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Policy Complementarities in the 
Promotion of Electric Vehicles

Abstract
To accelerate the electrification of the transport sector, many countries subsidize both the 
construction of public charging infrastructure and the purchase of electric vehicles (EVs). Possible 
complementarities between these measures raise the question of their optimal calibration. Drawing 
on county-level panel data from Germany spanning 2014–2021, this paper explores this question 
with an econometric model of EV uptake. Employing fixed effects- and instrumental variable 
estimators, we find that charging infrastructure has a positive and significant effect on the 
uptake, one whose magnitude increases with the subsidy level for car purchases. Simulations 
using the model estimates show how the predicted number of EVs for a given charging capacity 
level increase with higher consumer subsidies, allowing for a back-of-the-envelop calculation 
of the optimal expenditure of the two measures.
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1 Introduction

According to the Tinbergen principle, achieving a certain number of policy targets re-

quires at least the same number of instruments (Tinbergen, 1952). If there are fewer

instruments than targets, some policy goals will not be achieved. Conversely, if there

are multiple instruments for a single target, complementarities between them may afford

policymakers with opportunities to reach the target at lower expense, presuming that the

instruments are appropriately calibrated.

This paper explores potential complementarities with respect to the effect of charging

capacity on promoting electric vehicles (EVs) in Germany, and whether this effect varies

according to the level of consumer subsidies extended for EV purchases. Since 2016,

the German government has pursued a two-pronged approach to promote EV uptake

that includes consumer subsidies and subsidies for the construction of public charging

infrastructure. As of June 2020, the initial budget of e1.2 billion for both measures was

more than doubled to e2.59 billion, with e2.09 billion allocated to consumer subsidies

and the remaining e500 million to subsidies for charging infrastructure.

EV uptake in Germany has subsequently skyrocketed. According to statistics from

the European Alternative Fuel Observatory (EAFO, 2022), the market share of new EV

registrations reached 25.7% in 2021, compared to just 2.9% two years before. Given that

EVs are increasingly considered to be instrumental in not only abating CO2 emissions,

but also in improving local air quality, the question arises as to the drivers of this growth.

This especially applies to the respective roles played by consumer subsidies and subsidies

for charging infrastructure, including their potential interaction and the extent to which

their allocation is calibrated to maximize the return on public expenditure.

While a plethora of studies has focused on financial incentives for EV purchases and

charging infrastructure individually (Coffman et al., 2017; Greene et al., 2020; Illmann

and Kluge, 2020; Javid and Nejat, 2017; Jenn et al., 2018; Liao et al., 2017; Nazari et al.,

2018; Sommer and Vance, 2021; Wee et al., 2018; Zambrano-Gutiérrez et al., 2018; Árpád

Funke et al., 2019), relatively few have investigated them jointly. Exceptions include the
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studies by Li et al. (2017), Springel (2021), and Li et al. (2022), all of which draw

on panel data to investigate the determinants of EV uptake in the U.S., Norway, and

China, respectively. A common conclusion reached by these studies is that subsidies for

infrastructure are more cost-effective than those for EV purchases. Li et al. (2017) find

that subsidizing charging stations is more than twice as effective as subsidizing consumer

purchases on a per dollar basis in the U.S. Springel (2021) reaches a similar finding based

on a structural equation model with Norwegian data, but she qualifies it by noting that

the relation eventually inverts as government spending increases, because the marginal

impact of infrastructure subsidies tapers off faster. Li et al.’s (2022) analysis of the

Chinese market shows that investing in charging stations is nearly four times as effective

as subsidizing consumer purchases in promoting EVs. A simulation analysis of the U.S.

market by Cole et al. (2021) that evaluates different financial incentives corroborates these

econometric results, pointing to the higher cost-effectiveness of charging infrastructure.

Our work builds on this small body of evidence by exploring complementarities in

the German subsidization of EV purchases and charging infrastructure. We construct

county-level panel data on monthly EV registrations from Germany covering the years

2014-2021, a period that straddles the introduction of the consumer subsidy in 2016

and two subsequent increases in 2019 and 2020. We specify an econometric model that

allows for differential effects of charging infrastructure according to the subsidy level. To

address the possible simultaneity of charging infrastructure and EVs, we employ two-

stage least squares models using two instruments to account for endogeneity: the number

of transformers along the electric grid at the county level, and the stock of subsidies

allocated at the county level for charging infrastructure.

