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ABSTRACT
This study firstly analyzes the impact of energy intensities and 
income on CO2 emissions in Russia, applying different estimation 
methods to the data period from 1990 to 2020. In addition, the 
study forecasts CO2 emissions considering 2030 targets under dif
ferent assumptions and assesses the achievability of the set target. 
The estimation results concluded that the GDP and fossil fuel 
intensities of GDP have a statistically positive impact on CO2 emis
sions. Also, we found that the forecasted value for 2030, for the 
business-as-usual case, is 1750 MtCO2, with 95% confidence inter
val values of 1703 MtCO2 and 1796 MtCO2. This result shows that 
Russia needs to undergo substantial policy interventions to achieve 
its targets to reduce CO2 emissions. As the fifth biggest emitter, 
Russia missing its emissions targets will have undesirable implica
tions for the rest of the world. Based on the projection results, the 
paper discusses some potential policy interventions.
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1. Introduction

Increases in greenhouse gas (GHG) concentrations have generated a steady rise in global 
temperatures, especially in the last four decades. Each of these decades has been warmer 
than any preceding one since 1850 (IPCC, 2021). In absolute terms, in 2021, energy- 
related global CO2 emissions relative to 2020 increased by over 2 billion tonnes, the 
largest in history. In energy-related CO2 emissions, primary growth occurred due to the 
increased consumption of coal for power generation (IEA, 2022a). As a result of an 
increase in CO2 emissions, the average surface temperature has risen globally, and the 
global upper ocean (0–700 m) has warmed since the 1970s. Oxygen levels have dropped 
in many upper ocean regions, and human-caused CO2 emissions have been the main 
driver of ocean acidification (IPCC, 2021). According to Climate Watch data, Russia is 
among the top five emitters of total GHGs and CO2 emissions (Climate Watch, 2022b).

As a result of considerable levels of emissions in 2020, the average temperature in 
Russia was estimated to have been 4 °C higher than the average temperature from 1850 to 
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1900. This period (1850–1900) is often used as a pre-industrial baseline for global 
temperature targets (Berkeley Earth, 2021). This extreme heat led to permafrost thawing, 
which could generate further threats like infrastructure collapse, coastline erosion, and 
methane escaping from the previously frozen ground (Shapovalova, 2020). In the sub
sequent comparison for the Russian case, in 2021, the temperature was 1.5 °C higher than 
the 1951–1980 average (Berkeley Earth, 2022). Without deep reductions in CO2 and 
other greenhouse gas emissions, the average temperature seems to keep increasing. 
Meinshausen et al. (2022) estimate that Russian per capita emissions for 2030 will be 
21% higher relative to 2019 levels. The extreme heat generated major wildfires in Russia 
for the third successive year. Federal Forestry Agency of Russia reports that during the 
summer in Yakutia number of fires reached 2295, burning 8.9 million hectares of forest 
(WMO, 2022).

Additionally, Russia has one more challenge to cope with: a decrease in energy exports 
and economic growth. The Paris Agreement parties pledged emission reduction targets 
with their Nationally Determined Contributions (NDC). The fulfillment of all these 
NDCs will lead to a 25% reduction in Russian energy exports by 2030, which will bring 
about a striking decline in its economic growth rates (IPCC, 2022). Also, Azevedo, 
Sartori, and Campos (2018) find that economic growth is the main driving force for 
the growth of CO2 emissions in the Russian case.

Furthermore, especially in a relatively shorter period of time, like 20 years, the global 
warming potential (GWP) of methane (CH4) is about 80 times bigger than CO2. Because 
of this reason, initiatives like Global Methane Pledge intended to develop a collective 
effort to reduce global methane emissions by at least 30 percent between 2020 and 2030. 
Fortunately, this methane reduction goal can potentially eliminate global warming by 
over 0.2 °C by 2050 (Global Methane Pledge, 2022). CO2 and CH4 comprise 96 % of total 
GHG emissions in the Russian case (Climate Watch, 2022a). Supporters of the Global 
Methane Pledge are from 121 countries. However, together with India and China, Russia 
does not join this commitment (EC, 2022). If we look at the sectoral breakdown of 
methane emissions in these countries, we can find the reason laying behind that kind of 
indifference: In China and India, energy and agriculture are the primary sectors emitting 
methane. In the Russian case, the energy sector emits 75 % of all methane (IEA, 2022b). 
Also, to relate national commitments with global gains, another determinant must be 
considered: aggregate CO2-equivalent emissions create ambiguity in global temperature 
outcomes. A Group of scientists stressed the need to individually specify the contribu
tions of all gases to global temperature in future targets (Allen et al., 2022).

Being one of the top emitters, Russia’s emission reduction target is to lower GHG 
emissions by at least 30 % below 1990 levels by 2030. Its long-term climate strategy 
includes net-zero GHG emissions for 2060. This strategy targets an 80% reduction in 
GHG emissions by 2050 relative to 1990 levels (CAT, 2022). On the one hand, The 
Energy Strategy to 2035, which was adopted in 2021, promotes the extraction, consump
tion, and export of fossil fuels. This strategy may pretty well contradict the goals 
mentioned above. On the other hand, the IEA roadmap for the global energy sector to 
achieve net-zero emissions by 2050 suggests that no new investments should take place in 
coal, gas, and oil projects from 2021 on (IEA, 2022a). Previous targets relied on two 
essential components: firstly, making the Russian industry 40 percent more energy 
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efficient by 2020 and, secondly, utilizing the potential of Russian forests to absorb carbon 
dioxide (Pao, Yu, & Yang, 2011).

