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Abstract

We construct a set of HAR models with three types of infinite Hidden Markov regime

switching structures. Particularly, jumps, leverage effects, and speculation effects are

taken into account in realized volatility modeling. We forecast five agricultural commodity

futures (Corn, Cotton, Indica Rice, Palm oil and Soybean) based on high frequency data

from Chinese futures markets and evaluate the forecast performances with both statistical

and economic evaluation measures. The statistical evaluation results suggest that HAR

models with infinite Hidden Markov regime switching structures have better precision

compared the benchmark HAR models based on the MZ-R2, MAFE, and MCS results.

The economic evaluation results suggest that portfolios constructed with infinite Hidden

Markov regime switching HARs achieve higher portfolio returns for risk averse investors

compared to benchmark HAR model for short-term volatility forecasts.

Keywords: Agriculture commodity futures; Realized volatility forecasts; Infinite Hidden

Markov switching process; HAR models;

JEL classification: C53; G17; Q14

1. Introduction & Literature review

Agricultural commodities, such as Corn, Wheat, Rice, and Soybean, are farming prod-

ucts and have been existing for centuries. For the same time, these commodities have been

subject to trade and exchange. Only recently, those commodities are being traded central-

ized and in globalized markets. Volatility of agricultural commodity prices and sudden,

unforeseen changes play an important role as they directly affect our daily lives. From a

financialized perspective, forecasting volatility of agriculture commodity futures helps to

assess and hedge risks associated with these contracts as well as to provide policy makers

with tools to evaluate different scenarios.
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Nerlove (1956) presents some early stage research on realized and expected prices as

well as their elasticities of Cotton, Wheat, and Corn between 1909 and 1932. It is found

that the response of supply to prices and price changes is only partly based on historical

prices. Price expectation plays significant and vital role in supply management. This is

of particular interest as it is early evidence that expected prices of future crop yields—to

some degree similar to a futures price—are directly incorporated in crop management.

Research on agricultural commodities is otherwise sparse but is being addressed with an

increasing degree of financialization of these markets. This is outlined by Witt et al. (1987)

who address cross-hedging applications and optimal hedge ratios. Krueger et al. (1988)

analyzes the impact of trade policies on different categories of agricultural commodities

and their effect on price stabilization for importable and exportable commodities in the

U.S. Other countries have functioning derivative markets as well. The efficiency of com-

modity futures markets in the U.K. are analyzed with co-integration methods in Aulton

et al. (1997) for example, where the Wheat market found to be efficiently functioning

while Potatoes are not.

Regulation of agricultural commodities is a delicate topic in general as the aim for

profits might clash with vital food supply. Those contrary positions become apparent

in the food crisis of 2006 which is linked to the sharp rise of biofuels, in particular the

first generation, which are fuels derived from crops grown on arable land. This directly

impacts food security as less land and less crops are available for a growing population.

With regard to this socio-economic impact, Escobar et al. (2009) call for regulation of

biofuels to overcome the risks for food security. Schmidhuber (2007) finds evidence that

policy changes with respect to biofuels should lead to a closer market integration between

energy and agricultural commodities. Tyner (2010) finds a strong link between Ethanol

and Corn prices after the financial crisis while before the crisis, Corn and crude oil linked

significantly. Nazlioglu et al. (2013) find spillover effects between crude oil and major agri-

cultural commodities (Wheat, Corn, Soybeans, and Sugar). A structural break is found

in their relationship after the food crisis in 2006. Crude oil is now a major contributor

to the volatility of agricultural commodities. This is also found for an earlier period in

Natanelov et al. (2011) in a co-movement relationship of agricultural futures prices and

crude oil. Policy developments are affecting these relationships; for low crude oil futures

prices, biofuel policies buffer co-movements with Corn futures prices until the oil futures

surpass a price threshold. Du et al. (2011) address spillover and linkage effects of crude

oil markets to Corn and Wheat futures. After 2006, the spillover induced by dependence

of these markets with ethanol production increases.

Forecasting volatility of commodity prices and their spillovers is of essential impor-

tance in order to identify and understand what factors drive different commodity markets

(Nguyen & Walther, 2019). Also, co-movements play a vital role as outlined above.

In recent literature, forecasting volatility has gained interest, oftentimes from a risk-

2



management perspective (Klein & Walther, 2016, Ji & Fan, 2016) or in terms of quanti-

fying spillovers between markets (Nazlioglu et al., 2013, Todorova et al., 2014, Ji et al.,

2018, Klein, 2018, Ma et al., 2019).

Having identified food crises and crude oil as a major contributor to the volatility

of agricultural commodities, we expect highly volatile markets. By making use of high-

frequency data at the 5-minute interval, we put particular focus on breakpoints and struc-

tural changes as well as sudden jumps in these volatilities. We model realized volatilities

with the heterogeneous autoregressive (HAR) model of Corsi (2009). This HAR frame-

work allows to model short, medium, and long-term dependencies among realized volatil-

ities. Given its simplicity in application, the standard HAR gives rise to a plethora of

model extensions covering different stylized facts. In this vein, we extend the standard

HAR for jumps (Andersen et al., 2007), with jump thresholds (Corsi et al., 2010), or

with signed jumps (Patton & Sheppard, 2015). Additionally, we make use of specula-

tive behaviour and include volume and open interest as a predictor of future volatility

(Bessembinder & Seguin, 1992). Accounting for recent advances, we also apply the cen-

tralized HAR of Bollerslev et al. (2018), where the long-run volatility is used to centralize

volatilities.

The application of HAR-type models on agricultural commodities to forecast volatility

is much less focused on than on other commodities such as crude oil (Souček & Todorova,

2013, Sévi, 2014, Wen et al., 2016, Degiannakis & Filis, 2017), precious metals (Caporin

et al., 2015, Lyócsa & Molnár, 2016) or non-ferrous metals (Todorova et al., 2014, Zhu

et al., 2017, Lyócsa et al., 2017). Forecasting realized volatilities with HAR models over

longer time horizons becomes problematic if structural breaks are present in the observed

data (Raggi & Bordignon, 2012, Yang & Chen, 2014). Ma et al. (2018a) and Ma et al.

(2018b) apply regime switching HAR models on oil futures markets and find that regime

switching increases the forecasting ability of HAR models. For oil futures, Ma et al. (2017)

find that HAR models incorporating jumps yield better forecasting performance along

with improvements of portfolio returns, where portfolio weights are calculated based on

forecasting volatilities. Tian et al. (2016) use high-frequency data of Chinese agricultural

commodity markets and find evidence for long memory and regime switching in form of

a high and low volatility regime. Regime switching approaches yield better forecasting

performances than their non-switching equivalent. Yang et al. (2017) employ so-called

bagging and combination approaches to HAR models on Chinese agricultural commodity

markets. It is again found that more sophisticated approaches surpass the forecasting

quality of the base HAR models. Luo & Ji (2018) combine HAR-type models with dynamic

correlation modelling (DCC, Engle, 2002) and detect a spillover from U.S. crude markets

to Chinese agriculture commodities. These findings support earlier evidence of short-

term spillovers in Jiang et al. (2017). We focus on those detected structural breaks

and make use of infinite Hidden Markov switching (Hou, 2017). We compare in-sample
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performance as well as forecasting ability of our base and switching HAR models for

five agricultural commodities; Corn, Cotton, Indica Rice, Palm Oil, and Soybeans. In

this manuscript, we employ the infinite Hidden Markov switching model (IHM) based on

hierarchical Dirichlet processes introduced in Teh et al. (2006), the double infinite Hidden

Markov Model (DIHM), and the IHM variant with constant conditional mean (IHMC).

These three Markov-type frameworks are defined and described thoroughly in Hou (2017)

and references therein. Volatility forecasts are carried out for aggregated one, five, and

22-day ahead forecasts, corresponding to daily, weekly, and monthly volatility. We test

all 24 model variants1 for intra-day prices of five agricultural commodities to gain a broad

understanding of what drives these futures markets. This novel—and so far unique—

approach of incorporating IHM variants reveals that regime switching Markov models

offer an advantage in forecasting over the non-switching variants of the HAR class.

We contribute to the literature in the following aspects. Firstly, we focus on forecast-

ing the realized volatilities of agricultural commodity futures in Chinese futures market

for different time horizons (one, five, and 22-day ahead forecasts), which sheds some light

on risk management, portfolio allocation, and pricing strategies for market participants

in Chinese agricultural futures market. Secondly, we construct a set of volatility fore-

cast models with structural breaks by combining three types of infinite Hidden Markov

switching frameworks with conventional HAR models. Therefore, we can accommodate

unknown breakpoints in volatilities due to uncertain factors such as policy changes, fi-

nancial market crises, or investor sentiment in Chinese futures markets. We employ the

precision-based algorithm of Chan & Jeliazkov (2009) which can simulate the parameters

in distinct regimes efficiently and improve the computing speed greatly. The application

of infinite Hidden Markov processes in modeling volatilities of agricultural commodities is

our most important contribution as we are the first to thoroughly test this class of models

in these markets. Finally, we employ both statistical and economic evaluation measures to

evaluate the forecast precision as well as the economic significance in portfolio allocations

for different volatility forecast models. Thus, we can provide a comprehensive scope for

the comparisons of the volatility forecast models.

The remainder of this article is structured as follows. Section 2 presents the method-

ology and modelling framework. Section 3 gives an overview of the data and presents

results of preliminary analyses and tests of daily returns, realized volatilities, and the

speculative components for the five commodity futures markets focused on in this article.

Section 4 discusses the results of the in-sample analysis as well as the the performance of

forecasting over different horizons. Section 5 provides robustness checks of the findings

and Section 6 concludes this research.

1For each of the six HAR-type models, we apply the base as well as three switching variants, totalling
24 models.
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2. Methodology

2.1. Realized Volatility

In order to calculate realized volatilities of intraday prices, we define returns as log-

difference between two consecutive intraday prices:

rt,j = logPt,j − logPt,j−1, for j = 2, . . . ,M, (1)

where M denotes the number of 5-min prices per day. Hence, we obtain a sampling

frequency of 1/M . The realized volatility of day t, denoted RVt, is then defined as

RVt =
M∑
j=1

r2
t,j. (2)

Barndorff-Nielsen & Sheppard (2004) introduce a measure of realized volatility which is

robust against present jumps. This realized bi-power variation measure, BPVt, is defined

as

BPVt = µ−2
1

M−1∑
j=1

|rt,j||rt,j+1|

and used for identifying the jump component Jt,α. We apply the definitions of Huang &

Tauchen (2005) and calculate the jump component as follows

Jt,α = I{Zt>Φα} (RVt −BPVt)+ , (3)

where Φα refers to the critical value of the Gaussian distribution with

Zt =
√
M

1−BPVt ·RV −1
t√(

µ−4
1 + 2µ−2

1 − 5
)

max
(
1, TQt ·BPV −2

t

) (4)

and µ1 = E (Z) =
√

2/π. The tri-power quarticity TQt is defined as

TQt = Mµ−3
4/3

M−2∑
j=1

|rt,j|4/3|rt,j+1|4/3|rt,j+2|4/3,

with µp = 2p/2 ·Γ (1/2 · (p+ 1)) ·Γ (1/2) (Andersen et al., 2007). Alternatives to this jump

identification exist.

One commonly used approach that is robust against small and very high jumps is

the median RV measures presented in Andersen et al. (2012). An additional mesaure,

which is applied in this paper, is outlined in Corsi et al. (2010) and labelled threshold bi-

power variation (TBPV). It yields less biased estimates compared to standard, multipower

variations of the continuous quadratic variation in finite samples (Corsi et al., 2010). The
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TBPV is calculated as:

TBPVt = µ−2
1

M−1∑
j=1

|rt,j||rt,j+1|I{|rt,j |2≤ϑt,j}I{|rt,j+1|2≤ϑt,j+1},

where I{·} is the indicator function and ϑt,j as a threshold variable for all t = 1, . . . , N

and j = 1, . . . ,M . For this threshold variable, it holds

ϑt,j = cϑ · V̂t,j,

where cϑ is a scale-free constant while V̂t,j is the non-parameter recursive filter for calcu-

lating the local variance. Similar to Corsi et al. (2010), we set cϑ = 3. Analogously to the

calculation of the test statistic Zt in Eq. (4), we define the TBPV -specific test statistic

as follows:

ZTBPV
t =

√
M

1− TBPVt ·RV −1
t√(

µ−4
1 + 2µ−2

1 − 5
)

max
(
1, TTQt · TBPV −2

t

) , (5)

with

TTQt = Mµ−3
4/3

M−2∑
j=1

2∏
k=0

|rt,j+k|4/3I{|rt,j+k|2≤ϑt,j+k}.

