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Photovoltaics and the Solar Rebound: 
Evidence for Germany

Abstract
Recent research suggests that households increase their electricity consumption in the 
aftermath of installing photovoltaic (PV) panels, a behavioral change commonly referred 
to as the solar rebound. Drawing on panel data originating from the German Residential 
Energy Consumption Survey (GRECS), we employ panel estimation methods and the dynamic 
system estimator developed by Blundell and Bond (1998) to investigate the existence of a 
solar rebound effect, thereby accounting for simultaneity and endogeneity issues relating to 
PV installation and the electricity price. Our empirical results suggest that PV panel adoption 
of households does not change the amount of electricity taken from the grid. As we derive 
theoretically, this outcome implies a solar rebound that is bounded from above by about 
50%, while back-of-the-envelope calculations provide us with a lower bound of 12% and an 
average solar rebound of 35%.

JEL-Codes: C23, H10, Q41
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1 Introduction

In Germany, electricity generated from renewable energy sources (RES) is promoted

via a feed-in-tariff (FiT) system that guarantees technology-specific above-market rate

tariffs, commonly for about two decades. This promotion scheme has established itself

as a global role model and has been adopted by a wide range of countries (CEER, 2013),

even some with a high endowment of sun, such as Australia (Nelson et al., 2011).

Since the implementation of Germany’s FiT system in 2000, installed capacities of

renewable energy technologies have increased more than ten-fold: from 12.0 Gigawatt

(GW) in 2000 to 132.1 GW in 2020 (BMWi, 2021). Photovoltaics (PV) and onshore wind-

mills experienced the largest increase, with PV capacities sky-rocketing from about 1

GW in 2004 to nearly 54 GW in 2020 (BMWi, 2021). Today, PV represents almost a quar-

ter of total electricity production capacities in Germany (Frondel et al., 2020). More

than 1 million rooftop solar installations of private households contributed to this ca-

pacity increase (ISE, 2021).

Recent research indicates that such “solar” households change their behavior due

to PV installation by increasing their electricity consumption (see e.g. La Nauze, 2019;

Oliver et al., 2019; Qiu et al., 2019; Spiller et al., 2017; Caird et al., 2008; Keirstead,

2007; Motlagh et al., 2015), thereby undermining the environmental benefits of PV

adoption by not fully exploiting the potential of PV in reducing the amount of elec-

tricity that households take from the public grid. In analogy to the literature on the

rebound effects associated with energy efficiency improvements (see e.g. Binswanger,

2001; Frondel et al., 2008; Chan and Gillingham, 2015; Frondel et al., 2012; Frondel and

Vance, 2013; Frondel et al., 2017; Dütschke et al., 2018), the behavioral response of solar

households that adopt a PV panel is commonly referred to as the solar rebound (see

e.g. Oliver et al., 2019).

Theory suggests that the solar rebound is due to the fact that solar electricity is gen-

erated by PV panels at zero marginal costs (Oliver et al., 2019), but in practice the effect
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on household consumption differs with the PV promotion scheme: For households

that are net-metered, solar electricity is evaluated at the retail price and the energy bill

is determined by the difference between total household consumption and solar gen-

eration, hence triggering a rebound effect by a decreased energy bill and a perceived

reduction in the average price. Net-metering is a widespread mechanism in the United

States and also in some European countries, for instance in Belgium (Boccard and Gau-

tier, 2021; Dusonchet and Telaretti, 2015). At the other extreme are countries where all

solar electricity is exported to the grid and remunerated with a feed-in tariff, like in

France, where the solar rebound effect may arise as a pure income effect (Dusonchet

and Telaretti, 2015; Qiu et al., 2019). Germany’s system of net feed-in represents a hy-

brid case, combining self-consumption of solar electricity with opportunity costs given

by the feed-in tariffs (see e.g. La Nauze, 2019).

Drawing on household data originating from the German Residential Energy Con-

sumption Survey (GRECS), this paper contributes to the scant body of evidence on

the solar rebound by investigating whether households under Germany’s net feed-in

system change the amount of electricity taken from the public grid in the aftermath of

installing a PV panel. Several features make Germany a particularly interesting case

to consider the solar rebound: First, with about 17% of the global total, Germany has

a massive stock of PV capacity, the result of more than a decade of generous subsi-

dies. Second, contrasting with the focus on self-consumption in the U.S., households

in Germany have strong incentives to maximize the feed-in of solar electricity owing to

exceptionally high feed-in tariffs, which in former years were as high as four times the

electricity price. Third, as solar households in Germany first self-consume and then sell

the excess solar electricity at a fixed feed-in tariff, a solar rebound may be driven both

by a price and income effect, the latter being due to revenues from feeding solar elec-

tricity into the grid. Fourth, as the German feed-in tariff system is a global role model

that is applied in many other countries to support renewable energy technologies, in

particular in Southern European countries, we believe that our empirical results are
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transferable to many other countries with feed-in tariffs in place.

Exploiting longitudinal data comprising 7,948 households and spanning the pe-

riod from 2004 to 2015, we employ panel estimation methods and the dynamic system

estimator developed by Blundell and Bond (1998) to estimate changes in the grid con-

sumption of solar households, thereby accounting for simultaneity and endogeneity is-

sues arising from the possibility that electricity consumption and prices, as well as the

decision on PV installation, may be jointly determined by unobserved covariates. Two

instrumental variables are used to tackle these endogeneity problems. First, following

Frondel et al. (2019), we employ the sum of regulated electricity price components as

an instrumental variable for the potentially endogenous price. Second, on the basis of

the theory of peer effects, which are a type of social spillover based on the assumption

that consumers’ actions indirectly influence other consumers, we employ the number

of installed PV systems per zip code as an instrument for the likely endogenous vari-

able indicating PV ownership (see e.g. Bollinger and Gillingham, 2012.

Based on our preferred econometric model, which controls for dynamic effects and

endogeneity, our empirical results indicate that PV panel adoption of households does

not change the amount of electricity that they take from the public grid in a statistically

significant way. As theoretically derived below, this outcome implies a solar rebound

that is bounded from above by about 50%, but a back-of-the-envelope calculation us-

ing the econometric estimate yields a solar rebound that is rather on the order of 35%.

That this estimate falls well below the theoretical upper bound likely owes to the high

opportunity cost of self-consumption in terms of foregone remunerations for each kWh

solar electricity fed into the grid. Nevertheless, as it is technically infeasible for Ger-

man solar households to feed 100% of solar electricity into the grid (Ruf, 2018), and as

regulation in Germany has partly prohibited the feed-in of more than 90% of solar elec-

tricity (Masson et al., 2016), this minimum required share of self-consumption implies

a lower bound of the solar rebound of 12%.

Our study adds to other empirical research on the recently emerging topic of the so-
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lar rebound, which has primarily focused on Australia and the United States. Findings

from these studies suggest a moderate increase in electricity consumption due to the

solar electricity generation of private households (see e.g. Havas et al., 2015; Deng and

Newton, 2017; Spiller et al., 2017; McKenna et al., 2018; Sekitou et al., 2018; Qiu et al.,

2019; La Nauze, 2019). For the U. S. , for example, Qiu et al. (2019) estimate that an

increase in solar electricity generation by 1 kilowatthour (kWh) results in an increase

in household electricity consumption by 0.18 kWh. In other words, the solar rebound

amounts to 18%.

In the subsequent section, we provide a theoretical derivation of the solar rebound

effect and discuss the economic incentives for households to produce solar electricity.

Section 3 describes the data set used for the estimations, while Section 4 presents our

methodological approach. The empirical results are discussed in Section 5. The last

section summarizes and concludes.

2 Economic Incentives and Theoretical Background

Germany experienced a PV boom around 2010 that was due to generous feed-in tariffs

(FiTs) for solar electricity, which are guaranteed for up to 21 years in an intertemporally

fixed form, with the level depending on the date of installation (see Figure 1). Between

2000 and 2012, feed-in tariffs were substantially higher than the average electricity

price for households with an annual electricity consumption of 3,500 kWh. Decreasing

module prices, together with state and municipal funding to support PV installation,

as well as generous feed-in tariffs above electricity prices, made the installation of PV

panels and the maximization of feeding-in solar electricity particularly attractive for

households that installed PV panels before 2012 (see e.g. Andor et al. (2015)).

With a net feed-in system in place, solar households do not export their entire solar

electricity production to the public grid, as for example French households. Rather, in

Germany, solar households self-consume a fraction of their solar electricity and only
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Figure 1: Feed-in tariffs for solar households with a PV capacity below 10 kW (BNetzA, 2020), which is
mostly installed by solar households (ISE, 2021), and Average electricity prices for households with an
annual electricity consumption of 3,500 kWh (BDEW, 2016).

