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Enhancing Gradient Capital Allocation with
Orthogonal Convexity Scenarios ∗

Philipp Aigner† Sebastian Schlütter‡

Abstract

Gradient capital allocation, also known as Euler allocation, is a technique used
to redistribute diversified capital requirements among different segments of a port-
folio. The method is commonly employed to identify dominant risks, assessing the
risk-adjusted profitability of segments, and installing limit systems. However, cap-
ital allocation can be misleading in all these applications because it only accounts
for the current portfolio composition and ignores how diversification effects may
change with a portfolio restructuring. This paper proposes enhancing the gradient
capital allocation by adding “orthogonal convexity scenarios” (OCS). OCS identify
risk concentrations that potentially drive portfolio risk and become relevant after
restructuring. OCS have strong ties with principal component analysis (PCA), but
they are a more general concept and compatible with common empirical patterns
of risk drivers being fat-tailed and increasingly dependent in market downturns.
We illustrate possible applications of OCS in terms of risk communication and risk
limits.
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1 Introduction

Risk diversification within an investment portfolio or multi-segment firm can help to re-

duce the portfolio’s potential loss. Capital needs for the portfolio, e.g. on the basis of

Value-at-Risk or Expected Shortfall, are therefore typically lower for the portfolio than

the sum of capital needs for the portfolio segments stand-alone. The gradient (synony-

mous Euler) capital allocation mechanism distributes the diversified risk measurement

back to portfolio segments. It is thus a relatively simple tool to inform decision mak-

ers which segments are dominant risk drivers when accounting for risk diversification in

the portfolio. Precisely speaking, the gradient capital allocation points out the marginal

impact of segment volumes on diversified portfolio risk. It therefore allows for drawing

conclusions about which segments to marginally expand or reduce to achieve an optimal

risk-return profile (cf. Tasche, 2008).

The informative value of gradient capital allocation is limited, however, when realistically

considering non-marginal portfolio changes. In fact, portfolio risk does not change linearly

by a portfolio restructuring, as the structure of risk diversification changes. For example,

risks of a fund’s investments into a new asset category may be well diversified with other

risks as long as the investments are of small volume. Yet, after expanding investments

into the new category, these risks could substantially shape the bank’s overall risk profile.

Examples in Gründl and Schmeiser (2007, pp. 308-314) highlight errors in pricing of

insurance contracts based on capital allocation when new contracts are added to an

existing portfolio and hence the structure of the portfolio changes. Similarly, Buch et al.

(2011) show that a control problem for portfolio optimization can fail when only relying

on first-order derivatives; to reach the optimum, the authors propose a correction term

that includes second-order derivatives. Likewise, Kang and Poshakwale (2019) make use

of the the Hessian matrix of risk measurement to identify bank’s optimal portfolio in a

multi-period model. Gourieroux et al. (2000) identify an efficient stock portfolio—with

risk being measured by Value-at-Risk instead of the variance—and to this end employ

first and second-order derivatives of Value-at-Risk with respect to the asset allocation.

This paper suggests using the gradient capital allocation as a first scenario and incor-

porating a small set of additional “orthogonal convexity scenarios” (OCS). OCS capture

second-order derivatives of the risk measurement, making them a valuable complement
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to the gradient allocation. Notably, the primary purpose of OCS is not to circumvent

recalculating the true risk of a new portfolio, but rather to communicate the portfolio’s

risk structure in simple terms, but more holistically than the gradient allocation does.

Before explaining the applications of OCS in more detail, we describe the working of our

approach, which can be divided into two steps.

Firstly, our approach builds on a second-order Taylor series of portfolio risk measure-

ment which can be presented in terms of a well-known risk aggregation structure. To

achieve this coincidence, our main assumption is that the portfolio risk measurement is

a positive homogeneous and differentiable function in a portfolio vector, which contains

the decision variables and characterizes the structure of the portfolio. Typically, but not

necessarily, the elements of the portfolio vector are the volumes of the portfolio segments.

Thanks to positive homogeneity, the second-order Taylor expansion of the risk measure-

ment in square simplifies to a quadratic form in the portfolio vector (cf. Paulusch and

Schlütter, 2022). The square-root of this quadratic form is structurally identical with the

“hybrid approach” of risk measurement, which was proposed by Rosenberg and Schuer-

mann (2006) and is used for example in the Solvency II standard formula of European

insurance regulation. Therefore, when the hybrid approach is properly calibrated with a

“sensitivity-implied tail correlation matrix”, it locally approximates the original risk mea-

surement including all first and second-order derivatives (Paulusch and Schlütter, 2022).

This is true even if portfolio risk is subject to skewed and heavy-tailed distributions and

increased tail dependencies.

Secondly, we tackle the issue that the information structure inherent in the calibration of

the hybrid approach is still complex, especially in situations with many portfolio segments.

To make it easier to understand for decision makers, we translate this information into

deterministic scenarios which structurally resemble the gradient allocation. As explained

in step one, we approximate portfolio risk with a quadratic form, which mimics the

variance of a sum of random variables. For the latter, principal component analysis is a

common tool to derive a linear decomposition into uncorrelated random variables. Our

OCS generalize PCA: for portfolio risk following a multivariate elliptical distribution,

OCS refer in fact to uncorrelated random variables. In general, OCS are orthogonal in

the sense of marginal contributions of portfolio segments on diversified portfolio risk.

Similar to PCA can be calculated based on the spectral decomposition of the covariance
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matrix, the selection of OCS is possible based on an eigenvalue problem. We show that

an OCS-based risk measurement reflects the original risk measurement in the sense of all

first-order derivatives as well as second-order derivatives with regard to portfolio changes

in a prespecified subspace.

We explain several applications of our proposed OCS approach to outline its advantages

compared to traditional methods. In our example, the stochastic distributions of the

segments’ profits or losses used include skewed and heavy-tailed distributions which are

partly connected with a Gumbel copula modeling increased tail dependencies. Portfolio

risk is measured by the 99% Value-at-Risk of unexpected losses.

Our example substantiates that convexity of portfolio risk has to be evaluated from

a holistic perspective. Considering a stylized financial institution with three business

segments, the traditional gradient allocation (i.e. our first OCS) misses the true Value-

at-Risk especially when the volumes of segments 1 and 2 move in the same direction

(e.g. both are increased) but the volume of segment 3 moves in the opposite direction

(is reduced). In terms of stochastic distributions, this is because segments 1 and 2

exhibit an increased tail dependence; segment 3 is well diversified in the initial portfolio,

but it includes heavy-tailed risks that could become dominant if the segment is over-

proportionally expanded. Accordingly, our second OCS assigns segments 1 and 2 values of

the same sign, but segment 3 a value of the opposite sign. As for the gradient allocation,

the values of all OCS can be regarded as a meaningful realization of the multivariate

distribution of segment risks.

A first application of OCS is therefore to support the communication of risk concen-

trations and diversification effects between risk modelers on the one hand and decision

makers and other stakeholders on the other. In fact, this communication has been re-

garded in the literature as both challenging and essential to establishing effective and

value-adding Enterprise Risk Management.1 While the gradient capital allocation is a

relatively simple tool to communicate dominant risk drivers and natural hedging effects

in the initial portfolio, our additional OCS point out what portfolio restructurings have

a particiluarly large impact on risk diversification.
1Communication gaps between risk modelers and decision makers have been identified as a trigger of

the 2007-2008 financial crisis, cf. (Stulz, 2008, p. 45) and Eling and Schmeiser (2010, p. 16), and are
still considered as a central challenge in Enterprise Risk Management, cf. Wilson (2015, p. 599), Aven
(2016, p. 10).
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Secondly, OCS can support the graphical visualization of portfolio risk in order to provide

another tool for risk communication or to serve as a starting point for validating the risk

model. In a plot of multivariate realizations of the segment’s profits or losses, OCS

generally lie on the surface of an ellipsoid. The orientation of this ellipsoid reflects risk

contributions in the initial portfolio (i.e. the gradient allocation), and its width reflects

convexity of portfolio risk. In the special case of a multivariate elliptical distribution, the

orientation of the ellipsoid coincides with the OLS regression function when regressing a

segment’s profits on the entire portfolio’s profits; convexity of portfolio risk depends on

the standard deviation of the regression’s residuals.