Hence, we calculate the threshold jump component by

TJt,α = I{ZTBPVt >Φα} (RVt − TBPVt)+ . (6)

Calculating the jump components Jt,α and JTBPVt,α in Eq. (3) and Eq. (6) yields the sepa-

ration of the continuous components:

Ct = RVt − Jt,α, (7)

TCt = RVt − TJt,α. (8)

In order to exploit possible leverage effects, Barndorff-Nielsen et al. (2010) separate

the realized volatility in signed realized semivariances:

RS+
t =

M∑
j=1

I{rt,j>0}r
2
t,j

RS−t =
M∑
j=1

I{rt,j<0}r
2
t,j

which yields the signed jump variation ∆Jt = RS+
t −RS−t .
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2.2. Heterogeneous Autoregressive (HAR) Models

For all realized measures such as RVt, BPVt, TBPVt, Ct, TCt, Jt,α, and TJt,α we

calculate the average over a period of h days as

RMh,t−1 = h−1

h∑
j=1

RMt−j,

where RM is a placeholder for the aforementioned measures. We apply RM1,t−1, RM5,t−1,

and RM22,t−1 as the daily, weekly, and monthly measures.

We follow Corsi (2009) in the definition of the standard HAR model:

RVt = a0 + adRV 1,t−1 + awRV 5,t−1 + amRV 22,t−1 + ut (9)

where ut is an error term.

There are several extensions to the standard HAR model obtained by incorporating

estimators for jumps or leverage effects. In addition to the standard HAR model, we

apply the HAR-CJ model of Andersen et al. (2007) defined as

RVt = a0 +adC1,t−1 +awC5,t−1 +amC22,t−1 +adJJ1,t−1 +awJJ5,t−1 +amJJ22,t−1 +ut, (10)

the HAR-TCJ model (Corsi et al., 2010) defined as

RVt = a0 + adTC1,t−1 + awTC5,t−1 + amTC22,t−1

+ adJTJ1,t−1 + awJTJ5,t−1 + amJTJ22,t−1 + ut,
(11)

and the HAR-∆J model (Patton & Sheppard, 2015)

RVt = a0 + ad∆J∆J1,t−1 + adBPV 1,t−1 + awRV 5,t−1 + amRV 22,t−1 + ut. (12)

The significant connection between speculation activities and the market volatility has

been addressed in literature (Bessembinder & Seguin, 1992, Chang et al., 2000, Brunetti

et al., 2016). Therefore, we augment the standard HAR with the speculation variable

Xspec, which is defined as

Xspec =
V ol

OI
, (13)

and translates to the quotient of trading volume, V ol, and open interest, OI. Including

this variable follows the assumption that speculation activity has some predictive power

on future volatility (Bessembinder & Seguin, 1992). A large value of Xspec provides some

evidence of increased speculation activity. The augmented HAR-spec model reads

RVt = a0 + adRV 1,t−1 + awRV 5,t−1 + amRV 22,t−1 + asXspec,t + ut. (14)
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As last model we apply the recently introduced centralized HAR model by Bollerslev

et al. (2018). It is suggested that the unconditional variance level parameter (the constant

a0) should be modelled variably. The intercept of the HAR model is replaced with a

variable long-run volatility factor RV LR
t , which equals the expanding sample mean of

daily RV from the start of the sample up until day t. The model is defined as

RVt −RV LR
t = a0 + ad

(
RV 1,t−1 −RV LR

t

)
+ aw

(
RV 5,t−1 −RV LR

t

)
+ am

(
RV 22,t−1 −RV LR

t

)
+ ut.

(15)

2.3. The infinite Hidden Markov switching (IHMS) process

The HAR models defined in the previous section can be rewritten as general, linear

regression model

yt = Xtα + ut, ut ∼ N (0, σ2), (16)

where N denotes the Gaussian distribution and σ2 is the variance of the residuals. The

conventional HAR models outlined in Sec. 2.2 are specified with constant coefficients

and variances. However, recent literature suggests that considering structural breaks

improves the forecasting accuracy with HAR models as high-frequency data based realized

volatilities of financial assets are subject to unknown structures (Bollerslev et al., 2015,

?). Therefore, we extend the HAR models with structural breaks by modeling coefficients

and variance with infinite Hidden Markov switching processes.

As outlined before, three specifications of IHM-HAR models are implemented; the

DIHM-HAR, the IHM-HAR, and the IHMC-HAR variants. Specifically, both IHM-HAR

and DIHM-HAR allow the model coefficients and variances to change over time. The

key difference between these two models appears in the latent infinite Markov switching

processes that drive the time variation in the model parameters. The IHM-HAR implicitly

restricts the changes in all model parameters to occur at the same time. However, forcing

all parameters to change simultaneously might not be empirically plausible. To allow

for richer dynamics, we consider a more general DIHM-HAR model in which switches

in coefficients and variances are governed by two independent infinite Hidden Markov

processes (st and zt). As many studies have shown that allowing time-varying variances is

important in improving the out-of-sample forecasting performance, we also consider the

IHMC-HAR in which only the variance is allowed to be changing over time. These three

types of IHM-HAR models are defined in detail below.

For the DIHM-HAR model, we specify two independent infinite Markov regime switch-

ing processes to drive changes of the coefficients and variance, or in other words; the

structural breaks in the coefficients and variances can occur at different time points.

Then, Eq. (16) can be rewritten with state-dependent coefficients and variances as
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follows:

yt = Xtαst + ut, ut ∼ N (0, σ2
zt), (17)

where the HAR coefficients αst and variance σ2
zt are governed by two independent state

variables st and zt, respectively.

These regime indicators follow two infinite Hidden Markov processes in the following

framework:

αst ∼ N (α0,Σ0) , σ2
zt ∼ IG (φ0, ν0) , (18)

st|st−1, {psk}∞k=1 ∼ psst−1
, and (19)

zt|zt−1, {pzk}∞k=1 ∼ pzzt−1
, with (20)

psk|cs, ρs,πs ∼ DP(cs, (1− ρs)πs + ρsδk), (21)

pzk|cz, ρz,πz ∼ DP(cz, (1− ρz)πz + ρzδk), (22)

πs|γs ∼ SBP(γs), and πz|γz ∼ SBP(γz). (23)

In this framework, the coefficients αst , and variances σ2
zt are sampled from two base

distribution. In line with recent literature, we specify a Gaussian distribution (with

parameters α0 and Σ0) for αi and an Inverse Gamma distribution (with parameters φ0

and ν0) for σi. The regime indicators st and zt depend on the infinite state parameter psk
and pzk which are vectors of transition probabilities with infinite dimension.

Particularly, the infinite states parameter psk and pzk follow a Dirichlet process (DP).

The DP process is first proposed by Ferguson (1973) while we use the version of Fox

et al. (2011). The DP process is determined by the positive concentration parameter c

and the base distribution G0 which has the form G0 = (1− ρ) π + ρδi, where 0 < ρ < 1

denotes the sticky parameter that enhances the state self-transition probability and δi is

the degenerate probability measure sampled from G0.

The parameter π in the DP process is obtained from a stick-breaking process (SBP)

in Eq. (23) following Sethuraman (1994). The SBP can be described as dividing a

unit-length stick for infinite times. Breaking the stick the i-th time is determined by

Vi ∼ B(1, γ) where B denotes the Beta distribution. Then, πi = Vi
∏i−1

j=1(1 − Vj) and we

define π|γ ∼ SBP(γ) as the stick-breaking process.

For the IHM-HAR model, the variation coefficients and variances are governed by the

same Markov state variable st, which follows an infinite Hidden Markov switching process
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with

αst ∼ N (α0,Σ0) , σ2
st ∼ IG (φ0, ν0) , (24)

st|st−1, {psk}∞k=1 ∼ psst−1
, (25)

psk|cs, ρs,πs ∼ DP(cs, (1− ρs)πs + ρsδk), (26)

πs|γs ∼ SBP(γs). (27)

For the IHMC-HAR model, the coefficients are assumed to be time-invariant and only

the variances are driven by the infinite Hidden Markov switching process. The IHMC-

HAR then reads

α ∼ N (αc,Σc) , σ2
st ∼ IG (φ0, ν0) , (28)

st|st−1, {psk}∞k=1 ∼ psst−1
, (29)

psk|cs, ρs,πs ∼ DP(cs, (1− ρs)πs + ρsδk), (30)

πs|γs ∼ SBP(γs). (31)

This paper follows Song (2014) by imposing a second hierarchical structure on the base

distribution. This setting has been shown to be helpful in improving model forecasting

performance. It is worth noting that an infinite Hidden Markov switching model allows

structural breaks to occur in each out-of-sample period. Without the second hierarchical

prior, the parameters in the new born regimes are assumed to be generated from a pre-fix

base distribution which might not be an attractive feature in practice. In the modeling

setting with a hierarchical structure, the parameters specified the base distribution are

unknown and updated based on the existing regime parameters. This allows the param-

eters from the new born regimes to learn from the existing regimes through this second

hierarchical structure. The empirical importance of setting a second hierarchical struc-

ture on the base distribution has also been highlighted in many recent empirical studies

(Maheu & Yang, 2016, Bauwens et al., 2017, Hou, 2017).

We follow this approach and set the second hierarchical priors as

α0 ∼ N (α00,B00), Σ−1
0 ∼ W(A00, a00), (32)

φ0 ∼ G(q00, b00), ν0 ∼ E(λ00)1(ν0 > n), (33)

where W(S, v) denotes the Wishart distribution with scale matrix S and degrees of free-

dom v, E(λ) refers to the exponential distribution with mean λ, and 1(ν0 > n) denotes

the indicator function indicating that the support of the prior for ν0 is restricted to be

greater than n. Finally, the hyperparameters (cs, cz, γs, γz, ρs, ρz) are assumed to follow
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independent priors

cs ∼ G(ws, θs), γs ∼ G(hs, ηs), ρs ∼ B(fs, gs), (34)

cz ∼ G(wz, θz), γz ∼ G(hz, ηz), ρz ∼ B(fz, gz), (35)

where G(κ1, κ2) denotes the Gamma distribution with mean κ1/κ2 and variance κ1/κ
2
2.

2.4. Estimations and priors

In this section we briefly summarize the Markov-chain Monte Carlo (MCMC) sampler

used to estimate the IHM models. More details about the MCMC posterior sampler

can be found in Hou (2017). The main difficulty for obtaining the posterior draws for

the IHM models appears during the sampling of the state parameters. As the number

of states for the IHM model is not bounded, the usual sampling method (Chib, 1996),

which is designed to deal with the traditional Markov switching model, cannot be applied

for the IHM model. To obtain the exact posterior samples for the state parameters,

this paper follows the beam sampler approach proposed by Van Gael et al. (2008). The

main idea of the beam sampler is to augment the parameter space by introducing a

set of auxiliary variables which are sampled along with the other model parameters.

These auxiliary variables do not change the marginal posterior distributions of the other

parameters. Suppose that we introduce a set of auxiliary variables (u1, . . . , uT ) which

follow a conditional distribution with density

p(ut|st−1, st) =
p(ut, st|st−1)

p(st|st−1)
=
1(0 < ut < pst−1,st)

pst−1,st

. (36)

For simplicity, we suppress the rest of the conditioning variables. It can be seen that the

joint density of (ut, st) conditional on st−1 is given by p(ut, st|st−1) = 1(0 < ut < pst−1,st),

which implies that the distribution obtained by marginalizaing out ut is p(st|st−1) =

pst−1,st which is exactly the same as the transition probability of the original model.

Furthermore, it can be checked that the conditional density of st given (ut, st−1) is

p(st|ut, st−1) =
1(0 < ut < pst−1st)∑
i 1(0 < ut < pst−1i)

. (37)

The finiteness of the set {i : 0 < ust < psst−1,i
} implies that introducing the auxiliary vari-

able ut truncates the infinite number of state trajectories to a finite number. Conditional

on the auxiliary variable ut, the method of Chib (1996) can now be applied as usual to

obtain posterior samples of the state parameters st. Given these state parameters, the

other parameters are sampled using the standard method. For more discussion about the

beam and posterior sampler for the IHM model, we refer to Song (2014), Hou (2017), and

Van Gael et al. (2008).
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For a more efficient comparison, we assume the same priors for parameters across all

models. An informative prior is set for hyperparameters of the base distribution. In

particular, we set the hyperparameters βc = β00 = 0, Vc = B00 = Ikβ , a00 = kβ + 10,

A00 = 2a00Ikβ , b00 = 5, q00 = b−1
00 , and λ00 = n+ 2. For the priors of the Hidden Markov

parameters, we set ws = wz = 5, θs = θz = 1, and hs = hz = ηs = ηz = 1. For the

sticky parameters, we set fs = fz = 10 and gs = gz = 1 which implies a relatively high

self-transition probability.