.

sell the excess solar electricity at FiT rates to the grid, as it is technically infeasible for

German solar households to feed 100% of the solar electricity into the grid.1

In fact, due to high costs of battery storage units and households’ supply and de-

mand profiles, the share of self-consumption among solar households in Germany has

been rather uniform at about θ =25% (ZSW, Bosch & Partner, 2019). Yet, generous feed-

in tariffs imply high opportunity cost of self-consuming and, hence, provide strong

disincentives for solar households to increase their electricity consumption by overly

consuming self-produced solar electricity, rather than feeding it into the grid. This dis-

incentive renders the prevalence of a strong solar rebound unlikely, at least for owners

of PV panels that were installed in the years before 2012, when feed-in tariffs were

relatively high (see Figure 1).

Inspired by the theoretical discussion by Oliver et al. (2019) on the solar rebound,

we now derive the null hypothesis underlying our empirical research, thereby taking

account of the fact that solar households buy electricity from the public grid to cover

their demand at times of no or insufficient solar production. Given that only this grid

1To facilitate a reliable grid management of the distribution system operators (DSOs), for PV systems
with a maximum power of up to 30 kilowatt, which is the case that holds true for solar households,
DSOs are allowed to limit the feed-in power of each installation to 70% of the maximum power (Ruf,
2018).
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electricity consumption eg, but not the amount of solar electricity epv produced by a

household, is metered in Germany, the total electricity consumption e of a solar house-

hold, equaling the self-consumption of solar electricity plus the electricity eg taken

from the grid, is unknown:

e = eg(epv) + θ · epv, (1)

where the amount of electricity eg that a solar household gets from the public grid

depends on the solar electricity production epv and 0 < θ < 1 reflects the fraction of

solar electricity production epv that is self-consumed by the household. Accordingly,

(1 − θ) epv is the amount of solar electricity that is fed into the public grid, thereby

getting a fixed remuneration for each kWh.

It bears noting that while the rate of self-consumption θ generally varies to some

extent, the degree of variation should be moderate for two reasons: First, this rate

is primarily determined by technical issues, rather than the behavior of solar house-

holds. Second, the PV capacities installed on rooftops are typically below 10 kilowatts

in German solar households (BMWi, 2014), with only a moderate variation around the

average installed capacity of 6.12 kW as reported by the German transmission system

operators (TSO, 2017). Therefore, assuming a constant self-consumption rate θ seems

to be a warranted first approximation to the households’ actual consumption behavior.

We subsequently test the sensitivity of our conclusions to this assumption.

According to Oliver et al. (2019), the solar rebound is defined as the percentage in-

crease in total electricity consumption e due to a percentage increase in solar electricity

output epv. Thus, formally, the solar rebound SR is given by the following elasticity:

SR :=
∂ ln e

∂ ln epv
. (2)

We now demonstrate that the solar rebound is limited by 2θ as an upper bound, as can

be derived by taking the derivative of equation (1) for electricity consumption e with
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respect to epv:
∂e

∂epv
=

∂eg
∂epv

+ θ · ∂epv
∂epv

=
∂eg

∂epv
+ θ. (3)

This expression indicates that ∂e/∂epv = θ when ∂eg/∂epv = 0, that is, when there is

no change in electricity taken from the grid due to the emergence of a solar rebound

effect. From this follows

SR =
∂ ln e

∂ ln epv
=

epv
e

∂e
∂epv

=
epv

e
θ < 2θ, (4)

as in practice epv can safely be assumed to be lower than double the electricity con-

sumption e of a household and, hence, the solar rebound SR is bounded from above by

2θ. This reasoning stems from the fact that the typical solar production of households

amounts to about 5,500 kWh, which is far less than double the mean annual electricity

consumption of 3,650 kWh of our solar households (Table 1), so that epv/e < 2.2

Condition ∂eg
∂epv = 0 means that the amount of electricity taken from the grid remains

unchanged upon PV adoption, because there is a solar rebound and the produced solar

electricity epv serves to increase electricity consumption e, rather than reducing the

amount of electricity eg taken from the grid. In practice, though, while the produced

solar electricity is largely fed into the grid, it is partially self-consumed by the solar

household, where self-consumption reduces the amount of electricity taken from the

grid to at least some degree, so that, generally, ∂eg
∂epv < 0.

In the absence of data on the solar electricity production epv of individual house-

holds, as well as their total electricity consumption e, we are unable to quantify the

solar rebound, but we can preclude the case of a maximum solar rebound by testing

the null hypothesis H0 against the alternative hypothesis H1:

H0 :
∆ ln eg
∆PV

= 0 versus H1 :
∆ ln eg
∆PV

< 0, (5)

2According to installation data provided by the German transmission system operators (TSOs), a
typical PV system for private households in Germany installed before 2016 had an average installed
capacity of 6.12 kW (TSO, 2017). Given 892 full-load hours for rooftop PV panels (TSO, 2019), the average
annual solar production thus amounts to 5, 459 kWh.
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where PV is an indicator of a household’s PV panel ownership and H0 is the discrete

counterpart of condition ∂eg
∂epv = 0.

A necessary condition for the solar rebound SR to reach its maximum is that H0

holds true, i. e. that the amount of electricity taken from the grid remains unchanged

after PV adoption. As a simplified illustration of this condition, assume that a house-

hold acquires a PV panel, with which it produces some positive amount of solar elec-

tricity, epv > 0. Recognizing that the self-produced solar electricity may be partly used

to meet the household’s own demand, rather than fed entirely into the grid, it follows

that were eg to remain unchanged upon acquiring the panel, the household’s total elec-

tricity consumption e would necessarily increase, with the magnitude of the increase

representing the solar rebound.

Yet, if the alternative H1 holds true, it remains unclear whether there is a solar

rebound SR > 0 or whether solar electricity production leads to a one-for-one reduc-

tion in a household’s grid electricity demand and, hence, a vanishing solar rebound:

SR = 0. To empirically investigate these issues, in what follows, we draw on panel

data for German households that are described in the subsequent section.

3 Data

The data used for this research is drawn from the German Residential Energy Con-

sumption Survey (GRECS). Commissioned by the Federal Ministry of Economics and

Energy, the GRECS comprises seven surveys that were jointly conducted by RWI - Leib-

niz Institute for Economic Research and the professional survey institute forsa (GRECS,

2020). forsa maintains a household panel that is representative for the German popu-

lation aged 14 and above. Altogether, the seven surveys yield an unbalanced panel of

households spanning the period from 2004 to 2015 (see Table A1 in the appendix).

Taking only those households into account for which information on PV ownership,

the electricity eg taken from the grid, as well as electricity prices and costs is avail-
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able, the number of households employed for our empirical analysis amounts to 7,948.

Among these are 358 solar households, representing 4.5% of the sample. This share

is very close to the overall share of solar households in Germany, which amounted to

4.8% in 2015 (see Table A2 in the appendix).

Survey participants, in this case the household heads, were requested to fill out

a questionnaire with which data on electricity consumption and cost, socio-economic

characteristics, such as household net income, age, gender and education of the house-

hold head, as well as PV ownership, are elicited. By definition, household heads are

those household members who are responsible for financial decisions at the household

level. Households were requested to state whether their dwelling was equipped with a

PV system. Likewise, all other information is self-reported using a state-of-the art sur-

vey tool that provides visual assistance to the respondents, particularly with respect to

electricity bills.

The billing information includes the amount of electricity drawn from the grid,

marginal prices, monthly fixed fees and total electricity expenditures, and is taken

from the households’ bills that cover the years prior to each survey year.3 Unlike in

the U. S. and some European countries, in Germany households only receive a sin-

gle electricity bill per billing cycle, with a billing cycle commonly lasting about one

year.4 Taken together with the fact that households’ electricity prices typically remain

unchanged during a billing cycle, annual data is the appropriate frequency to test for

behavioral changes due to price increases and PV installations in Germany.

With respect to the socio-economic characteristics, it bears noting that about 32%

of the household heads of our estimation sample graduated from college (Table 1), but

only 30.5% are female, which is due to our choice to focus on household heads. Com-

paring population data with our sample, we see that in some respects our sample is

3For the case that an electricity bill did not cover the entire calendar year, the annual consumption
was extrapolated based on the average consumption per day of the period for which household heads
reported consumption. To exclude seasonal impacts, we only use information from electricity bills cov-
ering a time period of more than 180 days for our analysis.

4Numerous other European countries such as Austria, Italy, the Netherlands, Switzerland, etc. also
follow the German model of billing frequency.
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not representative for the German population (see Table A2 in the appendix). For in-

stance, the share of single-person households is significantly lower in our sample than

in the German population, whereas the share of high-income households tends to be

higher. This feature should be borne in mind when interpreting our results. To the ex-

tent that the solar rebound is inversely related to household income, as demonstrated

by Toroghi and Oliver (2019), our estimate may be subject to downward bias.

