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Predicting Poverty with Missing Incomes

Paolo Verme∗

March 28, 2023

Abstract

Poverty prediction models are used by economists to address missing data
issues in a variety of contexts such as poverty profiling, targeting with proxy-
means tests, cross-survey imputations such as poverty mapping, or vulnerabil-
ity analyses. Based on the models used by this literature, this paper conducts
an experiment by artificially corrupting data with different patterns and shares
of missing incomes. It then compares the capacity of classic econometric and
machine learning models to predict poverty under these different scenarios. It
finds that the quality of predictions and the choice of the optimal prediction
model are dependent on the distribution of observed and unobserved incomes,
the poverty line, the choice of objective function and policy preferences, and
various other modeling choices. Logistic and random forest models are found to
be more robust than other models to variations in these features, but no model
invariably outperforms all others. The paper concludes with some reflections
on the use of these models for predicting poverty.

Keywords: income modeling; Income Distributions; Poverty Predictions; Imputa-
tions.
JEL Codes: D31; D63; E64; O15.

∗World Bank. The author is grateful to Bo Pieter Johannes Andree, Olivier Dupriez, Aivin
Vicquierra Solatorio, Lidia Ceriani and David Newhouse for excellent comments on the first draft.

1



1 Introduction

The poverty rate, defined as the share of poor people in a given population, is an
important indicator of well-being. It is one of the main indicators adopted by the
UN Sustainable Development Goals (SDGs), it is used by International Financial
Institutions (IFIs) for the global count of the poor, to classify countries according
to their level of well-being, and allocate global financial resources. Estimates of
poverty at the household level are also used by national and local governments to
target populations in need of assistance and are a core instrument of social protection
policies. An accurate estimate of poverty at the population or household level is a
precondition for effective global, national and local welfare policies.

Accurate poverty measurement is not a simple exercise. It is based on sample
surveys that collect information on monetary indicators such as income, consumption
or expenditure. It is therefore a sample based estimate of the population poverty
rate. These estimates suffer from a variety of measurement errors including sampling
errors, misreporting on the part of respondents or interviewers, and unit or item non-
response. Once the data are collected, statistical agencies may also apply alterations
to the data that can potentially impair proper statistical estimates such as top coding,
or deletion of outliers. No survey is exempted from at least some of these issues and
some of these issues can affect a very large share of the sample. The poverty rate is
measured almost invariably with money metrics that contain some degree of missing
or unreliable items.

Several strands of the poverty measurement literature can be regarded as poverty
prediction exercises designed to address missing data issues. Targeting exercises
using proxy-means testing are designed to predict poverty when household income
is not available (Coady et al., 2004, Brown et al., 2018, Glewwe, 1991, Baker and
Grosh, 1994). Poverty profiles use single or multiple imputations to replace missing
incomes for item non-response and use predicted and observed incomes to estimate
poverty. Poverty mapping and cross-survey imputations exercises use prediction
models to estimate poverty in surveys that do not have information on incomes
(Elbers et al., 2003, Tarozzi and Deaton, 2009). Top or bottom incomes studies have
used parametric and non-parametric methods to replace missing observations on the
tails of a distribution to estimate poverty or inequality (Cowell and Victoria-Feser,
1996a, Korinek et al., 2007, Atkinson et al., 2011, Jenkins, 2017). Vulnerability
assessments use poverty prediction models to estimate the probability of poverty for
a hypothetical future period not yet observed (Morduch, 1994; Calvo and Dercon,
2013; Verme et al., 2016). More recently, poverty specialists have started to use
machine learning methods to predict poverty when incomes are missing from parts
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of the distribution (Hlasny et al., 2021) or by using these methods with innovative
data (Blumenstock et al., 2015, Abelson et al., 2014, Jean et al., 2016, Mcbride and
Nichols, 2018, Andree, 2021, Aiken et al., 2022, Aiken et al., 2023).

What all these models have in common is that they try to estimate poverty (or
some measure of well-being) with a prediction model and in the presence of missing
observations. The initial outcome variable of the prediction model may be income or
poverty depending on the type of model. But the statistics of interest to estimate is
poverty at the population or household level. We will generally refer to these models
as poverty prediction models since these models either predict poverty or estimate
poverty based on predicted incomes.