Thirdly, the gradient capital allocation can be applied as a basis for breaking down

a portfolio risk limit to portfolio segments.2 In this sense, segments receiving higher

amounts from the gradient allocation have a higher impact on the overall portfolio risk

and should therefore be more strictly limited and monitored. However, the effectiveness of

the limit system in this set-up is only ensured as long as the gradient allocation correctly

reflects the risk structure of the portfolio, i.e. the composition of the portfolio may not

change too much. OCS can help integrate the latter condition directly into the risk

limit system. For this purpose, we propose risk limits of first and second order: while

first-order limits are defined with the condition of the portfolio’s risk structure remaining

within certain constraints, second-order limits monitor whether this condition is met. We

demonstrate that second-order limits are tight for segments that exert a strong convex

impact on diversified capital and are hence likely to become relevant risk drivers; segments

with a slight convex impact, in turn, receive a loose limit.

Our paper contributes to the literature in several ways. From a management science per-

spective, the gradient captial allocation can be seen as a differentiation-based method of

sensitivity analysis,3 serving as a crucial link between risk modeling and decision-making.

While the classical gradient capital allocation offers a first-order Taylor expansion, OCS

provide additional insights in terms of second-order sensitivities. Our basic assumption,

positive homogeneity, is satisfied by common risk measures, such as Value-at-Risk and

Expected Shortfall4; other examplies of positive homogeneous risk measures can be found
2Cf. Jorion (2006), Buch et al. (2011), Erel et al. (2015).
3For an overview on this method, cf. Borgonovo and Plischke (2016, p. 873 f.).
4Sensitivities of Value-at-Risk are studied by Gourieroux et al. (2000), those of Expected Shortfall

are studied by Hong and Liu (2009).
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in Landsman and Makov (2011) and McNeil et al. (2015, p. 77). Moreover, an example for

a positive homogeneous risk measure is presented by Bauer and Zanjani (2016) through

determining economically correct marginal capital costs in a first step and then deriving

a risk measure with appropriate sensitivities in a second step. Since our scenarios are

deterministic vectors, our approach differs from Schilling et al. (2020), who decompose

the portfolio loss into additive stochastic components; to rank the components’ influ-

ences, the authors apply the gradient capital allocation afterwards. Also, our article

differs from papers like Breuer and Csiszár (2013) or Packham and Woebbeking (2019),

who deal with adverse scenarios addressing uncertainty of the model or its calibration,

while our approach provides scenarios which express the existing model. In the literature

about systemic risks in financial markets, both gradient allocation as well as PCA have

been employed. Chen et al. (2013) show that important systemic risk measures exhibit

positive homogeneity. The authors suggest a risk attribution to individual firms which

relates to the allocation in non-atomic games of Aumann and Shapley (1974) as well as

to gradient capital allocation. Acharya et al. (2017) employ gradient capital allocation in

order to measure how banks contribute to systemic crises and to define a tax which inter-

nalizes the related social costs. Moreover, PCA was found to be a useful measure for the

interconnectedness of financial sectors (Billio et al., 2012; Rodŕıguez-Moreno and Peña,

2013). Similar to the extension of the gradient allocation at a company level, OCS could

also be used to derive PCA-similar scenarios of systemic risk and connect the previously

mentioned forms of systemic risk analysis.

The remainder of this article is structured as follows. Section 2 provides a suggestive

example concerning a financial firm’s RORAC outlining the limitation of the gradient

capital allocation and how OCS can address it. Section 3 provides the general set-up

and defines quality criteria of a scenario-based risk measurement. Section 4 defines the

gradient scenario and identifies its shortcomings in terms of the defined quality criteria.

PCA-scenarios are then presented and discussed. Section 5 defines OCS, presents their

structural relationship with the gradient scenario and with PCA-scenarios, and shows

how they make the scenario-based risk measurement suitable in terms of the quality

criteria. Section 6 outlines possible applications of OCS. Section 7 concludes.
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2 Motivating example: RORAC maximization

Let us consider a financial institution with three business segments. The segments can

deliver random profits or losses.5 The firm’s overall potential losses are measured by

the 99% Value-at-Risk of 100 monetary units. The gradient capital allocation splits the

Value-at-Risk to the three segments with values 30.8 + 45.1 + 24.1 = 100. Suppose the

segments’ expected profits are 1.4+2.2+1.4 = 5. Therefore, the Return on Risk-Adjusted

Capital (RORAC) of the entire firm is 5/100=5%, and based on the gradient allocation,

the segments’ RORACs are 1.4/30.8=4.55%, 2.2/45.1=4.87%, and 1.4/24.1=5.81%.

According to Tasche (2008, p. 428 f.), the gradient allocation is “RORAC compatible”.

Hence, given that the RORACs of segments 1 and 2 (segment 3) are smaller (larger)

than the RORAC of the entire firm, the firm’s RORAC increases when segments 1 and

2 are slightly reduced and segment 3 is slightly expanded. However, analogous to what

Buch et al. (2011, p. 3006) point out for their example, it is unclear to what extent the

segments should change.

We examine a portfolio change with segments 1 and 2 each reducing their businesses by

25% and segment 3 expanding by 50%. Supposing that the segments’ risk contributions

remain stable with the portfolio change, the gradient allocation estimates the new Value-

at-Risk in terms of 0.75·30.8+0.75·45.1+1.5·24.1 = 93.1. The estimated new RORAC is

therefore (0.75 · 1.4 + 0.75 · 2.2 + 1.5 · 1.4)/93.1 = 4.8/93.1 = 5.2%. However, recognizing

the distribution assumptions in the example, risks of segment 3 become much more

dominant in the new portfolio and the segment’s contribution is severely underestimated

by the given gradient allocation. In fact, the true Value-at-Risk of the new portfolio is

101.9, and the new RORAC is 4.8/101.9 = 4.7%, thus lower than for the initial portfolio.

We now describe the initial portfolio’s risk structure using the gradient allocation and

one additional orthogonal convexity scenario (OCS). In the present example, the next

OCS assigns the values −19.0, −33.1 and 52.1 to the three segments. It thus points out

that losses in segment 3 potentially occur at the same time as gains in segments 1 and 2

(“losses” and “gains” are interchangeable in this statement). The Value-at-Risk for the
5Details about the distribution assumptions are presented later in section 6.1.
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new portfolio can be approximated by the root sum of squares with the two scenarios,

i.e.

√
(0.75 · 30.8 + 0.75 · 45.1 + 1.5 · 24.1)2 + (0.75 · (−19.0) + 0.75 · (−33.1) + 1.5 · 52.1)2

=
√

93.12 + 39.12 = 100.9,

which is much closer to the new portfolio’s true Value-at-Risk (101.9) than the estimate

with only the gradient allocation (93.1). OCS thus improve describing the risk situation in

the initial portfolio by incorporating important potential changes in risk concentrations.

3 Set-up

The technical basis of our considerations is a mapping from the portfolio vector u =

(u1, ..., un)T ∈ Rn, with n ∈ N, to a real-valued risk measurement,

f : U → R (1)

with U ⊆ Rn being open and convex. Function f(u) represents the firm’s target value

and will be referred to as the original risk measurement going forward. The vector u

defines the composition of the firm’s portfolio, U is the set of admissible portfolios and

uinitial ∈ U is the firm’s initial portfolio. The technical assumption throughout our paper

is

Assumption (A): f(u), as defined in (1), is positive homogeneous of degree one, i.e.

for all λ > 0 we have f(λ · u) = λ · f(u). Moreover, f(uinitial) > 0 and f(u) is twice

continuously differentiable at uinitial ∈ U .

A classical example for specifying f(u) considers an n-dimensional portfolio with vector

u containing exposures to risk factors.6 Let the random vector X = (X1, ..., Xn)T model

the losses (or gains in case of negative values) of the portfolio’s n positions with finite

expectations. Hence,

uTX =
n∑

i=1
uiXi

6This specification is consistent with, for example, Gourieroux et al. (2000), Rockafellar et al. (2000),
Buch and Dorfleitner (2008), Tasche (2008), and Erel et al. (2015).
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is the loss (or gain) of the portfolio. Let ϱ be a law-invariant, positive homogeneous and

translation-invariant risk measure.7 The original risk measurement can then be defined

as the risk measurement of unexpected portfolio losses,

fstoch : U → R, u 7→ ϱ
(
uTX

)
− E

(
uTX

)
(2)

The differentiability of fstoch(u) depends on the risk measure and the multivariate distri-

bution of X. It is discussed, for instance, in Gourieroux et al. (2000), Tasche (2008) and

Hong and Liu (2009).