Among our key results, we find that charging infrastructure has a positive and sta-

tistically significant effect on the uptake of EVs, one that increases in magnitude with

the increase in the subsidy level. Drawing on a technique suggested by King et al. (2000),

we use the model estimates to simulate how the predicted number of EVs for a given

charging capacity level increase with a higher consumer subsidy, which serves as a basis

for calculating the optimal expenditure between these two measures. With reference to
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the actual budget allocated between 2016 and 2021, this calculation reveals cost savings

of up to 28% by shifting expenditures from consumer subsidies to subsidies for charging

infrastructure.

The next section describes the data sets used for our analysis. Section 3 introduces

the econometric model and identification strategy. Section 4 discusses the econometric

estimates and results from the simulation. Section 5 uses the model estimates to calculate

the optimal allocation of the government budget among the two subsidies to achieve the

biggest budgetary return with respect to EV adoption in Germany. Section 6 concludes.

2 Data

The data is assembled from multiple sources that were merged via a Geographic Infor-

mation System. Descriptive statistics are presented in Table 1. Data on the dependent

variable, EV registrations, is obtained from the vendor IHS Markit, which provides counts

of registrations by month and county. We consider all passenger EVs registered in Ger-

many between January 2014 and October 2021. Given our focus on the impact of charging

capacity, we limit the data to battery electric vehicles and exclude plug-in hybrids, owing

to the latter’s partial reliance on fossil fuel and their flexibility in switching to an internal

combustion engine (Illmann and Kluge, 2020; Sommer and Vance, 2021).

Figure 1 illustrates the uptake of EVs since 2014. In July 2016, the first iteration

of the purchase-subsidy was introduced at e4000 per battery EV for cars priced under

e60,000 (Table 2). In November of 2019, it was modified into a two-tier structure, with a

subsidy of e6,000 for EVs priced under e40,000 and of e5,000 for those priced between

e40,000 and e65,000. These two tiers were increased again in June of 2020 as part of

the COVID-19 stimulus package, to e9,000 and e7,500, respectively. The number of

registered EVs picked up momentum markedly over this time frame. An especially large

jump in monthly registrations of 638% is seen by the outset of 2021, following the second

increase in the subsidy six months prior.

Data on charging infrastructure is obtained by the Federal Network Agency BNetzA
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Table 1: Summary statistics of the estimation sample

Mean St. dev Min Max

Monthly EV registrations 16.579 49.367 0.000 3454.000

Charging points (#) 38.859 84.322 0.000 1465.000

Total capacity (in 100 kW) 11.382 22.579 0.000 377.110

EV consumer subsidy (in e1000) 65.044 247.912 0.000 19551.3000

Infrastructure subsidy (in e1000) 7.3091 39.724 0.000 2561.823

No.of houses (# in 1000) 28.233 17.621 2.976 132.315

Purchase power pc (e1000) 23.161 2.885 16.880 36.737

Population density (persons/km2) 528.490 694.394 34.844 4806.476

Gasoline price (e/litre) 1.456 0.131 1.178 9.949

Age of population 44.983 1.956 40.200 51.200

No.of employees (# in 1000) 79.785 91.487 11.965 1413.970

Transformers (#) 15.180 26.211 0.000 445.000

New covid-19 cases 116.648 467.572 0.000 14550.000

Table 2: Consumer subsidies for battery electric vehicles in Germany

EV price (in e) Federal share of subsidy in e

Subsidy level-1
(Jul 2016 - Oct 2019)

<60,000 2000

Subsidy level-2 <40,000 3000
(Nov 2019 - Jun 2020) 40,000-65,000 2500

Subsidy level-3 <40,000 6000
(from Jun 2020) 40,000-65,000 5000
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Figure 1: Evolution of electric cars in Germany