The key question with all these models is how to predict poverty accurately when
some or all incomes are missing, a question that is hampered by at least two factors:
1) Incomes in surveys used for poverty measurement have been shown to be Missing
Not At Random (MNAR) (Lillard et al., 1986, D’Alessio and Faiella, 2002, D’Alessio
and Neri, 2015, Bollinger et al., 2019, Hlasny and Verme, 2021); 2) There is no real
counterfactual. The true poverty rate is not observed because of the presence of
missing observations.

Building on the literature cited above, this paper compares the performance of
classic econometric1 and machine learning models in predicting poverty with different
missing observations shares and patterns and against the true poverty rate. This
is done by generating a sample with no missing observations and corrupting this
sample with various shares and patterns of missing observations. The performance
of poverty prediction models can then be assessed with complete information on
the full distribution of incomes, the true poverty rate and the specific missing data
patterns. The paper also provides a framework to compare classic econometric and
machine learning models.

The objective of the paper is to show how different classic econometric and ma-
chine learning models behave for predicting poverty when data, objective function
(loss function), poverty lines, or various parameters and prediction strategies change.
We are not striving to find the ultimate prediction model for the data at hand but
understand how different prediction models respond to changes in these features us-
ing experimental data. The analysis is based on income data and the prediction
models considered require income predictors to be observed for households that do
not report incomes (item non-response). Results of this paper are not necessarily
valid for other money metrics of well-being such as consumption or expenditure, or
for other types of missing data issues such as unit non-response or top-coding.

1By “classic econometric” we mean standard OLS and Maximum Likelihood models such as
logit or probit models”. Formal definitions are provided further in the paper.
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Results show that the quality of poverty predictions and the choice of the opti-
mal prediction model are dependent on the distribution of observed and unobserved
incomes, the poverty line, the choice of objective function and policy preferences,
the choice of models’ parameters, and the use or non use of various optimization
strategies. Logistic and Random Forest models are more robust than other models
to variations in these features but no model invariably outperforms all others. Lo-
gistic and Random Forest models seem to have an edge on other models because are
better suited to predict incomes in the tails of distributions irrespective of data and
objective functions. However, all models have specific adjustments that can help to
improve predictions significantly.

The paper is organized as follows. The next section describes common missing
data problems. Section 3 outlines how welfare economists have addressed this prob-
lem. Section 4 provides a consistent framework that can be used to compare classic
econometric and machine learning models. Section 5 describes the data. Section 6
conducts an experiment with dummy data to compare the capacity of these models
to predict the poverty rate accurately. Section 7 provides a series of robustness tests
by varying data, parameters and preferences. Section 8 provides additional tests by
calibrating the models. Section 9 concludes by summarizing the main findings and
providing some initial indications on how these models can be used effectively.

2 The distribution of missing data

Estimating survey based statistics with missing data is a known challenge and ad-
dressing a missing data issue requires an understanding the nature of missing data.
Statisticians (Rubin, 1976, Rubin and Little, 2020) distinguish between data Missing
Completely At Random (MCAR), when there is no apparent law that regulates miss-
ing data; Missing At Random (MAR) where missing data of the outcome variable
of interest are correlated with covariates of this outcome but not with the outcome
itself (for example, when only men are not responding to income questions because
of their gender, not their income), and Missing Not At Random (MNAR) where
missing data of the outcome variable of interest are correlated with the outcome
variable itself (for example, higher income households are less likely to respond to
income questions in surveys because they have higher incomes).

More formally and following Rubin and Little (2020), let Yij be the complete
data matrix and Mij the indicator matrix representing missing observations where
i represent observations and j represent variables. Then, the distribution of mi

conditional on yi is fM |Y (mi|yi, φ) with φ being the unknown parameters of the
function that relates m to y. If Mij does not depend on Yij, it is said that missing
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data are Missing Completely at Random (MCAR). Let now y(0)i be the components
of yi that are observed for unit i, and y(1)i the components of yi that are missing
for unit i. A less restrictive assumption than MCAR is that mi depends on yi
only through the observed components y(0)i. This case is defined as observations
Missing At Random (MAR). Finally, the missing data pattern is called Missing Not
At Random (MNAR) if the distribution of mi depends on yi, which is only partially
observed.