Assumption (A) does not require a stochastic model in terms of (2). For example, f(u)

can be a deterministic risk measurement in the sense of the hybrid approach of Rosenberg

and Schuermann (2006).8 Even if the risk aggregation is conducted in several steps,

like in the module-submodule structure of the Solvency II standard formula, the overall

capital requirement is a positive homogeneous function with respect to exposures at the

submodule level.

Our target is to provide a local approximation of f(u) using a measurement based on

m ∈ {1, ..., n} deterministic scenarios x1, ..., xm ∈ Rn. The approximation is formalized

by function gm(u):

gm : Rn → R, u 7→
√√√√ m∑

j=1

(
xT

j u
)2

(3)

In terms of the stochastic approach in (2), the scenarios x1, ..., xm can be viewed as

realizations of the random vector X.9 For each scenario xj, uTxj is the portfolio loss

(or gain) conditioned on scenario xj having been realized. In case of m = 1 scenario,

gm(u) simplifies to
∣∣∣xT

1 u
∣∣∣. For m > 1, the root sum of squares in (3) is analogous to risk

aggregation for elliptical distributions and thus consistent with a risk measurement based

on a Principal Component Analysis (PCA), as we will discuss later in section 4.2.

Going forward, we investigate how accurately gm(u) locally approximates the original risk

measurement f(u) at an initial portfolio uinitial. To this end, we will assess gm(u) based

on the following “quality criteria” (QC):
7McNeil et al. (2015, p. 275 ff.) summarize desirable properties of risk measures.
8Paulusch (2017) deals with homogeneity of risk measurement in the sense of the hybrid approach.
9This notion of a scenario is consistent with McNeil and Smith (2012).
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(QC1) Reflect the risk of the initial portfolio:

For the initial portfolio uinitial ∈ U , we have gm(uinitial) = f(uinitial).

(QC2) Reflect first-order sensitivities:

Let V1 ⊆ Rn be a space of possible portfolio changes. Starting from uinitial ∈ U ,

gm(u) accurately reflects the change in portfolio risk due to a marginal exposure

change in the direction of v ∈ V1, i.e.

∂

∂h
gm(uinitial + h · v)

∣∣∣
h=0

= ∂

∂h
f(uinitial + h · v)

∣∣∣
h=0

for all v ∈ V1

(QC3) Reflect second-order sensitivities:

Let V2 ⊆ V1 be a space of possible portfolio changes. Starting from uinitial ∈ U ,

gm(u) accurately reflects second-order derivatives of portfolio risk with respect to

exposure changes in the directions of v1, v2 ∈ V2, i.e.

∂2

∂h1∂h2
gm(uinitial + h1 · v1 + h2 · v2)

∣∣∣
h1=h2=0

=

= ∂2

∂h1∂h2
f(uinitial + h1 · v1 + h2 · v2)

∣∣∣
h1=h2=0

for all v1, v2 ∈ V2

If a scenario-based risk measurement gm(u) satisfies (QC2) with V1 = Rn, then it provides

the same gradient capital allocation as the true risk measurement. According to Tasche

(2008), this property is essential to signal which marginal portfolio changes enhance

RORAC. Criterion (QC3) points out that gm(u) reflects (at least in part) the curvature

of f(u). It therefore aims for overcoming limitations of the gradient capital allocation,

as identified for example by Buch et al. (2011).
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4 Existing approaches

4.1 The gradient scenario

The gradient capital allocation principle defines an n-dimensional vector which we call

the “gradient scenario” and use as a starting point of our analysis. We define

xgrad := ∇uf(u)
∣∣∣
u=uinitial

(4)

Our terminology of the “gradient scenario” fits with the scenario analysis of McNeil and

Smith (2012). In connection with definition (2) and the risk measure VaR, assuming a

situation where VaR is coherent, the gradient scenario coincides with the so-called “Least

Solvent Likely Event” (LSLE) of McNeil and Smith.10 Irrespective of this assumption,

Euler’s homogeneous function theorem immediately implies that g1(u) in connection with

the gradient scenario fulfills (QC1) and (QC2).11

4.2 Principal component analysis (PCA)

PCA identifies important patterns of a multivariate distribution and thus allows for defin-

ing multiple scenarios. Consider the original risk measurement f(u) = fstoch(u) from (2).

Let Σ denote the covariance matrix of X, and let the vectors wi ∈ Rn, i = 1, ..., n, denote

the eigenvectors of Σ. Then the random variables wT
i · X and wT

j · X, i ̸= j, are pairwise

uncorrelated, since

cov
(
wT

i · X, wT
j · X

)
= wT

i · Σ · wj = 0 (5)

Moreover, scenarios can be defined as

xPCA
j := Σ · wj√

wT
j Σwj

· z (6)

with j = 1, ..., n and some factor z > 0. For two special cases, Eq. (6) allows for a proper

scenario-based risk measurement, as Proposition 1 points out.
10The coincidence is proven by McNeil and Smith (2012) in Corollary 4.4.
11Cf., for example, Buch and Dorfleitner (2008).
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Proposition 1. Assume that the original risk measurement is defined by f(u) = fstoch(u)

from (2) and that the covariance matrix Σ of the random vector X exists. For m ∈

{1, ..., n}, let w1, ..., wm ∈ Rn, denote the eigenvectors of Σ relating to its positive eigen-

values sorted in descending order. Suppose that one of the following conditions holds:

a. Risk measure ϱ is the standard deviation. In Eq. (6), z is set to 1.

b. X follows an elliptical distribution with the risk measure ϱ being proportional to the

standard deviation by factor z > 0.12

Define function gm(u) according to (3) in connection with the scenarios in Eq. (6). For

u ∈ span{w1, . . . , wm}, we have gm(u) = f(u). Moreover, if uinitial ∈ span{w1, . . . , wm},

gm(u) satisfies (QC1), (QC2) with V1 = Rn and (QC3) with V2 = span{w1, . . . , wm}.

Hence, irrespective of the number of PCA-scenarios used, these scenarios reflect the true

risk measurement in terms of the gradient allocation with respect to all risks and, to a

limited extent, in terms of convexity if the conditions of Proposition 1 are fulfilled and if

uinitial ∈ span{w1, . . . , wm}.

The conditions in Proposition 1 are, however, quite restrictive. For downside risk mea-

sures, such as Value-at-Risk and Expected Shortfall, X must include neither skewed

marginal distributions nor increased tail dependencies. As an example, PCA has been

considered as a useful tool for measuring interest rate risks of a bond portfolio in “normal

times”.13 In a low-yield environment, however, lower bounds for interest rates may be-

come more relevant (cf. Christensen and Rudebusch, 2015), suggesting that interest rates

follow a skewed distribution and implying that PCA-scenarios can not properly reflect

the Value-at-Risk (cf. Schlütter, 2021).
12For elliptical distributions, the condition of proportionality is satisfied, e.g. for Value-at-Risk and

Expected Shortfall. For example, when X follows a multivariate normal distribution and the risk measure
is the Value-at-Risk with confidence level ζ, then the factor z is the ζ-percentile of the standard normal
distribution.

13Cf. Frye (1997), Golub and Tilman (1997) and Hull (2018, pp. 204 ff.).
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5 Orthogonal convexity scenarios (OCS)

5.1 Defining OCS

To derive a scenario-based risk measurement with useful results for non-elliptical distri-

butions, we replace the covariance matrix with a more general measure for stochastic

dependencies. Paulusch and Schlütter (2022) demonstrate that a risk measurement f(u)

fulfilling assumption (A) can be approximated by a deterministic function which has

the structure of the hybrid approach of Rosenberg and Schuermann (2006). Specifically,

the second-order Taylor polynomial of f 2(u) at uinitial can be presented using a matrix

function

Pf2(u) = 0.5uTHu (7)

with H being the Hessian matrix of f 2(u) evaluated at u = uinitial.14 Taking the square-

root on both sides of (7) provides a local approximation of f(u):

gTaylor(u) =
√

Pf2(u) =
√

0.5uTHu (8)

gTaylor(u) reflects f(u) at uinitial up to second-order derivatives.