As IPCC (2022) suggests, limiting warming to around 1.5 C requires global green
house gas emissions to be reduced by 43 % by 2030. When carbon dioxide emissions 
reach net zero, only then will the global temperature stabilize (Intergovernmental Panel 
on Climate Change (IPCC), 2022 2021). Even though the planet needs better commit
ment from one of the biggest emitters, as stated earlier, the net-zero target for Russia is 
2060. Meinshausen et al. (2022) find that current NDC pledges are far from limiting 
warming to 1.5 C. Their study implies that countries are supposed to bring their net-zero 
dates forward and adopt net negative targets. Our study intends to shed additional light 
on this argument for the Russian case. It is noteworthy that the energy consumption, 
economic growth, and CO2 emissions relationship seems quite intuitive. In this manner, 
the novelty of the present study on this topic is two-fold. Firstly, it provides an extension 
that earlier studies need. This study’s sound estimation results can be considered 
a contribution to existing literature. That is, by adopting a state-of-the-art methodolo
gical approach and model specification, the current study manages to come up with 
concrete estimation results. Additionally, it challenges the decoupling path for the 
Russian case, which was previously found between economic output and carbon emis
sions. In a nutshell, the novelty of this study consists of two primary strands: contribution 
to existing literature and providing more conclusive findings for the Russian case.

As of 24 February 2022, when the unprovoked Russian invasion of Ukraine started, 
the first concern was about the global food and hunger crisis. This outcome has a solid 
justification: Russia and Ukraine produce a third of the world’s wheat and barley exports. 
Also, these two countries provide more than 70 % of sunflower oil exports (Europe & 
Lancet Regional Health – Europe, 2022). Furthermore, depending on the length of the 
war, emissions from tanks, military aircraft, and trucks could amount to “as much as 
a small or medium-sized country in an entire year” (WSJ, 2022). Also, there is scientific 
evidence that emissions from fires in oil plants can have long-distance impacts. In 1991, 
Kuwait’s oil fires burned more than 4.5 million barrels per day. Among many other 
polluting impacts, these fires were responsible for 2% of global CO2 emissions (Hobbs 
and Radke, 1992). In this manner, strikes targeting fuel depots and refineries prompt 
large fires, generating the additional release of carbon dioxide and methane.

Last but not least, western sanctions can push Russia to consume more fossil fuels 
domestically. This kind of shift in the energy mix landscape will negatively impact the 
Russian case’s CO2 emissions targets and commitments. Russia is a big producer of 
minerals that are vital for clean energy technologies. For example, 20% of the supply of 
Class 1 nickel, which is needed for batteries, comes from Russia. The country ranks 
globally second place for cobalt production and fourth place in graphite production. 
Increasing Russia’s international isolation (Kim, 2022) might have negative implications 
for global green energy transitions.

Having mentioned the crucial role of reducing the Russian GHG emissions level in 
the overall global climatic-environmental umbrella, firstly, it necessitates exploring the 
factors shaping the evolution of these emissions; secondly, their potential future 
trajectory; and lastly, assessing the attainability of the set targets. Hence, aiming to 
address the issues mentioned above, our study contributes to the existing literature 
from different aspects. Firstly, we develop a framework that relates CO2 emissions to 
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energy consumption indicators. This framework allows making scenario simulations 
for CO2 emissions and assessing the achievability of certain targets, such as net-zero 
CO2 emissions targets, under certain assumptions for energy consumption indicators. 
Secondly, it models the impacts of CO2 emissions and reveals the factors driving them 
using the most updated data. Thirdly, in modeling exercises, it uses techniques with 
statistical superiority, such as machine learning multi-search algorithms. The used 
Autometrics machine learning algorithm enables the detection of historical exogenous 
interventions whose omission might result in biased parameter estimations. In addi
tion, this algorithm allows testing a battery of diagnostic tests for model quality and 
parameter (non)constancy. Other merits of the used technique are provided in the 
Methodology section. Since Russia is committed to certain targets by 2030 and later on, 
forecasting CO2 emissions will have important policy implications. Therefore next, 
utilizing the estimated model, the study makes forecasts considering different potential 
scenarios. Then, based on the forecasts, it assesses if the set targets are attainable. In 
addition, we also make some alternative policy scenario simulations that might reach 
the set 2030 targets. Lastly, the paper discusses potential policy interferences in terms of 
reaching the set targets. Kilinc-Ata and Dolmatov (2022a) suggest that in terms of 
providing favorable market accessibility and development environment, existing 
renewable energy policies are insufficient in Russia. Bringing this policy suggestion 
together with the findings of our study, we intend to shed additional light on the 
importance of CO2 emissions targets.

Jacobson et al. (2022) estimate that in the case of a 100 % clean energy transition 
payback time of the capital cost will be 5.5 years. Way, Ives, Mealy, and Farmer 
(2022) find that a fast energy transition will provide net savings. Kilinc-Ata and 
Dolmatov (2022b) suggest that Russia has hurdles to commercializing renewable 
energy consumption. IMF (2022) opines that by getting closer to 2030, fossil fuel 
exporting countries will face more considerable challenges, and a chance for 
a relatively smooth energy transition will be missed. At this time, estimating CO2 
emissions and providing striking forecast results will provide additional scientific 
evidence for the urgency of emission reduction targets. Seven years left to reach 2030, 
and chances of averting catastrophic climate disruptions are getting lower. Steel, 
DesRoches, and Mintz-Woo (2022) consider that the risk of climate collapse demands 
careful scientific investigation. In light of all these recent studies, this study provides 
additional scientific evidence further to clarify the importance of the ongoing climate 
emergency.

The remaining sections of the paper are structured as follows: Section 2 provides 
a review of the related literature. Section 3 derives the model specification, and section 
4 presents the econometric methodology. Data used for empirical estimations are 
presented in section 5. Empirical estimations results are delivered in section 6. 
Section 7 describes assumptions for forecasting exercises, and section 8 provides the 
forecasting results. Discussion of the empirical findings and forecasting are given in 
section 9; section 10 concludes the paper and shares the policy implications of the 
paper.

4 S. GURBANOV ET AL.



2. Literature review

This section’s primary goal is to look at the studies investigating the CO2 emissions 
impacts in Russia. However, there are a few time-series studies in the case of Russia; 
therefore, we also examine the research conducted for the country group, including 
Russia. Table 1 details the reviewed literature.