In the case of poverty measurement, the problem of non-randomness is partic-
ularly acute when poverty is measured with incomes, a standard practice in high
and many middle-income countries. Missing incomes in surveys are known to be
correlated with income itself in rich and poor countries alike (Atkinson et al., 2011,
Hlasny and Verme, 2018a), and there is evidence from multiple countries that in-
come non-responses are U-shaped with both lower and upper income households less
likely to respond to questions in surveys (Lillard et al., 1986; Bollinger et al., 2019;
D’Alessio and Faiella, 2002; D’Alessio and Neri, 2015). This fact makes income data
MNAR and possibly also MAR, since some predictors of incomes are also likely to be
associated with missing data. From a statistical standpoint, this is the most complex
scenario for proper statistical estimates because the function that relates mi to yi
(the φ parameters) is unknown. It is a scenario where the basic assumptions needed
to use popular imputation methods such as multiple imputations are not met.

In our knowledge, the only strand of the poverty literature that has focused on this
problem is a string of papers that uses a GMM method to estimate the probability
of non-response in sample. This method estimates the function that relates mi to yi
(the φ parameters) addressing the fundamental missing data problem. Authors who
used this method found income non-responses to be strongly associated with income
(Korinek et al. (2006); Korinek et al. (2007); Hlasny and Verme, 2018a; Hlasny and
Verme, 2018b; Hlasny and Verme, 2021). When one has a large share of missing
incomes and no means to test their pattern, one should assume that missing incomes
are MNAR and that estimating the poverty rate on observed values only is likely to
bias this estimation significantly.

While the problem of missing incomes is generally discussed in the context of
in-survey imputations, it is equally relevant for targeting, cross-survey imputations,
and vulnerability analyses for two reasons. One is that the original sample used
for modeling incomes is also likely to suffer from missing incomes as most surveys
do, which has implications for the predicted values out of sample. And second,
even if all incomes are observed in the modeling sample, predicting out of sample
amounts to predicting missing incomes for the totality of households (individuals) in
the imputation sample. It is as if the two samples were compiled into one and the
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incomes related to the imputation sample were missing. This can also be regarded
as a missing data problem.

3 How poverty economists address missing data

issues to predict poverty

There are at least five strands of the poverty measurement literature that treat the
question of missing incomes with prediction models based on classic econometric
methods: The literature on targeting and proxy-means testing, the literature on
cross-survey imputations such as poverty mapping, the literature on top incomes, the
literature on vulnerability to poverty, and the in-survey imputation literature. More
recently, poverty economists have experimented with machine learning methods. We
briefly review these strands of the literature in this order.

The literature on proxy-means testing used for targeting makes extensive use of
prediction methods to estimate poverty for households where income is non-observed
(Coady et al., 2004, Brown et al., 2018, Glewwe, 1991, Baker and Grosh, 1994). The
idea is that one can predict poverty using a restricted set of observed socio-economic
characteristics avoiding in this way extensive and expensive surveys on income or
consumption. In this case, the prediction model is built on an existing survey rep-
resentative of the population of interest. A short survey is then administered to
potential beneficiaries to collect data on key income predictors as identified by the
model. This information is, in turn, used to predict poverty for individual households
or assign a score that can rank households according to their level of well-being. This
literature has used standard OLS or Logistic models for the prediction model. It im-
plicitly assumes that missing data from the sample used for the prediction model are
not problematic and that targeting beneficiaries are extracted randomly from the
same population covered by the prediction model. A proper discussion of missing
data in works on proxy-means testing is rarely seen but the models used are poverty
prediction models covering households with missing incomes.