Recall that the PCA builds on vectors wi implying that the random variables wT
i · X

and wT
j · X are pairwise uncorrelated, cf. line (5). In our proposed approach, we identify

vectors w1, ..., wm that are pairwise orthogonal in a context that allows for useful scenar-

ios as a basis of gm(u). Mathematically, orthogonality is defined in connection with a

symmetric bilinear form ⟨., .⟩ and two vectors wi, wj are called orthogonal if ⟨wi, wj⟩ = 0.

Lemma 1 introduces the symmetric bilinear form that we use later on.

Lemma 1. Let assumption (A) be fulfilled and let H denote the Hessian matrix of f 2(u)

evaluated at uinitial ∈ U . Then

⟨wi, wj⟩H := ∂2

∂hi∂hj

f 2 (uinitial + hiwi + hjwj)
∣∣∣
hi=hj=0

= wT
i Hwj (9)

defines a symmetric bilinear form on U × U .
14Cf. Paulusch and Schlütter (2022), Theorem 1.
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The basic idea behind the orthogonal convexity scenarios is to select linear independent

vectors w1, ..., wm ∈ Rn which span a subspace V ⊆ Rn with uinitial ∈ V . The vectors

w1, ..., wm should be pairwise orthogonal in the sense of ⟨., .⟩H and satisfy ⟨wi, wi⟩H > 0

for all i = 1, ..., m. Then, any u ∈ V can be represented as15

u =
m∑

j=1

⟨wj, u⟩H

⟨wj, wj⟩H

· wj (10)

Let

ũj = ⟨wj, u⟩H

⟨wj, wj⟩H

· wj for j = 1, ..., m (11)

Then we have

uTHu = (ũ1 + ... + ũm)T H (ũ1 + ... + ũm)

= ũT
1 Hũ1 + ... + ũT

mHũm (12)

where the last equation follows from the pairwise orthogonality of the wj (which implies

pairwise orthogonality of the ũj). Lemma 2 defines vectors xOCS
j , which we call orthogonal

convexity scenarios (OCS).

Lemma 2. Let the assumptions of Lemma 1 be fulfilled. For m ∈ {1, ..., n}, assume that

w1, ..., wm ∈ Rn are pairwise orthogonal in the sense of ⟨., .⟩H and satisfy ⟨wi, wi⟩H > 0

for all i = 1, ..., m. For all j ∈ {1, ..., m}, define

xOCS
j := Hwj√

2wT
j Hwj

(13)

Then ((
xOCS

j

)T
u
)2

= 0.5ũT
j Hũj (14)

with ũj being defined as in line (11) based on wj and u.

According to Eq. (13), each OCS is determined based on an underlying portfolio vector

wj. Condition ⟨wi, wi⟩H > 0 means that f(u) is locally at uinitial strictly convex with

respect to changes in direction wi. The assumption is satisfied, for example, if f(u) is

specified by Eq. (2) with a risk measure that satisfies the convexity axiom.
15Cf. for example Clay et al. (2015, p. 341), Theorem 5.
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Based on Lemma 2 we can derive the OCS-based risk measurement of portfolio u ∈ V .

To this end, entering Eq. (14) into Eq. (12) implies

g2
m(u) =

m∑
j=1

((
xOCS

j

)T
u
)2

= 0.5
m∑

j=1
ũT

j Hũj
(12)= 0.5uTHu

(7)= Pf2(u) (15)

Taking the square-root on both sides of Eq. (15) implies that gm(u) in connection with

the OCS from Eq. (13) approximates the true risk measurement f(u) in the sense of a

second-order Taylor approximation at u = uinitial. Theorem 1 outlines this result.

Theorem 1. Let the assumptions of Lemma 2 be fulfilled and assume that uinitial ∈

span{w1, ..., wm}. Then gm(u) as defined in line (3) in connection with the scenarios

xOCS
j defined in Eq. (13), for j = 1, ..., m, fulfills (QC1), (QC2) with V1 = Rn and (QC3)

with V2 = span{w1, . . . , wm}. For u ∈ span{w1, . . . , wm}, we have gm(u) = gTaylor(u).

The statements of Theorem 1 are analogous to those of Proposition 1. Hence, OCS allow

a generalization of the PCA-based risk measurement with respect to skewed distributions

and increased tail dependencies.

The condition uinitial ∈ span{w1, ..., wm} can be ensured by setting w1 = uinitial. Corollary

1 shows that the corresponding first OCS then coincides with the gradient scenario defined

in Eq. (4).

Corollary 1. Let the assumptions of Lemma 1 be fulfilled and w1 = uinitial. Then we

have

xOCS
1 = xgrad

with xOCS
1 being defined as in Eq. (13) and xgrad as in Eq. (4).

Therefore, OCS can consistently extend the concept of the gradient scenario as introduced

in Section 3.1: in addition to the gradient scenario, portfolio risk is communicated with

the scenarios xOCS
2 , ..., xOCS

m . Based on these scenarios, gm(u) not only accurately reflects

marginal portfolio changes (as it does based on the single gradient scenario), but also

reflects how diversification effects alter when the portfolio is changed in directions within

the subspace V2.
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The selection of the OCS, i.e. the selection of the vectors w1, ..., wm, determines the space

V2 for which the scenario-based risk measurement gm(u) meets the curvature of f(u) in

the sense of (QC3), cf. Theorem 1. The selection should therefore be made against

the background of practical considerations, such that V2 contains conceivable portfolio

changes in light of restrictions of the firm’s overall strategy, regulation, etc.

Section 5.2 provides guidance on the selection of OCS in the general case. Afterwards,

section 5.3 explains the selection for an analysis in which the addition of a particular

portfolio segment is of interest.

5.2 Selecting OCS

This section proposes an iterative approach to select the most meaningful OCS. In this

regard, we aim to minimize the approximation error and note that the approximation

error for any portfolio u ∈ U can be decomposed into two parts:

f(u) − gm(u) = f(u) − gTaylor(u)︸ ︷︷ ︸
Error part 1

+ gTaylor(u) − gm(u)︸ ︷︷ ︸
Error part 2

(16)

Only the error part 2 depends on the employed scenarios. For m = n OCS being used,

error part 2 is zero for all portfolios u. To select a further scenario, we therefore focus on

the error part 2.

Suppose that m vectors w1, ..., wm have been selected in line with the assumptions of

Lemma 2 and with uinitial ∈ span{w1, ..., wm}. Based on these vectors, scenarios have

been determined with Eq. (13). With Eq. (10), we can write any u ∈ U as

u =
m∑

j=1

⟨wj, u⟩H

⟨wj, wj⟩H

· wj︸ ︷︷ ︸
=:ũ

+uremainder (17)

Given that ⟨uremainder, wi⟩H = 0 for all i = 1, ..., m, we focus on the subset of vectors that

are orthogonal to w1, ..., wm,

U⊥ =
{
u ∈ Rn such that ⟨u, wi⟩H = 0 for all i = 1, ..., m

}
, (18)
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Starting from an arbitrary portfolio ũ ∈ span{w1, ..., wm}, we identify vector wm+1 ∈ U⊥

with the largest error type 2, i.e.

wm+1 = argmax
{
gTaylor(ũ + w) − gm(ũ + w) with w ∈ U⊥ and ∥w∥2 = 1

}
(19)

Appendix B shows that the searched vector wm+1 does not depend on ũ ∈ span{w1, ..., wm},

and can be rewritten as

argmax
{
gTaylor(w) with w ∈ U⊥ and ∥w∥2 = 1

}
(20)

Moreover, the Appendix shows that wm+1 can be identified as the solution of an eigenvalue

problem provided that H is positive semidefinite. Adding a further scenario based on

wm+1 in connection with Eq. (13) ensures that the error type 2 is eliminated in the

identified direction, i.e. gm+1(ũ + wm+1) = gTaylor(ũ + wm+1).