3. Data and sampling

With the rapid development of China’s economy and the gradual relaxation of reg-

ulations for foreign investors, the trading volume of its commodity futures market has

increased significantly. There are three main futures exchanges for agricultural com-

modities in China: the Zhengzhou Commodity Exchange (ZCE), the Dalian Commodity

Exchange (DCE), and the Shanghai Futures Exchange (SHFE). According to the 2018

statistics of the American Futures Industry Association (FIA) based on the number of

contracts traded and/or cleared at 76 exchanges worldwide, 12 of the top 20 agricultural

products with the largest trading volume in the world come from Chinese exchanges. Chi-

nese commodity futures markets are gaining in global importance and prices have begun

to affect global prices for commodities. Biofuels are gaining more and more attention

as it is considered clean energy and an important renewable substitute for fossil fuels.

Corn, Palm Oil, and Soybean are the main feedstock for the biofuel industry. Prices and

volatilities of these commodities are shown to be correlated to fossil fuel markets.

In this paper, we use five agricultural commodity futures: Corn, Cotton, Indica Rice,

Palm Oil, and Soybean. Soybean, Corn, and Palm Oil futures are traded at DCE, while

Cotton and Indica Rice futures are traded at ZCE. Corn, Soybean, and Cotton futures are

ranked among the top 20 agricultural agriculture futures contracts with the largest global

trading volume. Indica Rice and Palm futures are two import agriculture commodity

futures with high trading volumes in Chinese futures market.

We analyze their behavior and aim to accurately forecast the volatilities of these

commodity futures to provide useful information and implications on derivative pricing

and portfolio selection. A better understanding of volatility dynamics and forecastability

benefits researchers, market participants, as well as policymakers.

We acquire high-frequency data in 5-min intervals from the Wind Financial Database

for the time period from January 1, 2011 to December 31, 2015 for Corn, Cotton, Indica

Rice, Palm Oil, and Soybean. After data pre-processing, we finally obtain 1256 daily

observations for Corn, 1176 for Indica Rice, and 1214 for the other three commodities.

Tab. 1 presents descriptive statistics and preliminary tests of daily returns (Panel A),

realized volatilities (Panel B), and the speculation variable (Panel C). In Panel A, it is

found that the mean of all selected agriculture commodities in this paper is negative,
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indicating the overall declining price trend during the sample period. Cotton traded at

ZCE has the lowest mean return with −0.075, while Palm oil has the largest standard

deviation with 1.214. All return series are stationary which is verified by an ADF unit

root test. Panel B of Tab. 1 shows that Palm oil has the largest mean of realized volatility

with 0.918, while Indica Rice has the largest standard deviation with 2.924. All realized

volatilities have a fat-tailed and leptokurtic distribution and thus, follow a non-normal

distribution. This is additionally verified by significant Jarque-Bera statistics. Panel C

presents findings for the speculation variable, the quotient of trading volume and open

interest, to measure the speculative behavior. It is assumed that an increase (decrease) in

the trading volume relative to the open interest indicates there is an increase (decrease)

in the activity of the speculators. The statistics results in Panel C show that Palm oil has

the largest mean of the speculation variable with 1.086. It indicates that Palm oil tends

to attract more speculation activity relative to other agricultural commodities, which is

consistent with its largest mean of realized volatility among the five commodities. In

addition to Tab. 1, daily returns, realized volatilities, and the speculation variable for all

five commodities are visualized in Fig. 1, Fig. 2, and Fig. 3, respectively.

Insert Tab. 1 approximately here.

Insert Fig. 1-3 approximately here.

Fig. 1 and Fig. 2 plot the daily returns and realized volatilities of the five agricultural

commodity futures. The returns and volatilities exhibit great fluctuations in 2010, 2012,

and throughout 2015. These periods correspond to the first listing of Chinese index

futures in 2010, the Euro debt crisis in 2011, and the China’s stock market crisis in 2015.

Additionally, we plot the speculation variables for each futures series in Fig. 3. In these

plots, we find evidence that high levels of these speculation variables correspond to market

phases of high volatility for the respective commodity.

4. Results

4.1. In-sample estimations

This section presents the full-sample estimation results for the DIHM-HAR and IHM-

HAR model. Fig. 4 and Fig. 5 show the posterior mean and posterior distribution of the

number of regimes for the DIHM-HAR and IHM-HAR model, respectively. These figures

show that each agricultural commodity is specific in its characteristics on posterior mean

and distribution of regime numbers, implying its different regime uncertainty in model

estimations. Different numbers of regimes intuitively reflect differing uncertainty in which

the existence of more regimes usually indicates better capacity to depict extreme situations

in market changes.

In Fig. 4 for the DIHM-HAR model, the posterior distributions of the number of

regimes for coefficients β for Corn, Indica Rice, and Soybean present symmetric char-
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acteristics with similar probability peaks around 30 regimes, though the shapes of their

posterior mean of regime switching is quite different. The posterior distribution of the

number of regimes for coefficiients β for Cotton and Palm oil is a right-skewed, fat-tail

distribution. The shape of the posterior distribution of number of regimes for variances for

the five agricultural commodities are similar in the sense that the probability distribution

decreases with an increased regime number, except for Soybean.

Fig. 5 shows a different situation of posterior distributions of regime numbers for the

IHM-HAR model. The shapes of posterior distribution of regime numbers for the five agri-

cultural commodities are relatively asymmetric compared with Fig. 4, except for Palm

oil. Moreover, the shapes of posterior mean of regime switching for the five agricultural

commodities present no obvious difference.

Insert Fig. 4-5 approximately here.

To better investigate the data classification into different regimes, the heat maps for

the posterior probabilities in the DIHM-HAR and the IHM-HAR model for the five com-

modities are depicted in Fig. 6 and Fig. 7. Referring to Hou (2017), the lighter (darker)

the color is in a cell (i, j) of a heat map, the higher (lower) the probability that time i and

time j are clustered into the same regime. For the heat maps of Fig. 6 and Fig. 7, it is

evident that the clustering of regimes for coefficients and the volatilities are quite different

over time for each agricultural commodity. The posterior probabilities for the coefficients

visualized in the left column of Fig. 6 show that the regimes are not likely to be recurrent

over time, indicated by dark colors for each agricultural commodity. However, for the

posterior probabilities of volatilities visualized in the right column of Fig. 6, the color

distribution is quite different for each agricultural commodity. In the case of Indica Rice

the color is light before 2015, indicating that regimes have no apparent switching over

time. However, for Cotton and Soybean, the light regions for the posterior probabilities

of volatilities are few, indicating their time-variable regime switching. The heat map in

Fig. 7 based on the IHM-HAR model also shows that the regimes change frequently over

time.

Insert Fig. 6-7 approximately here.

Exploring the effects of the speculation activity on the volatility of agriculture com-

modity futures, we analyze the mean and standard deviation of the time-varying coef-

ficients of the DIHM-HAR-spec and IHM-HAR model which are given in Tab. 2 and

Tab. 3, respectively. In short, the results suggest that the speculation variable exhibits

strong and positively directed effects on the future volatility of commodity futures. The

coefficient as is highly significant, particularly for Corn, Cotton, and Palm oil. Hence, we

augment the conventional HAR framework with the speculation variable and quantify its

usefulness for forecasting in what follows.
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Insert Tab. 2 and Tab. 3 approximately here.

4.2. Out-of-sample evaluation

To evaluate the out-of-sample forecasting performance of the different HAR variants,

we divide each sample series into two parts: the in-sample that includes about 2/3 of

observations and the out-of-sample that includes the remainder of 1/3 of the sample

observations. We employ a recursive forecast method to obtain the short-term (h = 1),

mid-term (h = 5), and long-term (h = 22) out-of-sample forecasts, corresponding to

one-day, one-week and one-month ahead forecasts.

For the 1-step-ahead forecasts, we obtain realized volatility forecasts by re-estimating

each volatility forecast model with in-sample observations.

For the multi-step forecasts, there are two types of forecast methods: the direct fore-

casts and the iterated forecasts as suggested in Marcellino et al. (2006). Specifically, the

multi-step, iterated forecast results are obtained by iterating the forecast model with the

previous forecast results. However, the forecast precision would deteriorate if the mis-

specification problem exists as suggested by Andersen et al. (2003) and Sizova (2011).

Therefore, we use the direct forecasts to obtain the multi-step ahead forecast results fol-

lowing Corsi (2009). The direct forecasts aim at forecasting the cumulative h-day ahead

realized volatility

RVt+1:t+h,t :=
1

h

h∑
i=1

RVt+i,t,

for h = 1, 5, 22, which means that the one-step ahead realized volatility is replaced with

the accumulated realized volatility over the weekly or monthly horizon in the forecast

models.

Both the forecast precision and the economic significance of various volatility forecast

models are evaluated in this article. By combining three types of the infinite Hidden

Markov switching methods and six different HAR base models, outlined in Section 2.2,

we construct a total of 18 HAR models. The six non-switching HAR models are included

as benchmark models. We evaluate the unbiasedness of the forecast model based on

the Mincer-Zarnowitz-R2 (MZ-R2) and the statistical loss functions such as the Mean

Absolute Forecast Error (MAFE). The forecast precision is evaluated using the Model

Confident Set (MCS) method of Hansen et al. (2011). Furthermore, we assess the forecast

quality for all models from a portfolio optimization perspective. Given the optimal weights

of a portfolio based on a risky and a risk-free asset, we compute the excess return and

the economic value in order to measure the performances of various volatility models in

portfolio construction.

4.3. Statistical evaluation

Firstly, we calculate the MZ-R2 and the MAFE loss function to evaluate the out-of-

sample forecast precision. The MZ-R2 is the goodness-of-fit (R2) for the Mincer-Zarnowitz
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regression

RVt+1:t+h = β0 + β1R̂V t+1:t+h,t + εt,

where R̂V t+1:t+h,t is the h-step-ahead forecast of the realized volatility based on time t

and RVt+1:t+h is the actual realized volatility. The higher the value of MZ-R2, in our case

when β0 = 0 and β1 = 1, the better the forecast performance of the respective volatility

model.

Given the size of the in-sample period T1 and the size of the out-of-sample period T2,

with T1 + T2 = T , the MAFE is defined as

MAFE =
1

T2

T∑
t=T1+1

∣∣∣RVt+1:t+h − R̂V t+1:t+h

∣∣∣
In order to determine models which outperform in terms of forecasting quality, we

apply the Model Confidence Set (MCS) of Hansen et al. (2011). The MCS identifies a set

of models with preferable forecasting performance (the confidence set) from a set of all

models

M0 = {Mi, i = 1, . . .M}.

For a given confidence level α, we identify the MCS M∗
1−α ⊆ M0 which includes

models that outperform all other models in the complementary set M∗
1−α. It holds that

M∗
1−α ∪M∗

1−α = M0. By defining the relative performance variable dij,t := Li,t − Lj,t
with i, j = 1, . . . ,M and Li,t being the loss function of the i-th Model, Mi, the MCS

method then removes the least-performing models based on the equal predictive accuracy

(ECA) test with

H0,M = E (dij,t) = 0, for i, j = 1, . . .M.

We implement the MCS using the stationary bootstrap outlined in Hansen et al.

(2011). Firstly, we generate B bootstrap resamples given the loss functions and choose

the block-length bootstrap parameter L = 16 as in Hansen et al. (2011) and calculate the

relative performance variable for each bootstrap resample. Based on the range statistic

TR of Hansen et al. (2011), we determine M∗
1−α in a two-step iterative procedure.2

We display the statistical evaluation results for the 1-step forecasts in Tab. 4 based

on the MZ-R2, the MAFE loss function and the MCS results. The results are consistent

for selecting the best performing forecast models. For all five agriculture commodity

futures, the HAR model combined with the independent Hidden Markov switching have

better forecast precision compared with the benchmark HAR models. Particularly, for

the sample of Cotton, Indica Rice, and Palm futures, the HAR models within the three

2For more detail on the MCS and stationary block bootstrap we refer the reader to Hansen et al.
(2011) and Politis & Romano (1994).
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types of infinite Hidden Markov switching outperform the corresponding benchmark HAR

models, suggesting that considering structural breaks in coefficients and variance improves

the forecast performances of the original HAR model. For Corn and Soybean, the IHMC

model with constant coefficients cannot outperform the benchmark HAR model. As

shown in Tab. 1, realized volatilities of Corn and Soybean futures have low standard

deviations; hence, only considering the structural breaks in variances results in insufficient

performance of the IHMC-HAR models for these two samples.

