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Abstract

Class size reduction mandates are frequent and invariably justified by studies reporting

positive effects on student achievement. Yet other studies report no effects, and the literature

as a whole awaits correction for potential publication bias. Moreover, if identification drives

results systematically, the relevance of individual studies will vary. We build a sample of

1,767 estimates collected from 62 studies and for each estimate codify 42 factors reflecting

estimation context. We employ recently developed nonlinear techniques for publication

bias correction and Bayesian model averaging techniques that address model uncertainty.

The results suggest publication bias among studies featured in top five economics journals,

but not elsewhere. The implied class size effect is zero for all identification approaches

except Tennessee’s Student/Teacher Achievement Ratio project. The effect remains zero for

disadvantaged students and across subjects, school types, and countries.

Keywords: Class size, student learning, meta-analysis, publication bias,

Bayesian model averaging
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1 Introduction

Since 2010, at least 17 jurisdictions have mandated or incentivized class size reductions in

countries including Australia, Canada, Finland, France, Germany, India, Israel, New Zealand,

Norway, Portugal, South Korea, Spain, the United Kingdom, and the United States (Table B1

in Appendix B). Prior to 2010, at least 24 US states had started to mandate or incentivize

reductions (Whitehurst & Chingos, 2011). The policy is universally popular amongst parents

and teachers. According to one survey, 90% of American teachers believe that smaller classes

can “strongly” or “very strongly” improve student learning (Scholastic, 2012). Aside from

robust intuition, reduction mandates claim justification in empirical evidence. For example, the

legislation mandating significant class size reductions in New York City starting in September

2023 includes the following rationale:

Studies have shown that students learn faster and perform better in smaller classes.

(New York State Senate, 2022)

We show that the claim is inconsistent with the bulk of empirical evidence. The implied

class size effect is close to zero across methods, students, schools, and jurisdictions. Even

disadvantaged students benefit little from class size reductions—there is no systematic evidence

suggesting otherwise. Different identification approaches, in general, do not bring systematically

different results. Yet the prevailing public impression, expressed in Wikipedia entries, ChatGPT

replies, and legislative justifications, is that empirical research shows benefits of reductions, at

least for some students. The impression is to a large extent driven by two influential, high-

quality studies: Angrist & Lavy (1999) and Krueger (1999). Together, they have attracted

more than 5,000 citations in Google Scholar. But the two studies are not corroborated by the

rest of the literature, including recent contributions by Angrist et al. (2017) and Angrist et al.

(2019). We document that the zero finding is a robust feature of current data and methods.

Our main contribution is twofold. First, we take into account publication bias. Meta-

analyses of the class size effect are not rare: indeed, one was conducted by the founding father

of the method, Gene Glass, soon after he coined the term “meta-analysis” (Glass & Smith, 1979).

But no meta-analysis has attempted to correct the literature for publication bias or p-hacking,

although such selective reporting in economics routinely exaggerates typical reported estimates
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by a factor of 2 or more (Ioannidis et al., 2017). We use recently developed techniques for

publication bias and p-hacking correction. Second, we explicitly address model uncertainty both

in meta-analysis and the underlying literature. Existing meta-analyses either give equal weight

to each estimate (Hanushek, 1997, 1999) or each study (Mishel & Rothstein, 2002; Krueger,

2003), assign weights proportional to reported precision (Hedges & Stock, 1983; Greenwald

et al., 1996; Nye et al., 2002), or restrict their analysis to a handful of estimates they deem

particularly reliable (10 studies in the case of Filges et al., 2018). We collect 42 factors that

capture estimation context and, using Bayesian and frequentist model averaging, connect them

to differences in reported results.

Publication bias, stemming from the preference of editors, referees, and authors for intuitive

and significant results, is particularly threatening in class size research. Intuition provides a

clear prediction: smaller classes should improve student learning or, at the very least, not be

detrimental. Doucouliagos & Stanley (2013) show that fields with a strong underlying intuition

tend to suffer more from the bias. The debate concerning class size effects has been heated and

sometimes personal (Mishel & Rothstein, 2002). Several high-quality recent papers document

the extent of the publication bias problem in economics, often in areas with fewer ex ante

reasons to expect bias (Andrews & Kasy, 2019; Blanco-Perez & Brodeur, 2020; Brown et al.,

2023; Card et al., 2018; DellaVigna & Linos, 2022; Elliott et al., 2022; Imai et al., 2021; Iwasaki,

2022; Neisser, 2021; Stanley et al., 2021; Ugur et al., 2020; Xue et al., 2020). It is therefore

all the more remarkable that we find little publication bias in the class size literature. The

overall research record in the field is surprisingly undistorted. The significant exception is

studies published in top five economics journals, where optimistic results concerning class size

reductions are published too often, even holding identification approaches constant.

Publication bias is sometimes distinguished from p-hacking. In this narrower definition,

publication bias denotes the decision (editors’, referees’, or authors’) to publish or suppress

the results, which are individually unbiased. P-hacking, then, denotes the intentional or unin-

tentional effort of authors to produce desirable results, typically those that are intuitive and

statistically significant. Under p-hacking, even individual estimates can be biased. Both phe-

nomena give rise to a correlation between estimates and standard errors, which should otherwise

be zero. But each phenomenon has a different solution. For example, selection models, long used
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in meta-analysis to correct for publication bias, assume that estimates are individually unbiased

(Mathur, 2022)—these models compute the relative publication probability of significant and

insignificant results and then re-weight the estimates (Hedges, 1992; Andrews & Kasy, 2019).

In addition, these models are weighted by inverse variance, which creates a bias if standard

errors are underestimated due to p-hacking. Unfortunately, publication bias and p-hacking are

observationally equivalent in applied meta-analysis. For the sake of parsimony, we use the term

“publication bias” in place of “publication bias and/or p-hacking,” reserving the term p-hacking

for when it is necessary to distinguish it from publication bias.

Novel meta-analysis techniques can accommodate some forms of p-hacking. Irsova et al.

(2023) develop the meta-analysis instrumental variable estimator (MAIVE), which builds on

funnel plot models in the tradition of Egger et al. (1997), Stanley (2005), and Stanley (2008).

Classical funnel plot techniques seek to recover the estimate conditional on maximum precision.

That is, these models allow for p-hacking on point estimates. McCloskey & Ziliak (2019) provide

a useful analogy to the Lombard effect in psychoacoustics: speakers increase their vocal effort in

response to noise. In a similar vein, researchers can respond to noise in their data (imprecision)

by more effort (search over specifications) in order to produce large point estimates and reach

statistical significance. But standard errors are assumed to be given to the researcher and

cannot be manipulated, consciously or unconsciously. The assumption is unlikely to hold in

observational research. The corresponding analogy is Taylor’s law in ecology: variance decreases

with a smaller mean (originally describing population density for various species, Taylor, 1961).

Some researchers may be tempted, for example, to use less conservative standard errors when

their estimates are small. By exploiting the statistical relationship between the standard error

and sample size, Irsova et al. (2023) show in simulations that using the latter as an instrument

for the former addresses most forms of p-hacking as well as method heterogeneity that can

produce correlation between estimates and standard errors in the absence of selection.

The class size research as a whole is unbiased. The finding, which is rare in economics, is

supported by the rigorously founded selection model due to Andrews & Kasy (2019), the sim-

plified selection model (p-uniform*) due to van Aert & van Assen (2021), the endogenous kink

model due to Bom & Rachinger (2019), the weighted average of adequately powered estimates

(WAAP) model due to Ioannidis et al. (2017), the stem-based model due to Furukawa (2021),
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the instrumental MAIVE estimator due to Irsova et al. (2023), as well as classical funnel-based

meta-regression techniques with different weights and study-level fixed effects (Stanley, 2005;

Stanley & Doucouliagos, 2014). In contrast, we find evidence of publication bias among studies

published in top five journals. The bias is not strong, but suffices to shrink the implied high-

published effect of class size reductions to an economically and statistically insignificant value:

the largest corrected effect across all the techniques for top five journals corresponds to a 0.035

standard-deviation increase in test scores after a class size reduction of 10 students, about a

tenth of the largest estimate reported by Krueger (1999).

The unconditional meta-analysis mean can be misleading if different identification approaches

lead to systematically different results. Because variation in class size is generally far from ran-

dom, the choice of an identification approach matters in principle. Empirical studies use five

main approaches: i) ordinary least squares with controls, ii) student or class fixed effects (e.g.,

Chingos, 2012; Lindahl, 2005), iii) instrumental variables with, for example, enrollment or pop-

ulation used as instruments for class size (Borland et al., 2005; Hoxby, 2000), iv) regression

discontinuity design using jurisdiction-level limits on class size (Angrist et al., 2017; Urquiola

& Verhoogen, 2009), and v) experiments (Krueger, 1999; Shin & Raudenbush, 2011). The first

approach is unlikely to succeed in recovering the causal estimate, and researchers typically use

OLS only to show what happens if they ignore endogeneity. The class size literature has been

an important laboratory of the credibility revolution in empirical economics: the canonical ap-

plication of regression discontinuity design is due to Angrist & Lavy (1999), and the large-scale

Tennessee’s Student/Teacher Achievement Ratio (STAR) experiment (Krueger, 1999) helped

propel the drive in economics towards randomized controlled trials.

Aside from analyzing these five groups of studies separately, we also take into account the

broader issue of model uncertainty in estimation. Researchers make numerous data and method

choices at various stages: we collect 42 factors that reflect the context in which researchers obtain

their estimates. We then connect these 42 factors to the observed differences in reported class

size effects. As the baseline technique, we employ Bayesian model averaging (Steel, 2020), which

constitutes the natural response to model uncertainty in the Bayesian framework. To account

for collinearity we use the dilution prior due to George (2010). We also report the results of

frequentist model averaging with Mallows’ weights (Hansen, 2007) using the orthogonalization
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of covariate space due to Amini & Parmeter (2012). As the bottom line of our analysis, we

use the Bayesian model averaging results to construct a hypothetical ideal study and compute

implied estimates of the class size effect for various estimation contexts.

The results suggest little systematic dependence of reported effects on estimation design.