(BNetzA, 2021). All charging stations are documented by exact geographical locations

and with detailed information on start date of operation, number of charging points, their

type, and capacity. The Federal Ministry for Digital Affairs and Transport (BMDV)

supports construction, modernization, and the associated grid connection of publicly

accessible charging infrastructure by providing funding of up to a maximum of e20,000

per charging point depending on the capacity and a maximum of e100,000 for the grid

connection per location, which is allocated through a competitive tendering process. By

the end of October 2021, Germany had a total of 49,955 public charging points under

operation, among which 84% are normal chargers with an average capacity of 21 kilowatts

and the remaining are fast chargers with an average capacity of 100 kilowatts. In this

study, we measure public charging infrastructure by the overall power capacity, following

evidence that consumers value the rate at which they can charge their EVs more than the

mere number count of these stations (Illmann and Kluge, 2020). Moreover, this serves to

consolidate normal and fast charging stations, and is consistent with the capacity-based

allocation of the subsidy. Figure 2 depicts the total capacity of the charging stock in

kilowatts (kW) along with the cumulative subsidies extended for its construction.

The data is completed by several regional, time-varying control variables assembled
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Figure 2: Temporal development of charging infrastructure

from different sources. The RWIGEO-GRID km2 raster data (Breidenbach and Eilers,

2018) provides measures of the number of one and two family homes in a county, which

proxies for the possibility of charging an EV at home. Two other demand side variables

from this source are purchasing power and population density. Controls for the average

age of the population and the number of employees are drawn from the GENESIS (2021)

database. Last, we control for the deflated petrol price using data from the Market

Transparency Unit for Fuel, which records fuel prices for each of Germany’s roughly 15,000

gas stations (see Frondel et al., 2020), as well as the 7-day-incidence rate of COVID-19

cases (RKI, 2022).

The data covers 94 months between January 2014 and October 2021. With 401

NUTS3 regions (counties), yield inga balanced panel with N =37,694 observations.

3 Methodology

Our point of departure is a fixed effects model specified as:

EVit = β0 + βcchargeit + βcschargeit · subt +X ′
itβx + λsy + µi + ρt + εit, (1)
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where EVit is the number of electric vehicle registrations in county i and month t, chargeit

measures the total capacity (in kilowatts) of the charging infrastructure available for

public use, and subt is the average subsidy a consumer would receive for purchasing an EV.

By including an interaction between subsidy level and charging capacity, chargeit · subit,

we distinguish between the effect of public charging infrastructure at different subsidy

levels. Vector X contains the time-varying control variables. State-by-year fixed effects

(λsy) control differential effects across states and years, while month fixed effects (ρt)

control for differential effects across time, and county fixed effects (µi) capture time-

invariant unobservable characteristics at the county level. The idiosyncratic error term

εit captures unobserved shocks.

While the specification in Model (1) affords broad coverage of unobserved influences

that could otherwise lead to omitted variable bias, endogeneity may nevertheless emerge

given potential simultaneity in the relationship between charging infrastructure and the

uptake of electric vehicles. To the extent that charging infrastructure is built where the

prevalence of electric cars is high, for example, the estimates of βc and βcs would be

biased. We address this potential source of simultaneity by instrumenting the measure

of charging capacity and employing two-stage-least squares techniques to estimate Model

(1). We draw on two instruments, denoted Z, employing these individually in separate

models.

The first follows Springel’s (2021) analysis of the Norwegian EV market, which uses

the volume of subsidies for the development of infrastructure at a regional level to in-

strument the charging station network. Correspondingly, we use the cumulative subsidy

allocated for charging stations in each county and month as an instrument (denoted sta-

tion subsidies). The second IV follows Sommer and Vance (2021) by using a measure of

transformers along the electric grid at the county level, since they act as a regulator to

bring down the transmission voltages that can be supported by charging points. As the

number of transformers, which is obtained from georeferenced data provided by Geofab-

rik (2016), does not vary over time in our sample, we introduce temporal variation by

interacting it with the lagged charging capacity in all counties other than the county cor-
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responding to the given observation (denoted transformers), following a similar approach

as Li et al.’s (2017) analysis of the US EV market.

The potential endogeneity of charging capacity also necessitates an instrument for

its interaction with the subsidy, sub. Following Wooldridge (2001), we create instruments

from the multiplication of sub with transformers and station subsidy. Model (1) is thus

specified with two endogenous variables and two instruments, making it just identified.