Moreover, we find that the specification of independent Markov processes (DIHM)

for coefficients and variances in the HAR models achieves the best forecasting precision

among each group of HAR models. It is worth noting that the HAR models with the

speculation variable have better forecast accuracy than all other models, suggesting that

the speculation variable plays an import role in volatility forecasts for agricultural com-

modity futures. Based on the MCS results, most of the HAR models with infinite Hidden

Markov processes survive in the MCS at the α = 25% confidence level.

Insert Tab. 4 approximately here.

Tab. 5 and Tab. 6 display the statistical evaluation results for the mid-term (a week

ahead) and long-term (a month ahead) forecast models. As shown in Tab. 5, the results

of MZ-R2 and the MAFE loss function suggest that the HAR models with the DIHM

and IHM structures outperform the corresponding benchmark HAR models for all the

five agriculture commodity futures. Moreover, most of the DIHM-HAR type models and

IHM-HAR type models can survive in the MCS at the 25% confident level, suggesting their

significant improvement in the forecast precision compared to the benchmark models.

The long-term forecast results as shown in Tab.6 are similar to the mid-term forecast

results. We also find superior forecast precision of the DIHM-HAR type models and IHM-

HAR type models compared to the corresponding benchmark HAR models. All HAR

models with DIHM and IHM structures can survive in the MCS at the 10% confident set

for the long-term forecasts.

In addition, we find that including the speculation variable in the HAR models im-

prove forecast accuracy of the original HAR models for both the mid-term and long-term

forecasts.

Insert Tab. 5 and Tab. 6 approximately here.

In conclusion, the IHM-HAR and DIHM-HAR models achieve higher forecast pre-

cision for short-, mid-, and long-term forecasts compared with to the benchmark HAR

models. Both IHM-HAR and DIHM-HAR models allow the coefficients and variances to

be changing over time. As the time-varying coefficients capture the unknown structural

breaks in the volatilities of agricultural commodity futures, both of these two models

perform rather well for the out-of-sample forecasts in term of statistical evaluation. Par-
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ticularly, the DIHM-HAR models perform better than the IHM-HAR models for the short-

and long-term forecasts, suggesting that modeling structural changes in the coefficients

and variances separately produces better forecast precision. However, the IHMC-HAR

models perform relative worse compared with the benchmark HAR models in terms of

forecast precision. Only variances are allowed to be time-varying and coefficients are set

to be time-invariant in the IHMC-HAR. Thus, the time-variation in the volatilities cannot

be fully captured by the IHMC-HAR models.

4.4. The economic evaluation

The statistical evaluation focuses on comparing the forecast accuracy and quality of

various volatility forecasting models. However, market participants care more about the

economic gains from volatility forecasts. To evaluate their economic significance, we

consider an investor with the following mean-variance utility:

U (Rp) = E (Rp)−
1

2
γV(Rp),

where γ refers to the risk aversion rate, E (Rp) denotes the expected value of the portfolio

return Rp, and V(Rp) denotes the portfolio variance.

The risk-averse investor allocates its budget to a portfolio containing a risky asset and

a risk-free asset. According to Campbell & Thompson (2008) and Neely et al. (2014),

the optimal weight which is allocated to the agricultural commodity futures, based on

forecasts of time t+ 1, should be

ŵt =
1

γ

r̂t+1

σ̂2
t+1

,

where r̂t+1 is the forecasted excess return of one of the agricultural commodity futures

and σ̂2
t+1 is the forecasted variance. Based on Campbell & Thompson (2008) and Neely

et al. (2014), we employ the moving average of the excess returns with a rolling window

of 256 trading days (1-year) to proxy the forecasted excess return. As the volatility of

risk-free asset is trivial compared to the risky asset, the forecasted variance of returns is

the volatility forecast obtained by the models outlined and analyzed in previous sections.

Then, the portfolio return at time t+ 1 is given by

Rp,t+1 = ŵtrt+1 + rft+1

where rt+1 and rft+1 are the excess returns of agriculture futures and the risk-free return

at time t + 1, respectively. In this paper, we employ the return of a 5-year Treasury bill

in China as the return of the risk-free asset.

Moreover, for the direct multi-step forecasts, the results for the multi-step forecast

models are averaged over all possible weekly (e.g., Monday to Monday, Tuesday to Tues-

day, etc.) horizons and monthly horizons (e.g. the 1st day of a month, the 2nd day of a
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month and so on). Thus, the actual returns corresponding to the long horizon forecast

of realized volatility for portfolio optimization are the moving averages of returns with a

weekly or monthly window such that

rt+1:t+h =
1

h

h∑
i=1

rt+1.

In addition, we employ the economic value to assess the economic significance of

various multivariate volatility models. The economic value is the value of ∆ such that

T∑
t=T1+1

U
(
rkp,t
)

=
T∑

t=T1+1

U
(
rlp,t −∆

)
for two different portfolios p1 and p2. The greater ∆, the more returns a risk-averse

investor is willing to sacrifice to switch from model l to model k. Based on Fleming &

Hernández-Hernández (2003), Bollerslev et al. (2016), and Callot et al. (2017), we use the

quadratic utility with risk aversion to determine the economic values of various forecast

models:

U
(
rkp,t, γ

)
= (1 + rp,t)−

γ

2(1 + γ)
(1 + rp,t)

2.

In this paper, we consider two levels of risk aversion rates for the investor, the mild

risk aversion rate γ = 1 and the strong risk aversion rate γ = 10. Tab. 7 shows the

results of economic evaluation in terms of the portfolio return and the economic values

of various HAR models within the infinite Hidden Markov switching framework. For the

sake of brevity, we only report the return of portfolio based on a mild risk aversion level

γ = 1. We also display the economic values of each infinite Hidden Markov switching

HAR models against the corresponding benchmark HAR model based on two types of

risk aversion rates.

The economic evaluation results suggest the HAR models combined with the three

types of infinite Hidden Markov switching methods achieve higher portfolio returns com-

pared to the original HAR models. Particularly, including the speculation variables in

the HAR models increases the portfolio returns for all types of agricultural commodity

futures. Moreover, almost all infinite Hidden Markov switching HAR models have positive

economic values against the corresponding benchmark HAR model, suggesting the utility

of the risk-averse investor can be improved by switching from the benchmark HAR models

to the infinite Hidden Markov switching HAR models for making investment decisions.

The improvement is more significant for the investor with a mild risk-averse rate.

Insert Tab. 7 approximately here.

Tab. 8 and Tab. 9 present the results of the economic evaluation in terms of the mid-

19



term (h = 5) and long-term (h = 22) forecasts. The results among these two forecasting

horizons are similar. For Palm Oil futures, almost all infinite Hidden Markov switching

HAR models achieve positive economic values against the corresponding benchmark HAR

models, which is consistent with the results of short-term forecasts. However, for the other

agriculture commodity samples, only HAR models with IHMC structure outperform the

corresponding HAR models for mid-term and long-term forecasts.

In conclusion, the HAR models combined with the three types of infinite Hidden

Markov switching structure improve the portfolio return and achieve positive economic

gains compared to the base HAR models for the short-term forecasts, while only the

IHMC-HAR models outperform the corresponding HAR models in terms of the portfolio

return and the economic value for the mid-term and long-term forecasts.

Insert Tab. 8 and Tab. 9 approximately here.

5. Robustness checks with alternative realized volatility estimators

Following Fiszeder & Perczak (2016) and ?, we conduct a robustness check of the

proposed models with alternative realized volatility estimators. Hansen & Lunde (2006)

suggest the realized kernel estimator to correct the effects of market microstructure noise

on the estimators of realized volatility, which reads

RKt(M) =
M∑
j=1

r2
t,j + 2

q∑
w=1

(
1− w

q + 1

)M−w∑
i=1

rt,irt,i+w. (38)

Following Hansen & Lunde (2006), we set

q =

⌈
ω

(b− a) /M

⌉
,

where dxe denotes the smallest integer that is greater or equal to x, ω is the desired width

of the lag window, and b− a is the length of the sampling period.

Then, we conduct the 1-step ahead forecasts with the realized kernel estimator. The

statistical evaluation and the economic evaluation results are displayed in Tab. 10 and

Tab. 11 respectively.

From Tab. 10 the statistical evaluation results suggest that most of the HAR models

with infinite Hidden Markov models outperform the benchmark HAR models. Moreover,

as shown in Tab. 11, the HAR models with infinite Hidden Markov switching structures

perform better than the benchmark HAR models in terms of portfolio return and eco-

nomic value. These results verify that our models have outstanding forecast performances

and that these forecast results are robust to the choice of realized volatility estimators.
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Insert Tab. 10 and Tab. 11 approximately here.

Moreover, we employ another alternative realized volatility estimator, the medRV

estimator proposed by Andersen et al. (2012), which is a jump-robust estimators of inte-

grated variance. The statistical and economic evaluation results are shown in Tab. 12 and

Tab. 12, respectively. According to these tables, the HAR models with infinite Hidden

Markov models outperform the benchmark HAR models in terms of the statistical and

economic evaluation criteria. Therefore, the forecast results are robust to the choice of

realized volatility estimator.

Insert Tab. 12 and Tab. 13 approximately here.

6. Conclusions

We construct a set of HAR models with three types of infinite Hidden Markov regime

switching structures. Particularly, jumps, leverage effects, and speculation effects are

taken into account in realized volatility modeling. We forecast five agricultural commodity

futures (Corn, Cotton, Indica Rice, Palm Oil, and Soybean) based on high frequency

data obtained from Chinese futures markets. We analyze regime switching behavior with

infinite Hidden Markov variants of different base HAR models. We compare the forecast

precision of various models based on the MZ-R2, the MAFE, and the MCS tests and

further evaluate the economic significance of these forecast models in terms of portfolio

return and economic value.

With respect to the statistical evaluation, the HAR models combined with double Hid-

den Markov processes (DIHM) and a single Hidden Markov process (IHM) have better

forecast precision when compared with non-switching benchmark HAR models. These

results hold for short-term, mid-term, and long-term forecasts. The HAR models with

speculation variable have better forecast accuracy than all other models, suggesting the

speculation variable plays an important role in volatility forecasts for agricultural com-

modity futures.

With respect to economic evaluation, HAR models combined with three types of infi-

nite Hidden Markov switching structures improve the portfolio return and achieve positive

economic gains compared to the corresponding benchmark HAR models for short-term

forecasts. The IHMC-HAR model outperforms the corresponding benchmark models in

terms of portfolio return and economic value for the mid-term and long-term forecasts. In

addition, the improvements in the portfolio performances of the HAR models with infinite

Hidden Markov switching structures are higher for mildly risk-averse investors.

In conclusion, we focus on introducing different Markov switching structures to im-

prove the efficiency and accuracy of high-frequency volatility forecast models. We compare

the forecast performance based on statistical and economic evaluation methods, which pro-

vide a comprehensive way to identify suitable forecast models for practical application.
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We provide a new analytical tool for market participants to model and forecast volatility

of agricultural commodity futures. This has great economic significance for investors to

generate suitable portfolio strategies to quantify and control risk as well as for policy

makers to determine adequate policies to ensure the stability of financial markets.
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Lyócsa, S., & Molnár, P. (2016). Volatility forecasting of strategically linked commodity
ETFs: gold-silver. Quantitative Finance, 16 , 1809–1822. doi:10.1080/14697688.2016.
1211799.
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7. Tables

Table 1: Descriptive Statistics of the agricultural commodities of this study; Corn, Cotton, Indica Rice,
Palm, and Soybeans.

