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Johannes Gallé1

City Shape and Air Pollution

Abstract
Air pollution has become an increasing health threat for the local population in many cities 
around the world. Using high resolution remote sensing data on nightlights and fine particulate 
matter (PM2.5) for the years 1998-2013, I study the contemporary nexus between city shape 
and air pollution in India. I find that the compactness of a city has statistically significant and 
negative effects on local air quality. The results are more pronounced in larger cities and robust 
with respect to different compactness measures. While geographic dispersion allows for more 
fresh air corridors, differences in commuting patterns could serve as an additional explanation. 
People in less compact cities are more likely to use public transport and thereby reducing the 
overall road traffic within cities translating into less pollution. However, the statistically significant 
effects do not translate into substantial changes in the relative risk of PM2.5-induced diseases.

JEL-Codes:  R10, R41, Q53
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1 Introduction

Agglomeration economies come with many benefits (Fujita and Thisse, 1996; Combes

et al., 2008; Redding and Rossi-Hansberg, 2017). Yet, they also create negative local

externalities such as air pollution, which poses a severe health risk to residents in cities

around the world. In 2019, the World Health Organization (WHO) estimated that globally

4.2 million premature deaths were attributable to ambient outdoor air pollution (WHO,

2022). Especially urban agglomerations in developing countries, such as in India, face high

levels of air pollution. According to the World Air report 2019, 21 out of the 30st most

polluted cities worldwide were located in India (IQAir, 2019).

Some recent literature has studied the relationship between urban population density

and air pollution (Ahlfeldt and Pietrostefani, 2019; Borck and Schrauth, 2021; Piracha and

Chaudhary, 2022; Borck and Schrauth, 2022; Carozzi and Roth, 2023). However, while

population density is informative about how many people live within the total of a given

area, density measures abstract from the actual shape of that area. Therefore, standard

density measures may miss crucial aspects of urban properties such as the compactness

of a city (Duranton and Puga, 2020; Harari, 2020). Although the terms ”compactness”

and ”density” are closely related and often used interchangeably in the literature (Ahfeldt

and Pietrostefani, 2017), they follow two different concepts. While density is the simple

ratio between mass (e.g. population) and volume (urban area), compactness relies on the

idea that for a given area a circle represents the most compact form (Angel et al., 2010).

Put differently, compactness indices measure the deviation of the shape of a given area

from the shape of a circle with the same area. Figure 1 illustrates the difference between

”density” and ”compactness” based on two stylized cities.

Figure 1: Compactness and the shape of cities

Notes: Figure 1 illustrates the compactness of urban footprints. Both cities, A and B, have the identical area of
30km2. Given that a circle constitutes the most compact shape for a given area, city A is considered to be more
compact than city B. Own illustration.
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The size of both cities, A and B, equals 30km2. Further, assuming that both cities

have the same population, the population density of both cities would be identical. Yet,

the shape of both cities clearly differs. While city A’s shape constitutes a perfect circle,

city B is shaped like a sustained rectangle.1 Despite of having the same population density,

city A is considered to be more compact than city B.

This paper asks the question, whether the compactness of urban shapes impacts local

air quality. Beside the fact that the dispersion of less compact cities allows for more fresh

air corridors (Borrego et al., 2006), the shape of a city determines the average commuting

distances within cities. This could affect overall road traffic, which is considered to be a

substantial contributor to air pollution in urban areas (Badami, 2005; Pant and Harrison,

2013; Vohra et al., 2021). Assuming that air pollution is a positive increasing function

of total road traffic within a city, it is a priori not clear whether the effect of city com-

pactness on total road traffic is positive or negative. On the one hand, less compact cities

are associated with on average larger commuting distances. On the other hand, longer

distances within cities could discourage residents from undertaking many trips reducing

the overall amount of within city trips taken by residents leading to less aggregate traffic

and congestion. Furthermore, city shape may impact the modal choices of commuters and

thereby affecting the total amount of within city traffic.

In order to answer the research question, I identify urban footprints based on remote

sensing nightlight data (NOAA, 1992-). The data on urban footprints is further comple-

mented with remote sensing data on outdoor air pollution measured by ground-level fine

particulate matter (PM2.5) (Van Donkelaar et al., 2016) and with population information

from the Population Census 2001 (Meiyappan et al., 2018). By restricting the sample to

cities with 50.000 or more inhabitants as of 2001, the final sample comprises a panel of

443 Indian cities for the years 1998-2013 containing annual information on compactness

measures as well as on mean, maximum and minimum PM2.5 exposure. In the baseline

specification, I employ the disconnection index to measure city compactness. The index is

defined as the average distance between any pair of points in a city serving as a proxy for

the average commuting distance. I extend previous work by Harari (2020), who studies

the impact of city shape on economic outcomes such as population growth and wages. A

causal relationship between city shape and air pollution is estimated by following the in-

strumental variable approach of Harari (2020), which is based on a combination of historic

urban footprints, historic population growth and geographical obstacles.

I find that city compactness has a statistically significant and negative effect on air

quality. Conditioning on total urban area, a 1km increase in the disconnection index re-

duces the average PM2.5 exposure by 0.6%. The effect is robust to alternative compactness

measures as well as using maximum or minimum PM2.5 exposure as alternative depen-

dant variables. The effect size increases with city size. In cities with more than 500.000

1Although the shapes of the cities are highly stylized, they are relevant in contemporary urban planning
projects. Saudi Arabia is currently constructing a 170 kilometres line-stretched and only 200m wide city
aiming to host about 9mio people (CNN, 2022).
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inhabitants (as of 2001) a 1km increase in the disconnection index decreases the average

PM2.5 exposure by 1.1%. Albeit data limitations, I study commuting as a potential mech-

anism leading to the negative effect of compactness on air quality. Although the actual

length of commutes taken by residents is larger in less compact cities, residents in less

compact cites are more likely to use public transport for their commute such as trains or

busses. In compact cities, residents are more likely to commute by individual vehicles such

as scooters. Hence, one potential channel could be that due to longer commutes in less

compact cities, residents rely on public transport leading to fewer overall traffic and con-

gestion in cities, resulting in less air pollution. Lastly, I asses the statistically significant

compactness effects with respect to their health implications. I find that the compactness-

induced changes in PM2.5 exposure translate into very small changes in relative risks of

diseases that are frequently associated with PM2.5 exposure (e.g. lung cancer or chronic

obstructive pulmonary diseases). Evaluated at the sample mean of PM2.5, a one standard

deviation increase in the disconnection index reduces the relative risk of lung cancer by

1.1% (3% for large cities). This result is primarily driven by the already high levels of air

pollution in Indian cities and the non-linear relationship between relative health risk and

PM2.5 exposure.

