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Night Trading with Futures in China: The Case of Aluminum

and Copper

Tony Kleina,∗, Neda Todorovab

aQueen’s Management School, Queen’s University Belfast, UK
bGriffith Business School, Griffith University, Brisbane, Australia

Abstract

We use high-frequency data to examine the effects of introducing a night trading session at

the Shanghai Futures Exchange (SHFE) for Copper and Aluminum in 2013. For Copper,

the realized volatility of the regular session is endogenously determined and the night

session is driven by the immediately preceding volatility of the London Metal Exchange

(LME). In contrast, the Chinese Aluminum futures market is more resistant to exogenous

factors and shows a pronounced long memory structure. We find no indications that the

SHFE draws volume from LME by means of simultaneous trading. The existing break

between daytime and night sessions has significant informational content and should be

separated when jump components are extracted from realized volatility.

Keywords: SHFE; Futures Markets; Aluminum; Copper; High-frequency data; Night

trading.

JEL classification: C2; C22; G15; Q02;

1. Introduction and Literature Review

This paper is the first to address thoroughly the role of the newly introduced night

trading sessions (NTS) for Chinese commodity futures markets. These markets are unique

in that the large majority of the participants are individual or retail investors rather than

institutions, and direct participation by foreign individual investors in the Chinese futures

market is restricted.1 To boost its role in global commodity trading, China is undertaking

a number of measures, such as allowing international participants to trade in a range

of commodity futures (currently crude oil, iron ore and PTA) and waiving income tax

for foreign investors (Bloomberg, 2018). In addition, to offer market participants more

flexible choices of hedging and the opportunity to react to news from international markets

immediately upon their arrival, Chinese futures exchanges introduced NTS. Starting with

Gold and Silver in July 2013, night trading was launched for most commodity futures

∗Corresponding author, mail: t.klein@qub.ac.uk.
1Refer to Zhao (2015) for the history of Chinese futures markets and to Fan & Zhang (2018) for a

detailed overview of institutional settings, regulations and trading rules and the investor structure of
China’s commodity futures markets..
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contracts in China enabling trades for an additional 2.5 to 5.5 hours (varying across

commodities) at night.

This work focuses on China’s Copper and Aluminum futures markets. China is a

significant player in the global markets for non-ferrous metals with derivatives trading

on the SHFE and China’s real activity being significantly related to base metals’ prices

(Wang & Wang, 2017). Global primary Aluminum production increased by 5.8 percent

in 2017, with a 10 percent increase in China and stable production in North America

and Europe (Aluminum, 2018). The Aluminum market is exposed to continued political

uncertainty, such as those related to US tariffs on Aluminum imports, with the US market

becoming gradually closed to Chinese exporters, and stringent environmental regulations

leading to closures of Aluminum operators. On the other hand, global demand for primary

and recycled Aluminum is driven by the trend toward lightweight construction in the

automotive industry. With Copper used widely in power and construction, the Copper

market is experiencing volatility because of the escalating trade tension with the US,

which adds to the fears of a slowdown in the world’s largest importer of Copper. After

reaching a four-year high of almost USD 3,500 per ton in early June 2018, Copper fell

sharply—by about USD 1,000 per ton—in the next month (FT, 2018). These recent

developments emphasize the need to understand the volatility dynamics of these assets

and the relationship of the Chinese futures to international commodity markets.

When the two-hour lunch break that occurs during regular daily trading is taken

into account, a regular trading day of the SHFE during business hours comprises 3.5

hours. Adding four hours of trading at night more than doubles the active trading hours,

which is likely to induce significant changes in the futures markets. Based on an extensive

dataset of intraday price records, we investigate the course of realized volatility and trading

volumes over the recent years to shed light on the relationship between China’s Copper

and Aluminum markets and the LME, which is the established venue for industrial metals

trading.2

The literature has indicated continuing improvement in the efficiency of China’s rel-

atively young metals market (e.g., Xin et al., 2006) and its growing global importance.

A number of studies have specifically addressed the relationship between Chinese and

international non-ferrous metal markets. Li & Zhang (2008) concluded that, in the pe-

riod between November 1993 and June 2006, the SHFE’s and the LME’s Copper futures

prices had a long-run relationship, with the influence of the LME on the SHFE being

more pronounced than the other way round. Fung et al. (2010) examined the information

flow and market efficiency between the US and Chinese Aluminum and Copper futures

2The COMEX issues futures contracts on Copper and Aluminum, but while the COMEX’s Copper
futures have notable trading volumes, the trading in Aluminum futures has been thin, so there are too
few high-frequency price records to warrant a reliable estimate of daily realized volatility. For this reason,
the present study focuses on the LME as an international metal-prices benchmark.
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markets over the period from 1999 to 2009 and found that the two futures prices were

co-integrated. Using data from 2005 to 2011, Li & Zhang (2013) concluded that the price

impact of the SHFE’s Copper futures on the LME’s Copper futures has been increasing

since 2007, while the reverse effect has been decreasing. Rutledge et al. (2013) inves-

tigated the price links and information transitions between the Copper markets of the

COMEX, the LME and the SHFE between June 2006 and May 2011 and saw signifi-

cant bidirectional Granger causality across the three markets. Yin & Han (2013) found

bidirectional but asymmetric lead/lag relationships and volatility spillovers between the

LME and the SHFE, as well as between the NYMEX and the SHFE, with the stronger

effect from the two developed markets to the two immature markets in the time series

from January 2004 to April 2012. Hou et al. (2015) used data from November 2000 to

January 2012 to show the increasingly prominent role of the SHFE in the price-formation

process and the cross-volatility spillover effects in the Copper market since 2008. Looking

at the period between August 2007 and April 2016, Kang et al. (2018) documented that

London’s nonferrous futures market generally leads Shanghai’s market, especially in the

medium-run.

Most of the aforementioned studies were based on closing prices that were sampled

at a daily frequency or less and did not account for the differing times when the indi-

vidual markets are open. Moreover, as their data samples span periods before the night

trading was launched in China, the links between the Chinese and international mar-

kets have not been assessed against the backdrop of the newly extended trading hours.