Table 1: Descriptive Statistics for the Estimation Sample.

Variable Explanation Mean Std. dev.

Age Age of household head 52.63 12.97

Female Dummy: 1 if household head is female 0.305 –

College Dummy: 1 if household head has a college degree 0.317 –

Household size=1 Dummy: 1 if household comprises one member 0.186 –

Household size=2 Dummy: 1 if household comprises two members 0.432 –

Household size=3 Dummy: 1 if household comprises three members 0.171 –

Household size=4 Dummy: 1 if household comprises four members 0.156 –

Household size>4 Dummy: 1 if household comprises five or more members 0.054 –

Homeowner Dummy: 1 if household resides in an own dwelling 0.722 –

Income Monthly household net income in e 2,841 1,180

eg Annual amount of electricity taken from the grid in kWh 3,651 1,676

PV Dummy: 1 if household installed PV panels 0.045 –

p Marginal electricity price in cent per kWh 21.06 4.67

ap Average electricity price in cent per kWh 24.40 5.40

zp Sum of fees, taxes, and levies in cent per kWh 12.20 2.35

zPV Sum of installed PV systems within a zip code as of previous year 131.35 170.54

Notes: Number of observations and households employed for estimations: 15,873 and 7,948, respectively. Income
information was provided in e500 intervals, from which a continuous variable has been derived by assigning the
mid-point of the interval reported.

Not surprisingly, solar households differ from households without a PV panel in

several respects (see Table A3 of the appendix). Most notably, solar households have

a significantly higher income than other households. This is in line with the fact that,

typically, households with an above-median income live in their own house and, al-

most exclusively, only such homeowners have the possibility to install a PV system

(Jacksohn et al., 2019). This explains why the share of property owners is higher among

solar households than in the population.

The overwhelming majority of the solar households of our sample installed a PV

panel before 2012, with almost a quarter of all installations emerging from the single

year 2010 (Figure 2). This mimics the small-scale PV installations in Germany, where
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Figure 2: Year of PV Installation for Solar Households in the Estimation Sample. Source: German Resi-
dential Energy Consumption Survey (GRECS).

the annual number of new installations peaked in 2010 and 2011 (see Figure A1 in the

appendix).5 The large share of PV installations in 2010 and 2011 can be explained by

module prices that drastically plummeted as of 2009 and coincided with high feed-in

tariffs. The tariffs were only gradually reduced afterwards, thereby reducing the in-

centive to install a PV system (see Andor et al. (2015) for a more detailed discussion).

Given that the majority of sample households installed their PV panels before 2012,

these households receive feed-in tariffs that are substantially higher than average elec-

tricity prices (Figure 1).

The PV indicator, capturing whether a household owns a PV system, is likely to be

an endogenous measure, as the decision to install a PV panel may be influenced by un-

observable characteristics that both affect the likelihood to install a PV panel, as well

as electricity consumption. For instance, a change in the salience of climate change,

e.g. through extreme weather phenomena, may increase the likelihood to install a PV

panel and simultaneously affect electricity consumption. As an instrumental variable

(IV) for the likely endogenous PV variable, we use the number of PV systems within

a zip-code area as of the previous year, denoted by zPV and provided by the four Ger-

5Although we have no capacity information, we can safely assume that the solar households in our
sample own a PV system with a capacity below 10 kW, since this capacity is the most common maximum
size for residential PV systems in Germany (BMWi, 2014).
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man Transmission System Operators (TSO, 2017). Peer effect studies for the U.S. and

Germany indicate that households are more likely to install a PV panel the higher the

number of installed PV panels in the neighborhood (Bollinger and Gillingham, 2012;

Barton-Henry et al., 2021).

At time t, the instrument is equal to the cumulative number of completed installa-

tions in a certain zip code, with the PV panel of the household for which the instru-

ment is used being excluded. Averaged over all 12 years, zPV amounts to about 131

PV panels per zip-code area (Table 1). We explored the validity of the instrument by

employing a placebo test suggested by Bound and Jaeger (2000) and popularized by

Altonji et al. (2005) and Angrist et al. (2010) – see also van Kippersluis and Rietveld

(2018). The test involves regressing the outcome variable on the instrument using a

subsample of households without PV panels. A statistically insignificant coefficient

would lend support to the exclusion restriction, i.e., that the instrument does not di-

rectly affect the outcome. As presented in Table A5 of the appendix, this is found to

hold true.

As the electricity price measure, we use the marginal, rather than the average elec-

tricity price, given that the dominating pricing model in Germany includes a constant

marginal price mp per kWh, as well as a monthly fixed fee f , which both remain un-

changed over the billing cycle. If households do not know the marginal price, they

can quickly retrieve it from their bill. If at all, households are thus rather aware of

the marginal than of the average price, which they would have to calculate themselves

by dividing total expenditures by the electricity eg taken from grid: ap := eg×mp+ f
eg .

Hence, the information cost of understanding the marginal price is clearly lower than

for the average price – see Frondel and Kussel (2019) for a more detailed discussion

of the appropriateness of using the marginal price to estimate the price elasticity of

electricity demand of households in Germany. Note that a robustness check using the

average electricity price indicates that this has no bearing on our key results – see Sec-

tion 5.
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It also bears noting that prices are also likely to be endogenous given that house-

holds in Germany – as elsewhere in Europe – have the possibility to freely choose both

suppliers and tariffs. To deal with this issue, we use the sum of regulated price com-

ponents of the electricity price as an instrumental variable, denoted by zp. These regu-

lated components include, for instance, local grid and concession fees, levies and taxes,

such as the German eco-tax, and account for more than 50% of the average electricity

price for households (BNetzA and Bundeskartellamt, 2020). The use of this instrumen-

tal variable follows Frondel et al. (2019) and Frondel and Kussel (2019), who provide

evidence for its validity and relevance. While grid fees are regional-specific and taxes

and levies are uniform for all households, the sum of these price components is the

same for all households of a certain region and is thus exogenous to households. The

sum of the regulated price components averages 12.2 cents per kWh over the period

from 2004 to 2015 (Table 1).

4 Methodology

To identify the impact of PV ownership on the amount of electricity eg that households

take from the public grid, we estimate the following specification:

ln(egit) = βPV PVit + βp ln(pit) + βT
x xit + τt + µi + εit, (6)

where ln(egit) is the natural logarithm of the annual amount of electricity that house-

hold i takes in year t from the grid and PV is an indicator variable of PV ownership,

equaling unity if the household owns a PV system and zero otherwise. ln(p) denotes

the natural logarithm of the marginal electricity price and x is a vector comprising the

set of socio-economic variables. τt denotes year fixed effects that account for a gen-

eral trend in the average household electricity consumption, µi designates individual-

specific fixed effects, capturing unobservable, time-invariant household characteris-

tics, and ε is the error term.
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By employing fixed-effects methods, we tackle potential problems of omitted vari-

able bias due to time-invariant and individual-specific unobservables to obtain consis-

tent estimates under the assumption of time-constant unobserved heterogeneity (see

e.g. Wooldridge, 2010; Cameron and Trivedi, 2005; Greene, 2012). This feature is es-

pecially important, as potential biases due to omitted variables are highly likely. For

instance, unobserved individual characteristics, such as a respondent’s environmental

attitude, may influence the probability of a household to install a PV system and thus

may be correlated with the PV indicator.

The static model given by equation (6) assumes that households instantaneously

adjust their appliance stock, and thus their consumption behavior, as a response to the

installation of a PV system and varying electricity prices. This is a strong assumption,

particularly given that electric appliances have long life cycles and households often

have to incur substantial costs to adapt their appliance stock. To account for sluggish

appliance stock adjustments and inflexible utilization behavior in the short run, the

lagged value egi,t−1 of the dependent variable is added to static specification (6), leading

to a dynamic panel model:

ln(egit) = βt−1 ln(egi,t−1) + βPV PVit + βp ln(pit) + βT
x xit + τt + µi + νit, (7)

with νit denoting another idiosyncratic error term and βt−1 being the coefficient on the

lagged dependent variable.

Estimating dynamic model (7) on the basis of OLS methods yields inconsistent esti-

mates, as the individual effect µi enters all values of the dependent variable, implying

that the lagged dependent variable cannot be independent of the composite error pro-

cess µi + νit. For the same reason, estimating dynamic model (7) using random-effects

estimation methods also yields inconsistent estimates.