By focusing on alternative city characteristics such as compactness, the findings con-

tribute to a growing body of literature that examines the relationship between urbanization

and air pollution. The papers most closely related to this one are Borck and Schrauth

(2021) and Carozzi and Roth (2023), who find a positive impact of population density on

air pollution in Germany and the US respectively. Extending the framework of Harari

(2020), this paper is -to the best of my knowledge- the first paper establishing a causal

link between city shape and air pollution. Further, the geographical focus of this paper is

on India, which hosts the second largest urban population of almost 500mio people (UN,

2018) and characterized by extremely high levels of urban air pollution (IQAir, 2019).

The study further relates more broadly to the literature studying the causal effects of

ambient air pollution on human health (Lepeule et al., 2012; Greenstone and Hanna, 2014;

Chowdhury and Dey, 2016; Ghude et al., 2016; Fowlie et al., 2019) and other outcomes

such as labor productivity or education (Graff Zivin and Neidell, 2012; Ebenstein et al.,

2016; Balakrishnan and Tsaneva, 2021; Aguilar-Gomez et al., 2022).

The remainder of the paper is structured as follows. Section 2 describes the identifi-

cation strategy followed by the data section 3. Section 4 presents the results and section

5 concludes.

2 Empirical approach

To grasp a first idea on the empirical relation between city shape and PM2.5 concentration,

I employ a standard two-way fixed effects model, estimated as follows:
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log(PM2.5it) = β1shapeit + β2ln(areait) + αi + γt + ϵit, (1)

where the dependent variable PM2.5it is the log of the average PM2.5 concentration

measured in micrograms per cubic meter ( µg
m3 ) in city i in year t. The variable shapeit is

the respective shape property, that measures the compactness (in km) of city i in year t,

where a higher value indicates a less compact city shape. Since compactness measures are

mechanically correlated with the total area of a city, I control for the log of the total area

of a city. The model is complemented by city fixed effects αi to control for time-invariant

unobservable city heterogeneity. Year fixed effects γt control for common annual shocks

including measurement differences in the remote sensing data due to annual differences in

satellite composition. The standard errors are clustered at the city-level.

The main challenge of identifying a causal effect of city shape on PM2.5 concentration

is that urban footprints, defining the shape of a city (shapeit), are endogenous. The shape

of a city is an outcome determined by exogenous factors such as geography as well as

endogenous factors such as urban planning policies, institutional capacity as well as indi-

vidual location decisions by firms and residents (Harari, 2020). Cities with a better local

institutional capacity might implement urban planning policies to grow more compact,

which is considered be be economically more efficient. Furthermore, cities with a higher

institutional quality might have better policy enforcement on local air quality regulations

leading to lower PM2.5 concentration. In order to isolate the exogenous part that deter-

mines city shape, I adopt a slightly modified version of the instrumental variable approach

proposed by Harari (2020). The basic idea is to instrument the actual shape of the urban

footprint of city i in year t, with the shape of each city’s potential footprint over time,

that is determined by exogenous factors such as geography and uncorrelated with the error

term. The time varying potential urban footprints are constructed by combining historic

urban footprints obtained from georeferenced maps (U.S. Army Map Service, 1955) with

historic population information (Mitra, 1980) and detailed information on geographical

obstacles for urban development such as mountain ranges or water bodies (METI and

NASA, 2019a,b). Details on the construction of the potential footprints are given in the

next section 3. The obtained potential footprints are used to calculate the shape properties

measuring the potential compactness of city i in year t.

This results in the following first-stage regression:

shapeit = δ1 ˜shapeit + δ2ln(areait) + αi + γt + ϵit, (2)

where the actual shape of city i in year t (shapeit) is regressed on its potential shape

( ˜shapeit), while controlling for total area, city and year fixed effects.

The second-stage is written as follows:
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log(PM2.5it) = δ1 ̂shapeit + δ2ln(areait) + αi + γt + ϵit, (3)

where the variable definitions correspond to Eq. 1, except that the actual shape

(shapeit) is replaced by ̂shapeit, which corresponds to the predicted shape obtained from

the first-stage Eq. 2.

3 Data

Urban footprints. To delineate and track urban footprints of Indian cities over time, I

use the Version 4 DMSP-OLS Nighttime Lights Time Series from NOAA’s Earth Obser-

vation Group (NOAA, 1992-), which is a method in line with previous literature (Hender-

son, 2003; Small et al., 2005; Balk et al., 2006; Dingel et al., 2019; Harari, 2020). While

commuting-based definitions of urban areas are often not available for developing coun-

tries, such as in India, Dingel et al. (2019) show that nightlight-based urban areas serve

as good alternative proxies. Further, the use of nightlights allows to track the growth of

urban footprints over time, which is of specific relevance in developing countries, where

urbanization happens at a much faster pace than in developed countries nowadays. The

DMSP-OLS nighttime lights data comes at a spatial resolution of 30 arc seconds, which

roughly corresponds to 1km x 1km at the equator. The scale of nightlight intensity ranges

from 0 (no light) to 63 (top-coded brightest value). Following the approach of Harari

(2020), I consider all pixels as urban with a nightlight intensity ≥ 35. The urban foot-

prints are constructed by dissolving contiguous pixels, that meet the urban nightlight

threshold of 35, to city specific polygons. I apply this procedure to the nightlight data

for the years 1998-2013. Thereby, I can track the urban footprints of every Indian city

annually over time. In order to verify that the nightlight-based footprints refer to actual

cities, I spatially merge the retrieved footprints for the year 2001 with a shapefile of all

Indian municipalities containing population information from the Population Census 2001

(Meiyappan et al., 2018). I restrict the sample to urban footprints that have a population

total of at least 50.000 as of 2001.