Pao et al. (2011) examined CO2 emissions-income relationship employing VECM in 
the data period from 1990 to 2007. They applied cointegration techniques with 17 
observations and concluded that the EKC hypothesis does not hold for the Russian 
case. The study started estimation with the quadratic functional form, but then the 
squared term was excluded due to the multicollinearity. The estimation results revealed 
Russia’s monotonically decreasing relationship between income and CO2 emissions. In 
addition, Yang et al. (2017) investigated CO2 emissions-income link using time series 
data. The study results indicated that the EKC hypothesis holds in the case of Russia, 
which is surprising given that this finding is generally true for developed/advanced 
economies.

On the other hand, some studies analyzed the CO2 emissions-income relationship 
using mixed panel and time series analysis. To avoid readers from misinterpreting the 
emissions-income link in Russia, solely time-series results of these studies will be inter
preted. Shuai et al. (2017) and Chisti and Sinha (2022) used both panel and time series 
analysis to evaluate the relationship between income and CO2 emissions in the case of 
a country group (including Russia). Shuai et al. (2017) found the existence of an inverted 
U-shaped relationship, while Chisti and Sinha (2022) found a U-shaped link for Russia. 
Furthermore, Danish (2019) revealed a U-shaped relationship between income and CO2 
emissions by employing the AMG method in Russia’s case. Also, Kilinc-Ata and 
Likhachev (2022) found a U-shaped relationship for Russia using the ARDL method to 
the data period of 1990-to 2020.

Moreover, there are several panel studies (including Russia), such as Tamazian and 
Rao (2010), Apergis and Payne (2010), and Al-Mulali et al. (2016) reached an inverted 
U-shaped curve. In contrast, Narayan et al. (2016) revealed a U-shaped curve, and Perez- 
Suarez and Lopez-Menendez (2015) found no specific pattern. In addition, Zakarya et al. 
(2015), Mitic et al. (2017), and Ito (2017) concluded a monotonically increasing CO2 
emissions-income link. Additionally, Brizga et al. (2013) found an L-shaped link between 
income and CO2 emissions using data spanning from 1990 to 2010. Hasanov et al. (2021) 
investigated the impact of GDP on CO2 emissions utilizing the CS-ARDL technique to 
data period of 1990–to 2017 for BRICS countries. They found a positive and statistically 
significant impact of GDP on CO2 emissions.

In addition, there are several studies in the literature that take into account the effects 
of energy intensity on carbon emissions, which is one of the focuses of our study. 
However, there are very few studies (mainly panel data) investigating the impact of 
energy intensity on carbon emissions in the case of Russia. Among these studies, Dong 
et al. (2019a) examined the impact of energy intensity, renewable energy consumption, 
non-renewable energy, economic growth, and population size on CO2 emission in the 
case of 128 countries utilizing the panel AMG and CCEMG techniques to the data 
spanning from 1992 to 2014. The AMG and the CCEMG revealed that a 1% rise in 
energy intensity leads to a 0.53% increase in CO2 emissions and a 1% rise in energy 
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intensity leads to a 0.92% increase in CO2 emissions for Europe & Eurasia countries 
(including Russia), respectively. It implies that energy intensity has a positive impact on 
CO2 emissions.

Additionally, Abban, Wu, & Mensah, 2020) concluded a positive impact of energy 
intensity on CO2 emissions for high-income economies (including Russia) by applying 
the AMG panel data estimation method to the data during 1995–2015. Inglesi-Lotz 
(2017) employed the LMDI decomposition test to evaluate the energy intensity-carbon 
emissions nexus in the case of BRICS countries for the data period of 1990–2014. The 
estimation results showed that energy intensities raised CO2 emissions for Russia. In 
addition, Brizga et al. (2013) revealed that there is a positive and significant effect of 
energy intensity on CO2 emissions for 15 former Soviet countries (including Russia).

As can be seen from the studies mentioned above, no time-series research has been 
conducted in the case of Russia to model CO2 emissions, especially using machine 
learning algorithms in addition to conventional cointegration techniques, as well as 
forecasting emissions considering 2030 targets. In this case, time-series research should 
be conducted, considering the aforementioned limitations. To fill the gap in the related 
literature, the current article explores determinants of CO2 emissions utilizing several 
time-series cointegration approaches and makes projections for CO2 emissions consid
ering 2030 targets.

3. Functional model specification

Numerous papers have attempted to estimate a relationship between environmental 
indicators and their drivers empirically since the pioneering work by Grossman and 
Krueger (1991) and Shafik and Bandyopadhyay (1992), which was based on the concept 
of an environmental Kuznets curve (EKC). In the EKC literature, an environmental 
indicator, such as CO2 emissions, CH4 emissions, etc., is modeled as a function of 
income proxy. Although there is not a unique, straightforward, mathematically derived, 
theoretically, well-grounded functional specification comprising all the relevant expla
natory variables, different variables are used in applied work as divers of environmental 
degradation. These explanatory variables are mainly included in specifications based on 
conceptual intuition rather than theoretical derivation. The well-known EKC framework 
is only a special case of a broader pollution income relationship. Even there are studies 
(see Hendry, 2020) questioning the use of income as a driver of CO2 emissions and 
papers inquiring about the reliability of findings by conventional polynomial EKC 
approaches (Wagner, 2008). For the discussion of the rationale behind of EKC frame
work and different approaches for its theoretical justification, see Lieb (2003), Kijima, 
Nishide, and Ohyama (2010), and Mikayilov et al. (2018), inter alia. In the empirical 
studies, the so-called IPAT (Environmental Impacts (I), Population (P), Affluence (A), 
and Technology (T)) identity proposed by Enrlich and Holdren (1971) and its another 
formulation called Kaya identity suggested by Kaya (1990) are mainly used as an initial 
point to start with and derive different functional specifications, depending on the 
purpose of the research. For example, the widely used STIRPAT (Stochastic Impacts by 
Regression on Population, Affluence, and Technology) framework (Dietz & Rosa, 1994,  
1997) is a modified, econometrically estimable version of an IPAT identity. Since we are 
modeling the CO2 emissions and targeting to make forecasts based on fuel-type energy 
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scenarios, we used Kaya identity to derive our functional specification. It also enables 
avoiding problems such as using energy consumption as a driver of calculated CO2 
emissions based on consumption figures (Jaforullah & King, 2017).