Agriculture
Mean

Standard
Skewness Kurtosis Jarque-Bera LB Q(5) LB Q(10) LB Q(20) ADF

commodity Deviation

Panel A: Daily Returns

Corn −0.030 1.182 −4.89 105.69 556889.74∗∗∗ 84.06 143.90 190.14∗ −31.58∗∗∗

Cotton −0.075 1.101 −2.93 44.17 87492.75∗∗∗ 5.23 11.12 28.90 −25.83∗∗∗

Indica Rice −0.005 0.733 1.95 31.51 40586.82∗∗∗ 6.86 10.45 18.94 −23.00∗∗∗

Palm Oil −0.057 1.214 0.31 6.60 674.21∗∗∗ 2.56 3.80 10.88 −24.28∗∗∗

Soybean −0.018 0.877 −0.08 6.70 692.03∗∗∗ 2.57 11.17 20.29 −25.18∗∗∗

Panel B: Realized Volatility

Corn 0.231 0.306 4.85 37.70 67943.83∗∗∗ 1186.67∗∗∗ 1932.48∗∗∗ 2791.40∗∗∗ −14.24∗∗∗

Cotton 0.637 1.030 4.80 36.76 62300.92∗∗∗ 1376.24∗∗∗ 2232.77∗∗∗ 3626.86∗∗∗ −13.06∗∗∗

Indica Rice 0.686 2.924 19.59 483.47 11386890.41∗∗∗ 34.27∗∗∗ 53.89∗∗∗ 77.56∗∗∗ −21.64∗∗∗

Palm Oil 0.918 1.895 16.33 331.85 5524222.36∗∗∗ 95.35∗∗∗ 112.65∗∗∗ 139.77∗∗∗ −21.47∗∗∗

Soybean 0.459 0.509 3.62 22.42 21719.07∗∗∗ 761.81∗∗∗ 1202.67∗∗∗ 1734.76∗∗∗ −15.40∗∗∗

Panel C: Speculation Variable

Corn 0.309 0.228 2.31 12.53 5869.32∗∗∗ 1338.78∗∗∗ 2137.89∗∗∗ 3027.59∗∗∗ −13.38∗∗∗

Cotton 0.884 1.195 2.63 9.53 3558.62∗∗∗ 5030.28∗∗∗ 9443.85∗∗∗ 17071.90∗∗∗ −4.91∗∗∗

Indica Rice 0.291 0.330 4.19 28.89 36277.70∗∗∗ 2157.24∗∗∗ 3888.59∗∗∗ 5768.60∗∗∗ −11.57∗∗∗

Palm Oil 1.086 0.516 0.97 4.33 278.19∗∗∗ 2556.19∗∗∗ 4404.98∗∗∗ 6830.32∗∗∗ −10.01∗∗∗

Soybean 0.600 0.433 2.35 12.11 5312.79∗∗∗ 1900.82∗∗∗ 2842.42∗∗∗ 3866.14∗∗∗ −11.19∗∗∗

Note: This table reports the statistical summary of the daily returns (Panel A), realized volatility (Panel B), and the
speculation variable (Panel C) of each agricultural commodity future. The speculation variable is the ratio between
the open interest and the trading volume. ***, **, and * refer to the level of significance of 1%, 5%, and 10%,
respectively.

Table 2: Time-varying coefficients for the DIHM-HAR-spec model.

Corn Cotton Indica Rice Palm Soybean

mean std mean std mean std mean std mean std

a0 0.0407 0.0390 0.0930 0.0979 0.0906 0.0554 0.2847 0.1412 0.0306 0.0158
ad 0.0711 0.0705 0.0687 0.0756 0.0772 0.0491 0.1338 0.1012 0.0573 0.0435
aw 0.1081 0.0674 0.0024 0.0526 0.0966 0.0975 0.0830 0.0690 0.1559 0.1052
am 0.1936 0.1105 0.2907 0.1328 0.2129 0.1554 0.0210 0.0397 0.2567 0.0704
as 0.3092 0.0434 0.2037 0.0528 0.2274 0.1939 0.2355 0.0413 0.3293 0.1950

Note: This table shows the mean and standard deviation (std) of the time-
varying coefficients for the constant, the daily, weekly, and monthly volatility
variables, and the speculation variable in the DIHM-HAR-Spec model.
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Table 3: Time-varying coefficients for the IHM-HAR-spec model.

Corn Cotton Indica Rice Palm Soybean

mean std mean std mean std mean std mean std

a0 0.1109 0.0857 0.2424 0.1693 0.2509 0.1913 0.4312 0.1791 0.2406 0.1581
ad 0.0285 0.0116 0.0830 0.0765 0.0639 0.0444 0.0748 0.0514 0.0521 0.0202
aw 0.0422 0.0278 0.0404 0.0327 0.0219 0.0241 0.0325 0.0116 0.0158 0.0468
am 0.0538 0.0631 0.1098 0.0688 0.0964 0.0762 0.0483 0.0240 0.0966 0.0436
as 0.2784 0.0382 0.1244 0.0250 0.1322 0.0654 0.1898 0.0532 0.2008 0.1061

Note: This table shows the mean and standard deviation (std) of the time-
varying coefficients for the constant, the daily, weekly, and monthly volatility
variables, and the speculation variable in the IHM-HAR-Spec model.

Table 4: Forecasting precision results for 1-step forecasts.

Corn Cotton Indica Rice Palm Oil Soybean

MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE

DIHM-HAR 0.345 0.174∗∗ 0.219 0.398∗∗ 0.006 1.231∗∗ 0.032 0.819∗∗ 0.177 0.320∗∗

IHM-HAR 0.361 0.176∗∗ 0.181 0.406∗∗ 0.011 1.194∗∗ 0.025 0.793∗∗ 0.182 0.319∗∗

IHMC-HAR 0.372 0.180∗∗ 0.175 0.408∗∗ 0.005 1.250∗∗ 0.026 0.822∗∗ 0.155 0.333
HAR 0.357 0.175∗∗ 0.159 0.445 0.002 1.271∗∗ 0.024 0.889 0.170 0.325

DIHM-HARCJ 0.358 0.174∗∗ 0.188 0.399∗∗ 0.004 1.215∗∗ 0.046 0.794∗∗ 0.184 0.316∗∗

IHM-HARCJ 0.359 0.175∗∗ 0.185 0.404∗∗ 0.021 1.173∗∗ 0.035 0.782∗∗ 0.191 0.316∗∗

IHMC-HARCJ 0.368 0.180∗∗ 0.182 0.405∗∗ 0.003 1.253∗ 0.049 0.779∗∗ 0.175 0.329
HARCJ 0.351 0.176∗∗ 0.146 0.453 0.002 1.393∗ 0.028 0.865 0.194 0.322∗∗

DIHM-HARTCJ 0.347 0.172∗∗ 0.226 0.397∗∗ 0.013 1.203∗∗ 0.024 0.825 0.206 0.314∗∗

IHM-HARTCJ 0.342 0.176∗∗ 0.188 0.403∗∗ 0.022 1.178∗∗ 0.040 0.783∗∗ 0.197 0.314∗∗

IHMC-HARTCJ 0.338 0.179∗∗ 0.179 0.403∗∗ 0.003 1.260 0.045 0.78∗∗ 0.174 0.330
HARTCJ 0.354 0.177∗∗ 0.150 0.451∗∗ 0.001 1.307∗∗ 0.030 0.864 0.200 0.323∗∗

DIHM-HAR∆J 0.377 0.172∗∗ 0.221 0.391∗∗ 0.007 1.218∗∗ 0.012 0.838 0.204 0.313∗∗

IHM-HAR∆J 0.364 0.175∗∗ 0.209 0.395∗∗ 0.009 1.195∗∗ 0.024 0.793∗∗ 0.208 0.313∗∗

IHMC-HAR∆J 0.377 0.178∗∗ 0.203 0.398∗∗ 0.004 1.246∗ 0.029 0.814 0.160 0.331
HAR∆J 0.363 0.173∗∗ 0.170 0.440 0.004 1.271∗ 0.031 0.875 0.207 0.317∗∗

DIHM-HARspec 0.356 0.173∗∗ 0.213 0.395∗∗ 0.005 1.230∗∗ 0.015 0.812∗ 0.163 0.324∗∗

IHM-HARspec 0.359 0.175∗∗ 0.179 0.398∗∗ 0.016 1.193∗∗ 0.028 0.791∗∗ 0.176 0.319∗∗

IHMC-HARspec 0.361 0.185 0.173 0.410∗ 0.006 1.237∗∗ 0.027 0.814 0.153 0.334
HARspec 0.352 0.175∗∗ 0.160 0.424∗ 0.002 1.276∗∗ 0.024 0.885 0.168 0.324

DIHM-HARc 0.345 0.173∗∗ 0.206 0.394∗∗ 0.005 1.255∗ 0.017 0.802∗∗ 0.172 0.320∗∗

IHM-HARc 0.361 0.173∗∗ 0.173 0.409∗ 0.012 1.198∗∗ 0.025 0.788∗∗ 0.176 0.318∗∗

IHMC-HARc 0.377 0.178∗∗ 0.171 0.425∗ 0.007 1.249∗∗ 0.028 0.823∗ 0.162 0.332
HARc 0.356 0.174∗∗ 0.160 0.440 0.002 1.277∗ 0.025 0.886 0.172 0.325

Note: This table reports the evaluation results of the forecast precision based on MZ-R2, MAFE, and MCS
results for the 1-step forecasts. The MAFE results marked with * and ** refer to corresponding MCS
p-values of > 10% and > 25%, respectively.

Table 5: Forecasting precision results for 5-step forecasts.

Corn Cotton Indica Rice Palm Oil Soybean

MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE

DIHM-HAR 0.627 0.087∗ 0.410 0.210∗∗ 0.052 0.877∗∗ 0.057 0.555 0.728 0.119∗

IHM-HAR 0.797 0.071∗∗ 0.800 0.145∗∗ 0.058 0.832∗∗ 0.210 0.483∗∗ 0.783 0.109∗∗
IHMC-HAR 0.487 0.148 0.210 0.357 0.017 1.047 0.034 0.775 0.178 0.277
HAR 0.496 0.131 0.233 0.375 0.008 1.003 0.038 0.768 0.177 0.254

DIHM-HARCJ 0.659 0.084∗∗ 0.413 0.224∗ 0.070 0.840∗∗ 0.024 0.566 0.620 0.128
IHM-HARCJ 0.763 0.073∗∗ 0.766 0.152∗∗ 0.051 0.842∗∗ 0.167 0.493∗∗ 0.734 0.111∗∗
IHMC-HARCJ 0.500 0.149 0.142 0.385 0.023 1.094 0.068 0.684 0.215 0.270
HARCJ 0.500 0.132 0.325 0.376 0.005 1.172∗∗ 0.068 0.735 0.203 0.249

DIHM-HARTCJ 0.602 0.093∗ 0.416 0.212∗ 0.086 0.837∗∗ 0.047 0.549 0.589 0.131
IHM-HARTCJ 0.760 0.072∗∗ 0.790 0.147∗∗ 0.067 0.800∗∗ 0.219 0.476∗∗ 0.755 0.112∗∗
IHMC-HARTCJ 0.458 0.154 0.172 0.367 0.009 1.096 0.053 0.707 0.203 0.271
HARTCJ 0.495 0.133 0.219 0.398 0.003 1.066∗ 0.083 0.729 0.208 0.248

DIHM-HAR∆J 0.607 0.095∗ 0.440 0.210∗ 0.095 0.847∗∗ 0.066 0.546 0.697 0.125∗

IHM-HAR∆J 0.789 0.070 0.809 0.147∗∗ 0.070 0.824∗∗ 0.275 0.467∗∗ 0.734 0.114∗
IHMC-HAR∆J 0.492 0.148 0.196 0.358 0.018 1.053 0.039 0.760 0.188 0.274
HAR∆J 0.506 0.131 0.217 0.379 0.019 0.981 0.053 0.746 0.193 0.249

DIHM-HARspec 0.652 0.087∗ 0.420 0.208∗∗ 0.051 0.886∗∗ 0.066 0.537 0.637 0.127
IHM-HARspec 0.794 0.071∗∗ 0.744 0.162∗∗ 0.039 0.858∗∗ 0.258 0.467∗∗ 0.754 0.108∗∗
IHMC-HARspec 0.488 0.150 0.195 0.362 0.020 1.051 0.035 0.774 0.183 0.277
HARspec 0.499 0.131 0.248 0.346 0.006 1.014 0.042 0.764 0.180 0.254

DIHM-HARc 0.569 0.096∗ 0.651 0.186∗ 0.051 0.887∗∗ 0.043 0.555 0.726 0.123
IHM-HARc 0.691 0.080∗∗ 0.660 0.181∗ 0.031 0.897∗∗ 0.122 0.503∗ 0.807 0.105∗∗
IHMC-HARc 0.505 0.151 0.223 0.369 0.031 1.013 0.036 0.778 0.186 0.272
HARc 0.498 0.132 0.240 0.373 0.008 1.007 0.042 0.760 0.181 0.254

Note: This table reports the evaluation results of the forecast precision based on MZ-R2, MAFE, and MCS
results for the 5-step forecasts. The MAFE results marked with * and ** refer to corresponding MCS
p-values of > 10% and > 25%, respectively.
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Table 6: Forecasting precision results for 22-step forecasts.