5.3 OCS on the surface of an ellipsoid

As a starting point for risk visualizations, Corollary 2 shows that the scenarios defined

by Eq. (13) are on the surface of an ellipsoid. For n = 2 or n = 3, the ellipsoid can be

added into a scatter plot of realizations of the random vector X.

Corollary 2. Let the assumptions of Lemma 2 be fulfilled and assume that H is invert-

ible. Then, all scenarios xOCS
j as defined by Eq. (13) are on the surface of the ellipsoid

{v ∈ Rn | vTH−1v ≤ 0.5} (21)

As an example for a situation which allows a two-dimensional visualization, we analyze

the situation of adding a particular asset to a preexisting portfolio. Formally, we consider

n = 2 risks with X1 reflecting the risks of the preexisting portfolio, X2 the risks of the asset

of interest and uinitial = (1, 0)T. For this “contribution analysis”, Corollary 3 derives two

OCS which inform about the first and second-order sensitivity of the portfolio’s aggregate

risk with respect to adding X2.

Corollary 3. Let the assumptions of Lemma 2 be fulfilled with n = 2 and uinitial =

(1, 0)T, and let hij denote the entries of H. We set w1 = uinitial, w2 = (−h12/h11, 1)T and
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determine xOCS
1 and xOCS

2 by Eq. (13). Let xOCS
ij denote entry j of vector xOCS

i . We have

xOCS
21 = 0 and the function value, gradient and Hessian matrix are given by

f(uinitial) = xOCS
11

∇uf(uinitial) = xOCS
1

Hf (uinitial) =

0 0

0 (xOCS
22 )2

xOCS
11



Based on the two OCS defined in Corollary 3, the ellipsoid from line (21) can be added

into a two-dimensional scatter plot of realizations of X1 and X2. We will call the ellipsoid

in this context the “contribution ellipsoid”. It allows us to link the marginal impact and

the convexity of adding X2 for the aggregate portfolio risk with the scatter plot.

5.4 Example: Multivariate elliptical distribution

For the case of X following a multivariate elliptical distribution, some of our results about

OCS can be linked to well-known concepts.

Proposition 2. Let the assumptions of Proposition 1 be fulfilled. We have

a. H = 2z2Σ

b. For given w1, ..., wm, we have xOCS
j = xP CA

j as defined in Eq. (13) and (6).

c. Vectors w1, ..., wm being the eigenvectors of Σ corresponding to positive eigenvalues

in descending order satisfy the selection approach in section 5.2.

d. For z = 1, the ellipsoid defined in line (21) coincides with the ellipsoid of concen-

tration introduced by Darmois (1945), which is defined as16

{v ∈ Rn : vTΣ−1v ≤ 1} (22)

e. Let w1 = uinitial. Then each entry j of xOCS
1 satisfies

xOCS
1j = βj · f(uinitial)

16This definition is used by Nordström (1991, p. 397).
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with

βj =
cov

(
Xj, XT · uinitial

)
var

(
XT · uinitial

)
Assertion b. means that OCS scenarios coincide with PCA-scenarios when the conditions

of Proposition 2 are fulfilled and the vectors w1, ...wm are the eigenvectors of Σ. According

to assertion d., the ellipsoid in line (21) is a stretched version from the ellipsoid of Darmois

(1945) if z > 1. It is also a shifted and stretched or compressed version of the ellipsoid

of concentration proposed by Cramér (1946).17

Assertion e. points out that the first OCS (i.e. the gradient capital allocation) relates to

the Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965) and Mossin

(1966). For multivariate normal distributions, this relation was already shown by Panjer

(2002), who refers to the βj as “internal betas”. Starting from this notion, convexity

of portfolio risk is driven by the residuals of an (internal) CAPM-like regression of the

profits of each portfolio segment on the total portfolio’s profits. Higher OCS point out

which group of segments exhibit volatile and highly correlated residuals.

6 Applications

6.1 Analyzing a portfolio of business segments

We consider a financial institution with three segments as in section 2. The random

vector X = (X1, X2, X3)T models the segments’ losses (positive realizations) or gains

(negative realizations). The vector u ∈ R3 reflects the sizes of segments, with the initial

portfolio being characterized by uinitial = (1, 1, 1)T. The distributions of X2 and X3 are

right-skewed (lognormal and Gamma), while X1 is normally distributed. The stochastic

dependencies of X1 and X2 are modeled by a Gumbel copula with a parameter Θ = 2

which models increased tail dependencies. The dependency of X1 +X2 and X3 is modeled

by a Gaussian copula with correlation parameter ρ = 0. The true risk measurement

f(u) is defined by Eq. (2) in connection with the 99% Value-at-Risk, and we have

f(uinitial) = 100. Figure 1 summarizes the distribution assumptions and presents the
17The statement follows immediately with the definition in Nordström (1991, p. 397).
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univariate risks and the gradient scenario. The gradient scenario points out that segment

2 is currently the most dominant risk in the portfolio.

Figure 1: Distribution assumptions of the numerical example with three risks, X1, X2
and X3. Column “Expected profit” shows the expectation of each random variable multi-
plied with -1 (since positive realizations reflect losses and negative reflect gains); column
“Univariate Value-at-Risk” depicts V aR0.99 (Xi) − E(Xi); the gradient scenario in the
last column is determined as ∇uf(u) |u=uinitial

.

Table 1 presents the OCS and PCA-scenarios.18 The first OCS is selected as the gradient

scenario and thus replicates the last column of Figure 1. The last row of Table 1 the

relative error between gm(u) and gTaylor(u),

Max. error part 2 =

∣∣∣gTaylor(um+1) − gm(um+1)
∣∣∣

gTaylor(um+1)
, (23)

with portfolio um+1 being selected as in Eq. (20).

For a risk measurement based solely on the gradient scenario, we identify portfolio u2 =

(0.71, 0.49, 1.81)T which is falsely assessed with xgrad · u2 = 87.2. In fact, diversification

effects decrease in u2, and the true risk hence amounts to f(u2) = 107.0. The Taylor

approximation is gTaylor(u2) = 108.7, and we thus calculate

Max. error part 2 = |108.7 − 87.2|
108.7 = 19.6% (24)

18To select the OCS, we have set w1 = uinitial. Weightvectors w2 and w3 have been selected, successively
minimizing the error between the stochastic risk measurement f(u) and the approximation gm(u) as
outlined in Appendix B. PCA-scenarios have been determined according to Eq. (6). The calculations
are based on Monte Carlo simulations of (X1, X2, X3)T with 1,000,000 simulation paths.

19



The second OCS is determined by incorporating w2 = u2 into Eq. (13). In this OCS,

a loss in segment 3 is accompanied by gains in the first two segments. Hence, it states

that portfolio risk increases when segment 3 is expanded and the first two segments

are reduced. Such a portfolio restructuring would reduce favorable diversification effects

between X1 + X2 on the one hand and X3 on the other hand. The loss potential of

segment 3, modeled by the right-skewed Gamma distribution, would therefore become a

more relevant driver of the portfolio’s tail risk.

In the third OCS, a loss in segment 1 is accompanied by a gain in segment 2 (and a

small gain in segment 3). This scenario points out that an expansion of segment 1 with a

reduction of segment 2 (or the other way around) would reduce favorable diversification

effects between these two segments.

The left part of Table 2 shows how the OCS-based risk measurement evaluates non-

marginal segment expansions. For segment 2, an expansion can be well estimated by the

gradient scenario (with an error of -2.0%), given that segment 2 is already the dominant

risk driver and expanding this segment does not materially impact diversification effects.

Using a second OCS makes a small contribution and allows a reduction of the error to

0.5%. Segment 3 is not the dominant risk driver in the initial portfolio, and hence its

expansion has a more convex influence on the aggregate risk. Therefore, the gradient

scenario causes a relatively large error of −8.6%, and the second OCS helps to reduce

the error to −0.9%.

The PCA-scenarios in the right part of Table 1—from a qualitative point of view—

describe the risk situation similarly to the OCS. In the first and second PCA-scenario,

losses occur in the first two segments simultaneously or in the third segment respectively.