Breaking close-to-close returns of futures on Copper, soybeans and rubber into overnight

and open-to-close returns in the context of Value-at-Risk (VaR) and expected shortfall

estimations, Liu & Yunbi (2014) showed that the information that accumulates during

non-trading hours contributes substantially to overall risks, with non-trading VaR weights

exceeding 40 percent in these markets. In particular, the information that accumulates

during non-trading hours appears to be more important than the information that accu-

mulates during trading hours. Using time-stamped bid and ask prices and trade prices

for the three-month Copper futures contracts traded on the COMEX, the LME and the

SHFE from July 2005 to December 2005, Lien & Yang (2009) documented a significant

unidirectional volatility spillover from the LME to the SHFE. Using daily data of six-

teen commodity futures up to October 2011, Fung et al. (2013) suggested that China’s

commodity futures markets are likely to be driven by local market dynamics that occur

during the daytime, as foreign markets’ trading sessions’ returns have a significant impact

on China’s overnight (close-to-open) returns, but China’s commodity futures contracts’

daytime (open-to-close) returns are not led by foreign daytime returns. These studies

make clear that, before the introduction of night trading, overnight and daily dynamics

differed to a considerable extent, and overnight information from international markets

that arrives while the Chinese futures exchanges are closed causes a large part of the

3



overall metal market’s volatility.

To the best of our knowledge, only a few studies have addressed the effect of Chinese

futures markets’ overnight trading.3 Fung et al. (2016) used daily prices and trading ac-

tivity data from Chinese commodity futures to document that the returns have become

more symmetric and that interactions between trading activity and volatility have con-

formed better to the observed patterns in developed markets. Using daily closing and

opening prices, Du (2018) ran VAR models to predict commodity returns and volatility

and established the presence of a leading effect of overnight returns to daytime trading

returns. Jin et al. (2018) and Xu & Zhang (2019) used intraday data to investigate the

price discovery and market quality of Chinese gold markets and provided evidence of the

importance of NTS in this regard.

We contribute to the research on global futures markets in three primary ways. First,

we use an extensive set of high-frequency data to obtain the precise realized volatility of

futures and match volatility and trading volume to individual trading sessions in the SHFE

and the LME. Industrial metals are known to exhibit low seasonal variation in supply and

demand, so there is no need to account for seasonal effects in the raw data. As explained

below, we also use three-month futures contracts from both exchanges, so the results are

not affected by issues that may arise for contracts that are nearing maturity. Second,

we analyze the regular session and the night trading session at the SHFE and find that

the dynamics of the realized volatility differ in both sessions. With the additional NTS,

the break between the regular SHFE session and the NTS—labeled the evening break—is

shown to have significant informational content, so we demonstrate that failing to treat

the evening break separately for jump estimation purposes may introduce a jump bias.

Third, we find that the realized volatility of LME futures is a major driver of the realized

volatility of Copper in the NTS. In contrast, Aluminum trading volume has surged in

recent years, and realized volatility seems to be driven mainly by local factors, with the

LME volatility playing only a negligible role.

The remainder of this paper is organized as follows. The methodology and intraday

separation of returns are outlined in Section 2. Data and preliminary analyses are pre-

sented in Section 3. Section 4 discusses the estimation results and Section 5 summarizes

the main findings and concludes this article.

3A line of literature has used intraday data for volatility forecasting of the SHFE’s industrial metal
futures with heterogeneous autoregressive (HAR) models (e.g. Zhu et al., 2017, Zhang et al., 2018, Gong
& Lin, 2018). These studies did not address the introduction of NTS.
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2. Methodology

2.1. Intraday returns and separation of the night trading session

The empirical analysis uses intraday data and starts with a comprehensive overview

of return and trading dynamics before and after the launch of NTS. The trading hours at

the LME and the SHFE, including the NTS, are visualized in Figure 1.

Intraday returns rj,t on day t are defined as the log difference of two consecutive prices,

rt,j = logPt,j − logPt,j−1, for j = 2, . . . ,M, (1)

where M denotes the number of intraday prices and t = 1, . . . , N . Here, we use prices

sampled at five-minute frequencies, which is discussed further in Sec. 3. Analogously, an

open-to-close return over a particular trading session is defined as the log difference of

the closing and opening prices of this trading session.

This return describes only the price changes during active trading hours.4 The closing

price of the last trading session of trading day t− 1, and the opening price of the current

day t yield the overnight return rON
t , defined as

rON
t = log Pt,open − log Pt−1,close. (2)

Before the introduction of night trading, the close-to-close return rcc
t is calculated for

t = 2, . . . , N as

rcc
t = log Pt,close − log Pt−1,close. (3)

Using the SHFE’s additional NTS beginning on December 20, 2013, which runs from

13:00 GMT to 17:00 GMT (21:00 to 1:00 CST), we undertake a further decomposition of

the returns. Ignoring the gap between the end of the regular session at 7:00 GMT (15:00

CST) and the beginning of the NTS at 13:00 GMT (21:00 CST) would lead to including an

implicit jump in the intraday returns, which may yield positively biased jump components

and lead to spurious inferences in statistical analyses. Therefore, similar to an overnight

return, we define an SHFE-specific evening break return, rEB
t , which is calculated as

rEB
t = logP nts

t,open − log P reg
t,close, (4)

where P nts
t,open is the opening price of the NTS starting at 13:00 GMT (21:00 CST), and

P reg
t,close is the closing price of the regular session, ending at 7:00 GMT (15:00 GMT).

Consequently, we obtain two returns covering the open market sessions, r
(1)
t and r

(2)
t , for

4The SHFE has a lunch break between 11:30 and 13:30 CST that is strictly observed, so the daily
trading session comprises four hours of active trading: from 09:00 to 11:30 and from 13:30 to 15:00 China
Standard Time (CST). Since the lunch break is not subject of this study, we define the regular daily
trading session from 09:00 to 15:00 CST, disregarding this suspension of trading.
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the regular day-time session and the NTS, respectively. In the notation of Eq. (1), we

then obtain

r
(1)
t =

K∑
j=1

rt,j = log P reg
t,close − log P reg

t,open, and r
(2)
t =

M∑
j=K+1

rt,j = log P nts
t,close − log P nts

t,open,

(5)

where K is the last index of intraday returns within the regular trading hours. It holds

that K ≤M , as the NTS is occasionally not carried out, such as when the following day is

a bank holiday. Therefore, the daily close-to-close return is comprised of four components,

rcct = rON
t + r

(1)
t + rEB

t + r
(2)
t , (6)

which are analyzed separately below.

Analogously, the daily trading volume vt is also decomposed into the trading volume

during the regular session, v
(1)
t , and the trading volume during the NTS, v

(2)
t , which yields

the total daily volume vt = v
(1)
t + v

(2)
t .

Day t− 1 Day t Day t+ 1

GMT 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00 12:00

LME

rON
t r

(1)
t rEB

t r
(2)
t

rON
t+1

rcc
t

SHFE

Trading hours

LME: 01:00 - 19:00 GMT, Ring Trading: 11:40 - 17:00 GMT

SHFE: 09:30 - 11:30 & 13:30 - 15:00 CST (01:30 - 3:30 & 5:30 - 7:00 GMT)

SHFE NTS: 21:00 - 01:00 CST (13:00 GMT - 17:00 GMT)

Figure 1: Trading hours of LME and SHFE on weekdays, including the night trading session (since
December 20, 2013) in GMT.