Among the five basic identification approaches, four deliver class size effects robustly close to

zero. The only exception is the STAR experiment, where even after correction for potential

publication bias and other issues we find a mean effect almost of the size reported in the influ-

ential study by Krueger (1999). One possible interpretation is that the STAR experiment data

are qualitatively superior to other studies and so the corresponding evidence is the only reliable

one. But the rest of the literature includes high-quality studies with eminently plausible identi-

fication approaches, especially when regression discontinuity is used, and covers many countries

and types of schools. After dozens of attempts, the literature has been unable to replicate the

results of the STAR experiment—which are, as we document, not driven by publication bias.

The most convincing explanation is that randomization failed in the STAR experiment, and we

briefly comment on that issue in the Conclusion.

The remainder of the paper is structured as follows. Section 2 describes the dataset of

class size effects. Section 3 investigates publication bias. Section 4 examines model uncertainty.

Section 5 concludes the paper. Appendix A gives details on how we select studies for inclusion

in the meta-analysis. Appendix B provides additional details on the data set and robustness

checks (eventually for online publication). The web appendix at at meta-analysis.cz/class

features data and codes for R and Stata.

2 Data

To search for studies reporting empirical estimates of the effect of class size on student achieve-

ment, we use Google Scholar because of its universal coverage and ability to inspect the full

text of studies, not only the title, abstract, and keywords. Appendix A reports details on our

search strategy. We read the abstracts of the first 500 studies identified by the Google Scholar

query and download those that show any promise of containing estimates of the class size ef-

fect. There are 216 such studies, and we record their references. Next, we go through the 100

studies most frequently cited among the 216 ones identified in the previous stage. This addi-
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tional step, which is intended to capture important studies potentially omitted by the Google

Scholar search, yields additional 26 papers that may provide estimates of the class size effect.

Next, we skim the full text of the 242 prospective studies. The ones that could be included in

meta-analysis are listed in Table 1.

Table 1: Studies included in the meta-analysis

Akerhielm (1995) Etim et al. (2020) Li & Konstantopoulos (2017)
Angrist & Lavy (1999) Francis & Barnett (2019) Lindahl (2005)
Angrist et al. (2017) Fredriksson et al. (2013) McKee et al. (2015)
Angrist et al. (2019) Gerritsen et al. (2017) Milesi & Gamoran (2006)
Arias & Walker (2004) Gottfried (2014) Nandrup (2016)
Asadullah (2005) Heinesen (2010) Rivkin et al. (2005)
Babcock & Betts (2009) Hojo & Oshio (2012) Sandy & Duncan (2010)
Bandiera et al. (2010) Hojo (2013) Shen & Konstantopoulos (2017)
Becker & Powers (2001) Hojo & Senoh (2019) Shen & Konstantopoulos (2021)
Bonesronning (2003) Hoxby (2000) Shen & Konstantopoulos (2022)
Boozer & Rouse (2001) Jakubowski & Sakowski (2006) Shin & Raudenbush (2011)
Borland et al. (2005) Jepsen & Rivkin (2009) Sims (2008)
Bosworth (2014) Kara et al. (2021) Sims (2009)
Bressoux et al. (2009) Kedagni et al. (2021) Suryadarma et al. (2006)
Browning & Heinesen (2007) Kennedy & Siegfried (1997) Urquiola (2006)
Bruhwiler & Blatchford (2011) Kokkelenberg et al. (2008) Urquiola & Verhoogen (2009)
Chetty et al. (2011) Konstantopoulos & Shen (2016) Vaag Iversen & Bonesronning (2013)
Chingos (2012) Krueger (1999) Woessmann (2005b)
Cho et al. (2012) Leuven et al. (2008) Woessmann & West (2006)
Dobbelsteen et al. (2002) Leuven & Ronning (2016) Woessmann (2005a)
Engin-Demir (2009) Levin (2001)

Notes: Details on the literature search, which was terminated on February 1, 2023, are shown in Appendix A.
The dataset, together with R and Stata codes, is available at meta-analysis.cz/class.

We impose three inclusion criteria. First, the study must report an estimated relationship

between test scores (not other measures of performance) and a continuous measure of class size

(not a dummy variable for a “small class”). Second, the study must report standard errors or

other statistics from which standard errors can be computed. Third, the study must report the

standard deviations of test scores so that we can convert all estimates to a common metric. For

the common metric we choose the change in the percentage points of the standard deviations

of test scores corresponding to an increase in class size by one student. That is, an estimate

of −1 in our dataset means that a class size reduction by 10 students is associated with an

improvement in test scores by 0.1 standard deviations. In total, 46 studies comply with the

three aforementioned inclusion criteria. For a robustness check, we also include additional 16

studies that comply with the first two but not the third criterion; in that case we recompute the

reported effects to partial correlation coefficients. Because treatment and control class sizes vary
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across studies and especially across countries (see Figure B1 and Figure B2 in Appendix B),

for another robustness check we recompute the effects to represent a change in the percentage

points of the standard deviations of test scores corresponding to an increase in class size by

one standard deviation (Table B3 in Appendix B). The robustness checks provide results

qualitatively similar to those of our main analysis.

In total, we gather 1,767 estimates of the class size effect reported in 62 primary studies. For

each estimate we collect the standard error and 42 factors that reflect the context in which the

estimate is obtained: subjects tested; the characteristics of students, schools, and jurisdictions;

estimation characteristics; and publication characteristics. Despite recent advances in large

language models, the data collection process for meta-analysis cannot be automated or delegated

to research assistants. So, two of the co-authors of this paper collected the required tens of

thousands of data points by hand after reading the 62 primary studies in detail. Then they

compared their datasets and corrected typos and other mistakes. The final clean dataset,

together with codes in R and Stata, is available in an online appendix at meta-analysis.cz/class.

Figure 1 shows the box plot of studies satisfying all three inclusion criteria. The studies are

sorted by the age of the data from oldest to youngest. Three observations stand out. First,

there is no apparent time trend in the reported estimates. Studies using recent data do not seem

to report results systematically different from older studies. Second, within-study variation in

results is large and often larger than variation in mean results across studies. This second

observation highlights the importance of collecting all estimates from the literature, not just

one representative estimate per study. Third, with a few exceptions, the central estimates of

individual studies tend to cluster around negative values close to zero. Note that effects smaller

than −1 in absolute value are relatively small in economic terms because they imply less than a

0.1 standard-deviation improvement in test scores following a class size reduction by 10 students.

An analogous box plot of countries instead of studies (Figure B3 in Appendix B) gives a similar

intuition concerning the prevalence of small effects.

Figure 2 provides a bird’s-eye view of the potential sources of systematic heterogeneity in

the literature. Nevertheless, little heterogeneity is apparent at first sight. The one difference

that stands out is the substantially larger negative effect reported in studies focusing on the

STAR experiment compared to all other identification approaches. Regression discontinuity,
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Figure 1: Estimates vary widely within and across studies, often cover zero
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Notes: The figure shows a box plot of the estimated effects of class size on achievement.
The effects are normalized to represent a change in the percentage points of the standard
deviations of test scores corresponding to an increase in class size by one student. That is,
an estimate of −1 means that a class size reduction by 10 students is associated with an
improvement in test scores by 0.1 standard deviations. The studies are sorted by the age of
the data from oldest to youngest. The length of each box represents the interquartile range
(P25-P75), and the line inside the box represents the median. The whiskers represent the
smallest and largest estimates within 1.5 times the range between the upper and lower
quartiles. Circles denote outliers. Extreme outliers are excluded from the figure for ease
of exposition but included in all statistical tests.
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Figure 2: Little prima facie systematic heterogeneity
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Notes: The figure depicts, for different subsets of data, histograms of the estimated effects of class size on
achievement. The effects are normalized to represent a change in the percentage points of the standard deviations
of test scores corresponding to an increase in class size by one student. That is, an estimate of −1 means that a
class size reduction by 10 students is associated with an improvement in test scores by 0.1 standard deviations.
Extreme outliers are excluded from the figure for ease of exposition but included in all statistical tests.
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instrumental variables, fixed effects, and OLS give usually zero or very mildly negative results.

(Recall that a negative coefficient here means a negative effect of class size on student achieve-

ment, and therefore a positive effect of class size reduction policy.) Zero or tiny effects are also

reported on average for individual subjects (math, reading, languages, and others), students

(advantages, disadvantaged, female), and countries (United States, Scandinavia, other coun-

tries). The top five journals in economics most commonly publish results close to zero, similarly

to other journals, but the top journals feature a larger proportion of substantially negative

results. Panel data yield, on average, similar results to cross-sectional data, but results based

on the latter are often quite widely dispersed on both sides of zero.

More detailed numerical information on the differences in the reported class size effects are

available in Table 2. The left-hand part of the table provides simple unweighted summary

statistics: each estimate has the same weight. In the right-hand part of the table, estimates are

weighted by the inverse of the number of estimates reported per study—so that each study has

the same weight. The appropriateness of various weights has been a subject of controversy in

literature surveys on the class size effect. Hanushek (1997) gives each estimate the same weight,

while Krueger (2003) gives each study the same weight. Even with a very different dataset, we

confirm the observation of Krueger (2003) that giving each study the same weight results in

more substantial estimates of the class size effect. Nevertheless, a different weighting scheme

is traditionally used in meta-analysis: inverse variance weights (Greenwald et al., 1996; Hedges

& Stock, 1983), which maximize the efficiency of the resulting meta-analysis estimate. Inverse

variance weights are not shown in Table 2 but are used later in our analysis. If employed in

Table 2, inverse-variance weights would push all means very close to zero.

Similarly to Figure 2, Table 2 provides little evidence of systematic heterogeneity in the

literature. The mean estimate is −0.36 (−0.65 when each study is given the same weight),

which implies an economically small effect. When data from the STAR experiment are used,

the primary study is likely to report estimates around −2, a relatively large effect that could

justify some policies of class size reductions (Krueger, 1999). But other identification strategies,

and all other contexts of data and estimation, show much smaller effects—perhaps with the

exception of the kindergarten grade, but there we only have 20 estimates collected from the

literature. The table reveals a substantial difference between the mean estimate reported by
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Table 2: Summary statistics for subsets of the literature

Unweighted Weighted

Observations Mean 95% conf. int. Mean 95% conf. int.