Moreover, there is a need for a functional specification for assessing the possible future 
trajectories of CO2 emissions and other GHGs, making different assumptions for the 
energy consumption inputs. This specification would allow assessing achievability of 
some targets for CO2 emissions, such as net-zero emissions targets set by certain years. 
Considering that having energy consumption variables as right-hand side variables might 
result in some issues, as Jaforullah and King (2017) discussed. In addition, the estimated 
coefficients need to have economic interpretations. This section, hence, derives such 
a specification as follows.

First, building on Hendry (2020) and targeting the coefficients to have economic 
interpretation, we derived the functional specification which links the consumption of 
fuel types contributing to CO2 emissions. The rationale for having fuel demand proxies 
in the specification first relies on the theoretical phenomenon. As is well known, energy 
consumption drives CO2 emissions. In addition, we are proposing a framework that 
allows an assessment of different fuel type scenarios on a CO2 emissions trajectory. This 
section develops the related derivations. The well-known Kaya-type identity (Kaya, 1990) 
can be expressed as follow:  

CO2t
Popt
¼ GDPt

Popt
� Et

GDPt
� CO2t

Et
(1) 

Where Et
GDPt 

is energy intensity of GDP, CO2t
Et 

is the carbon intensity of energy.
We can assume that CO2t

Et
� k; k 2 Z (Based on the historical data for Russia CO2t

Et
� 2Þ:

Then (1) becomes:
CO2t
Popt
¼ GDPt

Popt
� Et

GDPt
� k (2) 

Considering that Et ¼ Ot þ NGt þ Ct (2) can be written as: 

CO2t
Popt
¼ GDPt

Popt
� Ot

GDPt
þ NGt

GDPt
þ Ct

GDPt

� �
� k (3) 

Where Ot;NGtandCt are oil consumption, natural gas consumption, and coal consump
tion, respectively. Accordingly, Ot

GDPt
; NGt

GDPt
and Ct

GDPt 
are oil, natural gas, and coal intensi

ties of GDP.
Taking the logarithm of both sides of equation (3), we get: 

Ln CO2t
Popt

� �
¼ Ln GDPt

Popt

� �
þ Ln Ot

GDPt
þ NGt

GDPt
þ Ct

GDPt

� �
þ Ln kð Þ (5) 

Applying Taylor expansion to the second term of the right-hand side of equation (4) and 
dropping higher-order and cross-product terms, it can be expressed as an estimable 
relationship as follow: 

Ln CO2t
Popt

� �
¼ α0 þ α1 � Ln GDPt

Popt

� �
þ α2 �

Ot
GDPt
þ α3 �

NGt
GDPt
þ α4 �

Ct
GDPt
þ εt (5) 

To avoid having variables in different units and for the sake of better econometric 
relationships, proxying level variables with their logarithmic counterpart’s equation (5) 
can be written as below: 
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Ln CO2t
Popt

� �
¼ β0 þ β1 � Ln GDPt

Popt

� �
þ β2 � Ln Ot

GDPt

� �
þ β3 � Ln NGt

GDPt

� �
þ β4 � Ln Ct

GDPt

� �
þ ut

(6) 

Specifications (5) and (6) give room for playing with oil, natural gas, and coal consump
tion scenarios to see their impact on CO2 emissions. In addition, the population variable 
could be dropped from equation (1), which gives another alternative specification with 
overall CO2 emissions and GDP numbers instead of per capita values. Furthermore, in 
equations (5) and (6), total energy intensity could be used depending on the purpose of 
the research question. Moreover, energy’s carbon intensity could also be kept in the 
relationships as a driver of CO2 emissions.

4. Econometric methodology

To have a tool to assess the achievability of the set targets through forecasting, initially, we 
analyze the effects of GDP per capita, oil, natural gas, and coal intensities of GDP on CO2 
emissions, applying different time-series methods. We will first test the used variables for 
a unit root in the empirical part. The Augmented Dickey-Fuller (Dickey & Fuller, 1981, 
ADF) unit root test will be applied to assess the non-stationarity properties of variables.

Next, if the degrees of integration of the variables are the same, the cointegration 
test(s) will be performed to see if they are cointegrated. For this exercise, we utilize the 
Bounds Testing Approach to Autoregressive Distributed Lagged (ARDLBT, Pesaran & 
Shin, 1999; Pesaran, Shin, & Smith, 2001) and the PcGive cointegration test (Banerjee, 
Dolado, & Mestre, 1998, inter alia). Additionally, the General to Specific (Gets) 
modeling approach is utilized to estimate the long-run impacts of GDP per capita, 
oil, natural gas, and coal intensities of GDP on CO2 emissions. This methodology 
suggests considering both the applicability of the theory and being in line with the Data 
Generating Process (DGP). The general unrestricted model (GUM) is first constructed 
in this approach, including all the theory-related prospective variables with corre
sponding lag lengths. Then in the first stage, maintaining all the theory-related vari
ables, one looks for if there is an “additional” part of DGP that can be explained with 
intervention dummies. The procedure utilizes all possible dummies. To put it differ
ently, it utilizes and examines impulse (Impulse Indicator Saturation, IIS), step (Step 
Indicator Saturation, SIS), blip (Differenced Impulse Indicator Saturation, DIIS), and 
break-in trend (Trend Indicator Saturation, TES) dummies for every single observa
tion. The multipath search algorithm tests the relevance/significance of used interven
tion dummies. The chosen dummies are kept fixed in the second step, and one searches 
for theory-relevant variables. Similar to the first step, this is also made by applying 
a multipath search algorithm. The search technique tries to “assess” the so-termed local 
data-generating process, aiming for the final model’s congruency (no loss of informa
tion) to the GUM. In both steps, since the number of parameters to be estimated 
becomes bigger, the algorithm uses a block search. The role of machine learning 
algorithms like Autometrics (see Hendry & Doornik, 2014, among others) in this 
objective is indisputable, as multipath and block search techniques are challenging to 
deal with. For additional aspects of the Gets methodology, interested readers can refer 
to Hendry and Doornik (2014) and Doornik and Hendry (2018). In the early phase, the 
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model includes the following theory-related variables: per capita CO2 emissions 
(dependent variable), real per capita GDP, oil, natural gas, and coal intensities of 
GDP. All variables are put into the first specification with two lags. After including 
the theory-related variables and applying the practice of the Gets approach in the initial 
step, they were included in the search process, and the saturation indicators were 
selected utilizing the Autometrics algorithm. After selecting relevant intervention 
dummies, they were kept unsearched in the second step. The final model chose the 
theory-related variables (See Castle, Doornik, & Hendry, 2021; inter alia, on the entire 
selection process). Finally, ARDL, FMOLS, and Structural Time Series Modeling 
(STSM) approaches are used for robustness checks. Dickey and Fuller (1981) for the 
ADF test, Harvey (1989) for the STSM approach, Phillips and Hansen (1990) for the 
FMOLS method, Pesaran and Shin (1999), and Pesaran et al. (2001) for the ARDL 
approach, among others, have presented comprehensive descriptions and could be 
referred to for detailed information.