Figure 2 exemplary shows the obtained urban footprints of Mumbai, Delhi, Kolkata

and Coimbatore for the years 2001 and 2013. In the background, the raw nightlight data

for the year 2001 is plotted, where pixels outside of India are masked. The yellow polygons

correspond to the urban footprints of each city as of 2001. With a total area of 2,632km2,

Delhi is the largest of the four cities followed by Mumbai (1,242km2), Kolkata (1,224km2)

and Coimbatore (267km2). The red line demarcates the urban footprints of the same four

cities in 2013. It is evident that all four cities grew in size. Delhi grew the most by more

than doubling its size (increase by 103%). Yet, the growth is not only driven by the growth

of the 2001 footprint, but also by the fact that smaller cities, that were not connected by

contiguous and sufficiently bright pixels (≥ 35) to the footprint of Delhi in 2001, were
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absorbed by growing together with the footprint of Delhi. Between 2001 and 2013 Delhi

absorbed a total of six cities (Muradnagar, Modinagar, Ganaur, Samalkha and Panipat),

which were still separate cities in 2001. In case of two separate cities (as of 2001) growing

together, I assign the ID of the larger city, assuming that the smaller city was absorbed

by the larger one. Figure A1 in Appendix A1 plots the location of the full sample of 443

cities for the years 1998, 2001 and 2013.

Figure 2: Urban footprints

(a) Mumbai (b) Delhi

(c) Kolkata (d) Coimbatore

Notes: Figure 2 plots the urban footprints of Mumbai, Delhi, Kolkata and Coimabtore for the years 2001 (yellow
polygon) and 2013 (red contour). Urban footprints are derived by dissolving contiguous nightlight pixels with a
value ≥ 35. In the background the raw Version 4 DMSP-OLS Nighttime Lights Time Series (NOAA, 1992-) for the
year 2001 is plotted, where pixels outside of India are masked.

Shape properties. After having obtained the urban footprints of all Indian cities for

the years 1998-2013, I derive the shape properties of each city-year observation. Following

(Harari, 2020), I borrow three compactness indices from the urban planning literature
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(Angel et al., 2010). The disconnection index, which is my preferred index and used in

all base specifications, measures the average Euclidean distance between all points within

a city. Hence, the disconnection index can be interpreted as a proxy for the average

commuting distance within a city. The range index is defined as the maximum Euclidean

distance within a city illustrating the longest possible commuting distance. The last index

I employ is called remoteness index and calculated by the average Euclidean distance to

the geographic centroid of a city. In contrast to Angel et al. (2010), I implement the

construction of the compactness indices independently in an automatized workflow in

python. This allows for a higher degree of flexibility in choosing uniform spacing of the

underlying grid of interior city points and does not rely on the resampling of random grid

points for calculating the indices.

Figure 3 illustrates the construction of the three compactness indices for the 2001 urban

footprints of Mumbai, Delhi, Kolkata and Coimbatore. The red dots represent the grid of

equally spaced points. I set the distance between the points to 0.005◦ (latitude/longitude)

corresponding to approximately 555m at the equator. Taking Mumbai as an example,

the grid of Mumbai consists of a total of 3,788 points (Delhi = 7,462, Kolkata = 3,660,

Coimbatore = 855), where the disconnection index is simply the average distance between

all pairs of points and equals 20.9km (Panel (a)). The range index - defined by the longest

possible distance between all pairs of points - is indicated by the yellow-encircled red dots

in Panel (b) and amounts to 59.8km for Mumbai. In Panel (c), the remoteness index is de-

fined by the average distance of all 3,788 points to the geographic centroid (yellow-encircled

red dot) and corresponds to 17.6km. In order to obtain time-varying shape properties of

each city, I compute the city-level compactness indices for every urban footprint for the

years between 1998-2013.

Air pollution data. I further complement the data on urban footprints with annual

remote sensing data on fine particulate matter (PM2.5), that is a collective term for inhal-

able floating particles with a diameter of 2.5 micrometers or less. A permanent exposure

to high levels of PM2.5 is frequently associated with adverse health effects and found to

be a cause for premature deaths (Chowdhury and Dey, 2016; Ghude et al., 2016; Vohra

et al., 2021). The data is obtained from the Global Annual PM2.5 Grids from MODIS,

MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, Version 1 and consists of

annual concentrations (measured in micrograms per cubic meter) of ground-level PM2.5

(Van Donkelaar et al., 2016). The resolution of the data is 0.01◦ (latitude/longitude)

and annually available for the years 1998-2016. I spatially merge the PM2.5 raster data

with the urban footprints and calculate the minimum, maximum and average ground-level

PM2.5 concentration for every city for the years 1998-2013.
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Figure 3: Compactness indices

(a) Disconnection (b) Range (c) Remoteness

(d) Disconnection (e) Range (f) Remoteness

(g) Disconnection (h) Range (i) Remoteness

(j) Disconnection (k) Range (l) Remoteness

Notes: Figure 3 plots the urban footprints of Mumbai (a-c), Delhi (d-f), Kolkata (g-i) and Coimabtore (j-l) for
the year 2001 together with the respective grids for calculating the disconnection, range and remoteness index.
The spacing of the interior city grid is set to 0.005◦, which corresponds to approx. 555m at the equator. The
disconnection index is defined by the average distance between all pairs of points. The range index is defined as the
maximum distance between any pair of points illustrated by the yellow-encircled red dots in panel (b), (e), (h) and
(k). The remoteness index is defined as the average distance to the geographical centroid of a city. The geographical
centroid is illustrated by the yellow-encircled red dot in panel (c), (f), (i) and (l).

Instrument construction. As highlighted in the previous section, I instrument the

actual shape of a city with its potential shape. Following Harari (2020), I construct time

varying potential urban footprints by combining historic urban footprints obtained from
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georeferenced maps (U.S. Army Map Service, 1955) with historic population information

(Mitra, 1980) and detailed information on geographical obstacles for urban sprawl such as

mountain ranges or water bodies (METI and NASA, 2019a,b). Note, that the identification

of the effects of city shape on air pollution relies on within city variation in shape over time.

The main idea of the instrument is to isolate the changes in city shape over time, that

are driven by historically predicted urban sprawl constrained by geographical obstacles

(Harari, 2020).