Corn Cotton Indica Rice Palm Oil Soybean

MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE

DIHM-HAR 0.962 0.028∗∗ 0.905 0.067∗∗ 0.397 0.469∗∗ 0.753 0.224∗∗ 0.870 0.052∗∗

IHM-HAR 0.946 0.031∗∗ 0.922 0.060∗∗ 0.552 0.329∗∗ 0.752 0.187∗∗ 0.940 0.042∗∗
IHMC-HAR 0.583 0.133 0.034 0.373 0.023 0.911 0.176 0.594 0.326 0.297
HAR 0.572 0.106 0.089 0.348 0.046 0.818 0.205 0.600 0.329 0.203

DIHM-HARCJ 0.952 0.030∗∗ 0.879 0.074∗∗ 0.427 0.451∗∗ 0.746 0.233∗ 0.818 0.054∗∗

IHM-HARCJ 0.953 0.031∗∗ 0.887 0.068∗∗ 0.554 0.334∗∗ 0.732 0.192∗∗ 0.939 0.041∗∗
IHMC-HARCJ 0.529 0.141 0.039 0.394 0.030 0.978 0.194 0.589 0.365 0.276
HARCJ 0.570 0.108 0.132 0.349 0.036 0.810 0.215 0.591 0.343 0.198

DIHM-HARTCJ 0.953 0.031 ∗ ∗ 0.843 0.082∗∗ 0.333 0.505∗∗ 0.779 0.225∗ 0.835 0.055∗∗

IHM-HARTCJ 0.956 0.029∗∗ 0.912 0.065∗∗ 0.683 0.289∗∗ 0.819 0.184∗∗ 0.933 0.042∗∗
IHMC-HARTCJ 0.540 0.138 0.046 0.383 0.061 0.922 0.167 0.591 0.351 0.282
HARTCJ 0.572 0.107 0.085 0.379 0.014 0.858 0.219 0.583 0.340 0.204

DIHM-HAR∆J 0.953 0.030∗∗ 0.885 0.071∗∗ 0.381 0.472∗∗ 0.799 0.194∗∗ 0.868 0.051∗∗

IHM-HAR∆J 0.950 0.031∗∗ 0.931 0.062∗∗ 0.602 0.306∗∗ 0.768 0.201∗∗ 0.938 0.043∗∗
IHMC-HAR∆J 0.588 0.133 0.032 0.375 0.025 0.911 0.170 0.595 0.330 0.296
HAR∆J 0.570 0.107 0.084 0.346 0.069 0.810 0.209 0.597 0.321 0.204

DIHM-HARspec 0.967 0.027∗∗ 0.893 0.069∗∗ 0.347 0.489∗∗ 0.812 0.197∗∗ 0.886 0.049∗∗

IHM-HARspec 0.956 0.030∗∗ 0.936 0.058∗∗ 0.609 0.311∗∗ 0.796 0.191∗∗ 0.930 0.043∗∗
IHMC-HARspec 0.583 0.131 0.034 0.373 0.035 0.885 0.176 0.593 0.323 0.302
HARspec 0.574 0.107 0.114 0.325 0.036 0.827 0.208 0.598 0.345 0.204

DIHM-HARc 0.940 0.035∗∗ 0.942 0.066∗∗ 0.419 0.451∗∗ 0.801 0.196∗∗ 0.892 0.048∗∗

IHM-HARc 0.906 0.039∗ 0.880 0.080∗∗ 0.590 0.316∗∗ 0.801 0.176∗∗ 0.944 0.041∗∗
IHMC-HARc 0.603 0.121 0.074 0.378 0.027 0.901 0.200 0.571 0.405 0.259
HARc 0.592 0.111 0.101 0.366 0.039 0.827 0.214 0.595 0.343 0.203

Note: This table reports the evaluation results of the forecast precision based on MZ-R2, MAFE, and MCS
results for the 22-step forecasts. The MAFE results marked with * and ** refer to corresponding MCS
p-values of > 10% and > 25%, respectively.

Table 7: Results of the economic evaluation for 1-step forecasts.

Corn Cotton Indica Rice Palm Oil Soybean

r
EV

r
EV

r
EV

r
EV

r
EV

γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10

DIHM-HAR 20.381 1.176 0.127 14.388 2.404 0.260 2.804 −0.822 −0.089 5.707 0.656 0.071 5.862 0.151 0.016
IHM-HAR 20.677 1.469 0.159 12.984 0.965 0.104 3.758 0.199 0.021 5.532 0.479 0.052 5.729 0.016 0.002
IHMC-HAR 25.739 6.659 0.722 18.113 6.299 0.681 4.332 3.679 0.397 5.461 0.406 0.044 6.559 0.858 0.093
HAR 19.223 0.000 0.000 12.041 0.000 0.000 3.655 0.000 0.000 5.058 0.000 0.000 5.712 0.000 0.000

DIHM-HARCJ 21.562 1.798 0.195 14.410 2.257 0.244 4.242 1.104 0.119 5.516 0.356 0.038 5.890 0.206 0.022
IHM-HARCJ 20.642 0.892 0.097 12.496 0.287 0.031 4.650 0.459 0.050 5.725 0.568 0.061 5.740 0.055 0.006
IHMC-HARCJ 25.131 5.498 0.596 17.162 5.123 0.554 10.243 8.481 2.706 5.876 0.720 0.078 6.550 0.876 0.095
HARCJ 19.772 0.000 0.000 12.205 0.000 0.000 3.877 0.000 0.000 5.163 0.000 0.000 5.686 0.000 0.000

DIHM-HARTCJ 21.405 1.170 0.127 15.050 2.601 0.281 4.462 0.331 0.036 5.566 0.347 0.037 5.988 0.115 0.012
IHM-HARTCJ 21.274 1.024 0.111 13.133 0.626 0.068 3.852 −0.576 −0.062 5.655 0.436 0.047 5.764 −0.111 −0.012
IHMC-HARTCJ 26.017 5.943 0.645 18.075 5.761 0.623 −3.655 3.205 −0.755 5.773 0.555 0.060 6.668 0.805 0.087
HARTCJ 20.287 0.000 0.000 12.516 0.000 0.000 3.804 0.000 0.000 5.222 0.000 0.000 5.874 0.000 0.000

DIHM-HARDJ 20.402 2.344 0.254 14.576 2.722 0.294 3.992 0.858 0.093 5.393 −0.084 −0.009 5.979 0.387 0.042
IHM-HARDJ 20.151 2.104 0.228 11.970 0.028 0.003 3.991 0.382 0.041 5.465 −0.011 −0.001 5.638 0.041 0.004
IHMC-HARDJ 24.330 6.399 0.694 6.543 −6.170 −0.666 4.589 3.283 0.354 5.436 −0.042 −0.004 6.702 1.121 0.121
HARDJ 18.081 0.000 0.000 11.927 0.000 0.000 4.096 0.000 0.000 5.474 0.000 0.000 5.597 0.000 0.000

DIHM-HARspec 21.217 1.364 0.148 14.526 1.439 0.155 4.534 1.323 0.143 5.347 0.384 0.041 5.944 0.168 0.018
IHM-HARspec 20.971 1.109 0.120 13.236 0.132 0.014 3.851 0.330 0.036 5.529 0.570 0.061 5.767 −0.012 −0.001
IHMC-HARspec 27.350 7.655 0.831 19.004 6.129 0.663 2.953 2.847 0.307 5.465 0.503 0.054 6.641 0.874 0.094
HARspec 19.863 0.000 0.000 13.105 0.000 0.000 3.667 0.000 0.000 4.965 0.000 0.000 5.778 0.000 0.000

DIHM-HARc 21.286 1.685 0.183 16.518 3.429 0.371 3.822 0.394 0.042 5.330 0.347 0.037 5.850 0.218 0.023
IHM-HARc 21.154 1.564 0.170 15.436 2.321 0.251 3.930 0.175 0.019 5.585 0.607 0.065 5.739 0.106 0.011
IHMC-HARc 25.277 5.808 0.630 15.247 2.122 0.229 4.076 2.411 0.260 5.412 0.430 0.046 6.429 0.805 0.087
HARc 19.624 0.000 0.000 13.190 0.000 0.000 3.630 0.000 0.000 4.985 0.000 0.000 5.634 0.000 0.000

Note: This table shows the results of economic evaluation in terms of the portfolio return and the economic values of various HAR
models for the 1-step forecasts, where r refers to the portfolio return given a mild risk aversion rate (γ = 1) and EV denotes the
economic values of different HAR models with infinite Hidden Markov switching structures against the corresponding benchmark HAR
model.
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Table 8: Results of the economic evaluation for 5-step forecasts.

Corn Cotton Indica Rice Palm Oil Soybean

r
EV

r
EV

r
EV

r
EV

r
EV

γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10

DIHM-HAR 9.238 −4.151 −0.448 10.140 −3.650 −0.394 3.454 −3.203 −0.345 4.589 0.317 0.034 4.529 −0.032 −0.003
IHM-HAR 8.335 −5.053 −0.546 10.766 −3.975 −0.429 6.992 −0.689 −0.074 4.921 0.655 0.071 4.490 −0.072 −0.008
IHMC-HAR 17.104 3.891 0.421 14.834 7.896 0.853 3.038 3.106 0.335 4.447 0.174 0.019 4.806 0.247 0.027
HAR 13.328 0.000 0.000 10.336 0.000 0.000 3.151 0.000 0.000 4.274 0.000 0.000 4.561 0.000 0.000

DIHM-HARCJ 9.171 −4.192 −0.453 9.993 −3.847 −0.415 3.521 −3.133 −0.338 2.556 −1.720 −0.186 4.471 −0.099 −0.011
IHM-HARCJ 8.545 −4.818 −0.520 10.842 −3.672 −0.397 3.208 −4.144 −0.447 4.609 0.400 0.043 4.505 −0.064 −0.007
IHMC-HARCJ 16.846 3.660 0.396 14.755 7.176 0.776 8.732 8.317 0.898 4.508 0.296 0.032 4.815 0.249 0.027
HARCJ 13.302 0.000 0.000 10.362 0.000 0.000 3.132 0.000 0.000 4.215 0.000 0.000 4.569 0.000 0.000

DIHM-HARTCJ 8.280 −5.100 −0.551 10.445 −3.706 −0.400 3.209 −3.428 −0.369 5.213 1.002 0.108 4.514 −0.197 −0.021
IHM-HARTCJ 8.077 −5.289 −0.571 10.897 −4.245 −0.458 3.715 −3.933 −0.424 4.495 0.276 0.030 4.510 −0.201 −0.022
IHMC-HARTCJ 16.960 3.777 0.409 14.626 6.712 0.725 3.300 2.799 0.302 4.437 0.216 0.023 4.788 0.080 0.009
HARTCJ 13.302 0.000 0.000 10.744 0.000 0.000 3.185 0.000 0.000 4.222 0.000 0.000 4.709 0.000 0.000

DIHM-HAR∆J 9.723 −3.371 −0.364 10.139 −3.229 −0.349 2.941 −3.171 −0.342 4.466 0.169 0.018 4.522 −0.034 −0.004
IHM-HAR∆J 8.307 −4.793 −0.518 10.838 −3.755 −0.406 3.768 −3.599 −0.388 4.778 0.486 0.052 4.504 −0.052 −0.006
IHMC-HAR∆J 16.667 3.738 0.405 14.680 7.363 0.796 3.265 3.083 0.332 4.411 0.113 0.012 4.784 0.231 0.025
HAR∆J 13.040 0.000 0.000 10.496 0.000 0.000 3.202 0.000 0.000 4.298 0.000 0.000 4.556 0.000 0.000

DIHM-HARspec 9.382 −3.875 −0.419 10.247 −4.614 −0.498 4.042 −2.307 −0.249 4.628 0.383 0.041 4.545 −0.030 −0.003
IHM-HARspec 8.271 −4.989 −0.539 10.870 −5.104 −0.551 2.193 −5.289 −0.570 4.733 0.490 0.053 4.440 −0.136 −0.015
IHMC-HARspec 17.032 3.954 0.428 14.910 6.466 0.699 3.214 3.169 0.342 4.440 0.193 0.021 4.799 0.227 0.024
HARspec 13.199 0.000 0.000 11.634 0.000 0.000 3.108 0.000 0.000 4.249 0.000 0.000 4.575 0.000 0.000

DIHM-HARc 9.914 −3.447 −0.373 10.838 −3.824 −0.413 0.265 −5.619 −0.605 5.397 1.174 0.127 4.539 0.038 0.004
IHM-HARc 8.681 −4.687 −0.506 11.377 −4.453 −0.481 3.944 −3.125 −0.337 4.562 0.329 0.035 4.476 −0.026 −0.003
IHMC-HARc 16.734 3.540 0.383 13.916 4.515 0.488 3.059 2.386 0.257 4.433 0.198 0.021 4.670 0.171 0.018
HARc 13.305 0.000 0.000 11.843 0.000 0.000 3.046 0.000 0.000 4.237 0.000 0.000 4.501 0.000 0.000

Note: This table shows the results of economic evaluation in terms of the portfolio return and the economic values of various HAR
models for the 5-step forecasts, where r refers to the portfolio return given a mild risk aversion rate (γ = 1) and EV denotes the
economic values of different HAR models with infinite Hidden Markov switching structures against the corresponding benchmark HAR
model.