The validity of the instruments rests on two assumptions pertaining to their covari-

ance: (i) they are correlated with charging capacity, i.e. cov(zit, chargeit) ̸= 0, while (ii)

they are not correlated with the error term, cov(zit, εit) = 0. The first assumption, which

is tested below for each instrument, comports with intuition. It is expected that more

subsidies for charging infrastructure would be positively correlated with charging capac-

ity. A positive correlation of charger capacity with transformers is also expected since

they are used to step down the voltage from the distribution grid to the level supported

by charging outlets (Brinkel et al., 2020; Khan et al., 2019).

The second assumption – the IV has no direct causal effect on the outcome -—

cannot be formally tested, but is plausible. There is no evident pathway through which

transformers, of which most people are unaware, would affect EV purchases. Similarly, it

is unlikely that subsidies for charging infrastructure would directly bear on EV purchases

since these received scant press coverage and were generally known only to industry

interests through government publications.

4 Results

Our discussion focuses on the relationship between charging capacity and the adoption of

EVs, with the first stage IV estimates presented in the appendix. We turn first to Panel

A of Table 3, which presents estimates of the average effect of charging capacity on the

adoption of EVs, omitting its interaction with the subsidy level. The FE model in the first

column indicates that deploying an additional capacity of 100 kW is associated with the

adoption of one additional EV per county in the month of the deployment. Models (2) and
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(3) instrument charging capacity using Station subsidy and Transformers, respectively,

yielding estimates that are roughly double that of the FE model but that are similar to

each other. The first stage F-statistics, at 32 and 9.8, respectively, provide some support

for the strength of the instruments based on the conventional reference of 10, though

they fall well below the threshold of 104.7 recently suggested by Lee et al. (2021). We

consequently calculate the 95% confidence interval of the estimate of Total capacity based

on the tF adjustment procedure proposed by the authors, which is robust to weak IVs.

For Model (2) the estimates range between 1.317 and 2.918, while they cross zero for

Model (3), ranging between -0.186 and 4.720.

Panel B of Table 3 presents models that account for the differential affects of charging

infrastructure according to the EV subsidy levels using the interaction term as specified

in Equation (1).1 The findings across all models confirm a positive association of charg-

ing capacity with EV uptake, and one that increases with increases in the level of the

consumer subsidy. As in Panel A, the estimated coefficients of the two IV models are

higher than the FE model but are again similar to each other. The use of Station subsidy

instrument is again seen to yield higher first stage F-statistics, but further application of

the tF procedure is in this case precluded by the two endogenous variables in the specifi-

cation, for which critical values have not been calculated. Moreover, with respect to the

remaining control variables, most have expected signs or are statistically insignificant.

To glean more insights into the coefficient estimates, Figure 3 presents the corre-

sponding marginal effects of charging infrastructure for each of the three subsidy levels

for EV purchases. While the estimates using IVs are somewhat larger in magnitude than

the standard FE estimate, the confidence intervals of all three estimates overlap. More-

over, the IV estimates differ only negligibly. Focusing on the differential effect of the

consumer-subsidy, we note that during the first subsidy level, the FE estimates indicate

that an increase of 100 kW in the charging capacity is associated with an increase of 1.08

EVs in the month following its deployment, with the effect roughly doubling to 2.15 EVs

1Recognizing that including an interaction of two variables that vary within units in a FE regression
may yield biased estimates, we follow a “double demeaning” approach as suggested by Giesselmann and
Schmidt-Catran (2022).
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Table 3: FE and IV estimation results for the uptake of EVs

(1) FE (2) FE-IV: Station subsidy (3) FE-IV: Transformers

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Panel A. Models without interaction between infrastructure and EV subsidy

Total capacity (100kW) 1.038*** (0.175) 2.118*** (0.347) 2.267*** (0.691)

Purchase power pc 4.500** (2.222) 3.596* (2.059) 3.471 (2.137)

Population density 0.128 (0.107) 0.219** (0.100) 0.232** (0.111)

Fuelprice 3.889 (2.702) 3.011 (2.123) 2.890 (2.167)

No.of houses -0.259 (0.752) -1.170 (1.260) -1.296 (1.407)

Avg age of population 1.237 (5.287) 1.309 (4.729) 1.319 (4.752)

No.of employees 0.333 (0.561) -1.734** (0.798) -2.019 (1.395)

New covid-19 cases 0.020*** (0.003) 0.010** (0.004) 0.009 (0.007)