Moreover, when equation (7) is estimated using fixed-effects methods, the resulting

estimates suffer from the Nickell bias (Nickell, 1981), particularly in panels with small
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T (see e. g. Baltagi, 2005, p.136f.). As Nickell (1981) demonstrates, this bias arises be-

cause the within transformation that is typically employed for fixed-effects estimations

creates a correlation between the regressors and the error term.

One alternative to consistently estimate equation (7) involves taking first differ-

ences to eliminate the problems arising from the individual effects µi:

∆ ln egit = βt−1∆ ln egi,t−1 + βPV ∆PVit + βp∆ ln pit + βT
x ∆xit + ∆τt + ∆νit, (8)

and to use either ∆egi,t−2 := egi,t−2 − egi,t−3 or egi,t−2 as an instrument for ∆egi,t−1 :=

egi,t−1 − egi,t−2 (Anderson and Hsiao, 1982). These instruments will not be correlated

with ∆νit := νit − νi,t−1 as long as the error terms νit are not serially correlated (Baltagi,

2005, p.136f.).

Yet, Arellano and Bond (1991) argue that, albeit consistent, this estimator is not

necessarily efficient, because it does not make use of all available moment conditions.

Instead, they advocate for employing what is now frequently called the Arellano-Bond

difference GMM estimator, which uses the generalized method of moments (GMM)

and exploits all orthogonality conditions between the lagged values of egit and the

error term νit (Blundell and Bond, 1998, p.118): E(egi,t−s∆νit) = 0 for t = 3, . . . , T and

s ≥ 2.

According to Blundell and Bond (1998), however, the Arellano-Bond estimator can

have a large finite sample bias and poor precision, because lagged levels of yit are weak

instruments for first differences. Building upon Arellano and Bover (1995), Blundell

and Bond (1998) develop a system GMM estimator that uses both lagged differences

of egit to instrument for levels and lagged levels of egit as instruments for differences.

This results in a (stacked) system of T− 2 equations in first differences as well as T− 2

equations in levels, as for the periods 3, . . . T, valid instruments are available. Hence,

the Blundell-Bond estimator, known as system GMM estimator, builds on a system of

two sets of equations: the original equation and that in first differences. In other words,
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applying the GMM system estimator to a dynamic setting as specified in equation (7)

always requires estimating both equation (7) and equation (8).

In short, Blundell and Bond (1998) augment the Arellano-Bond estimator by invok-

ing the additional assumption that the first differences of instrumental variables are

uncorrelated with the fixed effects, which allows the introduction of more instruments

and can dramatically improve efficiency. This method also allows the inclusion of ex-

ternal instruments, given here by the sum of regulated price components as the instru-

mental variable zp for prices (Frondel et al., 2019), as well as the number of installed

PV systems per zip code as the instrument zPV for PV ownership.

5 Empirical Results

Employing both the static and dynamic model specifications (6) and (7) described in

the previous section, this section presents our estimation results.

5.1 Results for Static Model (6)

Ignoring issues of endogeneity due to unobserved heterogeneity, as well as reverse

causality, pooled OLS estimates are reported in the left panel of Table 2 as a refer-

ence case. With 0.021, the OLS estimate on the coefficient of PV ownership is positive,

but not statistically significant. In contrast, the fixed-effects estimate on βPV is nega-

tive: -0.096. Testing the hypotheses formulated in Section 2 by employing a one-sided

test, we would reject the hypothesis H0 that households do not change the amount

of electricity taken from the grid after installing a PV system, thereby dismissing the

hypothesis of a maximum solar rebound effect: t = | − 3.5̄| > t1−0.001 = 3.09.

To explore whether PV ownership alters households’ response to electricity prices,

which may be part of the explanation for observed differences in electricity consump-

tion of solar and non-solar households, we have additionally estimated a specification

that includes the interaction term PV × ln(p). Being the product of two endogenous
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Table 2: Estimation Results based on Static Model (6) on the Amount of Electricity taken from the Public
Grid.

Without Interaction Terms With Interaction Terms

OLS Fixed Effects Fixed Effects

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(p) -0.108*** (0.020) -0.038** (0.016) -0.036** (0.017)

PV 0.021 (0.019) -0.096*** (0.027) 0.016 (0.179)

PV× ln(p) – – – – -0.036 (0.058)

ln(Income) 0.091*** (0.010) 0.020 (0.017) 0.020 (0.017)

Household size = 2 0.447*** (0.015) 0.290*** (0.032) 0.290*** (0.032)

Household size = 3 0.692*** (0.017) 0.438*** (0.036) 0.438*** (0.036)

Household size = 4 0.796*** (0.018) 0.515*** (0.036) 0.515*** (0.036)

Household size > 4 0.951*** (0.024) 0.595*** (0.043) 0.595*** (0.043)

College degree -0.050*** (0.010) 0.017 (0.021) 0.018 (0.021)

Homeowner 0.164*** (0.011) 0.166*** (0.040) 0.166*** (0.040)

Age 0.006*** (0.000) 0.004 (0.003) 0.004 (0.003)

Female -0.006 (0.010) – – – –

Constant 6.886*** (0.099) 7.495*** (0.206) 7.490*** (0.206)

Year Dummies Yes Yes Yes

Number of observations 14,561 14,561 14,561

Note: Standard errors clustered at the household level are in parentheses. ***, ** and * denote statistical
significance at the 1 %, 5 % and 10 % level, respectively.

variables, this interaction is also endogenous. We therefore instrument it using the

interaction of the instruments for PV and the electricity price, zPV × zp. The results,

reported in the right panel of Table 2, provide no indication of a distinct price respon-

siveness of solar households.

Static model (6) is predicated on the simplifying assumption that in the short run,

households are unlikely to instantaneously adjust their consumption behavior in re-

sponse to varying electricity prices. Instead, accounting for sluggish utilization be-

havior and potential endogeneity problems, we now present the estimates of dynamic

model (8), which are based on the System GMM estimator developed by Blundell and

Bond (1998).

5.2 Results for Dynamic Model (7)

The consistency of the GMM estimates hinges on the assumption of no second-order

serial correlation E(∆υit∆υi,t−2) = 0 in the idiosyncratic errors of the first-differenced
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model (8). Conducting a test proposed by Arellano and Bond (1991), we can confirm

the validity of this assumption: With p-values of 0.926 and 0.854, we cannot reject the

null hypothesis of no AR(2) process for the two specifications presented in Table 3.

Furthermore, since we can clearly reject the null hypothesis of no AR(1) process, it

seems appropriate to include the first-order lag of the dependent variable in dynamic

model (7). Moreover, the results of the Hansen overidentification test suggest that our

instruments zp and zPV , the sum of the regulated price components and the number of

installed PV systems per zip code, are jointly valid (Roodman, 2009a).

To examine the strength of our instruments, we conduct a Wald test (Kleibergen and

Paap, 2006) after regressing the instruments on the respective endogenous variables.

With an F statistic of F = 6.12 for the two instruments, which lies above the critical

value of 4.58 given by Stock and Yogo (2005), we can reject the null hypothesis of weak

identification at the 5% significance level (see Table A4 of the appendix). In addition,

our instruments prove to be relevant as we find that both zp and zPV are strongly

and positively correlated with the electricity price and the PV variable, respectively, as

indicated by the positive coefficient estimates of the first-stage estimation of the static

2SLS model presented in Table A4 of the appendix.

Addressing the inertia of household electricity consumption by estimating dynamic

model (7), the coefficient estimate on the PV variable presented on the left-hand side

of Table 3 is again negative, but, with a value of -0.029, is much smaller in magnitude

than the fixed-effects estimate of -0.096 resulting from static model (6). Based on the

estimate of -0.029 and using again a one-sided t test, even for a significance level of

10%, we cannot reject our null hypothesis H0 that solar households do not change the

amount of electricity taken from the grid: t = | − 0.547| < t1−0.1 = 1.282. That we

cannot reject the null hypothesis prevents us from ruling out a solar rebound, which is

derived in Section 2 to be bounded by 2θ (see equation (4)) and may be on the order of

50% for solar households in Germany.

Yet, even if some solar rebound is present, we are skeptical that its magnitude
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reaches 50%, as the overwhelming majority of our sample households were guaranteed

feed-in tariffs that were much higher than their electricity prices (Figure 1) and, hence,

households faced a strong economic incentive to limit the self-consumption of solar

electricity. We illustrate our argument of the high opportunity cost of self-consuming

solar electricity by a back-of-the-envelope calculation: Assuming an average annual

solar production of about 5, 500 kWh, and an average feed-in tariff of 41.5 cents per

kWh for a typical sample household with a small-scale PV panel, the foregone annual

remuneration of not feeding a share of θ = 25% of the produced solar electricity into

the grid may be as high as about e570 per year.