5. Data

This paper uses annual data for the variables mentioned below from 1990 through 2020. 
The used sample is chosen based on the data availability. CO2 is CO2 emissions from fuel 
combustion in MtCO2 and sourced from Enerdata (2022). The historical trajectory of 
CO2 emissions is depicted in Figure 1.

In the early 90ths CO2 emissions level have been declining following the country’s 
economic and social structural change, shifting from the “golden periods” of the former 
Soviet time to the newly established state. Undoubtedly, it was not a result of higher 
environmental concerns and demand for a better environment; rather, it had resulted 
due to the worsening economic situation that had lasted by the early 2000s. Hence, it is 
crucial to consider this fact while modeling CO2 emissions in the case of Russia and 
similar countries. Ignoring the historical evaluation of the CO2 emissions path might 
result in misleading results, such as negative income impact or an inverted U-shaped 
relationship, which is less likely for the developing country.
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Figure 1. Time trajectory of CO2 emissions.
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GDP is a gross domestic product in billions of Rubles, 2016 constant prices. It is 
retrieved from Oxford Economics (2022). CO2 emissions and GDP data are expressed 
per capita using the population data from Oxford Economics (2022).

Oil intensity of GDP is oil consumed per unit of GDP. The natural gas intensity of 
GDP is natural gas consumed per unit of GDP. Coal intensity of GDP is coal consumed 
per unit of GDP. The corresponding oil, natural gas and coal intensities of GDP are used 
for the corresponding oil, natural gas and coal consumption numbers. Data for oil, 
natural gas, and coal are taken from Enerdata (2022). The fuel consumption data are 
in Mt. In empirical estimations, the specification (6) is used; hence, all variables are 
expressed in logarithmic form.

6. Empirical estimation results

At the beginning of empirical estimation, the unit-root properties of the utilized variables 
are tested by applying the ADF unit-root test. The ADF test results are presented in 
Table 2.

The results of the ADF test revealed that all variables are I(1), which means that they 
are stationary at the first difference. As a result, we can evaluate the possibilities of a long- 
term cointegration link. The results of cointegration analyses are depicted in Table 3.

The employed Bounds test and PcGive test for cointegration conclude the existence of 
a long-run cointegration relationship. As mentioned in the methodology section, to 
investigate the relationship between variables of interest, we have used the General to 
Specific methodology using the Autometrics algorithm (Hendry & Doornik, 2014). 
Utilizing the Gets approach, the theory-related variables were not included in the initial 
stage of the search procedure. The search was performed for the intervention dummies 
with a tighter significance level. Taking into account the available number of observa
tions, we used two as a maximum lag length.

Consequently, having chosen the saturation dummies in the first stage, they were kept 
fixed in the second step, and the search was repeated for theory-related variables. The 
search algorithm is utilized for the second step, allowing a 10% significance level. The 
search algorithm is accomplished utilizing the PcGive 15.10 element of the OxMetrics 

Table 3. Cointegration tests’ results.
Bounds test PcGive test

Test statistic 49.731*** −14.444**

Notes: Null hypothesis for both tests is the non-existence of 
cointegration; “***” and “**” stand for rejection of the null 
hypothesis at 1% and 5% significance levels, respectively.

Table 2. Unit root test results.
copc gdppc oil ng c

Level intercept −4.456*** −1.598 −1.619 −0.967 −0.332
trend&intercept −2.948 −2.786 0.185 −2.808 −1.750

First difference intercept −3.439** −3.015** −4.896*** −3.277** −5.073***

Notes: all variables are in logarithmic scale; two is used as a maximum lag, and the optimal lag number is chosen based 
on the Schwarz criterion; “***”, “**” and”*” stand for rejection of null hypothesis at 1%, 5%, and 10% significance level, 
respectively.
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8.10 software platform. The found equation in dynamic form is modified to see the final 
static form of the long-run equation, as suggested by Doornik and Hendry (2018). The 
long-run estimation results of the Gets approach are provided in Table 4.

Moreover, Table A1 (in the Appendix) provides the diagnostic test results for the 
selected final model. As the results in Table A1 demonstrate, the selected model passes all 
the diagnostic tests. We also tested the parameters for the potential non-linearity utilizing 
the non-linearity and conventional RESET tests, and the findings are given in Table A1 
(in Appendix). As the results show, there is not enough evidence to conclude non- 
linearity in the parameters.

As was mentioned in the Methodology section, we also utilized ARDL, FMOLS, 
and STSM estimation techniques for the robustness check, and the estimation 
results are also given in Table 4. As evident from Table 4, all estimation techniques 
produced quite similar results for the parameters. Even the ARDL results are 
identical to the Gets results. These findings show the robustness of our empirical 
findings.