2.2. Realized volatility

The daily realized volatility on day t, denoted RVt, is widely estimated in literature

as the sum of squared intraday returns.5 Like Eq. (5), we calculate the realized volatility

for the regular and NTS separately:

RV
(1)
t =

K∑
j=1

r2
t,j and RV

(2)
t =

M∑
j=K+1

r2
t,j.

5Similar to the majority of related studies, the terms ’variance’ and ’volatility’ are used interchangeably
throughout the text.
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For non-trading periods, the corresponding squared returns,
(
rON
t

)2
and

(
rEB
t

)2
are used

as proxies of the volatility.6 As in Todorova et al. (2014), Todorova (2015), Zhu et al.

(2017), we decompose the daily realized volatility into intraday volatility during actively

traded hours and overnight or trading break volatilities which are proxied by squared

returns. Summing the individual components over a 24h hour period yields the 24h

realized volatility,

RV
(24)
t =

(
rON
t

)2
+RV

(1)
t +

(
rEB
t

)2
+RV

(2)
t . (7)

2.3. Heterogeneous Autoregressive Models

To model the realized volatility of the regular session, RV
(1)
t , the NTS, RV

(2)
t , and the

24-hour volatility, RV 24
t , we begin with a simplistic heterogeneous autoregressive (HAR)

model version for each component given in Eq. (8.1), (9.1), and (10.1) below. This

HAR specification follows the standard definition of Corsi (2009) and puts the realized

volatility over a future period t + 1 in relation to the asset’s average realized volatility

on the last day, the last week, and the last month, respectively, with an unpredictable

error term εt. Weekly and monthly components are daily averages of realized volatility

over the corresponding periods of five or twenty-two trading days. The HAR model

effectively depicts short and long memory in realized volatilities and is popular in the

recent literature.7 The HAR model has been shown to capture volatility transmission

across various markets in the context of LME industrial metals (Todorova et al., 2014).

For the regular session, the simple HAR is estimated for the periods before and after

the introduction of the NTS,8 so, we obtain two sets of estimates for Eq. (8.1),

RV
(1)
t+1 = β0 + β1RV

(1)
t + β2RV

(1)
t−5,t + β3RV

(1)
t−22,t + εt. (8.1)

To determine what influence the previous day has on the regular session’s volatility, we

include the evening break as well as the realized volatility of the immediately preceding

NTS,

RV
(1)
t+1 = β0 + β1RV

(1)
t + β2RV

(1)
t−5,t + β3RV

(1)
t−22,t + β4RV

(2)
t + β5

(
rEB
t

)2
+ εt. (8.2)

Next, we replace the evening break and the NTS’s volatility with the previous days’

6The lunch break is not separately accounted for, and the price change during this halt in trading is
treated as a regular intraday return.

7The standard HAR is augmented and modified to account for different stylized facts, such as jumps
(e.g. Barndorff-Nielsen, 2004, Andersen et al., 2007), separation in continuous and non-continuous RV
components (e.g. Patton & Sheppard, 2015), realized semi-variances (e.g. Patton & Sheppard, 2015),
among many others, and has also been applied successfully to the Chinese industrial metal futures markets
(e.g. Zhang et al., 2018, Gong & Lin, 2018). A broad overview of HAR specifications can be found in,
for example Sévi (2014).

8For reasons of parsimony, we do not include
(
rON
t

)2
in these HAR variants as estimates are insignif-

icant before and after the introduction of NTS. These results are available on request.
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realized volatility on the LME, RV LME
t to determine the influence of the LME on the

regular SHFE session,

RV
(1)
t+1 = β0 + β1RV

(1)
t + β2RV

(1)
t−5,t + β3RV

(1)
t−22,t + β4RV

LME
t + εt. (8.3)

For the NTS, we again begin with the simple HAR to identify internal dependencies and

long memory,

RV
(2)
t+1 = β0 + β1RV

(2)
t + β2RV

(2)
t−5,t + β3RV

(2)
t−22,t + εt. (9.1)

This simple HAR is then augmented with the regular session’s realized volatility and that

of the same day’s evening break,9

RV
(2)
t+1 = β0 + β1RV

(2)
t + β2RV

(2)
t−5,t + β3RV

(2)
t−22,t + β4RV

(1)
t+1 + β5

(
rEB
t+1

)2
+ εt. (9.2)

As we did with the regular session, we replace the evening break with the realized volatility

of the LME during that break only10 to directly measure the impact of the LME on the

evening break’s volatility at SHFE:

RV
(2)
t+1 = β0 + β1RV

(2)
t + β2RV

(2)
t−5,t + β3RV

(2)
t−22,t + β4RV

(1)
t+1 + β5RV

LME-EB
t+1 + εt. (9.3)

For the daily realized volatility RV (24), we carry out a standard HAR for the period before

and after the introduction of the NTS,

RV
(24)
t+1 = β0 + β1RV

(24)
t + β2RV

(24)
t−5,t + β3RV

(24)
t−22,t + εt. (10.1)

This HAR is augmented with the LME’s daily realized volatility to account for the LME’s

possible influence on the daily realized volatility, including all breaks,

RV
(24)
t+1 = β0 + β1RV

(24)
t + β2RV

(24)
t−5,t + β3RV

(24)
t−22,t + β4RV

24,LME
t + εt. (10.2)

All models are estimated with White’s adjusted heteroscedasticity-consistent least-squares

regression (White, 1980).

2.4. Detection and estimation of intraday jumps

While keeping the realized volatility models as simple as possible, we address jumps

separately. We show that ignoring the evening break introduces a positive jump bias. We

calculate jumps with the bi-power variation (BPV) as introduced by Barndorff-Nielsen

9While this approach makes forecasting for the next day unfeasible, we seek to explain the volatility
behaviour of the NTS.

10To that end, the LME’s RV is calculated for the time slot from 07:00 to 13:00 GMT.
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(2004),

BPVt = µ−2
1

(
M

M − 1

)M−1∑
j=1

|rt,j||rt,j+1|.