The third PCA-scenario is similar to the third OCS. Using all three PCA-scenarios, the

scenario-based risk measurement of the initial portfolio, i.e. gPCA
3 (uinitial), is very close to

100 and hence almost correct. However, the PCA-scenarios do not point out that segment

2 is currently the dominant risk driver. Therefore, g3(u) substantially understates the

sensitivity of the aggregate portfolio risk with respect to the size of segment 2:

∂

∂u2
gPCA

3 (uinitial) = 30.2 < 45.1 = ∂

∂u2
f (uinitial) (25)
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OCS PCA
Segment i x1i x2i x3i x1i x2i x3i

(Gradient) (2nd OCS) (3rd OCS)
1 30.8 -18.9 12.7 47.5 -3.8 9.9
2 45.1 -33.2 -10.6 35.6 -5.2 -13.1
3 24.1 52.1 -2.1 6.9 52.8 -0.6
Max. error part 2 19.6% 1.6% 0.0% 42.0% 18.9% 17.6%

Table 1: OCS and PCA-scenarios for the example from section 6.1. The last row shows
the maximal error part 2 as defined in Eq. (23).

unew f (unew) gOCS
m (unew) gPCA

m (unew)
m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

(1, 2, 1)T 148.1 145.1 148.9 149.3 125.7 131.5 132.6
(−2.0%) (0.5%) (0.8%) (−15.1%) (−11.2%) (−10.5%)

(1, 1, 2)T 135.8 124.1 134.6 134.6 97.0 136.9 136.9
(−8.6%) (−0.9%) (−0.9%) (−28.6%) (0.8%) (0.8%)

Table 2: We consider two potential new portfolios, unew = (1, 2, 1)T and unew = (1, 1, 2)T,
i.e. expansions of segment 2 or segment 3. Column f (unew) depicts the true risk measure-
ments, i.e. the 99% Value-at-Risk of unexpected losses for the new portfolio. Columns
under gOCS

m (unew) provide the risk measurement based on m = 1, 2 or 3 OCS. Columns
under gPCA

m (unew) provide the risk measurement based on PCA-scenarios. The lower lines
provide relative errors between scenario-based and true risk measurement (i.e. errors part
1 and 2 from Eq. (16) in total). Errors beyond 5% (10%) are highlighted in (dark) grey.

Therefore, the PCA-based risk measurement leads to substantial misevaluations for port-

folios in an environment of uinitial, as shown in the last row of Table 1. Specifically, the

right part of Table 2 points out that a non-marginal expansion of segment 2 is measured

based on PCA-scenarios with an error of −10.5% even if all three PCA scenarios are

used.

6.2 Risk visualization

Figure 2 presents the ellipsoid as defined in (21) in a scatter plot of 50,000 realizations

of the random vector (X1, X2, X3)T. Realizations with an aggregate loss above the 99%

Value-at-Risk, i.e. x1 + x2 + x3 > f(uinitial) = 100, are colored in red; the others are

colored in gray. The black plane satisfies x1 + x2 + x3 = 100 and thus separates the

red and gray realizations. We call this plane the VaR-plane, since it marks realizations

with an aggregate loss that equals the portfolio’s Value-at-Risk. The blue line reflects

the gradient scenario, the two green lines reflect the other two OCS.
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The plot on the left-hand side of Figure 2 shows that the ellipse is wide in the direction

of the second OCS, pointing out that the risks of segment 3 are currently well diversified

with those of segments 1 and 2 for realizations that are close to the VaR-plane, and that

risks of segment 3 could become more dominant if this segment were to be expanded.

The plot on the right-hand side shows that the ellipse is narrow from the perspective

of the x1-x2 plane: given that risks of segments 1 and 2 are highly correlated along the

VaR-plane, an exchange of these risks would hardly impact the aggregate Value-at-Risk.

Figure 2: The 3d plots show 50,000 realizations of (X1, X2, X3)T and the ellipsoid from
(21) from two perspectives. The blue line depicts the gradient scenario; the green lines
depict the second and third OCS.

We next continue the example with a contribution analysis, as described in section 5.3.

The upper part of Figure 3 investigates an expansion of segment 2. In light of section

5.3, we consider X1 + X2 + X3 as the risks of the pre-existing portfolio and X2 as risks

which are to be added. The left-hand side of Figure 3 presents the contribution ellipsoid

in a scatter plot of realizations of portfolio returns, X1 + X2 + X3, vs. realizations of X2,

X3. On the right-hand side, the blue curve depicts function

f̃(h) = ϱ(X1 + X2 + X3 + h · Xi)

for i = 2, 3; the red line depicts a first-order approximation of it based on the gradient

scenario, i.e. g̃1(h) as in Eq. (3). The y-coordinate of the respective gradient scenario

x̃OCS
1 on the left-hand side coincides with the increase of the red line from h = 0 to 1 as
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stated in Corollary 3. The green curve on the right-hand side depicts g̃2(h) and hence

additionally includes xOCS
2 in the approximation of f̃(h). The y-coordinate of the second

OCS, x̃OCS
2 , directly relates to the convexity of f̃(h), as also stated in Corollary 3.

Comparing contribution ellipsoids in the upper and lower parts of Figure 3 exhibits two

differences of the segments. Firstly, due to the larger y-coordinate of x̃OCS
1 , the ellipsoid

of segment 2 is directed upwards more strongly than for segment 3, pointing out that X2

is connected more strongly to tail risks of the portfolio than X3. Secondly, because of

the larger y-coordinate of x̃OCS
1 , the contribution ellipsoid of segment 3 is wider than the

one for segment 2. Consequently, a non-marginal extension of segment 3 can make X3

a dominant risk in the portfolio, and f̃(h) is hence more curved for segment 3 than for

segment 2.

6.3 Risk limiting

In their “Principles for An Effective Risk Appetite Framework”, the Financial Stability

Board (2013, p. 6. f.) requires financial institutions to install risk limits in order to

allocate their aggregate risk appetite to lower levels such as business segments or risk

categories. In this sense, the gradient capital allocation could be a starting point for risk

limits, as it points out how much a marginal expansion of segments affects the company’s

risk. If several segments change their volumes adversely, the composition of diversification

effects changes, and hence the segments’ contributions to the company’s overall risk alter.

Therefore, the initially defined risk limits may become ineffective. Buch et al. (2011, p.

3005) propose limits that build on the gradient capital allocation per business segment.

To ensure that the aggregate limit is not breached, the authors include a parameter Λ,

which is an upper bound for the largest eigenvalue of the Hessian matrix of f(u) on the set

of portfolios U . A drawback of their approach is that Λ does not recognize that convexity

may vary across segments, i.e. that volume changes in some segments may change the

risk profile of the portfolio more immediately than others. We now outline an approach

that overcomes this drawback.

Suppose the firm from section 6.1 holds enough equity capital to increase the aggregate

Value-at-Risk from 100 to 120. OCS allow for a natural starting point to define risk

limits in two stages: a first-order limit is based on the gradient scenario controlling the
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Figure 3: Left hand-side: scatter plot of X2 (bottom part) and X3 (lower part) vs.
X1 +X2 +X3 with contribution ellipsoids and OCS. Right part: Aggregate Value-at-Risk
according to true risk measurement (blue curve), gradient scenario (red line) and first
two OCS (green curve).

aggregate risk conditioned on the portfolio composition not having changed too much.

In addition, second-order limits based on additional OCS control the stability of the

portfolio composition.

The left side of Figure 4 depicts combinations of u1 and u2 with u3 = 1 being fixed; the

right side of the Figure depicts combinations of u1 and u3 with u2 = 1 being fixed. The

combinations below the green curve are admissible if risk limits are implemented based

on the true risk measurement, i.e.

f(u) ≤ 120
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Using the OCS in Table 1, we allocate limits as

∣∣∣∣(xOCS
1

)T
u

∣∣∣∣ ≤
√

1202 − 2 · 152 = 118.11 (26)∣∣∣∣(xOCS
2

)T
u
∣∣∣∣ ≤ 15 (27)∣∣∣∣(xOCS

3

)T
u

∣∣∣∣ ≤ 15 (28)

ensuring that

gm(u) ≤ 120

The left-hand sides of Ineq. (26) - (28) are linear in ui and depicted in Figure 4 by

the red line (gradient scenario), blue lines (second OCS) and dashed blue lines (third

OCS). The gray colored area marks portfolios that meet all limits in Ineq. (26) - (28). In

the u1u2-plane on the left-hand side Figure 4, the area of admissible portfolios is wider

than in the u1u3-plane on the right-hand side: a substitution of the risks of segment 1

with those of segment 2 hardly impacts the risk profile given that they are both strongly

connected with each other through the Gumbel copula. In contrast, if risks of segment 1

are substituted with those of segment 3, the risk profile changes more immediately, since

risks of segment 3—which are currently well diversified—become more dominant for the

risk profile.