Table 9: Results of the economic evaluation for 22-step forecasts.

Corn Cotton Indica Rice Palm Oil Soybean

r
EV

r
EV

r
EV

r
EV

r
EV

γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10

DIHM-HAR 6.517 −1.734 −0.187 9.383 −1.539 −0.166 2.932 −0.841 −0.091 4.065 0.197 0.021 4.153 −0.135 −0.015
IHM-HAR 6.418 −1.834 −0.198 9.338 −1.702 −0.184 2.829 −1.062 −0.115 4.016 0.147 0.016 4.125 −0.163 −0.018
IHMC-HAR 10.021 1.845 0.199 13.452 4.421 0.478 2.881 0.964 0.104 4.041 0.173 0.019 4.580 0.297 0.032
HAR 8.223 0.000 0.000 9.966 0.000 0.000 2.799 0.000 0.000 3.870 0.000 0.000 4.286 0.000 0.000

DIHM-HARCJ 6.562 −1.549 −0.167 9.378 −1.305 −0.141 2.867 −0.784 −0.085 4.047 0.148 0.016 4.141 −0.175 −0.019
IHM-HARCJ 6.409 −1.702 −0.184 9.312 −1.577 −0.170 3.020 −0.837 −0.090 4.055 0.157 0.017 4.119 −0.198 −0.021
IHMC-HARCJ 10.334 2.310 0.250 12.009 3.055 0.330 1.069 −1.035 −0.112 4.055 0.156 0.017 4.585 0.274 0.030
HARCJ 8.085 0.000 0.000 9.887 0.000 0.000 2.822 0.000 0.000 3.900 0.000 0.000 4.315 0.000 0.000

DIHM-HARTCJ 6.505 −1.613 −0.174 9.339 −1.853 −0.200 2.968 −0.824 −0.089 4.079 0.211 0.023 4.145 −0.224 −0.024
IHM-HARTCJ 6.379 −1.741 −0.188 9.333 −1.924 −0.208 3.046 −0.809 −0.087 4.085 0.217 0.023 4.126 −0.244 −0.026
IHMC-HARTCJ 10.783 2.767 0.299 13.597 4.492 0.486 3.340 1.604 0.173 4.027 0.158 0.017 4.774 0.412 0.044
HARTCJ 8.092 0.000 0.000 10.248 0.000 0.000 2.840 0.000 0.000 3.870 0.000 0.000 4.367 0.000 0.000

DIHM-HARDJ 6.433 −1.819 −0.196 9.366 −1.705 −0.184 2.990 −0.961 −0.104 4.069 0.192 0.021 4.147 −0.138 −0.015
IHM-HARDJ 6.415 −1.837 −0.198 9.331 −1.779 −0.192 3.000 −0.987 −0.106 4.062 0.184 0.020 4.125 −0.160 −0.017
IHMC-HARDJ 10.001 1.824 0.197 13.344 4.281 0.463 2.931 0.962 0.104 4.044 0.166 0.018 4.583 0.303 0.033
HARDJ 8.223 0.000 0.000 9.970 0.000 0.000 2.829 0.000 0.000 3.880 0.000 0.000 4.283 0.000 0.000

DIHM-HARspec 6.385 −1.764 −0.190 9.361 −2.725 −0.294 2.902 −0.951 −0.103 4.078 0.223 0.024 4.134 −0.170 −0.018
IHM-HARspec 6.380 −1.769 −0.191 9.322 −2.782 −0.300 3.015 −0.854 −0.092 4.078 0.223 0.024 4.133 −0.171 −0.018
IHMC-HARspec 9.952 1.878 0.203 13.827 3.720 0.402 2.774 0.858 0.093 4.021 0.164 0.018 4.634 0.335 0.036
HARspec 8.122 0.000 0.000 10.981 0.000 0.000 2.739 0.000 0.000 3.858 0.000 0.000 4.303 0.000 0.000

DIHM-HARc 6.517 −1.574 −0.170 9.809 −4.347 −0.469 2.750 −0.830 −0.090 4.060 0.192 0.021 4.144 −0.084 −0.009
IHM-HARc 6.462 −1.629 −0.176 9.726 −4.457 −0.481 2.929 −0.682 −0.074 4.085 0.217 0.023 4.124 −0.105 −0.011
IHMC-HARc 9.282 1.247 0.135 12.489 −0.193 −0.021 2.708 0.590 0.064 4.000 0.131 0.014 4.307 0.080 0.009
HARc 8.065 0.000 0.000 13.134 0.000 0.000 2.601 0.000 0.000 3.870 0.000 0.000 4.227 0.000 0.000

Note: This table shows the results of economic evaluation in terms of the portfolio return and the economic values of various HAR
models for the 22-step forecasts, where r refers to the portfolio return given a mild risk aversion rate (γ = 1) and EV denotes the
economic values of different HAR models with infinite Hidden Markov switching structures against the corresponding benchmark HAR
model.
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Table 10: Robustness check for the 1-step forecasting precision results.

Corn Cotton Indica Rice Palm Oil Soybean

MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE

DIHM-HAR 0.201 0.187∗∗ 0.109 0.403∗∗ 0.024 0.605∗∗ 0.019 0.813∗∗ 0.083 0.371∗∗

IHM-HAR 0.195 0.195 0.093 0.428 0.038 0.604∗∗ 0.034 0.800∗∗ 0.088 0.369∗∗

IHMC-HAR 0.216 0.196 0.089 0.403∗∗ 0.028 0.610∗∗ 0.032 0.808∗∗ 0.076 0.390
HAR 0.203 0.194∗ 0.083 0.471 0.034 0.621∗∗ 0.023 0.866∗ 0.073 0.385

DIHM-HARCJ 0.223 0.187∗∗ 0.112 0.401∗∗ 0.007 0.635∗∗ 0.045 0.793∗∗ 0.075 0.373∗∗

IHM-HARCJ 0.201 0.193 0.095 0.419∗ 0.011 0.632∗∗ 0.036 0.803∗∗ 0.095 0.371∗∗

IHMC-HARCJ 0.225 0.195∗ 0.082 0.405∗ 0.000 0.651 0.044 0.802∗∗ 0.095 0.387
HARCJ 0.212 0.194∗∗ 0.068 0.504 0.009 0.692 0.028 0.848∗∗ 0.109 0.386

DIHM-HARTCJ 0.214 0.186∗∗ 0.090 0.401∗∗ 0.005 0.629∗∗ 0.028 0.810∗∗ 0.105 0.370∗∗

IHM-HARTCJ 0.187 0.192∗ 0.102 0.418∗ 0.020 0.615∗∗ 0.037 0.798∗∗ 0.093 0.370∗∗

IHMC-HARTCJ 0.205 0.193∗∗ 0.108 0.398∗∗ 0.000 0.647 0.042 0.804∗∗ 0.092 0.387
HARTCJ 0.211 0.195∗∗ 0.095 0.489 0.003 0.646∗∗ 0.031 0.847∗ 0.098 0.385

DIHM-HAR∆J 0.216 0.187∗∗ 0.216 0.398∗∗ 0.007 0.643∗∗ 0.016 0.828∗ 0.081 0.372∗∗

IHM-HAR∆J 0.198 0.193 0.099 0.423∗ 0.009 0.642∗∗ 0.024 0.807∗∗ 0.091 0.370∗∗

IHMC-HAR∆J 0.217 0.196 0.097 0.396∗∗ 0.001 0.640∗∗ 0.028 0.812∗∗ 0.098 0.387
HAR∆J 0.200 0.196 0.092 0.488 0.002 0.660 0.036 0.837∗∗ 0.098 0.382∗∗

DIHM-HARspec 0.223 0.188∗∗ 0.109 0.404∗ 0.013 0.628∗∗ 0.020 0.818∗∗ 0.059 0.375∗∗

IHM-HARspec 0.203 0.193 0.106 0.407∗ 0.012 0.634∗∗ 0.038 0.805∗∗ 0.081 0.371∗∗

IHMC-HARspec 0.207 0.199 0.103 0.404∗ 0.014 0.623∗∗ 0.038 0.807∗∗ 0.068 0.393
HARspec 0.209 0.191∗∗ 0.095 0.458 0.008 0.662∗ 0.027 0.851∗∗ 0.070 0.384

DIHM-HARc 0.202 0.190∗∗ 0.093 0.399∗∗ 0.010 0.609∗∗ 0.016 0.815∗∗ 0.082 0.373∗∗

IHM-HARc 0.187 0.192∗∗ 0.082 0.415∗ 0.031 0.606∗∗ 0.029 0.795∗∗ 0.071 0.368∗∗

IHMC-HARc 0.220 0.191∗∗ 0.090 0.455 0.034 0.608∗∗ 0.035 0.803∗∗ 0.077 0.384∗

HARc 0.203 0.191∗∗ 0.080 0.456 0.037 0.619∗∗ 0.024 0.870∗ 0.074 0.387

Note: Robustness check of the statistical evaluation for 1-step forecast based on the realized kernel estima-
tor. The MAFE results marked with * and ** refer to corresponding MCS p-values of > 10% and > 25%,
respectively.

Table 11: Robustness check for the economic evaluation for 1-step forecasts.

Corn Cotton Indica Rice Palm Oil Soybean

r
EV

r
EV

r
EV

r
EV

r
EV

γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10

DIHM-HAR 18.688 0.582 0.063 13.872 0.582 0.063 2.868 0.582 0.063 6.249 5.383 0.582 0.063 18.688 0.582
IHM-HAR 16.818 −0.194 −0.021 12.656 −0.194 −0.021 2.919 −0.194 −0.021 5.995 4.908 −0.194 −0.021 16.818 −0.194
IHMC-HAR 25.589 4.121 0.444 20.301 4.121 0.444 2.903 4.121 0.444 6.648 6.098 4.121 0.444 25.589 4.121
HAR 15.004 0.000 0.000 10.508 0.000 0.000 2.942 0.000 0.000 5.681 4.602 0.000 0.000 15.004 0.000

DIHM-HARCJ 17.245 0.618 0.067 13.824 0.618 0.067 2.979 0.618 0.067 6.910 5.125 0.618 0.067 17.245 0.618
IHM-HARCJ 16.497 0.473 0.051 12.437 0.473 0.051 2.818 0.473 0.051 6.788 4.947 0.473 0.051 16.497 0.473
IHMC-HARCJ 23.779 2.757 0.297 19.144 2.757 0.297 2.582 2.757 0.297 7.557 5.713 2.757 0.297 23.779 2.757
HARCJ 14.540 0.000 0.000 10.918 0.000 0.000 2.830 0.000 0.000 6.180 −6.712 0.000 0.000 14.540 0.000

DIHM-HARTCJ 18.423 0.373 0.040 14.805 0.373 0.040 3.232 0.373 0.040 6.719 5.228 0.373 0.040 18.423 0.373
IHM-HARTCJ 17.075 −0.233 −0.025 12.408 −0.233 −0.025 2.878 −0.233 −0.025 6.702 5.001 −0.233 −0.025 17.075 −0.233
IHMC-HARTCJ 25.764 3.184 0.343 19.826 3.184 0.343 3.552 3.184 0.343 7.600 5.925 3.184 0.343 25.764 3.184
HARTCJ 15.140 0.000 0.000 11.312 0.000 0.000 2.947 0.000 0.000 6.067 4.687 0.000 0.000 15.140 0.000