We follow the jump detection approach of Huang & Tauchen (2005) and calculate the

jump component Jt,α as

Jt,α = I{Zt>Φα} (RVt −BPVt) (11)

with

Zt =
√
M

1−BPVt ·RV −1
t√(

µ−4
1 + 2µ−2

1 − 5
)

max
(
1, TQt ·BPV −2

t

)
and µ1 = E (Z) =

√
2/π. The tri-power quarticity TQt is defined as

TQt = Mµ−3
4/3

M−2∑
j=1

|rt,j|4/3|rt,j+1|4/3|rt,j+2|4/3,

where µp = 2p/2 · Γ (1/2 · (p+ 1)) · Γ (1/2). If α = 0.5, Eq. (11) is equivalent to the jump

detection in Barndorff-Nielsen (2004).11

As the previously defined jump measure is not robust to very small or very high

jumps or jump-like intraday returns (e.g. a non-separated evening break), Andersen et al.

(2012) proposed median RV measures. We use the following definition as an additional

robustness check for jumps estimation,

MedRVt =
π

6− 4
√

3 + π

M

M − 2

M−1∑
j=2

med (|rt,j−1|, |rt,j|, |rt,j+1|)2 ,

then

JMedRV
t,α = I{ZMedRVt

t >Φα} (RVt −MedRVt) ,

with

ZMedRV
t =

√
M

1−MedRVt ·RV −1
t√

0.96max
{

1,MedRQt ·MedRV −2
t

} ,
MedRQt =

3π

9π + 72− 52
√

3

M

M − 2

M−1∑
j=2

med (|rt,j−1|, |rt,j|, |rt,j+1|)4 .

We report Jt,α and JMedRV
t,α for α = 0.99 with and without separating the evening break

to demonstrate the importance of a separate break that is similar to an overnight period.

11Setting α = 0.5 implies Zt > 0 which is the case when RVt > BPVt.
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3. Data

We obtain five-minute futures price data12 and volumes for the SHFE’s and the LME’s

futures contracts on Copper and Aluminum from the Thomson Reuters Tick History

database at the Securities Industries Research Centre of the Asia Pacific (Sirca). In the

case of the Chinese futures, we roll the futures contracts to the next most liquid month

when the daily trading volume of the current contract is exceeded. As a result, we usually

use intraday data from three-month futures contracts, which are very liquid (e.g. Zhang

2018). As the LME trades three-month futures contracts on Aluminum and Copper,

the exchange’s most frequently traded contracts, every day, this study uses the LME’s

three-month contracts.

Our sample period spans January 4, 2010, to May 21, 2018, yielding N=2,035 observa-

tion days. The sample period is split on December 20, 2013, the day the SHFE introduced

the NTS for futures contracts of Copper and Aluminum, along with other commodities.

Prior to the NTS, we record approximately M = 48 five-minute price observations per

day for the SHFE, and with the NTS, this number increases to M = 95 intraday data

records. The additional NTS is suspended if the following day is a holiday, while the reg-

ular session is traded. The number of observations for Aluminum is only insignificantly

different. A detailed overview of daily and intraday observations is given in Table 1. The

SHFE’s prices for Copper and Aluminum are given in RMB/ton, and the contract size is

set at five tons.13 The LME’s prices are denominated in USD/ton, and the contract size

is set at twenty-five tons.14

Table 1 approximately here.

Figure 2 plots the daily closing prices for Copper and Aluminum futures. As a general

observation, prices declined between 2011 and 2016 and increased again from 2016 to

mid-2017. Aluminum in particular showed severe losses in late 2017 and the beginning of

2018, which can be directly linked to the tense relationship between China and the US

because of the US’s imposed and announced tariffs on imports of steel and base metals

from China (and the rest of the world, for that matter).

Descriptive statistics on the intraday returns defined in Eq. (6) and visualized in Fig-

ure 1 are given in Table 2 for Copper and in Table 3 for Aluminum. As their development

in our sample period is a key element of the analysis of the NTS, a detailed breakdown

follows in the next section.

We process the raw data of SHFE volumes. The SHFE trading volume data on futures

contracts are double-side counted, recording volume for the long and corresponding short

transaction separately and summing both in the five-minute data provided. We account

12We use the open and close prices of five-minute price intervals.
13Additional details on contract specifications can be found in Fan & Zhang (2018).
14To avoid additional volatility emerging from foreign exchange markets, we do not incorporate the

effects of foreign exchange rates into our calculations of returns on the LME.
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for this reporting when we compare the SHFE’s and the LME’s volume data.
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Figure 2: Prices of Copper and Aluminum futures contracts from January 4, 2010 to May 21, 2018

Table 2 and 3 approximately here.

4. Results: What has changed with the introduction of the night trading

session?

This section discusses our analysis of the impact of introducing an additional trading

period at the SHFE. First, we focus on intraday returns and their decomposition to

determine how the SHFE’s futures markets changed with the integration of a trading

session that is synchronized with the LME’s and the COMEX’s main trading hours, in

addition to the regular session. Second, we address the development of trading volumes

to explore the importance of this new trading session in particular and the maturing of

the SHFE in general. Finally, we study the realized volatilities of the separate trading

sessions and their interconnectedness to explain whether Chinese metal futures’ volatility

is driven by endogenous or exogenous factors. We finish with a note on jump estimation.

4.1. Intra-day return decomposition: on overnight and evening breaks

We follow the return decomposition introduced in Eq. (6) and compare descriptive

statistics of the components which are presented in Table 2 for Copper and Table 3 for

Aluminum.15 Box plots for these returns are visualized in Figure 3 and Figure A.7 for

Copper and Aluminum, respectively. Our subsamples are labeled T1 for the period from

January 4, 2010 to December 19, 2013 and T2 for the period after the introduction of the

NTS running from December 20, 2013 to May 21, 2018.

15Since the focus of this study is on Chinese industrial metal futures markets, no corresponding de-
scriptive statistics are reported for the LME returns and realized volatilities for the sake of brevity. These
statistics are available on request.
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We begin with the overnight return rON
t , defined in Eq. (2), which refers to the return

between the closing price of the last traded five-minute block of the previous day and the

opening price of the current day.16 In T1, the overnight return has the highest spread of

outliers, ranging from -6.73 percent to 6.42 percent in the case of Copper. This range

indicates that there are comparatively large overnight jumps and exogenous price shocks

during the time that the SHFE is not open for trading. After the introduction of the NTS,

these previously volatile overnight returns became virtually non-existant in T2. There are

several possible explanations for the vanishing of rON
T2

, the most likely of which is that the

LME is closed during those hours as well (Figure 1). These negligible overnight returns

also indicate that the Chinese markets are not influenced to a significant extent by regular

arrivals of news from other sources.