For households that enjoy feed-in tariffs of 50 cents and more because they were

early adopters of PV systems, foregone remunerations due to self-consuming solar

electricity are even higher and tend to reach e1, 000 per year. Therefore, foregone re-

munerations due to self-consumption may be easily in the range of average residential

electricity costs per annum, averaging about e890 for our sample households when

we multiply their mean annual electricity consumption of 3, 651 kWh with the mean

electricity price of 24.4 ct/kWh (see Table 1).

Taking the mean annual household electricity consumption of 3, 651 kWh as the

benchmark before installing a PV system and presuming that θ = 25% of the average

annual solar production of about 5, 500 kWh is self-consumed by a solar household,

another back-of-the-envelope calculation provides us with a crude estimate for the so-

lar rebound if we assume that upon the adoption of a PV system, a solar household

reduces the amount of electricity taken from the grid by 2.9%, as suggested by the

coefficient estimate of -0.029 on the PV indicator resulting from dynamic model (7).

Under these assumptions, the solar rebound can be gauged at [0.25 × 5, 500 + (1 −

0.029)3, 650]/3, 650− 1 = 35%, given that 0.25× 5, 500 + (1− 0.029)3, 650 reflects the

total electricity consumption in the aftermath of PV adoption. Recognizing the statisti-

cal insignificance of the PV indicator, if we instead insert 0 for the coefficient estimate,

rather than -0.029, we obtain a slightly higher solar rebound of 38%.
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Moreover, noting that the solar rebound is often measured empirically as a percent-

age of the electricity produced by the PV system – see, for example, Qiu et al. (2019)

–, calculating the solar rebound in this way would yield an effect size of about 23%,

rather than of the order of 35%, as calculated above.6 The difference in the effect sizes

stems from the fact that Qiu et al. (2019) estimate the rebound at the margin. That is,

conditional on having installed a PV system, they estimate the electricity consumption

change in response to a marginal change in PV output, whereas our analysis, as well as

the study by Beppler et al. (2021), measures the discrete rebound effect resulting from

PV adoption.

To further classify the solar rebound effect, we identify a lower bound by assuming

again that households reduce the amount of electricity taken from the grid by 2.9%, as

indicated by the dynamic model estimate, and by considering the lowest share of self-

consumption possible for German households. For our back-of-the-envelope calcula-

tion, we set the minimum share of self-consumption to 10%, which yields a minimum

solar rebound of [0.1× 5, 500 + (1− 0.029)3, 650]/3, 650− 1 = 12%.7

Lastly, only when assuming a self-consumption rate of 35%, rather than 25%, would

the rebound effect be as high as [0.35 × 5, 500 + (1 − 0.029)3, 650]/3, 650 − 1 = 50%.

Such a high rebound effect, which is the result of a high self-consumption rate of 35%,

is rather unlikely, though, as economically viable battery technologies that help to store

solar electricity and increase the self-consumption rate of solar households were virtu-

ally unavailable prior to 2016, the period in which the observations from our sample

households fall.
6The effect size of about 23% results from relating the increase in total electricity consumption of

[0.25× 5, 500 + (1− 0.029)3, 650]− 3, 650 = 1, 269 kWh upon PV adoption to the amount of 5,500 kWh
of solar electricity that is generated annually by an average German solar household: 1,269/5,500 ≈
23%.

7The minimum share of 10% is given for two reasons: First, due to technical restrictions, German
solar households are unable to feed 100% of solar electricity into the grid (Ruf, 2018). Second, the so-
called ”market integration model”, which was introduced in Germany towards the end of our study
period, only allowed 90% of the annually generated electricity to be remunerated with the FiT, setting
the incentive for solar households to self-consume a minimum share of 10% (Masson et al., 2016). This
share constitutes the minimum feasible share of self-consumption. It is noted that this rule only applied
to PV installations above 10 kW, whereas solar households typically have PV installations below 10 kW.
Nevertheless, we set the minimum to 10% to define the lowest bound possible for these households.
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Our skepticism that the solar rebound effect is as high as 50% is further corrobo-

rated by the moderate effects found for the United States and Australia (see e.g. Deng

and Newton, 2017; Qiu et al., 2019). For instance, the findings by Havas et al. (2015)

indicate a solar rebound of 15% for Australian households. A quite similar magnitude

is found for U. S. solar homes in Phoenix, Arizona: Qiu et al. (2019) estimate a solar

rebound effect of 18% for the period spanning from 2013 to 2017. Similarly, the results

by Oberst et al. (2019), who analyse the existence of a “prosumer rebound effect” for

German households that are equipped with micro-generation technologies, such as PV

panels, support our caution. Using heating expenditures and matching techniques, the

authors do not find any evidence of a rebound effect for these prosumers.

Table 3: GMM Estimation Results for Dynamic Model (7) based on the Blundell-Bond GMM System
Estimator, which also requires Estimating Equation 8.

Without Interaction Terms With Interaction Terms

Coeff. Std. Err. Coeff. Std. Err.

ln (egt−1) 0.626*** (0.074) 0.626*** (0.077)

l̂n(p) -0.326** (0.145) -0.278** (0.130)

P̂V -0.029 (0.053) -0.037 (1.351)

P̂V × l̂n(p) – – 0.002 (0.451)

ln (Income) 0.023** (0.010) 0.023** (0.010)

Household size = 2 0.180*** (0.034) 0.181*** (0.035)

Household size = 3 0.277*** (0.052) 0.279*** (0.054)

Household size = 4 0.306*** (0.059) 0.307*** (0.061)

Household size > 4 0.375*** (0.070) 0.376*** (0.072)

College degree -0.012 (0.007) -0.012 (0.007)

Homeowner 0.047*** (0.015) 0.046*** (0.015)

Age 0.001** (0.001) 0.001** (0.001)

Female -0.001 (0.007) -0.001 (0.007)

Constant 3.579*** (0.756) – –

Year Dummies Yes Yes

Number of observations 4,655 4,655

Number of instruments 50 57

Arellano-Bond test for AR(1) p=0.000 p=0.000

Arellano-Bond test for AR(2) p=0.926 p=0.854

Hansen test of overid. restrictions p=0.657 p=0.545

Long-run price elasticity -0.872** (0.381) – –

Note: Standard errors clustered at the household level are in parentheses. ***, ** and * denote
statistical significance at the 1 %, 5 % and 10 % level, respectively.

Including again the interaction term PV × ln(p), as with static specification (6), we

find that neither the PV dummy, nor the interaction term is statistically different from
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zero, nor are they jointly significant. Hence, these results do not reveal any statistically

significant difference in the price responsiveness of solar and other households. These

results contrast with findings from Japan, which indicate that households become more

interested in energy costs after installing a PV system and therefore improve their

energy-saving behavior (see Hondo and Baba, 2010), suggesting that households are

also more aware of electricity prices.

This mechanism is clearly not at work in our empirical example: By exploiting

information on households’ knowledge about electricity prices, as well as informa-

tion about whether a household changed its electricity provider, which is available

for a subset of our sample, the regression results presented in Table A6 of the ap-

pendix suggest that solar households are equally aware of electricity prices as non-

solar households and equally likely to switch their electricity provider.8 Moreover, our

price elasticity estimates are in line with those presented by Nikodinoska and Schröder

(2016) and Frondel et al. (2019), who estimate the long-run price elasticity of electric-

ity consumption at −0.811 and −0.663, respectively, while our long-run price elastic-

ity estimate, obtained by dividing the short-run estimate β̂p by 1− β̂t−1, amounts to

−0.326/(1− 0.626) = −0.872.

5.3 Robustness Checks

To check the robustness of our results, the outcomes of a suite of additional estima-

tions are presented. First, employing the sub-sample with which we have estimated

dynamic specification (7), we re-estimate static specification (6). Applying a one-sided

test (t = | − 1.57̄| > t1−0.1 = 1.282), the estimate of −0.071 for the coefficient on PV

reported in Table A7 of the appendix is statistically significant at the 10% level and

quite close to the estimate of −0.096 originating from of static specification (6) when it

8Price knowledge is defined as a household’s estimate of the marginal price, which deviates less
than ± 20% from the actual marginal price paid. The binary variable supplier change captures whether
households changed their electricity supplier during the three years prior to the survey. Data for both
variables is only available after 2010.
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is estimated on the basis of the full sample.

Second, we investigate the robustness of our results for dynamic specification (8)

by focusing on the years 2004 to 2011, that is, on that time period in which feed-in

tariffs were higher than electricity prices (Figure 1). With an estimate of 0.021 for the

coefficient on PV that is not statistically significant (see Table A8), as well as for the

entire sample period 2004-2015, we are unable to reject the null hypothesis H0 that

solar households do not change the amount of electricity taken from the grid: t =

|0.389| < t1−0.1 = 1.282.