A practical implementation of the proposed limits in the given example could be that

segments are allowed to increase their business by up to 20% (first-order limits) and

a central department regularly supervises the adherence to second-order limits. If a

second-order limit is breached, first-order limits have to be adjusted. Limits in the sense

of Ineq. (26) - (28) should be conservative and account for a potential remainder of

f(u) − gm(u), i.e. the right-hand sides of these inequalities should add up to a total limit

of 120 − maxu∈U |f(u) − gm(u)|.19 In the given example, gm(u) slightly overestimates

f(u), and the remainder hence does not appear in the limits.
19Starting points for assessing the remainder are provided by Paulusch and Schlütter (2022) Proposition

1 and Appendix I.
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Figure 4: Risk limits. The green curves reflect u1u2-combinations (left side, u3 = 1 is
fixed), and u1u3-combinations (right side, u2 = 1 is fixed), such that f(u1, u2, u3) = 120.
The red lines reflect combinations satisfying the gradient scenario limit in Ineq. (26) with
equality. The blue lines (dashed blue lines) reflect combinations satisfying the further
OCS limits in Ineq. (27) (Ineq. (28)) with equality. The gray colored area marks
portfolios meeting all limits in Ineq. (26) - (28).

7 Conclusion

This paper proposes a new methodology for translating portfolio risk into multivariate

scenarios of portfolio segments’ profits and losses. Our proposed orthogonal convexity

scenarios (OCS) extend the gradient capital allocation principle in the sense that they

inform about second-order sensitivities of portfolio risk with respect to the volumes of

portfolio segments. Specifically, OCS demonstrate which combinations of expansions or

reductions of portfolio segments can cause a substantial amplification of risk concentra-

tions. OCS can also be viewed as a generalization of Principal Component Analysis,

providing a second-order local approximation of portfolio risk without the need for as-

suming an elliptical distribution. We demonstrate applications of OCS in terms of risk

communication, visualization and risk limiting.

Our central Assumption (A) requires the risk measurement to be homogeneous in the

vector of decision variables. Limitations to this assumption may arise if idiosyncratic

risks within a segment change with the segment’s volume, which may be particularly

relevant for insurance risks. To overcome this limitation, the literature offers starting
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points based on Lévy processes, allowing for a homogeneous approximation (Mildenhall,

2017) and a meaningful gradient allocation (Boonen et al., 2017).

Throughout this article, we assume that the risk model, i.e. the original risk measurement

f(u), is well established and allows for calculating first and second-order derivatives. The

estimation of first- and/or second-order derivatives based on sample data or a Monte

Carlo simulation is addressed in many articles, for example, in Gourieroux et al. (2000),

Hong and Liu (2009), Gómez et al. (2022), Gribkova et al. (2022), Paulusch and Schlütter

(2022). It seems promising that OCS can favor the estimation of second-order derivatives.

For this purpose, one could set up an iterative process that uses OCS to identify particu-

larly relevant directional derivatives to which the estimation could pay special attention.

We leave this however beyond the scope of this paper and for future research.
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Appendix

A Proofs

A.1 Proof of Proposition 1

Note that the standard deviation of uTX is
√

uTΣu. Therefore, in both cases a. and b.,

the original risk measurement can be written as

f(u) = z ·
√

uTΣu (29)

with a constant z > 0. For all u ∈ span{w1, ..., wm}, there are constants λ1, ..., λm ∈ R

such that

u =
m∑

i=1
λiwi (30)

and we have

g2
m(u) =

m∑
j=1

((
xP CA

j

)T
u
)2 Eq. (6)= z2 ·

m∑
j=1

 wT
j · Σ√

wT
j Σwj

· u

2

Eq. (30)= z2 ·
m∑

j=1

 wT
j · Σ√

wT
j Σwj

·
m∑

i=1
λiwi

2

= z2 ·
m∑

i,j=1
λ2

i ·

wT
j · Σ · wi√
wT

j Σwj

2

Eq. (5)= z2 ·
m∑

i=1
λ2

i ·

wT
i · Σ · wi√
wT

i Σwi

2

= z2 ·
m∑

i=1
λ2

i · wT
i · Σ · wi

Eq. (30)= z2 · uT · Σ · u
Eq. (29)= f 2(u)

By definition in lines (3) and (29), gm(u) ≥ 0 and f(u) ≥ 0. Therefore, g2
m(u) = f 2(u)

implies gm(u) = f(u). For uinitial ∈ span{w1, ..., wm}, the statements about (QC1) and

(QC3) thus follow immediately.

A.2 Proof of Lemma 1

With assumption (A), the second equation of (9) holds because the differential operator

is linear. ⟨., .⟩H defines a symmetric bilinear form, since we have for all w1, w2, w3 ∈ U

and all λ ∈ R: (i) ⟨w1, w2⟩H = wT
1 Hw2 = wT

2 Hw1 = ⟨w2, w1⟩H due to the symmetry of
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H; (ii) ⟨w1 + w2, w3⟩H = (w1 + w2)THw3 = wT
1 Hw3 + wT

2 Hw3 = ⟨w1, w3⟩H + ⟨w2, w3⟩H ;

(iii) ⟨λ · w1, w2⟩H = (λ · w1)THw2 = λ · wT
1 Hw2 = λ · ⟨w1, w2⟩H .

A.3 Proof of Lemma 2

We have

((
xOCS

j

)T
u
)2 Eq. (13)=


 Hwj√

2wT
j Hwj

T

u


2

= 1
2wT

j Hwj

· (wT
j Hu)2 = (⟨wj, u⟩H)2

2⟨wj, wj⟩H

= (⟨wj, u⟩H)2

2 (⟨wj, wj⟩H)2 · wT
j Hwj = 0.5 ·

(
⟨wj, u⟩H

⟨wj, wj⟩H

· wj

)T

H

(
⟨wj, u⟩H

⟨wj, wj⟩H

· wj

)
Eq. (11)= 0.5ũT

j Hũj

A.4 Proof of Theorem 1

By definition in lines (3) and (8), gm(u) ≥ 0 and gTaylor(u) ≥ 0 for all u ∈ U . Hence,

Eq. (15) implies gm(u) = gTaylor(u) for all u ∈ span{w1, ..., wm}. This implies (QC1).

According to Theorem 1 from Paulusch and Schlütter (2022), gTaylor(u) satisfies (QC2)

and (QC3) with V1 = V2 = Rn. Since gm(u) = gTaylor(u) for u ∈ span{w1, ..., wm}, we can

conclude that (QC3) holds with V2 = span{w1, ..., wm}. Focusing on (QC2), we calculate

with the definition of OCS in Eq. (13) in connection with Eq. (3)

g2
m(u) =

m∑
i=1

((
xOCS

i

)T
u
)2

=
m∑

i=1

 wT
i Hu√

2wT
i Hwi

2

The gradient of g2
m(u) evaluated at uinitial is obtained as

∇ug2
m(uinitial) = 2 ·

m∑
i=1

wT
i Huinitial

2wT
i Hwi

· wT
i H

Given that uinitial ∈ span{w1, . . . , wm}, we can write analogously to Eq. (10)

uinitial =
m∑

j=1

⟨wj, uinitial⟩H

⟨wj, wj⟩H

· wj (31)
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Noting that wiHwj = 0 for all i ̸= j, we have

∇ug2
m (uinitial) =

m∑
i,j=1

⟨wj, uinitial⟩H

⟨wj, wj⟩H

wT
i Hwj

wT
i Hwi

· wT
i H =

m∑
i=1

⟨wi, uinitial⟩H

⟨wi, wi⟩H

· wT
i H

= uT
initialH

Eq. (7)= ∇uPf2 (uinitial) (32)

According to Assumption (A), f(u) > 0 in an environment of uinitial. Therefore, line (32)

implies

∇ugm (uinitial) = ∇ugTaylor (uinitial) = ∇uf (uinitial) , (33)

where the last equality follows from Theorem 1 of Paulusch and Schlütter (2022).