If there are no longer news effects or jumps during the SHFE’s overnight period,

does news arrive exclusively during traded hours? The evening break period provides

clear evidence that such is still not the case, as we find that returns from the evening

break, rEB
T2

are significantly different from zero. Furthermore, these returns are much more

distinctive than the overnight returns in rEB
T2

are much more distinctive than the overnight

returns in T2, as the mean and median are highly negative and are abnormal compared

to those of T1 or T2 returns of the overnight, regular, or close-to-close periods. Therefore,

there are pronounced news arrivals and jump effects between the regular session and the

night session; the previously significant overnight price movements are simply transferred

to the evening break after the regular session and before the NTS. A possible explanation

for this is the ring trading session at the LME, which starts almost two hours before the

NTS at the SHFE begins.

In this section, we identified several noteworthy effects of the introduction of NTS.

First, classical overnight returns at the SHFE vanish almost completely, and the NTS of

the previous day dictates the opening price of the current day, absent exogenous distur-

bances like news or contagion effects from other markets. Second, extreme movements

during trading sessions are reduced in magnitude and numbers, perhaps because of a

more evenly distributed trading time, where the NTS is synchronized with the LME’s

major trading hours. Third, the evening break has relatively large returns and now acts

as the most important overnight period in terms of linking trading periods at the SHFE

when other markets are actively trading. The magnitude of this evening break’s returns

underscores the necessity to treat it separately, as the literature is doing with overnight

returns for major developed markets because returns during trading and non-trading mar-

ket times have different dynamics (e.g., Andersen et al., 2011; Bertram, 2004; Todorova

& Soucek, 2014).

16With the NTS, the overnight return is that between the NTS’s closing price and the regular session’s
opening price, even though the NTS ends at 1:00 a.m. local time.
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Figure 3: Box plots of different intraday components for Copper following the decomposition in Eq. (6).
Different disjoint periods are denoted by T1 and T2 which refer to the observations before (January 4,
2010 to December 19, 2013) and after (December 19, 2013 to May 21, 2018) the introduction of the NTS,
respectively; yielding n1 = |T1| = 959 and n2 = |T2| = 1076 observations. The full sample of n = 2 035
observations is plotted for rON, r(1), and rCC. For rEB and r(2), which are defined for T2 only, we omit
the index.

4.2. Trading volumes: Has the SHFE become more attractive for traders with the intro-

duction of the night trading session?

Copper volumes of the most liquid (3-month) futures contracts are plotted in Figure 4.

With the introduction of the NTS, the plot distinguishes among total volume (vtotalT2 ), the

volume in the regular session (v(1)), and the volume in the NTS (v(2)). How the originally

reported volume evolves throughout our sample has several notable features.

First, sudden jumps in volume before the introduction of the NTS are present but are

relatively infrequent, and if volume increases suddenly, it remains elevated for some time,

suggesting some persistence. With the NTS, these volume spikes appear more frequently

but are more short-lived, spanning only a few trading days. Second, the volume of the

NTS was low compared to the regular session in the first year after being introduced to

the SHFE. From 2015 on, the regular session’s and the NTS’s volumes are similar such

that, if an abnormally high trading volume is observed in the regular session, the NTS

also shows abnormally high trading volumes.

Unreported in this paper in detail is that the regular session’s and NTS’s volumes

are almost perfectly correlated on daily resolution. This phenomenon reinforces that the

appearance of sudden, short-lived volume spikes in the regular session is mirrored in the

night session, yielding very high total daily volumes. The spikes often occur at intervals of

around twenty-two and forty-four trading days, so they are connected to roll-over effects.

Overall, the trading volume after introducing the NTS appears to be much more volatile

than before, and the NTS may be seen as a contributing factor to these higher deviations

in volume.

We focus on the SHFE’s and the LME’s daily volumes to compare the development
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Figure 4: Volume of Copper SHFE futures decomposed to the respective components and smoothed by
an MA(5). Different disjoint periods denoted by T1 and T2 are identical to the previous figures.

of traded volumes in global Copper futures markets, We adjust the trading volume for

the differing contract sizes (SHFE’s 5 tons vs LME’s 25 tons per contract), as well as the

SHFE’s double-side count in terms of long and short positions in 3-month futures con-

tracts, yielding the comparable volume measures that are plotted in Figure A.8. We find

no indications that the introduction of the NTS attracted investors who would otherwise

trade at the LME, as volumes at the LME did not decrease; on the contrary, there was a

slightly upward trend in trading volume at the LME. If we observe spikes in the LME’s

daily volumes, they are also observed during the SHFE’s NTS. The SHFE’s volumes are

much more volatile, underscoring the speculative nature of Chinese investors. Adding to

the speculative character of the SHFE, we also observe a significant difference in trade

size, defined as volume per trade, between the regular session and the NTS. Albeit of

similar overall trading volume, the volume per trade is between 20 and 25 percent smaller

during the NTS than it is during the regular session.

The volume per trade over each session on daily resolution, which is visualized in

Figure 5, suggests that retail investors are more active in the NTS and that, given the

correlated trading volume, some positions are opened in the regular session and closed later

in the NTS. This finding is in line with the documented speculative activity, most of which

is conducted through high-frequency transactions (e.g., Liao et al., 2016, Wellenreuther

& Voelzke, 2019). Furthermore, the volume per trade decreases sharply throughout the

NTS, which is plotted for thirty-minute blocks of the NTS in Figure 5. Trade sizes are

lowest in the later hours, and trade values average around USD 80,000-120,000, too low

to be considered purely institutional trades that are present in each thirty-minute block,

as indicated by large outliers. Volume per trade is negatively correlated with Copper

prices, which is further indication for the significant involvement of small investors that

is of a primarily speculative nature. Unreported in detail here, the open interest in the
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SHFE-specific counting underlines this conjecture by featuring highly volatile day-to-day

changes.
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Figure 5: Left: Volume per trade, averaged for each session and in number of lots (one lot translates
to 5 tons), for Copper futures contracts during the regular session (blue) and the night trading session
(orange). Right: Quartiles of volume per trade (in lots) for 30-minute blocks of the NTS.

Trading volumes for Aluminum are plotted in Figure 9 with an identical decompo-

sition. In this case, the daily trading volume is differs from that of Copper. Between

2012 and 2013, volumes were low, and contracts were only thinly traded. In Q4 2015,

trading of Aluminum futures picked up with significant jumps in volume. From this point

of time on, trading volumes exhibited a magnitude comparable to that of Copper futures.

In Q4 2015, the market underwent a major change. Since the SHFE reflects domestic

speculative activity far more it does than international industrial hedging, the surge in

trading volumes was largely driven by retail investors in China seeking trading opportuni-

ties because of the government’s interventions in the Chinese stock markets (e.g., Home,

2018).