Subjects tested
Math 765 -0.25 -0.45 -0.05 -0.70 -0.87 -0.53
Reading 301 -0.72 -0.92 -0.52 -0.91 -1.11 -0.71
Writing 46 -0.61 -1.03 -0.20 -0.78 -1.11 -0.45
Languages 144 -0.46 -0.71 -0.22 -1.21 -1.47 -0.94
Other subjects 114 -0.18 -0.62 0.26 -0.21 -0.86 0.45

Class and student characteristics
Kindergarten 20 -1.65 -2.15 -1.15 -1.18 -1.82 -0.53
Primary school 769 -0.88 -1.03 -0.73 -0.91 -1.05 -0.77
Secondary school 571 0.34 0.12 0.57 -0.45 -0.70 -0.20
Female students 23 0.12 -0.26 0.50 0.38 0.11 0.65
Male students 15 -0.50 -0.69 -0.31 -0.94 -1.14 -0.75
Minority students 46 0.01 -0.68 0.71 -0.83 -1.90 0.25
Disadvantaged students 127 -0.35 -0.83 0.13 -0.41 -0.85 0.03
Advantaged students 84 -0.95 -1.50 -0.39 -0.99 -1.58 -0.40
General population students 1,032 -0.33 -0.48 -0.19 -0.66 -0.81 -0.52

Data characteristics
Longitudinal data 270 -0.39 -0.54 -0.24 -0.93 -1.12 -0.74
Cross-sectional data 1,076 -0.36 -0.51 -0.20 -0.61 -0.76 -0.46
United States 495 -0.68 -0.81 -0.55 -0.72 -0.88 -0.57
Scandinavian countries 214 -0.37 -0.77 0.04 -1.28 -1.60 -0.95
Other countries 641 -0.12 -0.33 0.10 -0.37 -0.58 -0.16

Estimation characteristics
STAR experiment 56 -1.99 -2.19 -1.78 -2.29 -2.49 -2.09
Regression discontinuity 133 -0.78 -1.18 -0.37 -1.23 -1.54 -0.91
Instrumental variable 574 -0.39 -0.65 -0.13 -0.42 -0.67 -0.16
Fixed effects 354 -0.34 -0.48 -0.19 -0.39 -0.57 -0.21
Endogeneity control attempted 1,117 -0.50 -0.65 -0.35 -0.68 -0.83 -0.53
Endogeneity ignored 233 0.29 0.08 0.50 -0.56 -0.84 -0.28

Publication characteristics
Top 5 journals in economics 218 -0.91 -1.16 -0.66 -1.65 -1.90 -1.40
Other journals 1,132 -0.26 -0.41 -0.11 -0.50 -0.65 -0.36

All estimates 1,350 -0.36 -0.49 -0.23 -0.65 -0.78 -0.52

Notes: The table shows subsample-specific means for estimated effects of class size on achievement. The
effects are normalized to represent a change in the percentage points of the standard deviations of test scores
corresponding to an increase in class size by one student. That is, an estimate of −1 means that a class size
reduction by 10 students is associated with an improvement in test scores by 0.1 standard deviations. In the
left-hand portion of the table each estimate has the same weight. In the right-hand portion of the table each
study has the same weight; in other words, there we weight estimates by the inverse of the number of estimates
reported per study. For the definition of subsamples see Table 6.
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the top five economics journals and other journals. The mean for the top journals is three times

the mean for other journals, and the difference holds for both weighting schemes. One possible

explanation for this difference is publication bias.

3 Publication Bias

The phenomenon most commonly associated with publication bias is a correlation between

estimates and standard errors. The lack of any correlation is the expected consequence of

all econometric techniques used to estimate the class size effect: otherwise the reported t-

statistic would be meaningless. The correlation arises when researchers (or editors or referees)

preferentially publish results that have the intuitive sign and are statistically significant, even

by chance. If the point estimate happens to be large enough to offset the standard error,

researchers obtain statistical significance and can publish the result more easily. The larger

the standard error, the larger the point estimate has to be. A related p-hacking mechanism

is the Lombard effect described in the Introduction: given a lot of imprecision, authors may

be tempted to try many different specifications until they get a point estimate large enough

to produce a t-statistic above 1.96. A visual tool related to this intuition and commonly used

in meta-analysis is the so-called funnel plot (Egger et al., 1997; Stanley, 2005): a scatter plot

of estimates (on the horizontal axis) on their precision (inverse of the standard error, on the

vertical axis). An asymmetry of the funnel plot indicates a correlation between estimates and

standard errors.

Figure 3 shows the funnel plot for the class size literature. We observe the theoretically

predicted funnel shape: the most precise estimates at the top are concentrated close to each

other, while the least precise ones are widely dispersed. Remarkably, the funnel is symmetrical,

which is rare in economics (Ioannidis et al., 2017). The apparent absence of publication bias is

surprising given the strong intuition in favor of negative effects (that is, effects supporting the

notion that larger classes hurt achievement) and the potential need to justify class size reduction

policies popular with teachers and parents. The finding testifies to the honesty of researchers

in the field. In any case, the most precise estimates are very close to zero. Many meta-analysis

techniques are based on the idea that the top of the funnel is the most informative part of the

literature, and therefore they try to estimate the mean reported coefficient conditional on max-
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Figure 3: Funnel plot shows no publication bias on average
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Notes: The estimated effects reported in individual studies are normalized to
represent a change in the percentage points of the standard deviations of test
scores corresponding to an increase in class size by one student. That is, an
estimate of −1 means that a class size reduction by 10 students is associated
with an improvement in test scores by 0.1 standard deviations. In the absence of
publication bias the scatter plot should resemble an inverted funnel symmetrical
around the mean. Extreme outliers are excluded from the figure for ease of
exposition but included in all statistical tests. The vertical line represents the
mean estimate (−0.36).

imum precision. As we will soon see, this common meta-analysis approach can be problematic

in economics if p-hacking makes reported standard errors too small and if correlation between

estimates and standard errors comes from different sources than publication bias (for example,

heterogeneity).

Table 3 shows meta-analysis tests of publication bias and the corresponding estimates of the

underlying effect corrected for the bias. The first block of the table focuses on all estimates in

the literature, the second block focuses on estimates published in the top five economics journals.

In Appendix B, Table B2 presents the results of tests for other subsets of the literature (STAR

experiment, regression discontinuity, instrumental variables, OLS), and Table B3 considers other

definitions of the effect size (partial correlation coefficients, effects recomputed to represent

standard-deviation changes in class size). These robustness checks yield results on publication

bias similar to the baseline analysis in the first block of Table 3; regarding the mean class size

effect beyond potential bias, the result is always zero with the exception of the STAR experiment.
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Each block has two panels. Panel A reports the results of a simple linear regression of estimates

on standard errors, though with different flavors. Panel B reports the results of more complex

nonlinear models, two of which are selection models independent of the funnel plot.

The basic formalization of the funnel plot intuition, a simple OLS regression, is shown

in the first column. Usually called the “Egger regression” after Egger et al. (1997), it was

actually first used by Card & Krueger (1995). The next specification adds study fixed effects

to filter out unobserved study-level heterogeneity. (Observed heterogeneity, both within- and

between-study, will be addressed in the next section.) The third specification uses the meta-

analysis instrumental variable estimator (MAIVE) due to Irsova et al. (2023). If standard errors

are p-hacked in a mechanism analogous to the Taylor’s law discussed in the Introduction, for

example by using inappropriate clustering, the top of the funnel can be a biased estimate of the

underlying mean effect. Also, some method choices can jointly influence estimates and their

standard errors, rendering the canonical publication bias test unreliable. The straightforward

solution is to use the inverse of the square root of sample size as an instrument for the reported

standard error. Sample size is related to the standard error by definition, and it is difficult

to exaggerate via p-hacking. To the extent that sample size does not drive the selection of

methods that, in turn, systematically influence both estimates and standard errors, sample size

is a valid instrument. Note that in most applications of MAIVE in this paper the instrument is

weak, and we thus report weak-instrument-robust confidence intervals due to Andrews (2018).

The next two specifications in Panel A use alternative weights: proportional to the inverse of

the number of estimates reported per study (Krueger, 2003) and to the inverse variance of the

estimates (Hedges & Stock, 1983).

Panel B of Table 3 shows the results of five nonlinear models that correct the reported mean

effect for potential publication bias. The first model is the weighted average of adequately

powered estimates (WAAP) developed by Ioannidis et al. (2017). This model is based on the

funnel plot, discards estimates with retrospective power below 80%, and computes an inverse-

variance-weighted mean of the remaining estimates. The next model, stem-based technique due

to Furukawa (2021), extends the previous one by endogenously determining what proportion of

the most informative estimates to use. The proportion is determined by exploiting the trade-

off between bias and variance: it is inefficient to discard estimates (variance increases), but
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Table 3: No publication bias outside top five journals

Block 1: All estimates

Panel A: Linear OLS FE IV Study Precision

Publication bias -0.088 -0.107 -0.576 0.111 -0.488
(standard error) (0.243) (0.228) (0.515) (0.288) (0.308)

[-0.793, 0.448] [-6.557, .432] [-0.486, 0.849] [-1.208, 0.216]
{-1.585, 0.433}

Effect beyond bias -0.260 -0.238 0.316 -0.785
∗∗∗

-0.095
(constant) (0.177) (0.269) (0.602) (0.277) (0.063)

[-0.607, 0.104] [-0.813, 4.361] [-1.422, -0.191] [-0.383, 1.103]
First-stage robust F-stat 7.311

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias -0.488
∗∗∗

P = 0.591
(0.083) (0.169)

Effect beyond bias -0.046
∗∗

-0.165 -0.095
∗∗∗

-0.640
∗∗∗

-0.258
∗∗∗

(0.020) (0.156) (0.010) (0.200) (0.057)

Observations 1,350 1,350 1,350 1,350 1,350

Block 2: Top five journals

Panel A: Linear OLS FE IV Study Precision

Publication bias -1.430
∗∗∗

-1.385 -0.713 -1.822
∗∗∗

-1.010
∗∗∗

(standard error) (0.500) (0.753) (0.935) (0.347) (0.380)
[-2.808, -0.042] [NA] [-2.457, .1896] [-5.686, -0.331]

{-2.546, 1.120}

Effect beyond bias 0.210 0.175 -0.351 -0.129 -0.0471
(constant) (0.284) (0.589) (0.558) (0.476) (0.0520)

[-2.632, 1.097] [NA] [-2.014, .7471] [-0.146, 0.623]

First-stage robust F-stat 3.826

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias -1.01
∗∗∗

P = 0.231
(0.202) (0.201)

Effect beyond bias -0.153 -0.082 -0.047 -0.105 -0.140
(0.096) (0.232) (0.054) (0.294) (0.129)