Third, to further explore differential effects over time, we employ a modification of

equation (7) akin to Clark et al. (2008) that allows the effect of PV ownership to vary

according to the years since PV installation. Specifically, the PV dummy in equation

(7) is replaced with a series of dummy variables indicating those who have had a PV

panel for 0-1 years, 1-2 years, 2-3 years, and so on, up to the last group who have had

a panel for 10 years or more. Similar to the results reported in Table 3, these dummy

variables are found to be statistically insignificant throughout (see Table A9).

Fourth, following Frondel et al. (2019), we check whether our results are robust to

the use of average, rather than marginal, electricity prices when estimating dynamic

specification (7). While the short-run price elasticity estimate of -0.43 is virtually iden-

tical to that found by Frondel et al. (2019), the coefficient estimate on PV ownership

of -0.02 is vanishing and clearly not statistically significantly different from zero (see

Table A10).

Fifth, to deal with gaps in unbalanced panels, as suggested by Arellano and Bover

(1995), we employ the System GMM estimator using orthogonal deviations, that is, the

average of all future available observations of a variable.9 The results of this exercise,

for which we vary the way in which the endogenous lagged variable is instrumented,

are presented in Table A11 of the appendix. While the number of instruments varies,

in statistical terms, the estimates on the PV variable do not differ across the variants.
9To this end, the Stata command xtabond2 written by Roodman (2009b) has been employed.

25



Lastly, we employ a matching approach to improve the comparability of solar house-

holds and non-solar households (see e.g. Rosenbaum and Rubin, 1983; Heckman et al.,

1997). To this end, we use propensity score matching (PSM), as well as a logit model

to calculate the propensity scores based on household-level pre-treatment means of all

covariates that may impact both electricity consumption and PV adoption.10 As Fer-

raro and Miranda (2017) demonstrate, matching approaches combined with panel data

estimation methods can bring the accuracy of causal inference based on observational

data closer to that of a randomized controlled trial.

The estimation results for the dynamic model (7) based on the matched sample (see

Table A12 of the appendix) are quite similar to the unmatched results.11 Most notably,

the estimate of −0.088 for the coefficient on PV reported in Table A12 is hardly statis-

tically significant. Based on a one-sided test, it is merely significant at the 10% level

(t = | − 1.49| > t1−0.1 = 1.282), while the estimate for the interaction term is again not

statistically significant. Not least, it bears noting that the common-support assumption

(Smith and Todd, 2005) is fulfilled adequately, as Figure A2 of the appendix indicates.

The graphical analysis confirms the assumption that the probability of a household to

install a PV panel conditional on the control variables is positive and that there is some

overlap in this conditional probability between solar and non-solar households.

6 Summary and Conclusions

Recent research suggests that the installment of PV panels encourages households to

increase their electricity consumption (see e.g. Spiller et al., 2017; Oliver et al., 2019;

Qiu et al., 2019), a behavioral response that is referred to as the solar rebound. This

10We have also employed coarsened exact matching (CEM) based on Blackwell et al. (2009) and Iacus
et al. (2012). However, this approach left us with an extremely reduced sample size of 193 observations.
Since a dynamic estimation based on this sample failed to meet the assumptions of the System GMM
estimator (Arellano and Bond, 1991), we refrain from reporting these results.

11We choose to report the results from radius matching with a caliper of 0.2 times the standard devi-
ation of the estimated propensity score, which yields the best balance in the covariates after matching
(see Table A13). The variance ratio for the marginal price falls outside the allowed interval [0.64; 1.56],
but is very close to 0.5, which is the lower bound for reasonable balancing according to Rubin (2001).
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effect undermines the full potential of PV in reducing the amount of electricity that

households take from the public grid and, hence, diminishes the environmental bene-

fits of PV adoption. Empirical evidence on the magnitude of the solar rebound is scant,

though, and is primarily available for Australia and the United States.

Drawing on the German Residential Energy Consumption Survey (GRECS) and ex-

tracting a household panel data set comprising 7,948 households spanning the period

2004-2015, this paper has employed panel estimation methods and the dynamic system

estimator developed by Blundell and Bond (1998) to gauge the solar rebound effect,

thereby accounting for simultaneity and endogeneity issues arising from the possibil-

ity that electricity consumption and prices, as well as the decision on PV installation,

may be jointly determined by unobserved covariates.

Our dynamic system estimates indicate that PV panel adoption hardly reduces the

amount of electricity that households take from the public grid. As has been theoreti-

cally derived here, this outcome suggests that the solar rebound reaches a maximum,

which is bounded by about 50% for German households. Yet, we are skeptical that

there is such a large rebound effect, given the strong economic incentives to feed so-

lar electricity into the public grid, particularly in the years 2000 to 2012. In fact, as

our back-of-the-envelope calculations presented in the previous section have demon-

strated, foregone remunerations due to a solar rebound may be easily in the range

of average residential electricity costs per annum and the solar rebound should thus

be much lower than 50%. Our skepticism about a substantial rebound is further cor-

roborated by empirical studies for Australia and the United States, which find solar

rebound effects on the order of about 20% (Havas et al., 2015; Qiu et al., 2019).

Despite the fact that feed-in tariffs were drastically reduced in recent years, it is to be

expected that the solar rebound will remain moderate in the German residential sector,

as further increasing electricity prices may increase both the incentive to substitute

electricity taken from the grid by self-produced solar electricity and the disincentive to

overly consume electricity, irrespective of being self-produced or taken from the grid.
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Nonetheless, understanding behavioral responses due to solar PV adoption, such

as the solar rebound, is highly important for policymakers because a significant re-

bound effect tied to rooftop solar would affect overall power demand and result in

complications for power generation planning, as well as grid management and relia-

bility. Such issues are highly important given that Germany’s new government strives

to almost quadruple PV capacities to 200 GW in 2030 (SPD, Bündnis 90 /Die Grünen

and FDP, 2021), an objective that may assume increased urgency in light of the conflict

in Ukraine.

Another key question is whether the reduction in electricity demand from conven-

tional generation sources resulting from the incentivized adoption of residential PV

systems justifies the cost of providing economic support for this technology (Beppler

et al., 2021). Supporting PV adoption through feed-in tariffs has changed the tradi-

tional utility-customer relationship and has invigorated policy discussion about how to

efficiently and equitably encourage continued growth of solar while maintaining cost-

reflective electricity prices and grid reliability. The behavioral response of household

electricity consumption, not least the solar rebound effect, must be better understood

to evaluate whether distributed solar is contributing as expected to the displacement

of conventional electricity generation and the reduction of carbon emissions (Beppler

et al., 2021). In the end, ignoring solar rebound effects may imply the overestimation

of environmental benefits, such as the reduction of both greenhouse gases and local

environmental pollutants.
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Appendix A

Table A1: Frequency in the GRECS Participation of Housholds and Num-
ber of Observations.

Number of responses Frequency Share Cumulated Number of observations

1 3,758 47.3% 47.3% 3,758

2 2,328 29.3% 76.6% 4,656

3 936 11.8% 88.4% 2,808

4 440 5.5% 93.9% 1,760

5 239 3.0% 96.9% 1,195

6 107 1.3% 98.2% 642

7 85 1.1% 99.3% 595

8 38 0.5% 99.8% 304

9 15 0.18% 99.98% 135

10 2 0.02% 100.0% 20

Total 7,948 100.0% – 15,873

Source: GRECS (2020).

Figure A1: Distribution of year of PV installation for households in Germany. Source: BSW-Solar (2019).
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Table A2: Comparison of the Estimation Sample with the Population of Ger-
man households

2004 2015

Sample Population t-Statistic Sample Population t-Statistic

Age< 25 years 2.8% 4.5% -3.27*** 0.0% 4.6% –

Age 25-64 years 89.1% 67.5% 21.23*** 56.7% 67.0% -6.43***

Age>64 years 8.2% 27.8% -22.01*** 42.7% 28.4% 8.94***

Female 27.9% 31.7% -2.61*** 35.4% 35.5% -0.06

College 28.5% 11.0% 11.89*** 29.0% 20.2% 5.94***

High income 11.4% 5.3% 5.65*** 9.2% 11.4% -2.26**

Household size=1 10.1% 37.2% -27.66*** 30.0% 41.4% -7.73***

Household size=2 33.4% 34.1% -0.45 52.8% 34.2% 11.52***

Household size=3 20.9% 13.8% 5.35*** 8.7% 12.1% -3.69***

Householdsize=4 25.5% 10.8% 10.32*** 6.0% 9.0% -3.86

Householdsize>4 10.2% 4.1% 6.17*** 2.5% 3.2% -1.40

PV 1.1% 0.5% 1.56 4.2% 4.8% -0.97

Note: Population data is drawn from the German TSOs (TSO, 2017) and the German Federal Statis-
tical Office (Destatis, 2005, 2016). This data source asks the main earner to complete the question-
naire, whereas in the sample, the household member who usually makes the financial decisions
for the household is asked. Furthermore, the variable High income is top-coded at 4500e, while
in the sample the upper threshold is at 5100e. *** and ** denote statistical significance at the 1%-
and 5%-level, respectively.