To check the in-sample replicating quality of the estimated model, we performed the 
dynamic forecast using the sample data, and the results are given in Figure A1 
(Appendix). As the figure demonstrates, the in-sample forecasting quality of the model 
is quite high.

7. Forecast assumptions

As mentioned in the introduction, Russia targets lowering GHG emissions by at 
least 30% below 1990 levels by 2030. CO2 emissions comprise almost 80% of overall 
GHG for Russia, based on 2018 data point (Climate Watch, 2022a). Making the 
same assumption as a target for CO2 emissions, this target translates to having 
a CO2 emissions level of around 1530 MtCO2 in 2030. This number is 200 MtCO2 
below the 2019 value (considering the Covid-19 impact in 2020, we preferred to 
compare it with the 2019 value). To see the output for the case when the economy 
goes in the pace as it is, we first created a business as usual (Sce1) scenario. In the 
Sce1 scenario, assuming that the drivers of CO2 emissions on average will not 
substantially change their behaviors for the coming ten years, 2010–2020 average 
growth rates are taken as assumptions for all independent variables. The detailed 
forecast assumptions are described in Table 5.

Table 4. Long-run estimation results.
Gets ARDL FMOLS STSM

gdppc 1.022*** 1.022*** 0.973*** 1.010***
oil 0.230*** 0.230*** 0.122* 0.195***
ng 0.503*** 0.503*** 0.393*** 0.533***
c 0.307*** 0.307*** 0.419*** 0.258***

Notes: “***” and “*” stand for rejection of null hypothesis at 1% and 10% significance 
levels; in Gets and ARDL BT approaches, maximum lag is set to 2 and 1, respectively. In 
Gets, the optimal lag is chosen based on the Autometrics machine learning algorithm 
and the number of diagnostic tests, while for the ARDL BT, it is determined based on the 
Schwarz criterion.
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Considering that coal is more CO2 intensive compared to natural gas and oil, and it is 
a primary source of a recent increase in energy-related CO2 emissions globally (IEA,  
2022a), one direction for lowering the CO2 emissions level might be relying less on coal. 
Hence, in the other two scenarios, we consider reducing coal consumption. In other words, 
we created two additional scenarios, Sce2 and Sce3, to see the potential path of CO2 
emissions in case coal consumption is reduced. In Sce2, natural gas remains as in 2020; 
coal decreases by 15% annually, oil consumption and GDP are as in Sce1; in Sce3, natural 
gas remains as in 2020, coal decreases by 10% annually, oil consumption and GDP are as in 
Sce1. These assumptions are used only for comparison purposes to assess if the 2030 target 
is rational. Since there are a number of different potential assumptions for the fuel mix 
trajectories, the relevant ones could be chosen depending on the set policy strategy.

8. Forecasting results

Utilizing the estimated model for CO2 emissions and using the assumptions made in the 
previous section, we have made projections until 2030, and the results are depicted in 
Figures 2 and 3. In forecasting exercises, the Gets resulted model is used. Figure 2 
demonstrates the forecasting results for scenario 1 or the base case scenario, with 95% 
confidence intervals.

In this case, the forecasted value for 2030 is 1750 MtCO2, with 95% confidence 
interval values of 1703 MtCO2 and 1796 MtCO2. The results of CO2 emissions projec
tions for all three scenarios are presented in Figure 3.

1,560

1,600

1,640

1,680

1,720

1,760

1,800

2020 2022 2024 2026 2028 2030

-2*SE CO2 (forecasts) +2*SE

CO
2
em

iss
io
ns

fr
om

fu
el
co
m
bu
st
io
n,
M
tC
O
2

Date 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

-2*SE 1603.829 1614.396 1625.394 1636.476 1647.579 1658.693 1669.82 1680.963 1692.126 1703.312

Forecast 1638.864 1650.425 1662.438 1674.603 1686.867 1699.224 1711.671 1724.209 1736.8403 1749.562

+2*SE 1673.899 1686.455 1699.483 1712.730 1726.156 1739.755 1753.522 1767.456 1781.553 1795.813

Notes: Numbers are in MtCO2; -2*SE and +2*SE are lower and upper 95% confidence interval bounds, respectively.

Figure 2. Forecast results for the base case scenario.
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9. Discussion of empirical findings and forecasting results

The current study explores the effects of GDP per capita, oil, natural gas, and coal 
intensities of GDP on CO2 emissions, using different time-series techniques for Russia. 
Another distinctive feature of this study is that it forecasts emissions by 2030 and 
compares the findings with targets to assess their achievability. According to the utilized 
unit root test, all variables are integrated of order one. Additionally, the PcGive and 
Bound cointegration tests showed the presence of a long-run link among the variables. 
Then, we evaluated the long-term effects of the used variables on CO2 emissions and 
presented the findings in Table 4. The signs of all mentioned variables are found to be 
consistent with the expectations, as discussed in the Functional Model Specification 
section. According to the results, a 1% rise in the GDP per capita results in a 1.022% 
rise in CO2 in the long run. This result is consistent with the theoretical approach of the 
Functional Model Specification section and the findings of several studies such as Apergis 
and Payne (2010), Zakarya et al. (2015), Yang et al. (2017), Shuai et al. (2017), Ketenci 
(2018), Cheng et al. (2019), Dong et al. (2019a), Dong et al. (2019b), Danish (2019), 
Hasanov et al. (2021) Chisti and Sinha (2022) and inter alia. Our income elasticity, in 
terms of the sign, is different from the findings of Pao et al. (2011) and Kilinc-Ata and 
Likhachev (2022) in the case of Russia. The different signs of the same variable can be 
explained by the size and frequency of the studied periods, used empirical methods, inter 
alia. The negative impact of income on emissions level in the case of Russia as 
a developing country does not seem to be relevant. Since Russia had undergone a new 
structural reshaping during the 90s, after the collapse of the former Soviet Union, special 
attention should be paid while modeling the relationships representing true economic 
environment phenomenon. This also applies equally to CO2 emissions modeling. 
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Date 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Sce1 1638.864 1650.425 1662.438 1674.603 1686.867 1699.224 1711.671 1724.209 1736.8403 1749.562

Sce2 1564.546 1492.185 1421.536 1353.965 1289.563 1228.216 1169.787 1114.137 1061.134 1010.653

Sce3 1587.428 1539.990 1492.894 1447.059 1402.602 1359.506 1317.734 1277.244 1237.999 1199.959

Notes: Numbers are in MtCO2; Sce1= all drivers grow at a rate equal to historical average growth rates; Sce2= natural gas remains as in 2020, coal decreases by 15% 
annually; Sce3= natural gas remains as in 2020, coal decreases by 10% annually.