Constant -222.126 (241.461) -314.996 (235.557) -330.687 (240.405)

Weak identification test - 32.97 9.42

No. of observations 37293 37293 37293

Panel B. Models with interaction between infrastructure and EV subsidy

Total capacity (100kW) 0.478*** (0.181) 0.809*** (0.251) 0.893 (0.602)

Total capacity × EV subsidy 0.305*** (0.037) 0.470*** (0.095) 0.483*** (0.169)

Purchase power pc 5.095** (2.289) 4.885** (2.086) 4.821** (2.180)

Population density 0.038 (0.074) 0.044 (0.057) 0.049 (0.077)

Fuelprice 3.618 (2.638) 2.958 (2.195) 2.860 (2.150)

No.of houses -0.879 (0.987) -1.747* (0.986) -1.863* (1.097)

Avg age of population 1.091 (5.353) 1.055 (4.828) 1.056 (4.772)

No.of employees 1.561*** (0.402) 1.011* (0.608) 0.857 (1.201)

New covid-19 cases 0.015*** (0.003) 0.007 (0.004) 0.005 (0.007)

Constant -263.981 (243.076) -194.094 (194.205) -145.441 (254.113)

Weak identification test: - 10.61 8.01
First-stage:Charging capacity

Weak identification test: - 29.75 14.38
First-stage:Capacity×EV subsidy

No. of observations 37293 37293 37293

Notes: The dependent variable is monthly EV registrations in all model specifications. For IV models, measure of the
cumulative subsidy amount granted for charging stations was used as an instrument for model specification in column (2), and
count of transformers interacted with the lag of national charging points as an instrument for model specification in column
(3). EV subsidy is expressed in e1000. All models include the same set of fixed effects: year-month FEs, county level FEs, and
year-bundesland FEs. The Sanderson-Windmeijer multivariate F-statistic is reported for each of the first-stage regressions in
panel-B. Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical significance at the 1%, 5%, and
10% level, respectively.

by the third subsidy period. A similar increase is indicated by the IV models.

Moving beyond the coefficient estimates, Figure 4 presents the predicted outcomes

and associated 95% confidence intervals using a statistical simulation approach suggested

by King et al. (2000). The method employs a sampling procedure akin to Monte Carlo
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Figure 3: Marginal effect of charging infrastructure on the uptake of EVs in various
subsidy periods

simulation in which a large number of values -— say 1000 -— of each estimated parameter

is drawn from a multivariate normal distribution. Taking the vector of coefficient esti-

mates from the model as the mean of the distribution and obtaining the variance from the

variance–covariance matrix, each of the 1000 simulated parameter estimates can be mul-

tiplied by corresponding predetermined values of the explanatory variables to generate

1000 expected values. Ordering these values from lowest to highest and then referencing

the 5th and 95th positions in the array yields the point estimates and confidence intervals

plotted in the figure.

The figure presents predicted EVs for the range of charging capacity observed in

the data over three levels of the subsidy, evaluated at the mean of the other explanatory

variables. For a given level of charging capacity, the predicted number of EVs is seen to

increase substantially as the subsidy increases. Moving from the zero purchase-subsidy

level to a subsidy of e5,500 results in a nearly fourfold increase in EVs for any given level

of charging capacity2.

The trade-offs inherent in balancing consumer subsidies with subsidies for charging

2The subsidy of e2,000 per car and e5,500 per car correspond to the average subsidy for purchasing
an EV in the subsidy periods 1 and 3 as reported in Table 2.
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Figure 4: Predicted effect of charging infrastructure on the uptake of EVs by subsidy
level

capacity can be illustrated by a simple optimization exercise that assumes a target level

of 75 EVs per county, which corresponds to the sample average in the final month of

the data. We further assume spending of e175/kW for charging infrastructure subsidies,

which is estimated by dividing the total construction of charging infrastructure (1,557,500

kW) between 2017 and 2021 by the total spending on subsidies (e275 million). With

these figures in hand, coupled with the estimated relationship between charging capacity

and EVs, it is possible to estimate the total outlay per EV for different levels of consumer-

subsidy and charging capacity. Generating such estimates is, of course, an approximate

undertaking for which caveats abound. Aside from the uncertainty underpinning the

econometric estimates, these caveats include the neglect of general equilibrium effects.