Table A3: Summary Statistics for Solar and Non-
solar Households.

Variable All No PV PV t-Statistic

Age 52.63 52.63 52.61 -0.05

Female 0.305 0.309 0.231 -4.42***

College 0.317 0.317 0.316 -0.08

Household size=1 0.186 0.191 0.078 -7.64***

Household size=2 0.432 0.434 0.393 -2.17**

Household size=3 0.171 0.168 0.232 4.43***

Household size=4 0.156 0.154 0.218 4.66***

Household size>4 0.054 0.053 0.079 3.01***

Homeowner 0.722 0.713 0.915 11.90***

Income 2,841 2,822 3,254 9.29***

eg 3,651 3,629 4,108 7.51***

p 21.06 21.03 21.78 4.22***

ap 24.40 24.38 24.68 1.42

z 12.20 12.20 12.18 -0.198

zPV 131.35 127.17 218.89 14.20***

Note: ***,**, and * denote statistical significance at the 1%-, 5%-,
and 10%-level, respectively.
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Table A4: First Stage Estimation Results.

Standard 2SLS Fixed Effects 2SLS

Price PV Price PV

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

zPV -0.000 (0.000) 0.0001*** (0.000) -0.000 (0.000) 0.0001** (0.000)

zp 0.279*** (0.032) -0.088** (0.044) 0.202*** (0.064) 0.093* (0.052)

ln(Income) -0.002 (0.005) 0.011** (0.005) 0.012 (0.017) -0.008 (0.012)

Household size = 2 -0.022*** (0.006) 0.007 (0.006) -0.042** (0.018) 0.003 (0.005)

Household size = 3 -0.022*** (0.007) 0.025** (0.010) -0.052*** (0.019) -0.003 (0.008)

Household size = 4 -0.023*** (0.008) 0.016 (0.011) -0.035 (0.024) -0.001 (0.014)

Household size > 4 -0.021** (0.009) 0.029* (0.016) -0.027 (0.031) 0.019 (0.038)

College degree 0.008** (0.004) -0.001 (0.006) 0.021 (0.019) -0.038* (0.022)

Homeowner -0.006 (0.005) 0.033*** (0.005) -0.034 (0.021) 0.000 (0.017)

Age -0.001*** (0.000) -0.000 (0.000) 0.001 (0.001) 0.000** (0.000)

Female -0.003 (0.004) -0.013** (0.006) – – – –

Constant 2.159*** (0.084) 0.111 (0.113) 2.179*** (0.212) -0.165 (0.153)

Year Dummies Yes Yes Yes Yes

Number of observations 12,524 12,524 12,524 12,524

Kleibergen-Paap F statistic 16.81 6.12

Note: Standard errors clustered at the household level are in parentheses. ***, ** and * denote statistical significance at the
1 %, 5 % and 10 % level, respectively.

Table A5: Placebo Test of the Amount
of Electricity taken from the Public Grid
on zPV for Sub-Sample without Solar
Households.

Fixed Effects

Coeff. Std. Err.

ln(p) -0.035** (0.017)

zPV -0.000 (0.000)

ln(Income) 0.018 (0.018)

Household size = 2 0.282*** (0.032)

Household size = 3 0.441*** (0.036)

Household size = 4 0.517*** (0.036)

Household size > 4 0.595*** (0.044)

College degree 0.021 (0.023)

Homeowner 0.173*** (0.043)

Age 0.004 (0.003)

Constant 7.477*** (0.218)

Year Dummies Yes

Number of observations 13,855

Note: Clustered standard errors are in parenthe-
ses. ***, ** and * denote statistical significance at
the 1 %, 5 % and 10 % level, respectively.
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Table A6: Fixed-Effects Estimation Results for the Deter-
minants of Price Knowledge and Supplier Change

Price Knowledge Supplier Change

Coeff. Std. Err. Coeff. Std. Err.

ln(p) 0.906*** (0.061) 0.068 (0.042)

PV 0.053 (0.082) 0.023 (0.017)

ln(Income) -0.019 (0.078) -0.070 (0.183)

Household size = 2 -0.133 (0.082) -0.109 (0.067)

Household size = 3 -0.148 (0.091) -0.128* (0.078)

Household size = 4 -0.215** (0.099) -0.138 (0.084)

Household size > 4 -0.382*** (0.123) -0.134* (0.078)

College degree 0.069 (0.117) 0.195 (0.224)

Homeowner 0.148 (0.124) 0.103 (0.282)

Age 0.002 (0.011) 0.089 (0.139)

Constant -2.171** (0.954) -4.679 (8.189)

Year Dummies Yes Yes

Number of observations 6,945 5,358

Note: Standard errors clustered at the household level are in parentheses.
***, ** and * denote statistical significance at the 1 %, 5 % and 10 % level,
respectively.

Table A7: Fixed-Effects Estimation Results for Static Specification
(6) when Estimated with the Sub-Sample employed for Dynamic
Specification (7) .

Without Interaction Terms With Interaction Terms

Fixed Effects Fixed Effects

Coeff. Std. Err. Coeff. Std. Err.

ln(p) -0.027 (0.032) -0.020 (0.034)

PV -0.071 (0.045) 0.219 (0.248)

PV× ln(p) -0.095 (0.086)

ln(Income) 0.067** (0.030) 0.067** (0.030)

Household size = 2 0.318*** (0.066) 0.318*** (0.065)

Household size = 3 0.508*** (0.074) 0.508*** (0.074)

Household size = 4 0.576*** (0.077) 0.576*** (0.077)

Household size > 4 0.654*** (0.088) 0.654*** (0.088)

College degree 0.065* (0.035) 0.066* (0.035)

Homeowner 0.078* (0.047) 0.079* (0.047)

Age 0.008* (0.005) 0.008* (0.005)

Constant 6.568*** (0.410) 6.548*** (0.411)

Year Dummies Yes Yes

Number of observations 4,655 4,655

Note: Standard errors clustered at the household level are in parentheses. ***, ** and
* denote statistical significance at the 1 %, 5 % and 10 % level, respectively.
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Table A8: GMM System Estimation Results for Dynamic Specification (7)
using the Subsample covering the years 2004-2011.

Without Interaction Terms With Interaction Terms

Coeff. Std. Err. Coeff. Std. Err.

ln (egt−1) 0.615*** (0.091) 0.640*** (0.092)

l̂n(p) -0.376** (0.161) -0.317* (0.172)

P̂V 0.021 (0.054) -0.463 (1.669)

P̂V × l̂n(p) – – 0.157 (0.559)

ln(Income) 0.024* (0.014) 0.022 (0.014)

Household size = 2 0.188*** (0.045) 0.180*** (0.045)

Household size = 3 0.291*** (0.067) 0.277*** (0.068)

Household size = 4 0.318*** (0.077) 0.301*** (0.078)

Household size > 4 0.388*** (0.088) 0.367*** (0.089)

College degree -0.011 (0.010) -0.010 (0.009)

Homeowner 0.048*** (0.017) 0.045*** (0.016)

Age 0.001 (0.001) 0.001 (0.001)

Female -0.000 (0.009) -0.000 (0.009)

Constant 3.796*** (0.816) – –

Year Dummies Yes Yes

Number of observations 2,949 2,949

Number of instruments 43 50

Arellano-Bond test for AR(1) p=0.000 p=0.000

Arellano-Bond test for AR(2) p=0.721 p=0.770

Hansen test of overid. restrictions p=0.731 p= 0.543

Long-run price elasticity -0.977** (0.455) – –

Note: Standard errors clustered at the household level are in parentheses. ***, ** and * denote
statistical significance at the 1 %, 5 % and 10 % level, respectively.
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Table A9: GMM System Estimation Results for
Dynamic Specification (7) With Varying Effects
for Years since Panel Adoption.