Figure 3. Forecast results by scenarios.
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Furthermore, according to environmental theories, higher GDP will result in increased 
CO2 emissions: increased economic activity or income leads to increased consumption 
of intermediate and final goods and services, resulting in increased CO2 emissions. 
Hence, we believe that our finding of positive income impact is more aligned with 
economic reasoning, considering the country’s development stage.

In addition, the estimation results revealed that oil, natural gas, and coal intensities of 
GDP have a statistically significant and positive impact on CO2 emissions. Based on the 
results, in ceteris paribus, a 1% rise in oil, natural gas, and coal intensities of GDP raises 
CO2 emissions by 0.230%, 0.503%, and 0.307%, respectively, in the long run. This means 
that natural gas has the greatest influence on CO2 emissions, followed by coal and oil. 
This finding coincides with the characteristics of Russia and the theoretical expectations, 
as discussed in section 3. Russia’s primary source of GHG emissions was the energy 
industry, accounting for almost 1.67 billion tons of CO2 equivalent (STATISTA, 2022). 
Combustion of fossil fuels accounts for 80% of all greenhouse gas emissions in Russia. 
Approximately half of them (47%) are created by energy sectors, such as electricity and 
heat generation, while 30% are produced by the transportation sector, industrial output, 
and building (Stepanov & Makarov, 2021). Besides, the findings of the study conducted 
by Yang et al. (2017) support the results of our research. Thus, he stated that around 65% 
of all emissions were attributable to energy usage (representing the largest proportion). 
According to his analysis, the use of natural gas, which accounted for more than 45% of 
all energy-related emissions, was the primary source of emissions. About 36% of emis
sions were produced by the use of coal and coal-derived goods, and 17% of emissions 
were caused by the consumption of crude oil and crude oil-derived products. In addition, 
our research findings are aligned with the conclusions of previous studies like Dong et al. 
(2019) for Europe & Eurasia countries (including Russia), Abban et al. (2019) for high- 
income economies (including Russia), Inglesi-Lotz (2017) for BRICS countries, Brizga 
et al. (2013) for 15 former Soviet countries (including Russia) which revealed a positive 
impact of energy intensity on CO2 emissions.

According to the forecasting exercises results, if the current situation, in terms of 
economic activities and policies followed, goes as it is, the CO2 level is expected to reach 
above 1700 Mt of CO2 emissions. In this case, the 2030 target seems hard to achieve. 
However, in case of a bit ambiguous no coal scenario, the 2030 numbers for CO2 
emissions are found to be 1011 Mt and 1200 Mt in scenarios 2 and 3, accordingly. 
Both SCE2 and Sce2 produce CO2 levels below the country’s 2030 target. Although it 
might require additional and substantial efforts to eliminate coal consumption, consider
ing its vast availability, a shift to renewables could be a feasible way to follow, in parallel 
with exporting more fossil fuels or utilizing the so-called circular carbon economy 
direction.

10. Conclusion and policy implications

This paper first proposes a functional specification that relates CO2 emissions to energy 
consumption indicators, modifying the so-called Kaya identity. Then using the devel
oped framework, the article examines the impact of GDP per capita, oil, natural gas, and 
coal intensities on CO2 emissions. According to the unit root tests, all variables have the 
same integration order (I (1)). As a result, the presence of a long-run cointegration 
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connection may be assessed. According to the cointegration test, the variables move 
together in the long term. The General to Specific modeling approach, ARDL, FMOLS, 
and STSM, is applied to evaluate the long-run impact of independent variables on the 
dependent variable (CO2 emissions). A machine-learning multipath search algorithm, 
Autometrics, is used as the main estimation tool. The estimation findings stated that all 
independent variables (GDP per capita, oil, natural gas, and coal intensities of GDP) have 
a statistically positive impact on CO2 emissions. These findings align with both our 
expectations and the theory of economy. Thus, when oil prices rise, Russia earns more oil 
revenues as an oil-rich country, resulting in GDP increases. As a result, the income of 
economic units increases, leading to higher consumption of products, which leads to 
a rise in CO2. In addition, it is widely known that CO2 emissions are mainly derived 
from the combustion of fossil fuels. As fossil fuel consumption increases, this results in 
more CO2 emissions. In 2019, Russia’s most significant volume of fuel-burning based 
CO2 emissions was from natural gas, with 854 million metric tons of CO2. The coal and 
oil industries’ CO2 emissions grew over the previous year, reaching 431 and 312 million 
metric tons, respectively (STATISTA, 2022).

The forecasting practice findings showed that in the current modus operandi, the set 2030 
target is less likely to achieve. Since Russia is one of the top emitters, missing the 2030 target 
will keep contributing to global warming during the upcoming 7 years. The main reason 
behind this conclusion is that atmospheric CO2 concentrations result from cumulative 
emissions. However, as the no or fewer coal scenarios concluded, this target could be achieved 
with a substantial structural reshaping of the way of fueling the economy. These could be 
achieved by phasing out the use of coal (alternatively or simultaneously oil) and shifting to 
renewable energy sources. Considering the country’s regional dimensions, which provide 
substantial sources of renewables, this shift could be an alternative for better environmental 
quality. Another alternative for lowering CO2 emissions and reaching the target could be 
initiating the so-called circular carbon economy approach.

