 3. E[ΓCj
(σ∗)] =

(n+1)[(nj+1)Hnj−nj ]

nj(nj+1)n
− (n+1)Hn−n

n2 .

Proof. For any i ∈ Cj and any community Cj, define the relative rank of

house ωh in the preference order of agent i by r̂ki(ωh) := |{l ∈ Cj : ωl <i ωh}|.
This is, the relative rank indicates the position of a house in an agent’s
preference ranking compared only to houses owned by other agents belonging
to the same community. Knuth’s result directly implies that

E[
n∑
i=1

rki(σ
∗(i,Ω))] = (n+ 1)Hn − n, and (5)

E[

nj∑
i=1

r̂ki(σ
∗(i, Cj))] = (nj + 1)Hnj

− nj, ∀j ∈ {1, . . . , k} (6)

So that before integration, agents are assigned to a house relatively ranked
(nj + 1)Hnj

− nj. To complete the proof, we need to figure out in which
position is such house are in the absolute rank of all houses (i.e. convert the
relative rank into the full rank). To do so, suppose that a house assigned
to an agent in a segregated allocation has a relative rank q. A randomly
chosen house, belonging to an agent from another community, could be better
ranked than house 1, between houses 1 and 2, ..., between houses q − 1 and
q, and so on. Therefore, a random house belonging to another agent is
in any of those gaps with probability 1

nj+1
and thus has q

nj+1
chances of

being more highly ranked than the house with relative ranking q. There
are (n − nj) houses from other communities. On average,

q(n−nj)

nj+1
houses

will be better ranked. Furthermore, there were already q houses in his own
community ranked better than it. This implies that its expected ranking is
q +

q(n−nj)

nj+1
= q(n+1)

nj+1
. Substituting q for the expression obtained in equation

(6), we obtain

E[ΓCj
(σ∗))] =

(n+ 1)[(nj + 1)Hnj
− nj]

nj(nj + 1)n
− (n+ 1)Hn − n

n2
(7)

Simulation exercises confirm the correctness of Proposition 3, which has
an interesting implication.

Corollary 1. The expected welfare gains from integration are positive for all
agents, and higher for agents in smaller communities.

For example, if we merge three Shapley–Scarf markets of size 60, 30 and
10, the corresponding welfare gains in terms of house rank are 1.9828, 5.9525
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and 16.1615, i.e. agents from the market with only 10 agents improve the
ranking of their assigned house by 16 positions, whereas those in the market
with 60 agents only improve theirs by 2 positions. In percentile terms, agents
from the smallest market improve the rank of their assigned house by 16%
of the length of their preference list, whereas agents from the largest market
increase their corresponding rank only by 2% of the length of their preference
list.

Now we study the size of the set of agents who are harmed by integration
in each community, i.e. N−Cj

(σ∗). To do so, we first note that the number
of agents harmed by integration crucially depends on the number of trading
cycles generated by the TTC algorithm when computing the segregated core
allocation. Then, we use a result by Frieze and Pittel (1995) that establishes
the expected number of trading cycles generated by TTC in random markets.

Proposition 4. E[N−Cj
(σ∗)] ≤ nj −

√
2πnj +O(log nj).

Proof. To start, we prove an auxiliary lemma relating the number of trading
cycles in TTC for the segregated markets to the number of agents harmed by
integration. For any community Cj, let tj be the number of cycles obtained
by TTC when computing the segregated core allocation σ∗(·, Cj), and let

t :=
∑k

i=1 tj.

Lemma 5. In any EHM, |N−Cj
(σ∗)| ≤ nj − tj.

Proof. In any cycle obtained by TTC when computing the segregated core
allocation σ∗(·, Cj), we must either have that all agents in the cycle are in
N0
Cj

(σ∗) or that at least one agent is in N+
Cj

(σ∗). Otherwise there is a cycle

(involving a set of agents S) with at least one agent in N−Cj
(σ∗) and with

no agent in N+
Cj

(σ∗). Such a combination cannot occur. If all agents in the

cycle are in N−Cj
(σ∗), then those agents are clearly a blocking coalition to

the integrated core allocation. If some agents are in N−Cj
(σ∗) and some in

N0
Cj

(σ∗), then when we run TTC to find the integrated core allocation, there

is an agent i ∈ N−Cj
(σ∗) who is pointed by an agent h ∈ N0

Cj
(σ∗), i.e. h’s

assignment does not change (it is ωi before and after integration) but the one
of i becomes worse. But when we run TTC, i points to the agent owning the
best house available. Now, if σ∗(i, C) is no longer available, it means that its
owner exited in an earlier cycle during TTC, and thus she must have received
a better house, and thus there is an agent in N+

Cj
(σ∗), a contradiction.

Then, we present Theorem 2 in Frieze and Pittel (1995) regarding the
expected number of cycles in random housing markets. Let t′ denote the
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number of cycles formed during the execution of TTC in a RHM with n′

agents.