Observations 218 218 218 218 218

Notes: Panel A reports the results of a linear regression: eij = e0 + β · SE(eij) + εij , where eij denotes
the i-th class size effect estimated in the j-th study, and SE(eij) denotes the standard error. The class size
effects are normalized to represent a change in the percentage points of the standard deviations of test scores
corresponding to an increase in class size by one student. That is, an estimate of −1 means that a class size
reduction by 10 students is associated with an improvement in test scores by 0.1 standard deviations. FE:
study-level fixed effects. IV: reported standard errors are instrumented by the inverse of the square root of
sample size. Study: estimates are weighted by the inverse of the number of estimates reported per study.
Precision: estimates are weighted by their inverse variance. In Panel B, WAAP denotes the weighted average
of adequately powered estimates (Ioannidis et al., 2017), Stem denotes the stem-based technique (Furukawa,
2021), Kink denotes the endogenous kink model (Bom & Rachinger, 2019), p-uniform* denotes the technique
due to van Aert & van Assen (2021), and Selection denotes the technique due to Andrews & Kasy (2019). In
the selection model, P denotes the probability that estimates insignificant at the 5% level are published relative
to the probability that significant estimates are published. Standard errors, clustered at the study level, are
reported in parentheses. In square brackets we report 95% confidence intervals from wild bootstrap (Roodman
et al., 2018). For IV, in curly brackets we report the two-step weak-instrument-robust 95% confidence interval
based on Andrews (2018) and Sun (2018).∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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imprecise estimates are more likely to be selectively reported (publication bias increases). The

stem-based technique minimizes the sum of bias and variance. The third nonlinear model, the

endogenous kink technique due to Bom & Rachinger (2019), is based on the Egger regression

but adds a constant segment for highly statistically significant estimates, when it probably does

not matter for publication bias if the standard error changes. The fourth model, p-uniform*

(van Aert & van Assen, 2021), is a simplified selection model based on the statistical principle

that p-values should be uniformly distributed at the mean underlying effect size. Finally, the

rigorously founded selection model by Andrews & Kasy (2019) computes the probability that

each estimate within a particular significance bracket is published, and weights the reported

estimates by the inverse of that probability.

Table 3 shows little evidence of publication bias when all studies, irrespective of publication

outlet, are considered. (The results would remain very similar if from Block 1 we removed

studies published in the top five journals.) The tests in Panel A corroborate the intuition of the

funnel plot: no correlation appears between estimates and the corresponding standard errors.

The mean class size effect (the constant in the regression) corrected for potential publication

bias is therefore similar to the simple mean presented earlier. Inverse-variance weights, common

in meta-analysis and used in the last specification of Panel A, yield a smaller mean effect than

alternative weighting schemes. Models in Panel B serve as more reliable estimators of the

underlying mean effect because they do not assume (as Panel A techniques do) that publication

bias is a linear function of the standard error. As noted by Andrews & Kasy (2019) and Stanley

& Doucouliagos (2014), the linearity assumption is unlikely to hold in meta-analysis. But in the

case of the entire class size literature, nonlinear methods give results similar to those of linear

methods: mean effects corrected for publication bias are close to simple means. Any potential

publication bias in the literature taken as a whole appears weak.

The story is different for studies published in the top five economics journals (Block 2).

Here we find a substantial correlation between estimates and standard errors irrespective of

the weight used. The correlation is marginally insignificant at the 5% level in the fixed effects

specification, and imprecisely estimated in the instrumental variable specification, where the

instrument is weak. Crucially, however, all nonlinear correction techniques point to corrected

mean estimates very close to zero, shrinking the simple mean substantially, and thus providing
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Table 4: Specification test for the Andrews & Kasy (2019) model

All estimates Top 5 journals Regression discontinuity

Correlation 0.513 0.407 0.769
[0.351, 0.499] [0.072, 0.556] [0.642, 0.895]

Observations 1,350 218 133

Instrumental variable Fixed effects Endogeneity ignored

Correlation 0.521 0.412 0.506
[0.330, 0.571] [0.227, 0.638] [0.350, 0.691]

Observations 574 354 233

Notes: Following Kranz & Putz (2022), the table shows, for various subsets of the liter-
ature, the correlation coefficient between the logarithm of the absolute value of the esti-
mated class size effect and the logarithm of the corresponding standard error, weighted
by the inverse publication probability estimated by the Andrews & Kasy (2019) model.
If the assumptions of the model hold, the correlation is zero. Not enough estimates are
available to conduct this test separately for the STAR experiment. Bootstrapped 95%
confidence intervals in parentheses.

Table 5: Tests due to Elliott et al. (2022)

20 bins 15 bins 10 bins 5 bins

Test for non-increasingness 0.227 0.619 0.594 0.847
Test for monotonicity and bounds 0 0.023 0.001 0.570

Observations (p <= 0.15) 621 621 621 621
Total observations 1,350 1,350 1,350 1,350

Notes: The table shows p-values for each test; the null hypothesis is no p-hacking. The
techniques rely on the conditional chi-squared test of Cox & Shi (2023). The first technique
is a histogram-based test for non-increasingness of the p-curve, the second technique is a
histogram-based test for 2-monotonicity and bounds on the p-curve and the first two
derivatives. Both tests feature cluster-robust variance estimators. To work well, these
models require a large sample (Havranek et al., 2023), so they cannot be applied to the
subsample of studies published in top five journals.
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evidence for bias. For example, the selection model by Andrews & Kasy (2019) finds that

estimates statistically significant at the 5% level are more than four times more likely to be

published than statistically insignificant estimates. Why does publication bias appear only in

the top economics journals? One possible explanation is that the peer-review process in the

top journals places more weight on solid identification, and the canonical examples of early

well-identified studies are Krueger (1999) on the STAR experiment and Angrist & Lavy (1999)

on regression discontinuity, both showing substantial effects of class size reductions. Subsequent

positive results, confirming the two influential studies, could have been easier to publish high

than contradictory evidence.

As we have noted, most meta-analysis techniques are based on strong assumptions. The main

one is the lack of correlation between estimates and standard errors in the absence of publication

bias. The model of Andrews & Kasy (2019) allows an indirect test of this assumption (Kranz

& Putz, 2022). If all assumptions of the selection model hold, estimates and standard errors

(re-weighted by the inverse publication probability computed by the selection model) should be

uncorrelated. Table 4 shows the results for various subsets of data: we always find a substantial

correlation. The finding indicates that the zero correlation assumption is tenuous. We address

the issue using three strategies. First, we estimate the MAIVE model due to Irsova et al.

(2023). The results are broadly in line with the baseline techniques, but the instrument is weak.

Second, we use the p-uniform* technique developed by van Aert & van Assen (2021), which does

not require the orthogonality assumption. The results of p-uniform* are very similar to other

techniques. Third, we employ the novel tests due to Elliott et al. (2022). The first technique is a

histogram-based test for non-increasingness of the p-curve, the second technique is a histogram-

based test for 2-monotonicity and bounds on the p-curve and the first two derivatives. Neither

test relies on the orthogonality assumption. We obtain some evidence of publication bias using

the second test, but not the first one. All in all, there is no strong evidence of publication bias

outside the top five journals.

4 Model Uncertainty

The correlation between estimates and standard errors, attributed in the previous section to

publication bias, can also arise due to heterogeneity in the class size literature. One task of the
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present section, therefore, is to make sure our conclusions regarding publication bias and the

mean underlying effect survive an explicit treatment of heterogeneity. In this task we face the

twin problem of model uncertainty: one at the level of individual class size studies, the other at

the level of meta-analysis. Regarding the former, the literature lacks a clear consensus on how a

“best practice” class size study should look, and individual studies differ in dozens aspects, big

and small. Regarding the latter, it is unclear which of the dozens of characteristics potentially

reflecting heterogeneity should be added to the final meta-analysis model. Our intention is

to address the former source of model uncertainty by systematically tracing the differences in

results to differences in the data and methodology used by the primary studies. In the process

we also address model uncertainty in meta-analysis by using Bayesian and frequentist model

averaging. As the bottom line we provide estimates of the class size effect, corrected for potential

publication bias and misspecifications, in various context.

We collect 42 aspects that reflect the context in which the corresponding estimates are ob-

tained. The resulting variables are described and summarized in Table 6. For ease of exposition,

we divide the variables into five groups: subjects tested (math, reading, writing, others), class

and student characteristics (kindergarten, primary school, secondary school, class size, female

students, minority students, disadvantaged students, advantaged students), data characteris-

tics (cross section, panel, data year, countries), estimation characteristics (STAR experiment,

regression discontinuity, instrumental variables, fixed effects, OLS, controls for students, teach-

ers, and schools), and publication characteristics (top five journals, citations, publication year,

journal impact factor).

Table 6: Description and summary statistics of variables reflecting heterogeneity

Variable Description Mean SD WM

Class size effect Estimated effect of class size on student achieve-
ment; normalized to represent a change in the per-
centage points of the standard deviations of test
scores corresponding to an increase in class size
by one student (response variable).

-0.36 2.44 -0.65

Standard error (SE) Standard error of the estimated class size effect. 1.18 1.76 1.20
SE * Top journal Interaction of the standard error and a dummy

that equals one for top journal publication.
0.13 0.39 0.11

Subjects tested
Test in math = 1 if the test subject is mathematics. 0.57 0.50 0.53
Test in reading = 1 if the test subject is reading. 0.22 0.42 0.20
Test in writing = 1 if the test subject is writing. 0.03 0.18 0.02
Test in languages = 1 if the test subject is languages. 0.11 0.31 0.17

Continued on next page
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Table 6: Description and summary statistics of variables reflecting heterogeneity (continued)

Variable Description Mean SD WM

Test in other subjects = 1 if the test subject is other than mathematics,
reading, writing or languages (reference category
for test subjects).

0.08 0.28 0.17

Class and student characteristics
Kindergarten = 1 if the estimate corresponds to the kinder-

garten grade.
0.01 0.12 0.03

Primary school = 1 if the estimate corresponds to grades 1–5. 0.57 0.50 0.58
Secondary school = 1 if the estimate corresponds to grades 6–12

(reference category for grade type).
0.42 0.49 0.42

Class size The logarithm of the average class size used for the
estimation minus sample minimum of class size in
the literature.

2.46 0.37 2.47

Female students = 1 if the effect is estimated for female students
only.

0.02 0.13 0.01

Minority students = 1 if the effect is estimated for minority students
only.