Overall, we observe a change in the distribution of daily trading volumes. While

total trading volumes remain comparable between pre-NTS periods and NTS periods,

the volume of the regular session is more than halved, so it appears that trading volume

simply migrates from the regular session to the NTS; we find no evidence that trading

volume is pulled from the LME to the SHFE. In addition, it appears that the increased

trading volume reflects mostly domestic speculative activity rather than international

industrial hedging, so the increased variability in the SHFE’s trading activity might be

due to Chinese speculators becoming more active with an additional, synchronized trading

session that allows them to trade immediately on news arrivals during the night. Finally,

Aluminum markets are in transition, and trading volume increased in late 2015, which

was not linked to the introduction of the NTS.
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4.3. Realized volatilities: What drives the separated trading sessions?

Descriptive statistics of the realized volatility measures are given in Table 2 and Ta-

ble 3 for Copper and Aluminum, respectively. For Copper, we find that the 24h realized

volatility, as the sum of all intraday components, decreased after the NTS was introduced.

The regular session’s realized volatility declined by almost 40 percent on average and in

relative terms. Similar to the returns of the NTS and the evening break period, we find

that RV ON
t is small, while RV EB

t is significantly larger. The NTS’s average realized volatil-

ities are similar to those of the regular session, but their maximum, standard deviation,

skewness, and kurtosis indicate a much broader dispersion with more extreme values than

those of the regular session. The NTS is characterized by higher intraday movements

than those of the regular session, suggesting that the daytime trading session’s and the

NTS’s volatility behavior differs and may have differing drivers.

Moving to the HAR model estimations with Eq. (8.1)-(10.2), we detect several changes

with the introduction of the NTS. The estimation results, adjusted R2, and error measures

for Copper are given in Table 4. We focus first on the realized volatility of the regular

trading session, RV
(1)
t . Comparing the estimates of the basic HAR of Eq. (8.1) of the

period before and after the introduction of the NTS reveals that the medium to long

memory, measured by β2 and β3, decreases in significance. In the second period, the

previous day’s realized variance becomes much more important, with a significant load of

β1 = 0.3600, while the parameters of the weekly and monthly realized variance decrease.

Augmenting the base HAR with the evening break and the realized volatility of the NTS of

the previous day shows the long memory decreasing farther, driven largely by the previous

NTS’s realized volatility. We also note that the R2 increases significantly when the NTS is

included. The previous day’s evening break is not significant. If we replace the previously

augmented factors with the LME’s realized daily volatility, we observe similar effects

regarding the long memory and the goodness-of-fit, although they are slightly lower. The

only significant components are the LME factor and the regular session’s weekly realized

volatility.

Second, the basic HAR using only daily, weekly, and monthly historical volatilities in

Eq. (9.1) is a poor fit for the realized volatility of the NTS formalized in RV
(2)
t in terms of

the regression’s explanatory power. Considering that the NTS follows the regular session

on the same day, we control for intraday movements that may affect the realized volatility

on a larger scale. We use the regular session’s volatility of the same day (RV
(1)
t+1), as well

as the same day’s evening break to cover this news arrival in Eq. (9.2) and find that NTS-

specific regressors (daily, weekly, and monthly RV (2)) are no longer significant. However,

the evening break and the regular session of the same day are highly significant, suggesting

that there is less variance memory in the NTS, as neither short-, medium-, nor long-term

memory is present in the NTS. The impact of news during the evening break appears to

be the most pronounced driver of RV (2). To find the source of this impact, we replace the
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evening break with the LME’s realized variance during these break hours only, denoted

RV LME-EB
t+1 , in Eq. (9.3). The goodness of fit increases from 0.1825 in the base model

to 0.4028 in the current modification. The LME’s volatility factor has an exceptionally

high load of β5 = 0.7984 and is significant, as is the regular session’s RV , indicating that

the NTS is driven primarily by this exogenous, short-term variance in the LME, which is

observed during the immediately preceding non-traded hours. As this data is of the same

day, forecasting model Eq. (9.3) is no longer as straightforward as other specifications,

and we find no indication that the realized variance of the NTS of the previous day or

any other horizon plays a role.

Finally, we compare the findings for the sum of all daily realized variance components

in RV
(24)
t in Eq. (10.1) which includes the high overnight return RV ON

t before introduction

of the NTS, as described in Sec. 4.1. The basic HAR achieves a poor fit in the pre-NTS

period, but the fit changes for the second period, perhaps because of the reduced impact

of unexpected jumps in the overnight return that have moved to the evening break, and

the subsequent trading reaction to these jumps in the NTS. We find a strong immediate

reaction to the previous day’s daily realized variance and declining significance for longer

horizons, a finding that remains when we augment the daily volatility with the LME’s

daily realized variance of the previous day in Eq. (10.2), where this factor is not significant.

Table 4 approximately here.

The estimation figures for Aluminum futures, given in Table 5 show that the results

for the regular session are comparable to those for Copper. The realized variance from the

immediately preceding NTS has a significant impact on the regular session. In contrast to

Copper, historical weekly and monthly volatilities are significant for Aluminum. Replacing

the NTS with the LME’s volatility decreases the fit and does not result in the LME having

a significant impact. The realized volatility of the regular session of the same day appears

to be the strongest driver of the immediately following NTS. In contrast, neither the

evening break nor the realized volatility estimate for the correspoding LME contract has

a significant impact. The same holds for the 24-hour realized variance RV
(24)
t (Eq. 10.1).

These results corroborate the findings regarding the increased trading volume in the

SHFE’s Aluminum futures. The Aluminum futures market in China seems to have become

a popular venue for speculative activities, so the market volatility in the NTS or over a

24-hour period is driven mostly by the own volatility dynamics, with less improvement in

explanatory power when the LME’s realized volatility is included in the regressions.

Table 5 approximately here.

Overall, we find that the behavior of realized volatility differs before and after the

introduction of the NTS, so there are grounds for labeling this event a change point in

volatility behavior. For Copper, the regular session becomes more predictable based on

its own short-term history and the realized variance of the previous NTS. The newly

introduced NTS is driven primarily by intraday factors: the regular session’s realized
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variance, the subsequent break in the same day, and most important, the LME’s realized

variance during that break. This evidence indicates that there is a strong spillover effect

from the LME to the SHFE’s NTS Copper markets. The once-important overnight period

shrinks from 18.5 hours to 8.5 hours of no trading activity and is replaced by the evening

break, with the LME as the main contributor of news impact on the SHFE. It appears

that the regular session is an isolated session for Chinese investors and hedgers, with

some degree of medium-range memory, while the NTS is driven primarily by the LME

and short-term movements. For Aluminum, we find no evidence that the LME spills over

to the SHFE, as Aluminum futures seem to be affected mainly by local news and less by

the volatility coming from the LME.