Figure 4: Historic urban footprints

(a) Mumbai (b) Delhi

(c) Kolkata (d) Coimbatore

Notes: Figure 4 illustrates the historic urban footprints of the cities of Mumbai, Delhi, Kolkata and Coimbatore.
The yellow polygons correspond to the urban footprints in 1950 and the gray area indicates the nightlight-based
urban footprints as of 2001. In the background corresponding historic maps of India, used to retrieve the historic
urban footprints, are shown (U.S. Army Map Service, 1955).

In order to mechanically predict urban sprawl based on historic data, I georeference

historic maps of India provided by the U.S. Army Map service, indicating the urban
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footprints of Indian cities in 1950 (U.S. Army Map Service, 1955). I manually retrieve the

historic urban footprints, that fall within the limits of the nightlight-based urban footprints

as of 2001. Figure 4 illustrates the historic urban footprints for the cities of Mumbai, Delhi,

Kolkata and Coimbatore. While Delhi and Coimbatore consist of one historic footprint,

the contemporary urban footprints of Mumbai and Kolkata have multiple historic origins.

Taking Mumbai as an example, the historic footprints are Mumbai, Kurla, Ghatkopar,

Thane, Kaylan and Bhiwandi. Next, I match the historic urban footprints with population

information of nine waves of the population census for the years 1871-1951 (Mitra, 1980). I

predict future urban sprawl of the historic urban footprints mainly following the approach

by Harari (2020) with slight deviations, since I allow for multiple historic footprints and do

not need to instrument for historic footprints themselves. The exact steps for predicting

future urban sprawl are as follows:

(i) I extrapolate log-linearily the 1871-1951 population of the historic footprints c be-

longing to city i, obtaining p̂opict, where t ∈ 1998, ..., 2013.

(ii) I estimate the following model:

log(areaict) = β1log(p̂opict) + β2log(
popic,t=1951

areaic,t=1950
) + αi + γt + ϵict, (4)

where areaict is the nightlight-based area of of the historic footprint c belonging to

city i in year t. Given that some cities consist of multiple historic footprints, I assign

the contemporary area of historic footprints according to their share of the total

historic area of a city.
popic,1951
areaic,1950

is the population density of the historic footprint,

αi and γt city and year fixed effects.

(iii) From the obtained coefficients in Eq. 4, I predict the area of the historic urban

footprint c belonging to city i in year t (âreaict).

(iv) I compute the predicted radius r̂ict, where

r̂ict =

√
âreaict

π
(5)

The predicted radius r̂ict is used to compute the buffered area of the historic footprint

c in year t if it would have grown at the same rate as in 1871-1951, keeping population

density constant and geographically expanding at same rates in all directions (Harari,

2020).

The second source of variation in the instrument is derived from classifying the land

surface of India into potentially developable and undevelopable land based on geographical

obstacles (Harari, 2020). I obtain the ASTER Global Digital Elevation Model V003 for

India (METI and NASA, 2019a). For computational reasons, I aggregate the resolution

of the raster data ending up with a resolution of approximately 120m at the equator.2

2The original resolution is 1 arc second, which equals approximately 30m at the equator.
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I compute the slope at each pixel and define all pixels with a slope steeper than 15%

as undevelopable (Saiz, 2010). I combine the slope data with the ASTER Global Water

Bodies Database V001 (METI and NASA, 2019b), where I define pixels containing water

bodies such as lakes as undevelopable. Figure A2 in Appendix A1 shows the classification

for all India, where pixels with a slope greater than 15% or containing a water body are

classified as undevelopable.

Figure 5: Potential urban footprints

(a) Mumbai (b) Delhi

(c) Kolkata (d) Coimbatore

Notes: Figure 5 illustrates the derived potential urban footprints of Mumbai, Delhi, Kolkata and Coimbatore for
the year 2013, indicated by the red area. The historic footprints of the cities are plotted in yellow. The background
shows the raster classification into developable (=0) and undevelopable (=1) land, derived from METI and NASA
(2019a,b). Pixels outside of India are masked.

Lastly, I combine the buffered area of the historic footprint c in year t with the raster of

(un)developable land in India by masking undevelopable parts of the predicted footprints.

This yields the potential urban footprints of every city in my sample for the years 1998-

11



2013. Figure 5 illustrates the derived potential footprints for the cities of Mumbai, Delhi,

Kolkata and Coimbatore for the year 2013, indicated by the red area. White pixels in

the background represent undevelopable land pixels. As shown in panel (a), the potential

footprint of Mumbai is not only constrained by the Arabian Sea in the west, but also by

various smaller mountain ranges in the inland. In contrast, Delhi and Kolkata do not face

any major geographical constraints apart from various smaller water bodies. The poten-

tial footptrint of Coimbatore is mainly constraint by the foothills of the Western Ghats,

when expanding westwards. Analogously to the actual urban footprints, I compute the

disconnections, range and remoteness index for the potential urban footprints. This yields

the instrument ˜shapeit used in the first stage (Eq. 2). Figure A3 in Apendix A1 illus-

trates the computation of the three compactness indices for the potential urban footprints.

Table 1: Descriptive statistics

(1) (2) (3) (4) (5) (6)

Mean SD Min Median Max N

Air Pollution (PM2.5)

- City mean ( µg
m3 ) 35.46 18.47 8.291 29.62 123.3 6,414

- City min ( µg
m3 ) 34.78 18.18 7.100 29.20 123.2 6,414

- City max ( µg
m3 ) 36.11 18.71 8.400 30.10 123.5 6,414

City shape properties

- Area (km2) 77.26 229.0 0.873 25.99 5,336 6,414

- Disconnection (km) 3.466 3.297 0.278 2.519 47.91 6,414

- Potential Disconnection (km) 3.793 3.111 0.494 2.888 41.93 6,414

- Range (km) 9.101 10.10 0.556 6.016 159.4 6,414

- Potential Range (km) 9.138 8.146 1.112 6.766 102.3 6,414

- Remoteness (km) 2.619 2.488 0.278 1.903 44.48 6,414

- Potential Remoteness (km) 2.801 2.281 0.656 2.134 30.84 6,414

Notes: The final sample comprises 443 Indian cities with at least 50.000 inhabitants in 2001. PM2.5

concentration is measured in micrograms per cubic meter ( µg

m3
). City shape properties are measured in

km and sq. km respectively. Potential shape indices are based the potential footprints of a city. Unit of

observation is city-year. The information presented in Table 1 is based on city-year observations for the

years 1998-2013.