DIHM-HAR∆J 17.312 1.763 0.190 13.824 2.975 0.322 2.885 1.763 0.190 6.188 5.175 1.763 0.190 17.312 1.763
IHM-HAR∆J 16.136 1.396 0.150 12.417 1.396 0.150 2.939 1.396 0.150 6.289 4.915 1.396 0.150 16.136 1.396
IHMC-HAR∆J 23.101 4.069 0.438 29.219 4.069 0.438 2.834 4.069 0.438 6.698 5.728 4.069 0.438 23.101 4.069
HAR∆J 13.029 0.000 0.000 10.742 0.000 0.000 2.703 0.000 0.000 6.562 4.381 0.000 0.000 13.029 0.000

DIHM-HARspec 17.988 0.988 0.106 15.125 0.988 0.106 2.928 0.988 0.106 6.154 5.176 0.988 0.106 17.988 0.988
IHM-HARspec 17.150 0.728 0.078 12.649 0.728 0.078 2.915 0.728 0.078 6.214 5.013 0.728 0.078 17.150 0.728
IHMC-HARspec 26.172 5.224 0.563 20.401 5.224 0.563 2.830 5.224 0.563 6.857 5.880 5.224 0.563 26.172 5.224
HARspec 14.104 0.000 0.000 11.998 0.000 0.000 2.917 0.000 0.000 5.654 4.708 0.000 0.000 14.104 0.000

DIHM-HARc 20.951 0.410 0.044 17.853 0.410 0.044 2.953 0.410 0.044 6.230 5.279 0.410 0.044 20.951 0.410
IHM-HARc 17.489 −0.407 −0.044 14.720 −0.407 −0.044 3.078 −0.407 −0.044 6.319 4.803 −0.407 −0.044 17.489 −0.407
IHMC-HARc 23.599 2.049 0.221 16.858 2.049 0.221 2.979 2.049 0.221 6.552 5.840 2.049 0.221 23.599 2.049
HARc 15.903 0.000 0.000 12.781 0.000 0.000 2.946 0.000 0.000 5.654 4.534 0.000 0.000 15.903 0.000

Note: Robustness check of the economic evaluation for 1-step forecast based on the realized kernel estimators, where r refers to the
portfolio return given a mild risk aversion rate (γ = 1) and EV denotes the economic values of different HAR models with infinite
Hidden Markov switching structures against the corresponding benchmark HAR model.
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Table 12: Robustness check for the 1-step forecasting precision results based on the MedRV estimator.

Corn Cotton Indica Rice Palm Oil Soybean

MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE MZ-R2 MAFE

DIHM-HAR 0.377 0.142∗∗ 0.159 0.290∗∗ 0.000 0.675∗∗ 0.189 0.371∗ 0.218 0.240∗∗

IHM-HAR 0.360 0.144∗ 0.186 0.290∗∗ 0.001 0.654∗∗ 0.191 0.367∗ 0.220 0.235∗∗

IHMC-HAR 0.387 0.145∗ 0.175 0.294∗∗ 0.000 0.708∗∗ 0.244 0.364∗ 0.219 0.251∗∗

HAR 0.373 0.144∗ 0.167 0.311∗ 0.000 0.749∗∗ 0.233 0.370∗ 0.218 0.238∗∗

DIHM-HARCJ 0.417 0.139∗∗ 0.209 0.297∗ 0.000 0.666∗∗ 0.266 0.364∗ 0.196 0.243∗

IHM-HARCJ 0.387 0.143∗ 0.259 0.290∗∗ 0.003 0.642∗∗ 0.179 0.374∗ 0.227 0.234∗∗

IHMC-HARCJ 0.410 0.146∗ 0.215 0.306 0.000 0.650∗∗ 0.253 0.372∗ 0.217 0.254∗∗

HARCJ 0.396 0.142∗∗ 0.182 0.332 0.000 0.823∗ 0.219 0.380∗ 0.216 0.240∗∗

DIHM-HARTCJ 0.395 0.139∗∗ 0.208 0.286∗∗ 0.001 0.643∗∗ 0.248 0.368∗ 0.238 0.237∗∗

IHM-HARTCJ 0.097 0.239 0.227 0.293∗∗ 0.002 0.65∗∗ 0.218 0.366∗ 0.229 0.234∗∗

IHMC-HARTCJ 0.383 0.142∗∗ 0.238 0.292∗∗ 0.000 0.645∗∗ 0.237 0.377∗ 0.236 0.253
HARTCJ 0.404 0.141∗∗ 0.198 0.323 0.000 0.781∗∗ 0.212 0.384∗ 0.242 0.240∗∗

DIHM-HAR∆J 0.419 0.137∗∗ 0.162 0.291∗∗ 0.001 0.635∗∗ 0.233 0.372∗ 0.216 0.234∗∗

IHM-HAR∆J 0.385 0.141∗∗ 0.197 0.292∗∗ 0.001 0.643∗∗ 0.210 0.368∗ 0.222 0.235∗∗

IHMC-HAR∆J 0.417 0.144∗∗ 0.172 0.298∗ 0.000 0.666∗∗ 0.254 0.366∗ 0.235 0.241∗∗

HAR∆J 0.403 0.140∗∗ 0.166 0.313 0.000 0.674∗∗ 0.265 0.369∗ 0.238 0.237∗∗

DIHM-HARspec 0.428 0.139∗∗ 0.157 0.289∗∗ 0.000 0.679∗∗ 0.221 0.366∗ 0.238 0.234∗∗

IHM-HARspec 0.392 0.141∗∗ 0.155 0.286∗∗ 0.000 0.649∗∗ 0.186 0.366∗ 0.203 0.235∗∗

IHMC-HARspec 0.399 0.150 0.168 0.296∗∗ 0.000 0.694∗∗ 0.231 0.366∗ 0.234 0.242∗∗

HARspec 0.401 0.140∗∗ 0.168 0.290∗∗ 0.000 0.758∗∗ 0.234 0.370∗ 0.225 0.237∗∗

DIHM-HARc 0.363 0.139∗∗ 0.161 0.288∗∗ 0.001 0.654∗∗ 0.189 0.367∗ 0.234 0.235∗∗

IHM-HARc 0.372 0.142∗∗ 0.157 0.289∗∗ 0.003 0.628∗∗ 0.177 0.366∗ 0.221 0.235∗∗

IHMC-HARc 0.393 0.145∗ 0.170 0.304∗ 0.000 0.715∗∗ 0.245 0.362∗∗ 0.236 0.240∗∗

HARc 0.373 0.143∗∗ 0.167 0.306∗ 0.000 0.758∗∗ 0.236 0.370∗ 0.234 0.238∗∗

Note: Robustness check of the statistical evaluation for 1-step forecast based on the realized kernel estima-
tor. The MAFE results marked with * and ** refer to corresponding MCS p-values of > 10% and > 25%,
respectively.

Table 13: Robustness check for the economic evaluation for 1-step forecasts based on the MedRV esti-
mator.

Corn Cotton Indica Rice Palm Oil Soybean

r
EV

r
EV

r
EV

r
EV

r
EV

γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10 γ = 1 γ = 10

DIHM-HAR 24.040 1.586 0.172 16.287 2.327 0.252 4.477 0.342 0.037 6.226 0.339 0.037 7.875 0.376 0.041
IHM-HAR 22.775 0.280 0.030 14.503 0.495 0.053 3.978 −0.469 −0.051 6.079 0.191 0.021 7.223 −0.286 −0.031
IHMC-HAR 28.032 5.666 0.615 24.654 11.108 1.203 4.606 3.501 0.377 6.294 0.409 0.044 8.849 1.370 0.148
HAR 22.486 0.000 0.000 14.012 0.000 0.000 4.091 0.000 0.000 5.888 0.000 0.000 7.505 0.000 0.000

DIHM-HARCJ 24.036 1.778 0.193 16.150 1.561 0.169 6.693 2.473 0.267 6.053 0.090 0.010 8.013 0.444 0.048
IHM-HARCJ 23.045 0.762 0.083 14.212 −0.442 −0.048 5.343 0.307 0.033 6.067 0.106 0.012 7.217 −0.364 −0.039
IHMC-HARCJ 27.649 5.436 0.590 20.951 6.582 0.712 4.986 3.632 0.391 6.414 0.456 0.049 9.041 1.495 0.161
HARCJ 22.318 0.000 0.000 14.608 0.000 0.000 4.343 0.000 0.000 5.962 0.000 0.000 7.576 0.000 0.000

DIHM-HARTCJ 24.404 1.351 0.147 16.953 1.822 0.197 6.009 1.000 0.108 6.097 0.107 0.012 7.597 0.444 0.048
IHM-HARTCJ 69.746 47.962 5.269 15.298 0.125 0.013 4.107 2.546 −1.545 6.125 0.137 0.015 6.986 −0.178 −0.019
IHMC-HARTCJ 28.119 5.141 0.558 21.626 6.747 0.730 4.972 2.364 0.255 6.417 0.431 0.047 8.412 1.275 0.138
HARTCJ 23.150 0.000 0.000 15.147 0.000 0.000 4.182 0.000 0.000 5.988 0.000 0.000 7.161 0.000 0.000

DIHM-HAR∆J 23.297 2.158 0.234 15.288 0.702 0.076 4.621 0.506 0.054 −0.973 −6.713 −0.723 7.365 0.477 0.051
IHM-HAR∆J 21.864 0.718 0.078 14.173 −0.437 −0.047 4.569 −0.882 −0.095 5.487 −0.002 0.000 6.995 0.099 0.011
IHMC-HAR∆J 26.453 5.392 0.585 13.996 −1.011 −0.109 3.755 1.632 0.176 6.046 0.565 0.061 8.194 1.321 0.143
HAR∆J 21.163 0.000 0.000 14.571 0.000 0.000 5.033 0.000 0.000 5.486 0.000 0.000 6.896 0.000 0.000

DIHM-HARspec 24.723 1.884 0.204 17.139 1.845 0.199 4.998 1.252 0.135 5.948 0.088 0.009 7.185 0.206 0.022
IHM-HARspec 23.410 0.545 0.059 14.687 −0.673 −0.073 0.559 −3.804 −0.410 6.075 0.217 0.023 7.054 0.074 0.008
IHMC-HARspec 29.830 7.069 0.768 20.999 5.870 0.635 4.694 4.780 0.515 6.305 0.449 0.048 8.103 1.141 0.123
HARspec 22.868 0.000 0.000 15.338 0.000 0.000 4.223 0.000 0.000 5.858 0.000 0.000 6.982 0.000 0.000

DIHM-HARc 24.284 1.338 0.145 19.198 4.419 0.478 13.815 8.931 0.964 5.957 0.113 0.012 7.054 0.218 0.023
IHM-HARc 22.910 −0.099 −0.011 18.203 3.376 0.365 5.090 0.690 0.074 6.003 0.160 0.017 6.917 0.079 0.009
IHMC-HARc 28.160 5.301 0.575 16.268 1.338 0.145 4.887 2.956 0.318 6.239 0.398 0.043 7.971 1.152 0.124
HARc 22.994 0.000 0.000 14.957 0.000 0.000 4.097 0.000 0.000 5.843 0.000 0.000 6.840 0.000 0.000

Note: Robustness check of the economic evaluation for 1-step forecast based on the realized kernel estimators, where r refers to the
portfolio return given a mild risk aversion rate (γ = 1) and EV denotes the economic values of different HAR models with infinite
Hidden Markov switching structures against the corresponding benchmark HAR model.
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8. Figures

Figure 1: Daily returns of the agricultural commodity futures from January 1, 2011 to December 31,
2015.
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Figure 2: Daily realized volatilities of the agricultural commodity futures from January 1, 2011 to De-
cember 31, 2015.

Figure 3: Speculation variable of the agricultural commodity futures from January 1, 2011 to December
31, 2015.
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(a) Corn

(b) Cotton

(c) Indica Rice
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(d) Palm

(e) Soybeans

Figure 4: The posterior mean and distribution for the DIHM-HAR model.
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(a) Corn

(b) Cotton

(c) Indica Rice
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(d) Palm

(e) Soybean

Figure 5: The posterior mean and distribution for the IHM-HAR model.
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(a) Corn (b) Cotton

(c) Indica Rice (d) Palm Oil

(e) Soybean

Figure 6: Heat maps for coefficients β (left plot of each subplot (a) - (e)) and variances σ2 (right plot of
each subplot (a) - (e)) in the DIHM-HAR model for (a) Corn, (b) Cotton, (c) Indica Rice, (d) Palm Oil,
and (e) Soybean.
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(a) Corn (b) Cotton

(c) Indica Rice (d) Palm Oil

(e) Soybeans

Figure 7: Heat map in the IHM-HAR model for different agricultural commodity futures: (a) Corn, (b)
Cotton, (c) Indica Rice, (d) Palm Oil, and (e) Soybeans.
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