0.03 0.18 0.01

Disadvantaged students = 1 if the effect is estimated only for disadvan-
taged students (students from low-income fami-
lies, incomplete families, with low-educated par-
ents, with low-experienced or low-educated teach-
ers, low-performing students, or students with
learning disabilities).

0.09 0.29 0.04

Advantaged students = 1 if the effect is estimated only for advantaged
students (students from complete families, with
high-educated parents, high-experienced or high-
educated teachers, high-performing or gifted stu-
dents).

0.06 0.24 0.02

General population students = 1 if the effect is estimated for students repre-
senting the general population.

0.76 0.42 0.90

Data characteristics
Cross-sectional data = 1 if cross-sectional data are used. 0.80 0.40 0.85
Longitudinal data = 1 if panel data are used (reference category for

data dimension).
0.20 0.40 0.13

Data year The logarithm of the average year of the time pe-
riod of the data used to estimate the class size
effect minus sample minimum in the literature.

2.79 0.45 2.79

Country: United States = 1 if the estimate uses data from the United
States.

0.37 0.48 0.33

Country: Scandinavian = 1 if the estimate uses data from Scandinavia
(Denmark, Finland, Norway, Sweden).

0.16 0.37 0.18

Country: other = 1 if the country for which the effect is esti-
mated is other than the United States or Scan-
dinavian countries (reference category for country
variables).

0.47 0.50 0.49

Estimation characteristics
Method: STAR experiment = 1 if the STAR experiment from Tennessee is

used to identify the effect.
0.04 0.20 0.04

Method: RDD = 1 if regression discontinuity design is used to
identify the effect.

0.10 0.30 0.15

Method: IV = 1 if the instrumental variable approach is used
to identify the effect.

0.43 0.49 0.35

Method: FE = 1 if student fixed-effects are included in the
model (or the value-added model is used) to esti-
mate the effect.

0.26 0.44 0.21

Method: OLS = 1 if the method used to estimate the effect does
not explicitly account for endogeneity (reference
category for the method variables).

0.17 0.38 0.24

Continued on next page
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Table 6: Description and summary statistics of variables reflecting heterogeneity (continued)

Variable Description Mean SD WM

Number of variables The logarithm of the number of explanatory vari-
ables used in the primary study.

2.33 0.89 2.48

Control: student’s gender = 1 if a control for the gender of students is in-
cluded.

0.66 0.47 0.67

Control: student’s age = 1 if a control for the age of students is included. 0.47 0.50 0.33
Control: student’s ethnicity = 1 if a control for ethnicity, nationality, or

immigration-related status of a student is in-
cluded.

0.36 0.48 0.33

Control: household income = 1 if a control for the household income of stu-
dents’ family is included.

0.33 0.47 0.36

Control: parental education = 1 if a control for the education of students’ par-
ents is included.

0.55 0.50 0.47

Control: family status = 1 if a control for family status (married, co-
habiting, same-sex, divorced, or single parent) is
included.

0.15 0.36 0.18

Control: peers’ ability = 1 if a control for in-class peer ability is included
(e.g. IQ scores of classmates).

0.27 0.44 0.25

Control: teacher’s experience = 1 if a control for the teacher’s experience is in-
cluded.

0.61 0.49 0.51

Control: teacher’s gender = 1 if a control for the teacher’s gender is included. 0.46 0.50 0.30
Control: teacher’s education = 1 if a control for the teacher’s education is in-

cluded.
0.40 0.49 0.38

Control: school size = 1 if a control for the school size (number of
the first-year enrollees or the total number of stu-
dents) is included.

0.16 0.37 0.11

Control: rural population = 1 if a control for the proportion of people living
in rural area within the school district is included.

0.21 0.41 0.13

Publication characteristics
Top journal = 1 if the study was published in a top five journal

in economics.
0.16 0.37 0.13

Citations The logarithm of the number of per-year citations
received since the study first appeared in Google
Scholar.

2.58 1.29 2.33

Publication year The logarithm of the year when the first draft of
the study appeared in Google Scholar minus the
sample minimum in the literature.

7.15 1.80 7.44

Impact factor The discounted recursive RePEc impact factor of
the outlet.

0.83 1.26 0.83

Notes: SD = standard deviation, WM = mean weighted by the inverse of the number of estimates reported per
study. OLS = ordinary least squares.

The complexity of the literature and the consequently large number of aspects in which

individual studies and estimates differ gives rise to model uncertainty in meta-analysis. The

natural solution to such model uncertainty in the Bayesian setting is Bayesian model averaging

(BMA, Steel, 2020). BMA runs many regressions with the estimated class size effect on the

left-hand side and various subsets of the variables introduced in Table 6 on the right-hand

side. It then weights the individual regression models by goodness of fit and parsimony. In the

implementation of BMA we use the unit information g-prior recommended by Eicher et al. (2011)

and the dilution model prior due to George (2010). The dilution prior is important because it
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addresses potential collinearity in meta-regression: models that feature a small determinant of

the correlation matrix get a smaller weight. Because the choice of priors is inherently subjective,

we use two robustness checks. First, a BMA variant with BRIC g-prior based on Fernandez

et al. (2001) and the beta-binominal model prior according to Ley & Steel (2009). Second,

frequentist model averaging with Mallows’ weights (Hansen, 2007) using the orthogonalization

of the covariate space suggested by Amini & Parmeter (2012). The results of the robustness

checks are broadly in line with our baseline results are available in Figure B5 and Table B5 in

Appendix B.

The outcome of Bayesian model averaging is depicted graphically in Figure 4. The ex-

planatory variables are ranked according to their posterior inclusion probabilities (analogous to

statistical significance in the frequentist sense) from the highest at the top to the lowest at the

bottom. The horizontal axis measures cumulative posterior model probability: the BMA weight

of individual models; the best models are shown on the left. Blue color (darker in grayscale)

means that the estimated parameter of the corresponding explanatory variable is positive. Red

color (lighter in grayscale) means the estimated parameter of the corresponding explanatory

variable is negative. The figure makes it clear that most of the 42 variables that we collect do

not help explain the systematic differences in reported class size effect. Only 8 variables are ro-

bustly important, and their corresponding regression coefficients have the same sign irrespective

of other variables being included or ignored.

More details on the baseline BMA estimation are available in Table 7 and Figure 5. Table 7

reports the numerical results of BMA together with a simple OLS check: the robustness check

only includes variables with posterior inclusion probability above 0.5. Figure 5 shows posterior

coefficient distributions for the 8 important variables. The BMA results corroborate the previous

findings regarding publication bias: on average in the literature there is no correlation between

estimates and standard errors, even if we control for various aspects of data and methodology.

The correlation, however, remains strong for studies published in the top five journals, indicating

publication bias there. Once again, we also find that the STAR experiment yields results

systematically different from those of other identification approaches. Estimates obtained using

regression discontinuity, instrumental variables, fixed effects, and OLS are on average close to

each other. We also find that class size effects tend to be somewhat stronger in primary schools
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compared to secondary schools, that panel data bring weaker class size effects than cross-

sectional data, that newer studies yield on average weaker effects, and that some characteristics

of students, peers, and teachers can matter for the class size effect.

Figure 4: Model inclusion in Bayesian model averagingModel Inclusion Based on Best  4473  Models

Cumulative Model Probabilities

0 0.28 0.38 0.45 0.54 0.6 0.67 0.75 0.83 0.9 0.96

Control: peers' ability 
Control: teacher's gender 

Control: household income 
SE x Top journal     
Publication year 

Method: STAR experiment 
Primary school 

Cross-sectional data 
Citations

Impact factor
Data year

Standard error (SE)
Top journal

Country: Scandinavian 
Method: RDD

Test in languages
Test in writing

Method: FE
Control: student's ethnicity 

Advantaged students 
Control: teacher's education 

Number of variables 
Country: USA

Control: family status
Test in reading
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Control: school size 

Control: student's age 
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Control: student's gender 
Test in math

Female students
Class size
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Notes: The figure depicts the results of the benchmark BMA model reported in Table 7. We employ the unit
information g-prior (the prior has the same weight as one observation of data) recommended by Eicher et al.
(2011) and the dilution prior suggested by George (2010), which accounts for collinearity. The explanatory
variables are ranked according to their posterior inclusion probabilities from the highest at the top to the lowest
at the bottom. The horizontal axis measures cumulative posterior model probability. Blue color (darker in
grayscale) = the estimated parameter of the corresponding explanatory variable is positive. Red color (lighter
in grayscale) = the estimated parameter of the corresponding explanatory variable is negative. No color = the
corresponding explanatory variable is not included in the model. Numerical results are reported in Table 7.
All variables are described in Table 6.
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Table 7: Why estimates of the class size effect vary

Response variable: Bayesian model averaging OLS
reported class size effect (baseline model) (robustness check)

P. mean P. SD PIP Coef. SE p-value

Constant -2.18 NA 1.00 -1.57 0.53 0.00
Standard error (SE) -0.01 0.02 0.08
SE * Top journal -1.20 0.23 1.00 -1.19 0.26 0.00

Subjects tested
Test in math 0.00 0.01 0.01
Test in reading 0.00 0.03 0.02
Test in writing 0.02 0.13 0.03
Test in languages -0.01 0.08 0.04

Class and student characteristics
Kindergarten 0.00 0.06 0.01
Primary school -0.47 0.23 0.87 -0.54 0.24 0.03
Class size 0.00 0.02 0.01
Female students 0.00 0.04 0.01
Minority students 0.00 0.04 0.01
Disadvantaged students 0.00 0.02 0.01
Advantaged students -0.01 0.08 0.03
General population students 0.00 0.02 0.01

Data characteristics
Cross-sectional data -0.55 0.35 0.76 -0.76 0.29 0.01
Data year 0.10 0.28 0.13
Country: United States 0.01 0.06 0.02
Country: Scandinavian -0.02 0.11 0.06

Estimation characteristics
Method: STAR experiment -1.73 0.52 0.95 -1.82 0.27 0.00
Method: RDD -0.02 0.11 0.05
Method: IV 0.00 0.02 0.01
Method: FE -0.01 0.06 0.03
Number of variables 0.00 0.03 0.02
Control: student’s gender 0.00 0.02 0.01
Control: student’s age 0.00 0.02 0.01
Control: student’s ethnicity -0.01 0.06 0.03
Control: household income -0.92 0.17 1.00 -0.97 0.32 0.00
Control: parental education 0.00 0.03 0.01
Control: family status 0.00 0.05 0.02
Control: peers’ ability -1.02 0.18 1.00 -1.05 0.30 0.00
Control: teacher’s experience 0.00 0.04 0.01
Control: teacher’s gender 1.30 0.21 1.00 1.30 0.29 0.00
Control: teacher’s education -0.01 0.08 0.03
Control: school size 0.00 0.03 0.01
Control: rural population 0.00 0.02 0.01