Descriptive statistics. The final sample comprises 443 cities covering the time period

1998-2013. Recall that the panel is unbalanced since the footprints of smaller cities might

be absorbed by the urban sprawl of larger neighbouring cities in the course of time. Table

1 provides details on the descriptive statistics of the final sample. The average annual

PM2.5 concentration is 35.46 µg
m3 surpassing the recommended guidelines of the WHO by
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a factor of more than three.3 The city with the best air quality is Nagercoil, which is

a coastal town in Tamil Nadu, having an average PM2.5 concentration of 12.6 µg
m3 . With

an average PM2.5 concentration of 97.3 µg
m3 , Muradnagar a satellite town of Delhi, is the

city with the worst air quality. Turning to the shape properties of the urban footprints,

the average area of the urban footprints is 77.3km2 with an average commuting distance

(disconnection) within cities of 3.5km. The average maximum commuting distance (range)

amounts to 9.1km and the average commuting distance to the geographic center 2.6km

respectively.

4 Results

4.1 Baseline results

Table 2 provides the estimation results of the baseline specifications including both the

pooled OLS and the two-stage least squares of the instrumental variable approach. In

columns (1) - (3), the disconnection index is used as explanatory variable for measuring city

shape. Recall that a greater value indicates less compactness. When estimating the pooled

OLS in column (3), I find a negative and weakly significant effect of city compactness

on PM2.5 concentration. A 1km increase in the disconnection index increases average

PM2.5 concentration by 0.41%. The IV estimation in column (2) provides in absolute

terms a slightly larger effect indicating a potential upward bias in the OLS coefficient.

A one standard deviation (sd) increase in in the disconnection index increases average

PM2.5 concentration by 1.91% (3.297 × (-0.58%)). The negative and significant effect

of city compactness is robust to using the range index as well as the remoteness index

as alternative compactness measures. Throughout all specifications, there is a positive

association between total area of a city and PM2.5 concentration. Figure A1 and A2 in

Appendix A2 report the results when using maximum and minimum PM2.5 concentrations

instead of average PM2.5 concentration as the dependent variable.

3The WHO guidelines recommended an average annual PM2.5 concentration of 10 µg

m3 at the time of
the study period, which were further reduced to 5 µg

m3 in 2021.
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Table 2: Baseline results

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Shape index: Disconnection Range Remoteness

IV OLS IV OLS IV OLS

First stage Second stage First stage Second stage First stage Second stage

Dependent variable: Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5)

Shape (km) -0.0058** -0.0041* -0.0018** -0.0011* -0.0076** -0.0061**

(0.0026) (0.0024) (0.0007) (0.0006) (0.0031) (0.0028)

log(area (sq.km)) 0.9993*** 0.0071* 0.0059* 2.8995*** 0.0063* 0.0049 0.7536*** 0.0070* 0.0061*

(0.1087) (0.0038) (0.0035) (0.3481) (0.0036) (0.0034) (0.0840) (0.0037) (0.0034)

Potential shape (km) 1.0258*** 1.4143*** 1.1035***

(0.0936) (0.1184) (0.1062)

Observations 6,414 6,414 6,414 6,414 6,414 6,414 6,414 6,414 6,414

F-test stat 11.55 10.52 8.66

City fixed effects

Year fixed effects

Notes: Regression results from Eq. 1, 2 and 3 with log of PM2.5 concentration as the dependent variable measured in micrograms per cubic meter ( µg

m3
). Column (1),

(4) and (7) report the results for the first stage. Column (2), (5) and (8) report results for the second stage. Column (3), (6) and (9) report results for the pooled OLS.

Standard errors are clustered at the city level. *** p<0.01, ** p<0.05, * p<0.1.

In order to study heterogeneous effects of city shape on air pollution, I split the sample

by city size. Table 3 reports the baseline results separately for cities with a population

below and above 500.000 (as of 2001). As denoted in column (2) of panel (A), the effect

of city shape on PM2.5 concentration grows with the size of cities. Further, note that

the IV estimate is twice as large as the OLS estimate in column (3). A 1km increase in

the disconnection index reduces PM2.5 concentration by 1.1% (6.2% for a 1sd increase of

5.5km). Again, the effects are robust to using alternative compactness indices. However,

the estimates of the range and the remoteness index should be interpreted with caution,

given their low F-statistic indicating a weak instrument. Turning to the sample of small

cities in panel (B), I do not find any significant effect of city shape on PM2.5 concentration.

Hence, the significant relationship between city shape and PM2.5 concentration of the

baseline results in Table 2 seems to be primarily driven by larger cities.
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Table 3: Results by city size

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Shape index: Disconnection Range Remoteness

IV OLS IV OLS IV OLS

First stage Second stage First stage Second stage First stage Second stage

Dependent variable: Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5)

Panel (A): Large cities ≥ 500.000

Shape (km) -0.0112*** -0.0064** -0.0034*** -0.0014 -0.0134*** -0.0082***

(0.0031) (0.0031) (0.0009) (0.0009) (0.0038) (0.0026)

log(area (sq.km)) 2.6677*** 0.0053 -0.0051 8.0410*** 0.0022 -0.0103 2.1319*** 0.0040 -0.0049

(0.6933) (0.0231) (0.0216) (2.0254) (0.0225) (0.0203) (0.5734) (0.0231) (0.0213)

Potential shape (km) 1.0604*** 1.5025*** 1.2052***

(0.0902) (0.0921) (0.1072)

Observations 947 947 947 947 947 947 947 947 947

F-test stat 11.55 3.13 2.65

Panel (B): Small cities < 500.000

Shape (km) -0.0042 -0.0026 -0.0013 -0.0008 -0.0061 -0.0043

(0.0047) (0.0035) (0.0015) (0.0010) (0.0062) (0.0048)

log(area (sq.km)) 0.9023*** 0.0076 0.0063* 2.5845*** 0.0070 0.0061* 0.6696*** 0.0078* 0.0068*

(0.1222) (0.0046) (0.0038) (0.3942) (0.0044) (0.0036) (0.0939) (0.0045) (0.0038)

Potential shape (km) 1.0020*** 1.3389*** 1.0715***

(0.2622) (0.3303) (0.2710)

Observations 5,467 5,467 5,467 5,467 5,467 5,467 5,467 5,467 5,467

F-test stat 11.55 6.97 6.81

City fixed effects

Year fixed effects

Notes: Regression results from Eq. 1, 2 and 3 with log of PM2.5 concentration as the dependent variable measured in micrograms per cubic meter ( µg

m3
). Panel (A) reports the results for

cities with at least 500.000 inhabitants and panel (B) for cities having below 500.000 inhabitant. Column (1), (4) and (7) report the results for the first stage. Column (2), (5) and (8) report

results for the second stage. Column (3), (6) and (9) report results for the pooled OLS. Standard errors are clustered at the city level. *** p<0.01, ** p<0.05, * p<0.1.