Lemma 6 (Frieze and Pittel, 1995). E[t′] =
√

2πn′ +O(log n′).

Frieze and Pittel’s result directly implies that, in a REHM

E[tj] =
√

2πnj +O(log nj) (8)

Putting Lemma 5 and equation (8) together, we directly obtain the proof
of our result.

A direct implication of Proposition 4 is a bound on the expected total
number of agents harmed by integration.

Corollary 2. E[N−(σ∗)] ≤ n−
√

2π(
∑k

j=1

√
nj) +O(log

∏k
j=1 nj).

Proposition 4 is our only bound that is not tight, but is nevertheless
informative. Returning to our example of a EHM divided into three commu-
nities of sizes 60, 30 and 10, Proposition 4 tells us that, on average, the TTC
algorithm generates around 25 trade cycles when computing the segregated
core allocation. Moreover, in each of those cycles, at least one person is not
harmed by integration. Consequently, at most 59 agents can be harmed by
integration. But in fact Proposition 4 says more: it tells us the distribution
of agents harmed by integration across communities. Thus, in the market
of size 60, the expected number of agents harmed by integration is smaller
than 41. Similarly, for the markets of size 30 and 10, the expected number
of agents harmed by integration is smaller than 16 and 2, respectively.

A corollary of Proposition 4 is that, whenever all communities have the
same number of agents n1, market integration never harms more than half
of the total population if n1 < 26. This is an interesting implication because
it holds irrespective of the number of markets that merge.

Corollary 3. If n1 = . . . = nk, then E[N−(σ∗)] ≤ n
2

if n1 < 8π ≈ 25.13.

Proof.

E[N−(σ∗)] = kn1 −
√

2π(
√
n1 + . . .+

√
n1) (9)

= k(n1 −
√

2πn1) (10)

E[N−(σ∗)] is weakly less than n/2 if

k(n1 −
√

2πn1) <
kn1

2
(11)

=⇒ n1 < 8π (12)
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6. Specific Preference Domains

Although uniform and independent preferences are the most natural and
simple preferences to consider in random markets, it is well known that in
real-life applications such as kidney exchange, agents’ preferences are strongly
correlated, with some “houses” being particularly desired by most agents.
In this section, we show that if we impose a particular type of correlation
structure in agents’ preferences, we can guarantee that no more than half of
the total population of agents is harmed by integration.

To do so, let q(r, �̃Cj
) be the set of agents in community Cj placed at rank

r by any agent in their own community (including themselves) in preference
profile �̃Cj

. This is, for any positive integer r and any j ∈ {1, . . . , k},
q(r, �̃Cj

) := {i ∈ Cj : ∃h ∈ Cj : rkj(ωi) = r}. Similarly, let Q(r, �̃Cj
) :=∑r

t=1 q(t, �̃Cj
) be the set of agents in community j placed at rank r and

above.
Now we introduce the property that will ensure market integration, which

we call sequential dual dictator (the name choice will become obvious later
on).4

Definition 1 (Sequential dual dictator property). A preference profile �
satisfies the sequential dual dictator property if, for any positive integer r
and ∀j ∈ {1, . . . , k}, each of their corresponding preference restriction �Cj

satisfies
|Q(r, �̃Cj

)| ≤ r + 1

In Example 2 we show that the preference profile in Example 1 does not
satisfy this property and provide a preference profile that does. In Exam-
ple 1, |Q(1, �̃C1)| = |{b, c, a}| > 2, violating the sequential dual dictator
property. Similarly, |Q(1, �̃C2)| = |{e, f, g, d}| > 2. In contrast, in the ex-
ample on the right, |Q(1, �̃C1)| = |{c, a}| ≤ 2, |Q(1, �̃C2)| = |{e, f}| ≤ 2
and |Q(2, �̃C2)| = |{e, f, d}| ≤ 3. Whenever preferences satisfy the sequen-
tial dual dictator property, we can guarantee that no more than half of the
agents in each community are harmed by integration. Note that, unlike the
result in Proposition 3, here we bound the number of agents harmed by in-
tegration in every EHM, instead of the expected number of agents harmed
by integration across all REHMs.

4Troyan (2019) introduce this property in a two-sided extension of a Shapley–Scarf mar-
ket. He imposes an aciclicty condition for houses’ priorities which he shows is equivalent
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Example 2: The preference profile on the right satisfies the sequential dual dictator
property, unlike the one on the left.

a b c d e f g
b c a e f g d
...

...
...

...
...

...
...

a b c d e f g
c c a e f f e
b b c f d e d
a c b d g g f

g e d g

Proposition 5. If � satisfies the sequential dual dictator property, then
|N−Cj

(σ∗)| ≤ nj

2
.