4.4. On the severity of ignoring paused trading and the evening break

Extant research has usually separated the overnight break from intraday price move-

ments for the purposes of volatility estimation and forecasting. Our findings and discus-

sion suggest that the NTS should be separated in cases that are specific to the SHFE,

as its dynamics are more significant than the overnight period. As we identified the dif-

ferences in volatility behavior beginning in late December 2013 with basic HAR models,

we do not use more sophisticated HAR-specifications that include jumps. However, we

briefly demonstrate the impact on jump components of not treating the NTS as a separate

period. In particular, the models affected are HAR-CJ (Andersen et al., 2007), LHAR-CJ

(Corsi & Renò, 2012), or HAR-∆J (Patton & Sheppard, 2015), which split the realized

variance into a continuous component and a jump component or include jump measures

in the HAR framework. In what follows, we calculate this jump component accrding to

the definition of Eq. (11) for the case of no separation (Jno sept,α ) and separately for the

regular session and the NTS (as the daily sum of intraday jumps Jregt,α +JNTSt,α ). We repeat

these calculations for the MedRV measure of Andersen et al. (2012). The results are

visualized in Figure 6 for both types of measures for Copper futures.

Figure 6 makes clear that neglecting to separate the evening break yields more pro-

nounced jump components and indicates jumps during trading hours where there are

none. Of course, some jumps remain during the regular session’s and the NTS’s trading

hours, but these are less regular than without separation. This effect holds for both mea-

sures, but it becomes more obvious when the MedRV measure is used, as it is more robust

to very small and very high jumps. With the separation, far fewer jumps are detected,

so ignoring the evening break as such introduces a positive jump bias. Subsequently,

models that cover jumps separately (e.g. the HAR-CJ) are likely to yield more significant

(in both magnitude and statistical significance) jump components, which might lead to

spurious conclusions based on non-existent jumps.

These findings have several practical implications. Risk management that is based on

forecasts of realized volatilities is affected if the two trading sessions are not separated.
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Figure 6: Top: Jump components without separating the evening break (Jt,α, blue) and as sum of the
jump components of the regular session (Jregt,α ) and the NTS (JNTSt,α ) with separation of the evening break
(red). Bottom: Analogous plot with a jump detection based on the median RV (MedRV ) approach of
Andersen et al. (2012).

Forecasting volatility of intraday prices in the presence of jumps is a particular difficulty

(Corsi & Renò, 2012, Degiannakis & Filis, 2017), especially over longer time horizons.

Having a positive jump bias and subsequently an increased volatility premium might also

affect the pricing of derivatives themselves.

The results for Aluminum futures prices are qualitatively the same in terms of biased

jump detection if the evening break is not separated. For the sake of brevity, detailed

results are not presented here but are available on request.

5. Conclusion

We focus on the introduction of an additional trading session at SHFE and its effects

on trading volume and intraday price movements of Copper and Aluminum futures as well

as its role in global markets. For Copper, volatility behavior changes are prominently in

the end of 2013 and the NTS introduction causes a structural break. Previously of large

magnitude, the overnight return vanishes and is replaced by an evening break, that has

a strong impact on the volatility during the NTS. The synchronous trading with LME

during the NTS reduces overnight jumps and news arrive either during the evening break

or the NTS itself. The evening break is a significant factor for intraday movements and

needs to be separated otherwise a jump bias is introduced. This is of high importance for

research as modeling intraday data of futures markets becomes more and more popular.

Copper volatilities are largely affected by the LME, mainly in the NTS. On the other

hand, the regular session depicts a short and medium-term memory and is driven by en-
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dogenous elements. The LME seems to have only negligible impact on the regular session

while it is an important exogenous driver for the NTS. There is no additional trading

volume detected after the introduction of the NTS; the volume is simply split between

regular session and the NTS. The LME on the other hand shows some increasing volume.

Hence, there is no evidence that SHFE is pulling volume from the LME. Furthermore, the

trading volume at SHFE is more volatile after the introduction of NTS, indicating that

there might be a larger share of speculative investors exploiting the longer trading times.

An indication for this is the fact that volumes of the NTS mirror those of the previous

regular session which suggests that some positions are opened during the regular session

and closed during the NTS. During the NTS, volume per trade is 20-25% smaller than in

the regular session which underlines increased small investor activity in the late session.

In contrast, the Chinese Aluminum futures market seems to be more resistant against

exogenous factors and show a pronounced long memory structure. The LME has no

significant impact on either the NTS or the daily realized variance. Aluminum futures

markets are in a transition with volume picking up significantly since late 2015.

Our findings also indicate that LME is the main driver of the evening break dynamics in

the Chinese markets which could be exploited in a more encompassing HAR specifications.

Future research could address jump models that incorporate the evening break in more

detail.

In this study we only focus on Copper and Aluminum futures prices. However, those

are not the only futures contracts that are traded in a separate night trading session at

SHFE. Gold, Silver, Zinc, and since end of 2014 also Rebar Steel, Rubber, and Hot Rolled

Coils amongst others are traded at night. Hence, all data on these futures are prone to

a intraday gap between trading session. With this paper, we are the first to provide

clear evidence that this gap needs to be handled accordingly, otherwise models based on

realized volatilities such as HAR are compromised. Handling of this gap and the impact

of the LME on the NTS and the evening break pose a challenge for future research.
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Tables

Panel A: Coppper

Full Sample Period 1 (T1) Period 2 (T2)

Dates 01/04/2010 – 05/21/2018 01/04/2010 –12/19/2013 12/20/2013 – 05/21/2018

ntotal 148 554 46 298 102 256
M 73.0 48.3 95.0
N 2 035 959 1 076

Panel B: Aluminum

Full Sample Period 1 Period 2

ntotal 144 976 44 263 100 713
M 71.2 46.2 93.6
N 2 035 959 1 076

Table 1: Number of total intraday (ntotal) and average daily intraday (M) observations as well as number
of observation days (N) for Copper and Aluminum for the full sample and the split sample analysis at
the SHFE.
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RV
(1)
t RV

(2)
t RV

(24)
t

Eq. (8.1) Eq. (8.1) Eq. (8.2) Eq. (8.3) Eq. (9.1) Eq. (9.2) Eq. (9.3) Eq. (10.1) Eq. (10.1) Eq. (10.2)