Nevertheless, the simulated predictions suggest a reasonable basis for obtaining an in-

dicative measure of total costs per EV.

Figure 5 presents the resulting plot, with the points along the line indicating different

combinations of consumer subsidy and charging capacity that correspond to an uptake

of 75 EVs per county. In this example, the minimum total cost per EV is e8,300, which

occurs at a capacity of 2000 kW and a purchase-subsidy of e4,1553. The figure thus

3The optimization calculation is carried out with an objective of minimizing the overall spending per
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highlights how the overall effectiveness of the two types of subsidies changes depending

the budget allocation.

Figure 5: Relation between money spent per car and charging capacity for a given number
of EVs (in this case 75 per month)

5 Optimal Calibration of Subsidies

The complementarity between subsidies for charging infrastructure and EVs evidenced

by the econometric results raises the question of the optimal budget allocation between

these two subsidies to minimize the overall spending and thereby yield the biggest ‘bang

for the buck’ for policymakers in reaching a target EV market. Using the optimization

logic underpinning Figure 5, we pursue this question with respect to the period between

2016 and 2021, when approximately 600,000 EVs were registered in Germany and e2725

million was expended in subsidies for charging infrastructure and EV purchases. In doing

so, we assume that 85% of the EVs will receive the price subsidy, consistent with the

current proportion of EVs that are subsidized in Germany (Sommer and Vance, 2021).

Table 4 shows the breakdown of this spending, with e2450 million allocated to the

consumer subsidy and e275 million allocated to the infrastructure subsidy, resulting in

a 90/10 split in favor of consumer subsidies. Recognizing the complementarity of this

EV using the excel solver.
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measure with charging capacity, we calculate that the same number of EVs could have

been reached with a total expenditure of e1944 million, a savings reduction of 28%.

Achieving this would have required a 318% increase in spending on the infrastructure

subsidy coupled with a 67% decrease in spending on the consumer subsidy, resulting in

a roughly 40/60 split in favor of the latter.

Table 4: Calibration of optimal consumer and station subsidies

Actual money spent by the Cost-effective mix of
government (in million e) subsidies (in million e)

EV consumer subsidy 2450 (90%) 794 (40%)

Infrastructure subsidy 275 (10%) 1150 (60%)

Total amount 2725 1944

It bears noting that this calibration likely reflects a conservative estimate of the effec-

tiveness of the public charging infrastructure because the installed capacity will continue

to contribute to future EV sales that are not accounted for in the calculation. Overall,

this finding is in line with the studies of Li et al. (2017), Springel (2021), and Li et al.

(2022), all of which suggest that subsidizing charging infrastructure is more effective than

consumer subsidies on a per dollar basis in promoting electric vehicle adoption.

6 Conclusion

Over the last decade, the development and adoption of electric vehicles have increased sig-

nificantly in many countries, being widely seen as a key pathway to a low-carbon future.

To facilitate the acceleration of electric vehicle adoption, governments have implemented

various subsidy programs. This paper explores the promotion of electric mobility via

subsidies for charging infrastructure and electric vehicles (EVs), as well as their interac-

tion. To this end, we use German panel data on vehicle registrations spanning January

2014 to October 2021 to quantify the effect of public charging capacity on the uptake of

EVs, allowing differential estimates according to the level of the consumer subsidy. Due

to the potential endogeneity of charging capacity, we implement fixed effects estimators

coupled with two-stage least squares.
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Using two distinct instruments, we obtain a tight range of estimates that suggest a

positive impact of charging capacity on the uptake of EVs, one that increases in mag-

nitude as the consumer subsidy increases. Between 2016 and 2021, when 600,000 EVs

were registered, roughly 90% of the budget of e2725 million was allocated to consumer

subsidies, with the remaining 10% allocated to infrastructure subsides. Using the model

estimates, we calculate total cost savings of e780 million, or an 28% reduction, given a

budgetary split of 40/60. These findings point to the complementarity between the two

measures, which if recognized in budgetary planning, can lead to substantial cost savings.
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APPENDIX

Table A1: First stage estimation results of models omitting interaction

(1) IV = Station subsidy (2) IV = Transformers

Coeff. Std. Err. Coeff. Std. Err.