A.5 Proof of Corollary 1

We have

xgrad = ∇uf(uinitial)
Eq. (33)= ∇ugm (uinitial)

Eq. (8)= ∇u

√
0.5uTHu

∣∣∣
u=uinitial

= Huinitial√
2uT

initialHuinitial

Eq. (13)= xOCS
1

where the last equation uses w1 = uinitial.

A.6 Proof of Corollary 2

For all j = 1, . . . , m, we have

(
xOCS

j

)T
H−1xOCS

j

Eq. (13)= 1
2wT

j Hwj

· wT
j HTH−1Hwj

H is symmetric= 1
2wT

j Hwj

· wT
j Hwj = 0.5

A.7 Proof of Corollary 3

w1 and w2, as defined, are orthogonal in the sense of ⟨., .⟩H , since

wT
1 Hw2 = (1, 0) ·

 0

−h2
12/h11 + h22

 = 0
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Inserting w2 into Eq. (13) implies

xOCS
2 = 1√

2(h22 − h2
12/h11)

 0

h22 − h2
12/h11

 = 1√
2

 0√
h22 − h2

12/h11

 (34)

Corollary 1 implies ∇uf(uinitial) = xOCS
1 . Together with Euler’s homogeneous function

theorem, we have

f(uinitial) = (∇uf(uinitial))T · uinitial =
(
xOCS

1

)T
· uinitial = xOCS

11 (35)

Let Hg(u) and Hg2(u) denote the Hessian matrices of functions g(u) and g2(u) evaluated

at u. The chain rule and product rule for multivariate functions imply

Hg2(uinitial) = ∇u

[
2g(u) (∇ug(u))T

] ∣∣∣
u=uinitial

= 2∇ug(u) (∇ug(u))T + 2g(u)Hg(u)
∣∣∣
u=uinitial

⇔ Hg(uinitial) = 1
g(u)

(
0.5Hg2(u) − ∇ug(u) (∇ug(u))T

) ∣∣∣
u=uinitial

Theorem 1⇔ Hf (uinitial) = 1
f(u)

(
0.5H − ∇uf(u) (∇uf(u))T

) ∣∣∣
u=uinitial

Eq. (35)= 1
xOCS

11

(
0.5H − xOCS

1

(
xOCS

1

)T
)

(36)

Inserting w1 = (1, 0)T into Eq. (35) provides

xOCS
1

(
xOCS

1

)T
= 1

2wT
1 Hw1

Hw1 (Hw1)T = 1
2h11

h11

h12

 (h11, h12)

= 1
2

h11 h12

h12 h2
12/h11

 (37)

Inserting line (37) into (36) implies that entry (2,2) of Hf (uinitial) is

1
2xOCS

11

(
h22 − h2

12/h11
) Eq. (34)=

(
xOCS

21

)2

xOCS
11

and that all other entries of Hf (uinitial) are zero.
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A.8 Proof of Proposition 2

a. Line (29) implies f 2(u) = z2 · uTΣu and H = ∇u (z2 · 2Σu) |u=uinitial = 2z2Σ.

b. Starting from the definition in line (13) and using assertion a., we have

xOCS
j = Hwj√

2wT
j Hwj

= 2z2Σwj√
2wT

j 2z2Σwj

= Σwj√
wT

j Σwj

· z = xPCA
j

c. To identify w1, we can neglect condition ⟨u, wi⟩H = 0 in U⊥ from Eq. (18), since there

are no formerly selected wi. Then, the eigenvector of Σ relating to its largest eigenvalue

solves Eq. (20) noting that g2
Taylor(u) = z2uTΣu. Due to H = 2z2Σ, the eigenvalues of Σ

are a multiple of those of H, and the two matrices’ eigenvectors coincide. With vectors

w1, ..., wm being identified as eigenvectors corresponding to the m largest eigenvalues, the

columns of matrix M in Appendix B can be set to the eigenvectors relating to the other

positive eigenvalues of Σ. Therefore, Λ = MTHM includes the remaining eigenvalues of

H. Since MTM is the identity matrix of dimension ñ − m, the smallest eigenvalue of

Λ−0.5MTMΛ−0.5 is the inverse of the largest eigenvalue of H, say λ−1
max. wm+1 from Eq.

(40) is the corresponding eigenvector of Σ, since

wT
m+1Σwm+1 = wT

m+1Hwm+1

2z2 = sTΛ−0.5MTHMΛ−0.5s

2z2sTΛ−0.5MTMΛ−0.5s
= sTs

2z2λ−1
max

= λmax

2z2

d. With z = 1, the conditions in lines (21) and (22) are equivalent, since vTH−1v ≤

0.5 ⇔ vT(2Σ)−1v ≤ 0.5 ⇔ vTΣ−1v ≤ 1.

e. With assertion b. and w1 = uinitial, noting that Corollary 1 implies xOCS
1 = xgrad

1 and

using Eq. (29), we have

xOCS
1j

f(uinitial)
=

(
Σw1√
wT

1 Σw1
· z
)

j

z ·
√

uT
initialΣuinitial

= Σj. · uinitial

uT
initialΣuinitial

=
cov

(
Xj, XT · uinitial

)
var

(
XT · uinitial

) = βj
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B Lagrange procedure for OCS selection

We start with the Lagrangian for identifying wm+1, i.e.

L1(w, γ0, γ1, ..., γm) = gTaylor(ũ + w) − gm(ũ + w) + γ0 ·
(
wTw − 1

)
+

m∑
i=1

γi · wT
i Hw

In this Lagrangian, we can omit the term gm(ũ + w), since it vanishes in the first-order

condition: for any w ∈ U⊥, we have gm(ũ + w) = gm(ũ), and hence ∇wgm(ũ + w) = 0.

Since the target function gTaylor(ũ + w) is non-negative, we can replace it with its square

and rewrite

g2
Taylor(ũ + w) = 0.5 · (ũ + w)TH(ũ + w) = 0.5 ·

(
ũTHũ + 2ũTHw + wTHw

)
= 0.5ũTHũ + 0.5wTHw

Omitting the constant term and the factor 0.5, the target function becomes wTHw.

Let ñ ≤ n denote the rank of H. We assume that m < ñ, since Theorem 1 otherwise

implies that there is no remaining error part 2. Define a matrix M ∈ R
n×(ñ−m) with

rank(HM) = ñ − m, Mv ∈ U⊥ for all v ∈ Rñ−m and the columns of M being orthogonal

in the sense of ⟨., .⟩H . To ensure that w ∈ U⊥, we set w = Mv and identify v maximizing

g2
Taylor(Mv) using the simpler Lagrangian

L2(v, γ) = vTMTHMv + γ
(
vTMTMv − 1

)
(38)

We define Λ = MTHM , which by construction is a diagonal matrix with all diagonal

elements being positive, since rank(HM) = ñ − m and H is positive semidefinite. Let

λ1, ..., λñ−m denote the diagonal elements of Λ and let the matrix Λ−0.5 be a diagonal

matrix with diagonal entries λ−0.5
1 , ..., λ−0.5

ñ−m. We substitute v = Λ−0.5s and rewrite the

Lagrangian in line (38) as

L2(s, γ) = sTΛ−0.5ΛΛ−0.5s + γsTΛ−0.5MTMΛ−0.5s

= sTs + γsTΛ−0.5MTMΛ−0.5s
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The first-order condition of maximizing L2(s, γ) includes

∇sL2(s, γ) = 2s + 2γΛ−0.5MTMΛ−0.5s = 0 (39)

which is satisfied if s is an eigenvector of Λ−0.5MTMΛ−0.5. We select s relating to the

smallest eigenvalue of Λ−0.5MTMΛ−0.5. Finally, we determine portfolio wm+1 with the

largest approximation error and satisfying ∥wm+1∥2 = 1 as

wm+1 = 1√
sTΛ−0.5MTMΛ−0.5s

· MΛ−0.5s (40)

Scenario wm+2 can immediately be identified by inserting the eigenvector relating to the

second smallest eigenvalue into line (40) and so on.
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