Proof. To complete the proof, we examine the number and length of trading
cycles generated by the TTC algorithm when computing the segregated core
allocation σ∗(·, Cj) for community Cj. At the first iteration, all agents point
to the owner of their most preferred house, and if the sequential dual dictator
property is satisfied, there are only two vertices with a positive in-degree.
A trade cycle is created, either of those agents pointing to themselves or
pointing at each other, and therefore each cycle created in the first iteration
of TTC has length at most 2. In the second iteration, at most two agents
have positive in-degree (because at least one agent was removed in the first
iteration). Either one or two cycles are formed in iteration 2, and they have
length of at most 2. The argument repeats for each iteration: each trade
cycle has length at most 2.

Now we invoke an argument that we used in the proof of Lemma 5,
showing that in any cycle, we must either have that all agents are in N0(σ∗)
or that at least one agent is in N+

Cj
(σ∗). We have showed that there are at

least nj/2 cycles in each community. Therefore, |N−Cj
(σ∗)| ≤ nj

2
.

Note that one particular case of preference profiles satisfying the sequen-
tial dual dictator property are those in which all agents have the same pref-
erences. Such preferences has been extensively studied in Gale–Shapley mar-
riage markets because they guarantee the uniqueness of the core allocation
and ensure that truth-telling is a Nash equilibrium of the revelation game in-
duced by any stable mechanism (Gusfield and Irving, 1989; Eeckhout, 2000;
Consuegra et al., 2013).

to a sequential dual dictatorship. He uses the dual dictatorship property to characterize
the obvious strategy-proof implementation of TTC.
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The sequential dual dictator property bears some resemblance to the serial
dictatorship allocation rule (or more generally, hierarchical exchange rules as
in Pápai (2000); Ehlers et al. (2002)), where there exists a hierarchy of the
agents specified a priori and agents choose their preferred object according
such hierarchy. When preference profiles satisfy the sequential dual dictator
property, we choose one or two agents among the remaining agents at each
step of the procedure (as opposed to always choosing one agent in serial
dictatorships), and allocate the favourite remaining object to the agent if he
is chosen alone, and to one or both agents if chosen in a pair. In the latter
case, if one agent does not receive his first-ranked house among the remaining
ones (which means that it is the other chosen agent’s favourite object as well,
and it has been allocated to him), then he receives his second-ranked object.
In other words, while we have a single dictator at each stage of the procedure
for serial dictatorships, the preference profiles that we have described allow
the choice of dual dictators as well as ordinary (single) dictators at any given
stage of the procedure. Of course, in our case the dictators are determined
endogenously by agents’ preferences and cannot be chosen arbitrarily.

7. Concluding Comments

Market integration can be a difficult goal to achieve in practice. Here, we
have showed that market integration is also challenging to achieve theoreti-
cally by showing that two natural welfare measures can substantially decrease
after integration occurs in Shapley–Scarf markets. Nevertheless, our average-
case results show that losses from integration are rare, particularly when the
size of the individual markets that integrate is small or preferences exhibit a
particular correlation structure.

Throughout this paper, we have focused on the welfare effects of inte-
gration assuming that the core allocation is implemented before and after
integration occurs. As we have seen, choosing the core allocation in the
integrated market may harm a substantial number of agents, and thus im-
plementing a different allocation that harms no one may be a a sensible
alternative. We conclude the paper with a description of one mechanism
that achieves such purpose efficiently.

The double TTC mechanism implements the allocation obtained by TTC
in each segregated market, which then uses as the agents’ endowment to run
TTC on the global market. Although the double-TTC mechanism is Pareto
optimal5 and assigns to each agent a house weakly better than the one they
obtain in the segregated core allocation (a property which we call integration

5To see that double TTC is Pareto optimal, recall that Abdulkadiroğlu and Sönmez
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monotonicity), the double-TTC has an important drawback: it fails to be
strategy-proof, as we show in Example 3. Unfortunately, Ma’s seminal result
implies that there is no mechanism that satisfies integration monotonicity,
Pareto optimality and strategy-proofness, since integration monotonicity im-
plies individual rationality. Thus, even if the core allocation rule is not perfect
to achieve integration, no better alternative is in sight. We summarize our
final findings in Proposition 6.

Proposition 6. The double TTC mechanism is integration monotonic and
Pareto optimal, but not strategy-proof. There is no matching mechanism that
is integration monotonic, Pareto optimal and strategy-proof.

Example 3: In the EHM on the left, agent c has an incentive to manipulate the double
TTC mechanism by pretending to have the preferences on the right (the double TTC

allocation appears in circles).

a b c

c a a

b c b

a b c

a b c

c a a

b c b

a b c

A possible way to relax this impossibility result is focusing on smaller
preference domains, where several mechanisms other than TTC satisfy Pareto
optimality, individual rationality and strategy-proofness (Bade, 2019). We
leave this conjecture for future research.
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