Moreover, considering the gravity of climate change-related environmental deterioration 
and the negative impact of subsidizing fuel prices, Russian policymakers may consider 
phasing out the fossil fuel subsidies. Parry et al. (2021) found that the production and burning 
of global fossil fuel subsidies summed up to 5.9 trillion USD in 2020. In addition to ranking 
among the top three subsidizers in terms of absolute amounts, Russia is also among the top 
five subsidizers in terms of amounts per person. They find that, in case of raising fossil fuel 
prices, globally fuel-related CO2 emissions will be 36 % lower in 2025, state fiscal revenues will 
increase by 4.2 trillion USD, and 0.9 million lives will be saved by 2025. That is, funding will 
cover spending needs for Sustainable Development Goals. IEA (2022a) pathway suggests 
a global 14 million job creation effect of clean energy investments. For the under 1.5 
C scenario, IRENA (2022) finds that by 2030 Russian economy will lose 1.6 million fossil 
fuel jobs, and 1.3 million jobs will be created with the implementation of the energy transition 
process. Net job loss will require bigger investments. That is, diversification towards clean 
energy is not only vital for climate concerns but also, it is important for social welfare. In 2019, 
the country’s total cumulative installed wind capacity was 100 MW. Whereas only in 2020, the 
newly installed wind capacity equal 800 MW. These facts signal the potential of the Russian 
economy for clean energy resources. It is estimated that wind industry employment is around 
12,000 workers (IRENA, 2022). The above-mentioned policy interventions might help the 
country to rationalize energy consumption behavior and continue using available alternative 
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energy sources while mitigating environmental deterioration. Recent studies show that 
countries around the globe, including Russia, are in the era of ample and profitable alternatives 
to lower CO2 emissions. For example, in the analysis covering 145 countries, Jacobson et al. 
(2022) estimate that the present value cost of a 100 % transition to clean energy by 2035 would 
be 61.5 trillion dollars. The striking conclusion of this study suggests that a 100 % clean energy 
transition will generate 28.4 million full-time jobs, and the payback time of the capital cost is 
5.5 years. On the other hand, Way et al. (2022) came up with three different energy transition 
scenarios: Fast, slow, and no. Their findings suggest that a fast transition is likely cheaper than 
other scenarios and generates 12 trillion USD net present savings. The main driver of this 
saving is the rapid fall in solar and wind power costs. Even though Russia has significant 
renewable energy potential, Kilinc-Ata and Dolmatov (2022b) find that consumers face 
technological constraints, which in turn lowers commercial renewable energy consumption. 
Eventually, the country fails to attract the necessary investment. The lack of the suitable 
investment climate that can provide commercialization of renewable energy sources slows 
down the smooth energy transition.

Last but not least, one of the recent studies found that to reach the goals set in Paris 
Agreement, greenhouse gas emissions should be reduced by 25 % in 2030, relative to 2022. 
That is, gone are the days when there was a smooth transition to a more-carbon neutral planet, 
and this transition is now becoming excessively challenging once a procrastinated stance 
further sets in. Estimations show that annual growth will be reduced between 0.15 and 0.25 % 
a year in the scenario of acting earlier, whereas sticking to inaction will generate higher costs, 
especially for fossil fuel exporting countries (IMF, 2022). In this case, policymakers will need to 
consider long-term output losses stemming from climate change. In a nutshell, countries like 
Russia should consider the job creation potential of renewable industries, the declining costs 
of renewable energy sources, and the urgency of the transition to a carbon-neutral era and act 
accordingly.

A top emitter like Russia’s missing CO2 emissions target and not being part of the 
Global Methane Pledge will accelerate climate change and global warming. In this manner, 
we have modeled the historical relationship of CO2 emissions and explored its future path 
for the Russian case. Similar exercises might be devoted to methane emissions as a separate 
research direction. Disaggregating GHG emissions like that will provide a broader picture 
of the climate impacts of national commitments for the Russian case.

This paper analyzes Russia’s emission targets by assuming the willingness of Russian 
policymakers to fulfill already-announced commitments. Since conducting the current study 
started long before 24 February 2022, that is, starting date of the Russian invasion of Ukraine, 
the paper does not have any capacity to consider potential deterioration in the global 
cooperation on climate goals. There is still uncertainty about how the Russian policymakers 
will return to the climate negotiations. Tensions related to the Russian invasion of Ukraine 
may exacerbate Russia’s need for fossil fuel to cover fiscal deficits and secure an externally 
healthy economy and also trigger major disruption for climate negotiations and initiatives. It 
will require another study with new assumptions and scenario simulations. Since mentioned 
novel study will most likely find a more considerable deviation from Russian commitments, 
still current study is an important contribution to the existing literature by providing peace
time evaluations. Another limitation of this study is about the current global greenhouse gas 
emissions information landscape. NASEM (2022) finds that there are numerous methods to 
keep track of GHG emissions. For example, Böttcher et al. (2021) opine significant 
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uncertainties regarding flaring emissions in the Russian case. Since there is little coordination 
between all these different approaches, NASEM (2022) suggests a single global clearinghouse 
for greenhouse gas information. Countries worldwide need to develop their methods for 
high-quality emissions reporting systems. United Nations climate change conference COP27 
may handle this issue, and only then may there be better data available for research.
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Appendix

Table A1. Diagnostic tests results for the Gets approach.

AR 1–2 test ARCH 1–1 test Normality test Hetero test RESET23 test R^2
Adj. 
R^2

0.44451 
[0.6470]

0.86517 
[0.3602]

0.76430 
[0.6824]

0.87436 
[0.5853]

1.6098 
[0.2236]

0.990 0.988

Non-linearity tests RESET22 tests
Chi^2(6) F(6,17) Chi^2(1) F(1,22)
11.495 

[0.0742]
1.7601 [0.1676] 3.1527 

[0.0758]
2.5835 

[0.1222]

Notes: AR = autocorrelation test (Godfrey, 1978); ARCH = autoregressive conditional heteroscedasticity test (Engle, 1982); 
Normality test =Doornik and Hansen (1994) normality test; Hetero test = heteroscedasticity test (White, 1980); 
RESET = Regression Specification Test (Ramsey, 1969). p-values are in parenthesis.
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Figure A1. In sample performance of the model.
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