Station subsidy 0.025*** (0.004) - -

Transformers - - 2.60e−5*** (8.47e−6)

Purchase power pc 1.137 (0.805) 0.904 (0.877)

Population density -0.084** (0.036) -0.077** (0.039)

Fuelprice 0.393 (1.536) 0.797 (1.770)

No.of houses -0.120 (0.929) 0.278 (0.821)

Avg age of population -0.433 (2.143) 0.643 (2.305)

No.of employees 1.405*** (0.256) 1.811*** (0.263)

New covid-19 cases 0.005*** (0.002) 0.009*** (0.002)

No. of observations 37293 37293

Weak identification test: F-statistic 32.97 9.42

Endogeneity test 12.00 3.96

Notes: This table reports the first-stage regression results for model (2) & (3) of panel-A in Table 3.
The dependent variable is charging capacity in both models. All models include the same set of fixed
effects: year-month FEs, county level FEs, and year-bundesland FEs. Standard errors are clustered at
the NUTS3 level. ***, **, and * denote statistical significance at the 1%, 5%, and 10% level, respectively.
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Table A2: First stage estimation results of interaction model: IV = Station subsidy

(1) Charging capacity (2) Capacity×EV subsidy

Coeff. Std. Err. Coeff. Std. Err.

Station subsidy 0.020*** (0.006) 0.004 (0.006)

Station subsidy×EV subsidy 0.003 (0.002) 0.033*** (0.003)

Purchase power pc 1.163 (0.816) 0.817 (1.132)

Population density -0.090** (0.037) 0.064 (0.127)

Fuelprice 0.321 (1.491) 0.660 (2.516)

No.of houses -0.082 (0.952) 1.276* (0.715)

Avg age of population -0.555 (2.183) -2.238 (3.628)

No.of employees 1.513*** (0.249) -0.619 (0.706)

New covid-19 cases 0.004** (0.002) 0.013** (0.005)

No. of observations 37293 37293

Sanderson-Windmeijer multivariate F test 10.61 29.75

Endogeneity test 9.02

Notes: This table reports the first-stage regression results for model (2) of panel-B in Table 3. The dependent
variable is charging capacity in column (1) and the interaction between charging capacity and subsidy in
column (2). All models include the same set of fixed effects: year-month FEs, county level FEs, and year-
bundesland FEs. Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level, respectively.

Table A3: First stage estimation results of interaction model: IV = Transformers

(1) Charging capacity (2) Capacity×EV subsidy

Coeff. Std. Err. Coeff. Std. Err.

Transformers 1.52e−5** (7.43e−6) −8.70e−6 (1.02e−5)

Transformers×EV subsidy 5.70e−6** (2.23e−6) 4.37e−5*** (8.27e−6)

Purchase power pc 0.883 (0.874) -0.380 (1.130)

Population density -0.081** (0.040) 0.130 (0.163)

Fuelprice 0.675 (1.668) 1.395 (2.798)

No.of houses 0.361 (0.818) 2.599** (1.155)

Avg age of population 0.478 (2.302) 1.105 (3.939)

No.of employees 1.857*** (0.258) -0.450 (0.901)

New covid-19 cases 0.008*** (0.002) 0.029*** (0.007)

No. of observations 37293 37293

Sanderson-Windmeijer multivariate F test 8.01 14.38

Endogeneity test 2.72

Notes: This table reports the first-stage regression results for model (3) of panel-B in table 3. The dependent
variable is charging capacity in column (1) and the interaction between charging capacity and subsidy in
column (2). All models include the same set of fixed effects: year-month FEs, county level FEs, and year-
bundesland FEs. Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% level, respectively.
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Table A4: Placebo estimation results

EV registrations

Coeff. Std. Err.

Transformers 1.70e−5 (1.56e−5)

Transformers×EV subsidy −1.39e−6 (1.4e−6)

Purchase power pc 0.158 (0.276)

Population density 0.008 (0.008)

Fuelprice 0.782 (3.306)

No.of houses 0.193 (0.162)

Avg age of population -0.141 (0.322)

No.of employees -0.272 (0.177)

Constant 10.979 (20.353)

No. of observations 6126

Notes: The dependent variable is the number of electric vehicle registrations.
The model include the year-month FEs, county level FEs, and year-bundesland
FEs. Standard errors are clustered at the NUTS3 level. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% level, respectively.
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