4.2 Commuting and city shape

Given that road traffic is a substantial contributor to air pollution (Badami, 2005; Pant

and Harrison, 2013; Vohra et al., 2021), local air quality can be regarded as a function

of total road traffic within a city. Hence, a potential channel for the negative impact of

compactness could be that less compact cities have fewer overall road traffic. While data on

actual commuting patterns at the city-level is unfortunately not available, the Population

Census 2011 provides some coarse information on commuting patterns at the district

level differentiating between urban and rural population. The census contains aggregate

information on how many people use a specific mode of transport to work as well as a

binned classification count of actual commuting distances (e.g. 0-1km, 2-5km, 6-10km,...).

I spatially match the urban footprints of 2011 with their respective hosting district and

evaluate if city compactness has any effect on actual commuting patterns including modal

choices. I assign a city to all districts, that intersect with the urban footprint of the

respective city. Hence, a city can be assigned to multiple districts simultaneously. Further,

I restrict the district information to the urban population only. Note, that while the main

specification relies on within city variation in compactness over time, the following analysis

uses cross-sectional variation in city shape within states for identification. The detailed

estimation equation is given in Eq. A1 in Appendix A2.

Table 4 provides results on the impact of city compactness (measured by the discon-

nection index) on actual commuting distance and the initial decision to commute. The
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dependent variables refer to the share of people commuting more than 10km and the

share of people that commute to work at all (commuting distance > 0km). As indicated

by column (1), a 1km increase in the disconnection index increases the share of people

commuting above 10km by 0.69pp (percentage points). Turning to the share of people

commuting independent of the distance, I do not find any significant effect of city com-

pactness on the initial decision to commute (column (3)). In column (5) - (12), I study

heterogeneous mobility effects by gender. Yet, I do not find any substantial difference in

commuting responses by males and females with respect to city compactness.

Table 4: Commuting distance

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Total Male Female

IV OLS IV OLS IV OLS IV OLS IV OLS IV OLS

Dependent variable: > 10km Commuting share > 10km Commuting share > 10km Commuting share

Shape (km) 0.0069*** 0.0064*** 0.0002 0.0002 0.0070*** 0.0065*** 0.0003 0.0003 0.0063*** 0.0059*** -0.0004 -0.0008

(0.0009) (0.0011) (0.0017) (0.0016) (0.0009) (0.0011) (0.0016) (0.0015) (0.0013) (0.0014) (0.0026) (0.0022)

log(area (sq.km)) -0.0054** -0.0041* 0.0063 0.0064 -0.0050** -0.0037* 0.0062 0.0062 -0.0078** -0.0067** 0.0098 0.0108

(0.0023) (0.0021) (0.0055) (0.0051) (0.0022) (0.0021) (0.0051) (0.0047) (0.0033) (0.0030) (0.0079) (0.0069)

Observations 515 515 515 515 515 515 515 515 515 515 515 515

F-test stat 6.38 6.38 6.38 6.38 6.38 6.38

State fixed effects

Notes: Regression results from Eq. A1. The dependant variables are the share of people commuting more than 10km and 0km respectively, where the shares range from 0 to 1.

Column (1) -(4) report the results for all commutes. Column (5) -(12) report the results separate for male and female commuters. In all specifications, the disconnection index is

used for measuring city shape. Standard errors are clustered at the state level. Unit of observation is city-district for the year 2011, where cities are assigned to every district that

intersects with the respective urban footprint of the city. Commuting information is obtained from the Population census 2011. *** p<0.01, ** p<0.05, * p<0.1.

While it seems that a less compact city shape leads to longer commutes, it may also

lead to different modal choices. Table 5 reports estimates on the effect of city shape

on the modal choice for commuting. The dependent variable is calculated as the share

of people using a specific mode of transport for commuting to work. I do not find any

significant effect of city shape on the share of people commuting by foot (column (1)).

However, there is a significant negative impact of city shape on the share of people using

bicycle or scooters for commuting. For instance, a 1km increase in the disconnection index

decreases the share of people commuting with a scooter by 0.73pp (column (5)). Contrary,

I find significant and positive effects for commutes by car/van, bus and train. Hence, in

less compact cities, the likelihood to commute with multi person vehicles increases while

it decreases for individual transport such as scooters. Note, that the estimates on the

actual commuting patterns are only suggestive and do not provide information on the

overall road traffic within a city. Yet, differences in modal choices could be a potential

mechanism adding to the explanation of the negative impact of compactness on air quality.

Beside the fact that dispersed city shapes allow for more fresh air corridors (Borrego et

al., 2006), the increased use of public transport in less compact cities might reduce overall

road traffic leading to less air pollution.
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Table 5: Transport mode

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

IV OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV OLS

Dependent variable: Foot Bicycle Scooter Rickshaw Car/Van Bus Train

Shape (km) 0.0029 0.0046*** -0.0078*** -0.0087*** -0.0073*** -0.0075*** -0.0004 -0.0006 0.0029** 0.0024** 0.0041** 0.0039** 0.0057** 0.0058**

(0.0019) (0.0015) (0.0016) (0.0017) (0.0012) (0.0015) (0.0005) (0.0005) (0.0011) (0.0011) (0.0017) (0.0014) (0.0024) (0.0025)

log(area (sq.km)) -0.0272*** -0.0316*** 0.0154** 0.0177*** 0.0239*** 0.0244*** 0.0042** 0.0047*** -0.0031 -0.0021 -0.0048 -0.0043 -0.0081* -0.0086**

(0.0071) (0.0064) (0.0059) (0.0057) (0.0038) (0.0040) (0.0017) (0.0015) (0.0024) (0.0024) (0.0050) (0.0043) (0.0039) (0.0035)

Observations 515 515 515 515 515 515 515 515 515 515 515 515 515 515

F-test stat 6.38 6.38 6.38 6.38 6.38 6.38 6.38

State fixed effects

Notes: Regression results from Eq. A1. The dependant variables are the share of people commuting with a specific mode of transport, where the shares range from 0 to 1. In all specifications, the disconnection index

is used for measuring city shape. Standard errors are clustered at the state level. Unit of observation is city-district for the year 2011, where cities are assigned to every district that intersects with the respective urban

footprint of the city. Commuting information is obtained from the Population Census 2011. *** p<0.01, ** p<0.05, * p<0.1.