Varying PV Effect

Coeff. Std. Err.

ln (egt−1) 0.620*** (0.076)

l̂n(p) -0.282** (0.123)

PV panel 0 – 1 years 0.002 (0.022)

PV panel 2 – 3 years 0.026 (0.020)

PV panel 4 – 5 years 0.004 (0.032)

PV panel 6 – 7 years -0.029 (0.048)

PV panel 8 – 9 years -0.029 (0.071)

PV panel 10 – 11 years -0.011 (0.123)

ln(Income) 0.024** (0.010)

Household size = 2 0.181*** (0.035)

Household size = 3 0.280*** (0.054)

Household size = 4 0.309*** (0.060)

Household size > 4 0.379*** (0.072)

College degree -0.013* (0.007)

Homeowner 0.048*** (0.015)

Age 0.001** (0.001)

Female 0.000 (0.007)

Year Dummies Yes

Number of observations 4,655

Number of instruments 71

Arellano-Bond test for AR(1) p=0.000

Arellano-Bond test for AR(2) p=0.916

Hansen test of overid. restrictions p=0.605

Long-run price elasticity -0.742** (0.307)

Note: Standard errors clustered at the household level are in
parentheses. ***, ** and * denote statistical significance at the
1 %, 5 % and 10 % level, respectively.
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Table A10: GMM System Estimation Results for Dynamic Specification (7)
using Average Electricity Prices ap.

Without Interaction Terms With Interaction Terms

Coeff. Std. Err. Coeff. Std. Err.

ln (egt−1) 0.622*** (0.069) 0.613*** (0.066)

l̂n(ap) -0.433*** (0.163) -0.332** (0.161)

P̂V -0.002 (0.042) 2.196 (2.375)

P̂V × l̂n(ap) – – -0.688 (0.741)

ln(Income) 0.015 (0.009) 0.018* (0.009)

Household size = 2 0.163*** (0.032) 0.172*** (0.031)

Household size = 3 0.247*** (0.048) 0.261*** (0.046)

Household size = 4 0.275*** (0.055) 0.289*** (0.052)

Household size > 4 0.339*** (0.064) 0.356*** (0.061)

College degree -0.012 (0.007) -0.010 (0.007)

Homeowner 0.043*** (0.014) 0.045*** (0.013)

Age 0.001** (0.001) 0.001** (0.000)

Female -0.000 (0.007) 0.001 (0.007)

Constant 4.081*** (0.807) – –

Year Dummies Yes Yes

Number of observations 4,655 4,655

Number of instruments 50 57

Arellano-Bond test for AR(1) p=0.000 p=0.000

Arellano-Bond test for AR(2) p=0.532 p=0.535

Hansen test of overid. restrictions p=0.566 p=0.419

Long-run price elasticity -1.146*** (0.434) – –

Note: Standard errors clustered at the household level are in parentheses. ***, ** and * denote
statistical significance at the 1 %, 5 % and 10 % level, respectively.
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Table A11: Robustness Checks for Dynamic Model (7) based on the Blundell-Bond
GMM System Estimator using Various Ways to Instrument the Lagged Consumption
Variable.

Instruments First-differences First-differences Orthogonal-deviations

not collapsed collapsed not collapsed

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

ln(egt−1) 0.610*** (0.069) 0.603*** (0.082) 0.693*** (0.076)

l̂n(p) -0.168** (0.081) -0.202 (0.135) -0.116 (0.107)

P̂V 0.037 (0.038) 0.000 (0.050) 0.012 (0.074)

ln(Income) 0.020* (0.010) 0.023** (0.011) 0.015 (0.011)

Household size = 2 0.188*** (0.033) 0.193*** (0.039) 0.159*** (0.035)

Household size = 3 0.282*** (0.049) 0.296*** (0.058) 0.234*** (0.054)

Household size = 4 0.321*** (0.055) 0.331*** (0.066) 0.260*** (0.060)

Household size > 4 0.387*** (0.066) 0.389*** (0.077) 0.314*** (0.074)

College degree -0.018** (0.008) -0.015* (0.008) -0.013** (0.006)

Homeowner 0.049*** (0.013) 0.050*** (0.015) 0.036*** (0.014)

Age 0.001** (0.001) 0.001** (0.001) 0.001* (0.000)

Female -0.008 (0.007) -0.006 (0.007) -0.004 (0.006)

Constant 3.221*** (0.561) 3.359*** (0.756) 2.487*** (0.719)

Year Dummies Yes Yes Yes

Number of observations 4,655 4,655 4,655

Number of instruments 167 57 128

Arellano-Bond test for AR(1) p=0.000 p=0.000 p=0.000

Arellano-Bond test for AR(2) p=0.703 p=0.698 p=0.632

Hansen test of overid. restrictions p=0.209 p=0.044 p=0.211

Long-run price elasticity -0.432** (0.211) -0.509 (0.334) -0.377 (0.318)

Note: Standard errors clustered at the household level are in parentheses. ***, ** and * denote statistical
significance at the 1 %, 5 % and 10 % level, respectively.
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Table A12: GMM System Estimation Results for Dynamic Specification (7)
based on a Sample that is Matched by Propensity Score Matching.

Propensity Score Matching

Without Interaction Terms With Interaction Terms

Coeff. Std. Err. Coeff. Std. Err.

ln (egt−1) 0.614*** (0.084) 0.607*** (0.080)

l̂n(p) -0.315* (0.185) -0.251 (0.182)

P̂V -0.088 (0.059) -1.077 (1.768)

P̂V × l̂n(p) – – 0.343 (0.602)

ln(Income) 0.012 (0.013) 0.014 (0.012)

Household size = 2 0.196*** (0.042) 0.202*** (0.042)

Household size = 3 0.306*** (0.065) 0.315*** (0.064)

Household size = 4 0.335*** (0.071) 0.345*** (0.070)

Household size > 4 0.403*** (0.084) 0.409*** (0.080)

College degree -0.018 (0.011) -0.019 (0.012)

Homeowner 0.055*** (0.018) 0.055*** (0.017)

Age 0.001* (0.001) 0.001* (0.001)

Female -0.010 (0.011) -0.010 (0.011)

Constant 3.708*** (0.878) – –

Year Dummies Yes Yes

Number of observations 4,488 4,488

Number of instruments 50 55

Arellano-Bond test for AR(1) p=0.000 p=0.000

Arellano-Bond test for AR(2) p=0.575 p=0.549

Hansen test of overid. restrictions p=0.737 p= 0.730

Long-run price elasticity -0.815* (0.487) – –

Note: Standard errors clustered at the household level are in parentheses. ***, ** and * denote
statistical significance at the 1 %, 5 % and 10 % level, respectively.
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Figure A2: Check for Common Support Assumption for Propensity Score Matching Results.

Table A13: Balancing Check for the Propensity Score Matching.

Means %reduct t-test Variance Ratio

Variable Solar Non-solar %bias |bias| t p>|t| V(T)/V(C)

p
Unmatched 18.96 21.68 -66.1 – -5.11 0.000 0.52*

Matched 18.96 18.92 1.0 98.5 0.06 0.950 0.56*

Income
Unmatched 3,209 2,797 37.0 – 3.10 0.002 0.79

Matched 3,209 3,184 2.3 93.8 0.15 0.883 0.86

Householdsize = 2
Unmatched 0.38 0.44 -13.0 – -1.15 0.251 0.99

Matched 0.38 0.39 -2.7 79.4 -0.17 0.865 1.01

Householdsize = 3
Unmatched 0.20 0.16 9.1 – 0.84 0.399 1.22

Matched 0.20 0.20 -0.9 90.4 -0.05 0.958 1.03

Householdsize = 4
Unmatched 0.22 0.15 19.3 – 1.85 0.065 1.36

Matched 0.22 0.21 1.0 94.6 0.06 0.951 0.99

Householdsize > 4
Unmatched 0.12 0.05 26.2 – 2.89 0.004 2.17*

Matched 0.12 0.11 4.6 82.5 0.25 0.804 1.05

College
Unmatched 0.36 0.32 8.5 – 0.76 0.446 1.07

Matched 0.36 0.35 0.6 92.9 0.04 0.970 1.00

Homeowner
Unmatched 0.88 0.69 46.9 – 3.59 0.000 0.49*

Matched 0.88 0.88 0.7 98.6 0.05 0.960 0.97

Age
Unmatched 49.92 52.7 -21.9 – -1.86 0.063 0.83

Matched 49.92 50.1 -1.5 93.3 -0.09 0.925 0.88

Female
Unmatched 0.23 0.33 -21.7 – -1.83 0.068 –

Matched 0.23 0.23 -0.7 96.6 -0.05 0.961 –

Note: %bias refers to the standardized percentage bias, which is the difference of the sample means of solar and non-
solar households in percent for the matched and unmatched sub-samples as a percentage of the average standard
deviation over both household groups (Rosenbaum and Rubin, 1985). The achieved percentage bias reduction in
absolute values is denoted by |bias|. * indicates if variance ratio lies outside the interval [0.64; 1.56].
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