T1 T2 T2 T2 T1 T2 T2 T1 T2 T2

β0 0.1458 0.1377 0.0854 0.0070 0.1676 0.0438 −0.1565 0.5812 0.3162 0.2359
(0.0431) (0.0304) (0.0307) (0.0378) (0.0335) (0.0404) (0.0392) (0.1616) (0.0663) (0.1035)

β1 0.2280 0.3600 0.1806 0.0901 0.2668 0.0734 0.0391 0.0112 0.5323 0.3489
(0.0697) (0.0988) (0.0954) (0.1004) (0.1582) (0.1089) (0.0339) (0.0749) (0.1421) (0.1246)

β2 0.4011 0.3675 0.2855 0.2914 0.2223 0.0446 0.0214 0.4026 0.1345 0.0993
(0.1270) (0.1166) (0.0912) (0.1032) (0.0855) (0.0744) (0.0577) (0.2343) (0.0791) (0.0873)

β3 0.1868 0.0220 0.0366 0.0193 0.1873 0.1248 0.1065 0.2796 0.0946 0.0838
(0.1200) (0.0867) (0.0720) (0.0743) (0.1188) (0.1255) (0.0692) (0.1943) (0.0807) (0.0847)

β4 0.3273 0.2095 0.5210 0.3315 0.2492
(0.0529) (0.0460) (0.1784) (0.0432) (0.1701)

β5 0.0912 0.3065 0.7984
(0.0778) (0.0766) (0.0568)

R2 0.3354 0.3658 0.4943 0.4572 0.1825 0.3102 0.4028 0.1259 0.4074 0.4191

RMSE 0.8728 0.5495 0.4906 0.5083 0.7759 0.7128 0.6632 3.8473 1.1845 1.1727

MAE 0.4086 0.2766 0.2591 0.2648 0.3053 0.2867 0.3121 1.5863 0.6316 0.6256

Table 4: Parameter estimation results and robust standard errors in parenthesis of Copper futures for
the HAR specifications defined in Eq. (8.1) - (10.2). β1, β2, and β3 denote the dependent variable’s
own previous day’s, week’s and month’s components, respectively. In model (8.2), β4 and β5 denote the
immediately preceding night trading session and evening break, respectively. In model (8.3), β4 denotes
the immediately preceding realized volatility of the LME copper futures contract. In (9.2), β4 and β5
denote denote the day-time trading session and evening break on day t, respectively. In (9.3), β4 and β5
denote the immediately preceding day-time trading session at SHFE and the realized volatility at LME
during the evening break on day t+ 1, respectively. In Eq. (10.2), β4 denotes the LME realized volatility
on day t. The estimates are obtained with a White adjusted heteroskedastic consistent least-squares
regression with robust standard errors given in parenthesis.

RV
(1)
t RV

(2)
t RV

(24)
t

Eq. (8.1) Eq. (8.1) Eq. (8.2) Eq. (8.3) Eq. (9.1) Eq. (9.2) Eq. (9.3) Eq. (10.1) Eq. (10.1) Eq. (10.2)

T1 T2 T2 T2 T1 T2 T2 T1 T2 T2

β0 0.0801 0.0727 0.0734 0.0652 0.1291 0.0446 0.0367 0.2200 0.2444 0.2527
(0.0174) (0.0225) (0.0198) (0.0267) (0.0382) (0.0337) (0.0398) (0.0493) (0.0616) (0.1522)

β1 0.3636 0.2544 0.1533 0.2516 0.1978 0.0966 0.0961 0.1563 0.1835 0.1872
(0.1277) (0.0768) (0.0740) (0.0768) (0.1002) (0.0883) (0.0375) (0.0952) (0.1071) (0.1167)

β2 0.2223 0.3994 0.3092 0.3989 0.2100 0.0857 0.0870 0.2415 0.3539 0.3560
(0.1024) (0.0993) (0.0873) (0.0991) (0.1306) (0.1182) (0.0683) (0.1200) (0.1277) (0.1221)

β3 0.1576 0.2141 0.1915 0.2158 0.3273 0.1815 0.1842 0.2517 0.2579 0.2554
(0.0806) (0.0714) (0.0663) (0.0712) (0.0800) (0.0805) (0.0799) (0.1323) (0.0685) (0.0596)

β4 0.2406 0.0049 0.4705 0.4690 −0.0072
(0.0160) (0.0086) (0.0916) (0.0575) (0.1257)

β5 −0.0039 0.0620 0.0211
(0.0056) (0.0369) (0.0214)

R2 0.2990 0.4242 0.5252 0.4244 0.1791 0.2324 0.2305 0.1277 0.2675 0.2675

RMSE 0.5624 0.4415 0.4009 0.4414 0.7942 0.7680 0.7689 1.5704 1.3083 1.3083

MAE 0.2205 0.2551 0.2371 0.2552 0.2825 0.2641 0.2642 0.5858 0.5621 0.5615

Table 5: Parameter estimation results and robust standard errors in parenthesis of Aluminum futures
for the HAR specifications defined in Eq. (8.1) - (10.2). β1, β2, and β3 denote the dependent variable’s
own previous day’s, week’s and month’s components, respectively. In model (8.2), β4 and β5 denote the
immediately preceding night trading session and evening break, respectively. In model (8.3), β4 denotes
the immediately preceding realized volatility of the LME aluminum futures contract. In (9.2), β4 and β5
denote denote the day-time trading session and evening break on day t, respectively. In (9.3), β4 and β5
denote the immediately preceding day-time trading session at SHFE and the realized volatility at LME
during the evening break on day t+ 1, respectively. In Eq. (10.2), β4 denotes the LME realized volatility
on day t. The estimates are obtained with a White adjusted heteroskedastic consistent least-squares
regression with robust standard errors given in parenthesis.
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Appendix A. Appendix: Additional Figures
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Aluminium Return Decomposition

Figure A.7: Box plots of different intraday components for Aluminum following the decomposition in
Eq. (6). Different disjoint periods are denoted by T1 and T2 which refer to the observations before
(January 4, 2010 to December 19, 2013) and after (December 19, 2013 to May 21, 2018) the introduction
of the night trading session, respectively; yielding n1 = |T1| = 959 and n2 = |T2| = 1076 observations.
The full sample of n = 2 035 observations is plotted for rON, r(1), and rCC. For rEB and r(2), which only
exist in T2, we omit the index.
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Figure A.8: Volumes (unsmoothed) of SHFE 3M Copper futures and LME 3M futures adjusted for
SHFE’s double-side counting and LME’s fivefold contract size. The introduction of the night trading
session is marked with a vertical line.
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Figure A.9: Volume of Aluminum decomposed to the respective components and smoothed by an MA(5)
Different disjoint periods denoted by T1 and T2 are identical to the previous figures.
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