4.3 Health implications

The results in the previous section reveal a significant and negative effect of the compact-

ness of a city on local air quality measured by average PM2.5 concentration. However,

these effects are only of specific policy relevance if they translate into significant health

effects. A permanent exposure of high levels of PM2.5 concentration increases the risk of

adverse health effects including premature death (Pope et al., 2004; Brauer et al., 2012;

Vohra et al., 2021). In order to asses the health implications of the obtained estimates, I

estimate the relative risk for the entire range in PM2.5 concentration of my sample for four

different diseases that are frequently associated with a permanent PM2.5 exposure. The

four diseases are chronic obstructive pulmonary disease (COPD), ischemic heart disease

(IHD), stroke and lung cancer. I apply the relative risk functions of Chowdhury and Dey

(2016), who provide empirically adjusted parameters for India.

The relative risk function is written as follows:

RRi = 1 + αi(∆PM2.5)
βi , (6)

where RR refers to the relative risk of disease i. αi and βi are disease specific parameters

and ∆PM2.5 is the deviation in PM2.5 concentration from the counterfactual distribution

of 5.8 µg
m3 . Hence, the relative risk indicates the probability of falling sick of disease i

relative to the counterfactual distribution, which is kept at non-hazardous levels of PM2.5

concentration (Chowdhury and Dey, 2016; WHO, 2021). Figure 6 reports the relative risk

of the four diseases for the entire sample range of PM2.5 concentration. In all panels,

the left dashed line indicates the sample minimum in ∆PM2.5 of 2.5 µg
m3 (8.3 µg

m3 − 5.8 µg
m3 ).

The dashed line on the right reports the sample maximum (117.5 µg
m3 ). The solid line

indicates the unconditional sample mean (29.7 µg
m3 ) for all cities and the dotted line for large

cities (33.8 µg
m3 ). Lastly, the grey-shaded areas indicate the change in PM2.5 concentration

induced by a one standard deviation change in city compactness (disconnection index)

evaluated at the respective mean.

Using panel (d) as an example for illustration, the relative risk of lung cancer at the

sample mean equals 1.89. This means that if PM2.5 concentration increases from 5.8 µg
m3 to

35.5 µg
m3 , the probability of lung cancer increases by 89%. A one standard deviation increase
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in the disconnection index would decrease PM2.5 concentration by 1.91% translating into

an absolute reduction of 0.68 µg
m3 at the sample mean of 35.5 µg

m3 . Hence, a one standard

deviation increase in the disconnection index would decrease the relative risk of lung

cancer by one percentage point from 1.89 to 1.88 (0.5% in relative terms). Evaluated at

the sample mean of large cities, a one standard deviation increase in the disconnection

index would decrease the relative risk of lung cancer by three percentage points (from 1.98

to 1.95). Due to the overall high levels of PM2.5 concentration in Indian cities as well as

the concavity of the risk functions, the grey-shaded areas propose only minimal changes

in relative risks for all four diseases.

Figure 6: Relative risk by disease
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(c) Stroke
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(d) Lung Cancer
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Notes: Figure 6 plots the relative risk functions of chronic obstructive pulmonary disease (COPD), ischemic heart
disease (IHD), stroke and lung cancer with respect to deviations in PM2.5 concentration from the counterfactual
distribution of 5.8 µg

m3
. Relative risk functions are based on Chowdhury and Dey (2016). Dashed lines indicate

the sample minimum and maximum. The solid line indicates the unconditional sample mean for all cities and the
dotted line for large cities. Grey-shaded areas illustrate changes in PM2.5 concentration induced by a one standard
deviation change in within city commuting distance (disconnection index).

5 Conclusion

Air pollution poses a significant health risk for the local population in many cities around

the world. This paper studies the impact of city shape on air pollution and thereby extends
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the framework of previous work by Harari (2020). By focusing on the compactness of

urban footprints, it contributes to the literature by incorporating alternative agglomeration

properties than density (Borck and Schrauth, 2021; Carozzi and Roth, 2023). I find a

negative and statistically significant effect of city compactness on air quality. A 1km

increase in the disconnection index decreases average PM2.5 concentration by 0.58%. The

effect is further increasing in city size. Albeit only suggestive in nature, commuting could

serve as a partial mechanism in explaining these differences. Due to longer commutes in

less compact cities, residents rely on public transport leading to fewer overall road traffic

and congestion in cities resulting in less air pollution. However, I find that these effects

barely translate into substantial changes in the relative risks assessment of diseases that

are frequently associated with a permanent exposure to high levels of PM2.5. This is due

to the concavity of the relative risk functions as well as the already high levels of PM2.5

concentration in Indian cities.

While the presented work primarily uses remote sensing data allowing the annual cov-

erage of a wide range of Indian cities and thereby formulating general patterns, future work

could focus on specific case studies to dive deeper into the mechanisms between agglom-

eration and air pollution. Further robustness checks could include the use of simulated

commuting data from google maps (Akbar et al., 2018) or stationary air pollution data

(Greenstone and Hanna, 2014).

19



References

Aguilar-Gomez, Sandra, Holt Dwyer, Joshua Graff Zivin, and Matthew Neidell, “This

is air: The ’nonhealth’ effects of air pollution,” Annual Review of Resource Economics, 2022,

14, 403–425.

Ahfeldt, Gabriel M and Elisabetta Pietrostefani, “The compact city in empirical research:

A quantitative literature review,” 2017.