Publication characteristics
Top journal 0.07 0.31 0.07
Citations 0.16 0.24 0.38
Publication year 0.30 0.08 0.99 0.33 0.03 0.00
Impact factor -0.11 0.21 0.27

Observations 1,350 1,350

Notes: The response variable is the estimate of the effect of class size on achievement normalized to represent a
change in the percentage points of the standard deviations of test scores corresponding to an increase in class size by
one student. SE = standard error, P. mean = posterior mean, P. SD = posterior standard deviation, PIP = posterior
inclusion probability. In the left-hand part of the table we employ Bayesian model averaging (BMA) using the g-
prior and model prior recommended by Eicher et al. (2011) and additionally the dilution prior suggested by George
(2010). The specification in the right-hand part of the table employs ordinary least squares (OLS) using variables
with at least 50% PIP in BMA. The posterior mean in Bayesian model averaging (or alternatively the estimated
coefficient in the frequentist model) denotes the marginal effect of a study characteristic on the effect reported in the
literature. For a detailed description of all the variables see Table 6; for details on the BMA procedure see Table B4
and Figure B4.
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Figure 5: Posterior coefficient distributions for selected variables
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Notes: The figure depicts the posterior coefficient distributions of the regression coefficients corresponding
to selected variables in the baseline BMA estimation. For instance, the coefficient corresponding to STAR
experiment is negative and substantially far from zero in all models irrespective of other variables being
included or ignored.
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So, what is the best guess concerning the class size effect in various contexts, based on

the entire literature and after correction for potential publication bias and misspecifications?

Table 8 gives the answer. The implied effects are computed as fitted values from the Bayesian

model averaging exercise. The overall mean, in the first row, is conditional on the following

choices: no publication bias even in the top five journals (which means we plug in zero for

the standard error), preference for panel data (cross-sectional data = 0), preference for new

data (data year set to sample maximum), preference for attempted endogeneity control (OLS

= 0), preference for including student, peer, and teacher controls, preference for studies that

are published recently, are highly cited, and are featured in an outlet with a high impact factor.

All other variables are set to their sample means. The resulting estimate is virtually zero,

albeit with a wide credible interval. In the next rows we keep the subjective definition of “best

practice” described above and only change the relevant part—for example, in the second row,

“STAR experiment”, we set the STAR experiment variable equal to one and other identification

variables equal to zero.

The results suggest negligible effects of class size on student achievement in all contexts

except the STAR experiment. The lack of a systematic, replicable effect seems to be a robust

feature of the literature, independent of the specific meta-analysis approach. We would obtain

similar conclusions if we focused the entire analysis on studies published in the top five journals,

and hence likely avoided studies not subjected to high-quality peer review. The zero effect is

eminently unintuitive, as shown by the expectations of teachers cited in the Introduction. How

can smaller classes not help achievement? One possible explanation is that teachers may not

change their teaching practices when the size of the class changes (Ehrenberg et al., 2001;

Hattie, 2005). On a more aggregated level, smaller classes require many more teachers. With a

sudden reduction in the average class size, it might be difficult for principals to hire additional

teachers of the required quality. In consequence, a smaller proportion of students will end up

with really good teachers. This negative side effect should, in principle, disappear over time:

smaller classes increase the attractiveness of the profession and may motivate young people to

become teachers. On the other hand, as noted by Hanushek (1999), long-run time series for the

US show a decrease in the mean class size but not a corresponding improvement in test scores.
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Table 8: Implied effects of class size on achievement in different contexts

Mean 95% cred. int.

Overall best practice -0.083 -3.186 3.020

Method: STAR experiment -1.738 -5.941 2.465
Method: Regression discontinuity -0.029 -3.129 3.071
Method: Instrumental variable -0.007 -3.182 3.168
Method: Fixed effects -0.015 -2.956 2.925
Method: Ordinary least squares -0.005 -3.087 3.076

Kindergarten 0.180 -2.901 3.262
Primary school -0.284 -3.974 3.406
Secondary school 0.184 -2.857 3.224

Country: United States -0.075 -3.270 3.121
Country: Scandinavian -0.106 -2.951 2.740
Country: other -0.082 -3.389 3.226

Test in math -0.081 -3.400 3.237
Test in reading -0.085 -3.172 3.003
Test in writing -0.061 -3.192 3.069
Test in languages -0.095 -3.334 3.143
Test in other subject -0.082 -3.202 3.039

Advantaged students -0.094 -3.417 3.229
Disadvantaged students -0.082 -3.205 3.041

Notes: The table uses benchmark BMA results to compute the class size effect conditional
on selected aspects of data, methodology, and publication (see text for details). That is, the
table attempts to answer the question what the class size effect would be in different contexts
if the literature was free of publication bias even in the top journals and all studies used the
same identification strategy. The class size effects are normalized to represent a change in
the percentage points of the standard deviations of test scores corresponding to an increase
in class size by one student. That is, an estimate of −1 means that a class size reduction by
10 students is associated with an improvement in test scores by 0.1 standard deviations.

5 Conclusion

We use recently developed techniques to account for publication bias and model uncertainty

in the literature estimating the effect of class size on student achievement. Remarkably, de-

spite the strong intuition favoring a positive effect and the polarization within the research

literature, we find minimal evidence of publication bias, except in studies published in the top

five economics journals. The bias there is relatively mild and might have been caused by the

incentive to replicate the positive results of the STAR experiment, which was viewed as the

gold standard in the literature for much of the 1990s and 2000s. Studies employing various

identification approaches—such as student and class fixed effects, instrumental variables, or re-

gression discontinuity—and considering different student types (including disadvantaged ones),

subjects, schools, and jurisdictions typically do not yield systematically different results. These

studies collectively suggest a class size effect that is economically indistinguishable from zero.

The caveat to the conclusion provided above is that we find an economically significant effect

of class size reduction in studies examining the large and expensive STAR experiment conducted
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in Tennessee in the 1980s. We show that the positive results are a robust feature of the STAR

experiment data, not an artifact created by publication bias or methodological approaches in

analyzing the data. But the STAR experiment also universally fails to replicate. While we

cannot rule out the possibility that the experiment is the only relevant piece of evidence and

the rest of the literature is misspecified, that possibility seems unlikely given the quality of

many of the other studies, especially those focusing on regression discontinuity. The plausible

explanation is that something went wrong with the STAR experiment.

Several researchers have discussed the potential problems in the experiment (Ehrenberg

et al., 2001; Hanushek, 1999; Jepsen, 2015), which is described in detail by Mosteller (1995). The

experiment was nominally randomized, but it is hard to verify whether students and teachers

really were assigned randomly, as the decision on the assignment was in the hands of the

principals. The schools had to actively register for the program, and only a fraction of eligible

schools did so. It is hard to imagine that at least some principals would not assign teachers to

smaller classes strategically, perhaps as a reward for previous good performance. It is also hard

to imagine that some parents did not lobby principals to place their kids into smaller classes, and

that the lobbying would always fail. As a consequence, the experiment could feature smaller

classes with systematically better teachers and advantaged students. But even if the initial

randomization was perfect, substantial and uncontrolled flows of students between treatment

and control classes appeared in subsequent years, rendering interpretation problematic. Hence

we do not elevate the STAR experiment above other studies and assign it the same weight as

the regression discontinuity and instrumental variable approaches. Doing so yields a negligible

implied effect of class size on student performance.

The bottom line is that the available empirical evidence, taken as a whole, shows no effect

of class size in any commonly examined context. That conclusion does not necessarily mean

that class size reduction does not help students, at least some of them. Perhaps all studies

share a common misspecification and thus the literature has failed to identify an underlying

positive effect. But any benefits would have to be massive to justify the immense costs of class

size reductions (Rivkin et al., 2005), and it is doubtful whether such large benefits will ever

be identified. Until then, class size reduction remains an evidence-based policy in search of

evidence.
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Appendices

A Details of Literature Search

Figure A1: PRISMA flow diagram

Studies identified
through Google
Scholar via the
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“student achievement”
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based on abstract
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data (n = 180)
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ing inclusion cri-

teria (n = 62)

Identification

Screening

Eligibility

Included

Notes: Preferred reporting items for systematic reviews and meta-analyses (PRISMA) is an
evidence-based set of items for reporting in systematic reviews and meta-analyses. More details
on PRISMA and reporting standards of meta-analysis in general are provided by Havranek et al.
(2020). Snowballing: we download the references of the potentially eligible studies identified in
step “Screening” and inspect the 100 studies most commonly cited among the 216 studies. If,
based on the title and abstract, these commonly cited studies show any promise of containing
empirical estimates of the class size effect, we add them to the set of potentially eligible studies.
Snowballing yields 26 additional studies. Inclusion criteria: 1) the study must report an esti-
mated empirical relationship between test scores (not, for example, total years of schooling) and
class size (not, for example, a dummy variable for a “small class”); 2) the study must report stan-
dard errors or other statistics from which standard errors can be computed; 3) the study must
report the standard deviations of test scores so that we can convert all estimates to a common
metric. (Note that, in the robustness check focused on partial correlation coefficients, we also
include studies that violate criterion 3.) The literature search was terminated on February 1,
2023. The dataset, together with R and Stata codes, is available at meta-analysis.cz/class.
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B Additional Material (for online publication)

Table B1: Jurisdictions with class size reductions since 2010

Jurisdiction Year Description Source

Australia
(New South Wales)

2016 Agreement between the government and teachers union to have
on average 20 students in grade K, 22 in grade 1, 24 in grade 2,
30 in grades 3–10, 24 in grades 11–12.

NSWTF (2019)
NSWG (2023)

Canada
(Ontario)

2012 Ontario regulation 132/12, average of 26 students to 2 instructors
in kindergarten, cap of 23 in grades K–3, average of 24.5 students
in grades 4–8, and average of 22 in grades 9–12.