Ahlfeldt, Gabriel M and Elisabetta Pietrostefani, “The economic effects of density: A

synthesis,” Journal of Urban Economics, 2019, 111, 93–107.

Akbar, Prottoy A, Victor Couture, Gilles Duranton, and Adam Storeygard, “Mobility

and congestion in urban India,” Technical Report, National Bureau of Economic Research 2018.

Angel, Shlomo, Jason Parent, and Daniel L Civco, “Ten compactness properties of circles:

measuring shape in geography,” The Canadian Geographer/Le Géographe Canadien, 2010, 54
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A Appendix

A1 Data

This section complements Section 3 in the main paper. Figure A1 plots the urban foot-

prints of the final sample for the years 1998, 2001 and 2013. Figure A2 plots the the

(un)developabale land in India. Figure A3 plots the construction of the three compactness

indices for the potential footprints of Mumbai, Delhi, Kolkata and Coimbatore in 2001.

Figure A1: City sample

(a) 1998 (b) 2001 (c) 2013

Notes: Figure A1 plots the urban footprints of the final sample for the years 1998, 2001 and 2013. Urban footprints
are derived from dissolving contiguous nightlights pixels with a value ≥ 35. Nightlights are obtained from Version
4 DMSP-OLS Nighttime Lights Time Series (NOAA, 1992-).

Figure A2: Developable land in India

Notes: Figure A2 shows the raster classification into developable (=0) and undevelopable (=1) land, derived from
METI and NASA (2019a,b). The resoultion has been coarsend by a factor of 4 for plotting.
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Figure A3: Compactness indices (IV)

(a) Disconnection (b) Range (c) Remoteness

(d) Disconnection (e) Range (f) Remoteness

(g) Disconnection (h) Range (i) Remoteness

(j) Disconnection (k) Range (l) Remoteness

Notes: Figure A3 plots the potential urban footprint of Mumbai (a-c), Delhi (d-f), Kolkata (g-i) and Coimabtore
(j-l) for the years 2001 together with the respective grids for calculating the disconnection, range and remoteness
index. The spacing of the interior city grid is set to 0.005◦, which corresponds to approx. 555m at the equator.
The disconnection index is defined by the average distance between all pairs of points. The range index is defined
as the maximum distance between any pair of points illustrated by the yellow-encircled red dots in panel (b), (e),
(h) and (k). The remoteness index is defined as the average distance to the geographical centroid of a city. The
geographical centroid is illustrated by the yellow-encircled red dot in panel (c), (f), (i) and (l).
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A2 Results

This section complements Section 4 in the main paper. Figure A1 and A2 report the

baseline results, when using the log of the maximum/minimum PM2.5 concentration as

the dependant variable. Eq. A1 provides the estimation equation to identify the effect of

city shape on commuting.

Table A1: Main results (max)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Shape index: Disconnection Range Remoteness

IV OLS IV OLS IV OLS

First stage Second stage First stage Second stage First stage Second stage

Dependent variable: Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5)

Shape (km) -0.0045* -0.0025 -0.0014** -0.0006 -0.0059* -0.0038

(0.0025) (0.0025) (0.0007) (0.0007) (0.0031) (0.0029)

log(area (sq.km)) 0.9993*** 0.0140*** 0.0125*** 2.8995*** 0.0134*** 0.0119*** 0.7536*** 0.0139*** 0.0128***

(0.1087) (0.0040) (0.0037) (0.3481) (0.0038) (0.0036) (0.0840) (0.0039) (0.0036)

Potential shape (km) 1.0258*** 1.4143*** 1.1035***

(0.0936) (0.1184) (0.1062)

Observations 6,414 6,414 6,414 6,414 6,414 6,414 6,414 6,414 6,414

F-test stat 11.55 10.52 8.66

City fixed effects

Year fixed effects

Notes: Regression results from Eq. 1, 2 and 3 with log of PM2.5 concentration as the dependent variable measured in micrograms per cubic meter ( µg

m3
). Column (1),

(4) and (7) report the results for the first stage. Column (2), (5) and (8) report results for the second stage. Column (3), (6) and (9) report results for the pooled OLS.

Standard errors are clustered at the city level. *** p<0.01, ** p<0.05, * p<0.1.

Table A2: Main results (min)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Shape index: Disconnection Range Remoteness

IV OLS IV OLS IV OLS

First stage Second stage First stage Second stage First stage Second stage

Dependent variable: Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5) Shape log(PM 2.5) log(PM 2.5)

Shape (km) -0.0089** -0.0056* -0.0026*** -0.0015* -0.0116*** -0.0082**

(0.0038) (0.0034) (0.0010) (0.0009) (0.0488) (0.0044)

log(area (sq.km)) 0.9993*** 0.0026 0.0002 2.8995*** 0.0012 -0.0010 0.7536*** 0.0023 0.0005

(0.1087) (0.0043) (0.0038) (0.3481) (0.0039) (0.0036) (0.0840) (0.0041) (0.0036)

Potential shape (km) 1.0258*** 1.4143*** 1.1035***

(0.0936) (0.1184) (0.1062)

Observations 6,414 6,414 6,414 6,414 6,414 6,414 6,414 6,414 6,414

F-test stat 11.55 10.52 8.66

City fixed effects

Year fixed effects

Notes: Regression results from Eq. 1, 2 and 3 with log of PM2.5 concentration as the dependent variable measured in micrograms per cubic meter ( µg

m3
). Column (1),

(4) and (7) report the results for the first stage. Column (2), (5) and (8) report results for the second stage. Column (3), (6) and (9) report results for the pooled OLS.

Standard errors are clustered at the city level. *** p<0.01, ** p<0.05, * p<0.1.

The effect of city shape on actual commuting patterns is estimated as follows:

log(yids) = β1shapeids + β2ln(areaids) + αs + ϵids, (A1)

where the dependant variable yis is the share of people in city i in district d in state s

that commute > 10km. In alternative specifications, the dependant variable refers to the

share of people that (i) commute at all or (ii) commute with a specific mode of transport.
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The variable shapeids is the respective shape property, that measures the compactness (in

km) of city i in district d in state s, where a higher value indicates a less compact city

shape. I further control for the log of the total area of a city and state fixed effects αs.

Standard errors are clustered at the state-level. The first and second stage for the IV

approach are implemented analogously to Eq. 2 and 3 in Section 2.
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