OME (2019)

Canada
(Quebec)

2011 Focus on underprivileged areas with cap at 20 students for grades
3–4, and at 24 students for grades 5–6.

QME (2023)

Finland 2010
2012

In the quality criteria of 2010 and 2012 by the Finnish Ministry
for Education and Culture recommendation on class size of 20–25
pupils for grades 1–6.

FNAE (2019)
MECF (2012)

France 2017 In 2017 addendum to the Education Law, underprivileged areas
cap set at 12 students in grade 1, in 2018 extended to grade 2 (it
followed previous experiment in 2002-2003 where in underprivi-
leged areas, cap was 10 students in grade 1). In 2020, in all areas
the class size cap at 24 students for grades K–3.

Bressoux et al. (2019)
Evain (2022)

Germany
(Hesse)

2011 In 2011 Hessian Education state law amendment, class sizes re-
duced for primary schools to a maximum of 25 students.

Argaw & Puhani (2018)

India 2021 In 2021 the Indian New Education policy reducing the student-
to-teacher ratio to 25:1 for primary schools and 30:1 for upper
primary schools by 2022.

NIE (2020)

Israel 2015 In 2015, the Israeli government approved of a plan to cap grades
1–2 to no more than 34 students per class by 2020.

JP (2015)

New Zealand 2023 In 2023, the NZ Minister of Education announced that student-
to-teacher ratios for grades 4–8 will be reduced from 29:1 to 28:1
by 2025.

Tinetti (2023)

Norway 2017
2019

In 2017 Norwegian parliament voted on upper limit on student-
to-teacher ratio 16:1 in grades 1–4 and 21:1 in grades 5–10. In
2019 these ratios were reduced to 15:1 in grades 1–4 and 20:1 in
grades 5–10.

MERN (2019)

Portugal 2017 In 2017, the Portuguese government announced a class size reduc-
tion policy of average class size of 20 students in primary schools
and 26 students in secondary schools by 2021.

OECD (2020)

South Korea 2015 The Ministry of Education announced plan to reduce average
class size from 30 to 24 and student/teacher ratio from 16.6 to
13.3 till 2022.

Han & Ryu (2017)
Koreaherald (2016)

Spain
(Madrid)

2020 Cap of 20 students for grades 1–3 due to covid-19 pandemics
regionally.

Elpais (2020)

United Kingdom
(Scotland)

2010 Cap reduced to 25 students for grade 1 and composite age classes,
and to 30 to 33 students for other grades.

NASUWT (2023)

United States
(California)

2013
2022

In 2013, class size cap of 24 students in grades K–3, in 2022 Senate
Bill 1431 lowered student-to-teacher ratio to 20:1 in grades K–3.

Rubio (2022)

United States
(New York City)

2022 In 2022 NY state senate bill S9460, class size cap of 20 students
in grades K–3, of 23 students in grades 4–8, and of 25 students
per class in high school.

Fadulu (2022)

United States
(Wisconsin)

2015 In the follow-up of the SAGE program in 2015 (Wisconsin Acts
53 and 71, Achievement Gap Reduction program), participating
schools have to reduce student-to-teacher ratio to max 18:1 or
30:2.

WDPI (2016)
VARC (2023)

Notes: The table gives examples on class size reduction mandates or recommendations (accompanied by additional
government funding) in various regions since 2010. The list is not exhaustive. Prior to 2010, at least 24 US states
started to mandate or incentivize reductions (Whitehurst & Chingos, 2011).

36



Figure B1: Distribution of class size
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Figure B2: Class size differences within and across countries
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Notes: The length of each box represents the interquartile range (P25-P75), and the
line inside the box represents the median. The whiskers represent the smallest and
largest estimates within 1.5 times the range between the upper and lower quartiles.
Circles denote outliers. The solid vertical line denotes the overall mean (24).
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Figure B3: Estimated class size effects vary within and across countries
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Notes: The figure shows a box plot of the estimated effects of class size on achieve-
ment. The effects are normalized to represent a change in the percentage points of
the standard deviations of test scores corresponding to an increase in class size by
one student. That is, an estimate of −1 means that a class size reduction by 10
students is associated with an improvement in test scores by 0.1 standard deviations.
The length of each box represents the interquartile range (P25-P75), and the line in-
side the box represents the median. The whiskers represent the smallest and largest
estimates within 1.5 times the range between the upper and lower quartiles. Circles
denote outliers. Extreme outliers are excluded from the figure for ease of exposition
but included in all statistical tests.
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Table B2: Publication bias tests for subsets of data

Block 1: STAR experiment

Panel A: Linear OLS FE IV Study Precision

Publication bias 0.658 -0.0691 2.172
∗∗

1.436
∗∗∗

0.332
(standard error) (0.627) (0.220) (1.085) (0.248) (0.277)

[0.038, 4.281] [NA] [1.347, 1.552] [0.044, 3.797]
{0.045, 4.299}

Effect beyond bias -2.407
∗∗∗

-1.943
∗∗

-3.376
∗∗∗

-3.138
∗∗∗

-2.207
∗∗∗

(constant) (0.532) (0.140) (0.790) (0.378) (0.321)
[-4.609, -1.893] [-6.276, 2.279] [-3.508, -2.732] [-4.622, -1.901]

First-stage robust F-stat 268.598

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias 0.332 P = 0.512
(0.66) (0.309)

Effect beyond bias -2.058
∗∗∗

-1.840
∗∗∗

-2.207
∗∗∗

-2.092
∗∗∗

-2.120
∗∗∗

(0.106) (0.287) (0.388) (0.112) (0.168)

Observations 56 56 56 56 56

Block 2: Regression discontinuity

Panel A: Linear OLS FE IV Study Precision

Publication bias -0.137 0.186 -1.819
∗∗

-0.266 -0.814
∗∗

(standard error) (0.285) (0.293) (0.852) (0.193) (0.353)
[-1.888, 0.954] [NA] [-2.211, 1.376] [-1.647, .04534]

{-3.488,-0.150}

Effect beyond bias -0.610
∗∗

-1.001
∗∗

1.434 -0.914
∗∗∗

-0.0286
∗∗∗

(constant) (0.247) (0.356) (1.086) (0.341) (0.00776)
[-1.271, -0.211] [NA] [-1.910, -0.201] [-.1925, .08528]

First-stage robust F-stat 19.647

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias -0.814
∗∗∗

P = 0.637
(0.137) (0.410)

Effect beyond bias -0.037
∗∗∗

-0.077 -0.029
∗∗∗

-0.029
∗∗∗

-0.034
∗∗∗

(0.002) (0.100) (0.009) (-0.007) (-0.004)

Observations 133 133 133 133 133

Continue on next page
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Table B2: Publication bias tests for subsets of data—cont.

Block 3: Instrumental variable

Panel A: Linear OLS FE IV Study Precision

Publication bias -0.0773 -0.0975 0.156 0.297 -0.244
(standard error) (0.271) (0.241) (1.555) (0.367) (0.229)

[-0.899, 0.535] [NA] [-0.552, 1.155] [-0.866, 0.267]
{-2.892, 3.204}

Effect beyond bias -0.241 -0.202 -0.695 -0.919
∗

-0.007
(constant) (0.337) (0.468) (2.921) (0.494) (0.030)

[-1.003, 0.466] [NA] [-2.004, 0.097] [-0.344, 0.523]

First-stage robust F-stat 0.388

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias -0.244
∗∗∗

P = 0.502
(0.083) (0.310)

Effect beyond bias NA -0.052 -0.007 -0.432
∗

-0.139
(NA) (0.307) (0.021) (0.222) (0.113)

Observations 574 574 574 574 574

Block 4: Fixed effects

Panel A: Linear OLS FE IV Study Precision

Publication bias -0.209 -0.335 -0.118 0.278 -0.121
(standard error) (0.497) (0.694) (0.573) (0.363) (0.360)

[-1.426, 0.779] [-5.686, 2.689] [-1.596, 0.820] [-1.042, 0.877]
{[-1.241, 1.004}

Effect beyond bias -0.249 -0.197 -0.287 -0.626
∗

-0.300
∗∗∗

(constant) (0.153) (0.290) (0.205) (0.348) (0.048)
[-0.805, 0.657] [-1.125, 0.899] [-1.414, 0.171] [-0.470, -0.169]

First-stage robust F-stat 197.022

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias -0.121 P = 0.377
(0.245) (-0.179)

Effect beyond bias -0.309
∗∗∗

-0.401 -0.300
∗∗∗

-0.176 -0.357
∗∗∗

(0.025) (0.285) (0.028) (0.281) (-0.038)

Observations 354 354 354 354 354

Continue on next page
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Table B2: Publication bias tests for subsets of data—cont.

Block 5: Ordinary least squares

Panel A: Linear OLS FE IV Study Precision

Publication bias 0.009 1.494
∗∗

-0.427 -0.848
∗∗∗

0.489
(standard error) (0.448) (0.667) (0.811) (0.183) (0.493)

[-0.812, 1.495] [-2.001, 1.585] [-1.136, 0.075] [-0.624, 1.630]
{-2.016, 1.161}

Effect beyond bias 0.286 -0.552 0.532 0.222 -0.056
(constant) (0.237) (0.377) (0.491) (0.314) (0.0522)

[-0.310, 0.824] [-0.481, 1.799] [-0.424, 0.849] [-0.614, 1.133]

First-stage robust F-stat 9.288

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias 0.489
∗∗

P = 0.148
(0.230) (0.072)

Effect beyond bias NA -0.416 -0.056
∗∗∗

0.203 -0.315
∗∗

(NA) (0.299) (0.021) (0.197) (0.155)

Observations 233 233 233 233 233

Notes: Panel A reports the results of a linear regression: eij = e0 + β · SE(eij) + εij , where eij denotes
the i-th class size effect estimated in the j-th study, and SE(eij) denotes the standard error. The class size
effects are normalized to represent a change in the percentage points of the standard deviations of test scores
corresponding to an increase in class size by one student. That is, an estimate of −1 means that a class size
reduction by 10 students is associated with an improvement in test scores by 0.1 standard deviations. FE:
study-level fixed effects. IV: reported standard errors are instrumented by the inverse of the square root of
sample size. Study: estimates are weighted by the inverse of the number of estimates reported per study.
Precision: estimates are weighted by their inverse variance. In Panel B, WAAP denotes the weighted average
of adequately powered estimates (Ioannidis et al., 2017), Stem denotes the stem-based technique (Furukawa,
2021), Kink denotes the endogenous kink model (Bom & Rachinger, 2019), p-uniform* denotes the technique
due to van Aert & van Assen (2021), and Selection denotes the technique due to Andrews & Kasy (2019). In
the selection model, P denotes the probability that estimates insignificant at the 5% level are published relative
to the probability that significant estimates are published. Standard errors, clustered at the study level, are
reported in parentheses. In square brackets we report 95% confidence intervals from wild bootstrap (Roodman
et al., 2018). For IV, in curly brackets we report the two-step weak-instrument-robust 95% confidence interval
based on Andrews (2018) and Sun (2018).∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B3: Publication bias tests with different definitions of the class size effect

Block 1: Effect of a one-standard-deviation increase in class size

Panel A: Linear OLS FE IV Study Precision

Publication bias -0.126 -0.119 -0.378 -0.103 -0.488
(standard error) (0.256) (0.222) (0.571) (0.171) (0.308)

[-0.813, 0.414] [NA] [-0.461, 0.297] [-1.208, 0.216]
{-1.496, 0.740}

Effect beyond bias -0.0565 -0.0584 0.00584 -0.128
∗∗∗

-0.0947
(constant) (0.0405) (0.0549) (0.145) (0.0399) (0.0625)

[-0.134, 0.037] [NA] [-0.210, -0.047] [-0.383, 1.103]

First-stage robust F-stat 3.896

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias -0.64
∗∗∗

P = 0.746
(0.084) (0.264)

Effect beyond bias -0.005
∗∗∗

-0.011 -0.013
∗∗∗

-0.110 -0.052
∗∗∗

(0.001) (0.036) (0.002) (0.072) (0.019)

Observations 1,350 1,350 1,350 1,350 1,350

Block 2: Effects recomputed to partial correlation coefficients

Panel A: Linear OLS FE IV Study Precision

Publication bias 0.0708 -0.0202 0.0687 -0.572 0.0984
(standard error) (0.295) (0.316) (0.297) (0.363) (0.401)

[-0.837, 0.975] [-0.906, 0.825] [-1.389, 0.284] [-0.744, 0.884]
{-0.514, 0.651}

Effect beyond bias -0.00507 -0.00365 -0.00504 -0.00411 -0.00682
∗∗∗

(constant) (0.00447) (0.00495) (0.00448) (0.00566) (0.00189)
[-0.015, 0.005] [-0.014, 0.005] [-0.016, 0.008] [-0.024, -0.003]

First-stage robust F-stat 22.01

Panel B: Nonlinear WAAP Stem Kink p-uniform* Selection

Publication bias 0.098 P = 0.512
(0.119) (0.088)

Effect beyond bias -0.005
∗∗∗

-0.003 -0.007
∗∗∗

NA -0.004
∗∗∗

(0.001) (0.008) (0.001) (NA) (0.001)

Observations 1,767 1,767 1,767 1,767 1,767

Notes: Panel A reports the results of a linear regression: eij = e0 + β · SE(eij) + εij , where eij denotes the
i-th class size effect estimated in the j-th study, and SE(eij) denotes the standard error. In Block 1, class size
effects are normalized to represent a change in the percentage points of the standard deviations of test scores
corresponding to an increase in class size by one standard deviation. In Block 2, class size effects are normalized
to represent partial correlation coefficients between class size and student achievement. FE: study-level fixed
effects. IV: reported standard errors are instrumented by the inverse of the square root of sample size. Study:
estimates are weighted by the inverse of the number of estimates reported per study. Precision: estimates are
weighted by their inverse variance. In Panel B, WAAP denotes the weighted average of adequately powered
estimates (Ioannidis et al., 2017), Stem denotes the stem-based technique (Furukawa, 2021), Kink denotes the
endogenous kink model (Bom & Rachinger, 2019), p-uniform* denotes the technique due to van Aert & van
Assen (2021), and Selection denotes the technique due to Andrews & Kasy (2019). In the selection model, P
denotes the probability that estimates insignificant at the 5% level are published relative to the probability that
significant estimates are published. Standard errors, clustered at the study level, are reported in parentheses.
In square brackets we report 95% confidence intervals from wild bootstrap (Roodman et al., 2018). For IV,
in curly brackets we report the two-step weak-instrument-robust 95% confidence interval based on Andrews
(2018) and Sun (2018).∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B4: Diagnostics of the benchmark BMA estimation (UIP and dilution priors)

Mean no. regressors Draws Burn-ins Time No. models visited
9.1611 3 · 105 1 · 105 1.25 mins 28,454
Model space Visited Top models Corr PMP No. obs.
5.5 · 1011 0.0005% 100% 0.9997 1,350
Model prior g-prior Shrinkage-stats
Random/19.5 UIP Av = 0.9993

Notes: We employ the combination of unit information prior recommended by (Eicher et al., 2011) and dilution
prior suggested by George (2010), which accounts for collinearity.

Figure B4: Benchmark BMA model size and convergence (UIP and dilution priors)
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Table B5: Why estimates of the class size effect vary (robustness checks)

Response variable: Bayesian model averaging Frequentist model averaging
class size effect BRIC and random priors

P. mean P. SD PIP Coef. SE p-value

Constant -2.16 NA 1.00 -2.34 1.77 0.19
Standard error (SE) -0.01 0.02 0.08 0.00 0.06 1.00
SE * Top journal -1.20 0.22 1.00 -1.05 0.34 0.00

Subjects tested
Test in math 0.00 0.01 0.01 0.00 0.27 1.00
Test in reading 0.00 0.03 0.01 0.00 0.59 1.00
Test in writing 0.02 0.13 0.03 0.00 0.07 1.00
Test in languages -0.01 0.08 0.04 0.00 0.39 1.00

Class characteristics
Kindergarten 0.00 0.06 0.01 0.00 0.01 1.00
Primary school -0.46 0.23 0.86 -0.36 0.32 0.26
Class size 0.00 0.02 0.01 0.00 0.34 1.00
Female students 0.00 0.04 0.01 0.00 0.16 1.00
Minority students 0.00 0.04 0.01 0.00 0.30 1.00
Disadvantaged students 0.00 0.02 0.01 0.00 0.04 1.00
Advantaged students -0.01 0.08 0.02 0.00 0.32 1.00
General population students 0.00 0.02 0.01 0.00 0.04 1.00

Data characteristics
Cross-sectional data -0.55 0.35 0.76 -0.44 0.39 0.26
Data year 0.09 0.27 0.11 0.14 0.53 0.79
Country: United States 0.01 0.06 0.02 0.00 0.09 1.00
Country: Scandinavian -0.02 0.11 0.06 0.00 0.61 1.00

Estimation technique
Method: STAR experiment -1.74 0.51 0.96 -1.52 0.55 0.01
Method: RDD -0.02 0.11 0.05 0.00 0.62 1.00
Method: IV 0.00 0.02 0.01 0.00 0.46 1.00
Method: FE -0.01 0.06 0.03 0.00 0.72 1.00
Number of variables 0.00 0.03 0.02 0.00 0.43 1.00
Control: student’s gender 0.00 0.02 0.01 0.00 0.02 1.00
Control: student’s age 0.00 0.02 0.01 0.00 0.06 1.00
Control: student’s ethnicity -0.01 0.05 0.03 0.00 0.23 1.00
Control: household income -0.92 0.17 1.00 -0.85 0.23 0.00
Control: parental education 0.00 0.03 0.01 0.00 0.60 1.00
Control: family status 0.00 0.05 0.02 0.00 0.24 1.00
Control: peers’ ability -1.02 0.18 1.00 -0.97 0.25 0.00
Control: teacher’s experience 0.00 0.04 0.01 0.00 0.07 1.00
Control: teacher’s gender 1.31 0.21 1.00 1.20 0.64 0.06
Control: teacher’s education -0.01 0.07 0.02 0.00 0.69 1.00
Control: school size 0.00 0.03 0.01 0.00 0.13 1.00
Control: rural population 0.00 0.02 0.01 0.00 0.13 1.00

Publication characteristics
Top journal 0.07 0.29 0.06 0.00 1.40 1.00
Citations 0.15 0.24 0.35 0.23 0.35 0.52
Publication year 0.30 0.08 0.99 0.26 0.13 0.04
Impact factor -0.10 0.20 0.24 -0.17 0.42 0.69

Observations 1,350 1,350

Notes: The response variable is the estimate of the effect of size class on student achievement. The class size effects
are normalized to represent a change in the percentage points of the standard deviations of test scores corresponding
to an increase in class size by one student. SE = standard error, P. mean = posterior mean, P. SD = posterior
standard deviation, PIP = posterior inclusion probability. In the first specification from the left we employ Bayesian
model averaging (BMA) using BRIC g-prior suggested by Fernandez et al. (2001) and the beta-binomial model prior
according to Ley & Steel (2009). The specification on the right employs frequentist model averaging by applying
Mallows weights Hansen (2007) using orthogonalization of the covariate space suggested by Amini & Parmeter (2012)
to reduce the number of estimated models. The posterior mean in Bayesian model averaging (or alternatively the
estimated coefficient in frequentist model averaging) denotes the marginal effect of a study characteristic on the effect
size reported in the literature. For detailed description of all the variables see Table 6.
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Figure B5: Model inclusion in BMA (BRIC and random priors)
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Notes: On the vertical axis the explanatory variables are ranked according to their posterior inclusion probabil-
ities from the highest at the top to the lowest at the bottom. The horizontal axis shows the values of cumulative
posterior model probability. Blue color (darker in grayscale) = the estimated parameter of a corresponding
explanatory variable is positive. Red color (lighter in grayscale) = the estimated parameter of a corresponding
explanatory variable is negative. No color = the corresponding explanatory variable is not included in the
model. Numerical results are reported in Table B5. All variables are described in Table 6.
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Table B6: Diagnostics of the BMA estimation (BRIC and random priors)

Mean no. regressors Draws Burn-ins Time No. models visited
9.0522 3 · 105 1 · 105 1.18mins 26,918
Model space Visited Top models Corr PMP No. obs.
5.5 · 1011 0.0005% 100% 0.9995 1,350
Model prior g-prior Shrinkage-stats
Random/19.5 BRIC Av = 0.9993

Notes: The specification uses a BRIC g-prior suggested by Fernandez et al. (2001) and the beta-binomial
model prior according to Ley & Steel (2009).

Figure B6: BMA model size and convergence (BRIC and random priors)
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