Cross-survey imputation methods have been developed to estimate poverty when
income or consumption data are missing from the survey of interest but can po-
tentially be estimated using other surveys representative of the same population
and including incomes. One example is small areas estimations also referred to as
“poverty mapping”. The idea behind poverty mapping is to use poverty predictors
extracted from censuses to predict poverty at the micro geographical level using the
coefficients of a prediction model estimated with survey data that contain incomes
at the the macro level (Elbers et al., 2003, Tarozzi and Deaton, 2009). Although
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this literature has developed rather independently of the multiple imputation litera-
ture in statistics2, it uses multiple imputation methods and builds on these methods
to specifically address the question of reduced variance among predicted values in
the context of continuous dependent variable models. Similar imputation meth-
ods for the purpose of predicting poverty have also been used across years (Dang
et al., 2019), different types of surveys such as consumption and labor force surveys
(Douidich et al., 2016), or different types of data such as administrative and survey
data (Dang and Verme, 2022). This literature has used continuous (Elbers et al.,
2003) and categorical (Tarozzi and Deaton, 2009) dependent variable models to pre-
dict poverty. As for the proxy-means tests literature, this literature rarely discusses
missing data patterns but addresses the important question of the correct estimation
of the variance of predicted values.

The literature on top incomes has focused on the fact that top incomes are un-
der represented in surveys and that a correct estimation of inequality in any given
country needs to address this issue (Atkinson et al., 2011, Jenkins, 2017, Hlasny and
Verme, 2021). This literature recognizes that missing observations are an increasing
function of income and are, therefore, MNAR.3 Several methods have been proposed
to address this issue ranging from replacing top incomes with observations extracted
from theoretical distribution functions such as Pareto (Cowell and Victoria-Feser,
1996b, Jenkins, 2017 ), to replacing top incomes with data external to the survey
such as tax data (Atkinson et al., 2011), to reweighting observations using the inverse
of the probability of non-response estimated from observed data (Korinek et al., 2007,
Korinek et al., 2006, Hlasny and Verme, 2018a). Replacing observations with theo-
retical distributions or external data can be effective when missing observations are
almost exclusively on the tails of a distribution but these methods are less efficient
when missing observations are located closer to central values. Reweighting methods
are more indicated to estimate missing observations all along the distribution and
they also have the distinct advantage of estimating the probability of non-response,
which is the function that relates mi to yi. However, in order to implement this
method, one has to have non-response rates at a very disaggregated level, an infor-
mation that is not always available to researchers. Unlike the proxy-means testing
and cross-survey imputation literature, this literature focuses on the missing data
question and inequality. However, these same methods have also been extended to
the study of bottom incomes and poverty (Cowell and Victoria-Feser, 1996a; Hlasny

2Elbers et al. (2003) does not refer to the Rubin or Imbens literature while Tarozzi and Deaton
(2009) refers to several of Rubin’s papers but not to those that specifically addressed the cross-
survey imputation question.

3Interestingly, this literature rarely refers to MNAR data explicitly.
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et al., 2021).
Scholars working on vulnerability to poverty have also used prediction methods to

gauge the probability of poverty in the future by simply estimating this probability
with a OLS or Logit prediction model (Morduch, 1994; Calvo and Dercon, 2013;
Verme et al., 2016). This literature has not been particularly concerned with either
missing items as the top incomes literature or the error term as for the cross-survey
imputation literature. However, it is similar to the case where the cross-survey
imputation methods are applied to surveys administered in different years, with the
important difference that predictions are made in sample and not out of sample.

All these strands of the literature may also use in-survey single or multiple im-
putations to estimate incomes for item non-response in the data used for modeling.
This is where households are captured in the sample but do not reply to the income
question. In this case, one can estimate incomes based on the other socio-economic
characteristics observed with single or multiple imputation methods. This is also a
standard practice used by practitioners working on poverty profiles.

More recently, machine learning methods have also been used by economists to
predict poverty with a variety of innovative data such as mobile phone (Blumenstock
et al., 2015), satellite imagery and remote sensing data (Abelson et al., 2014, Jean
et al., 2016), or for targeting the poor (Mcbride and Nichols, 2018; Aiken et al.,
2023). A global competition launched by the World Bank to predict poverty with
machine learning algorithms provided some initial evidence on how these methods
can help to improve on classic poverty prediction methods.4 All these studies largely
relied on standard ML methods including tree based methods, regularization, and
neural networks or deep learning methods. These are the ML methods considered
by this paper.

4 Baseline Framework for Comparing models

4.1 Three steps’ predictions

As shown in the previous section, one important distinction that the different strands
of the poverty prediction literature share is the distinction between continuous and
discrete (dichotomous) dependent variable models. These two types of models are
applicable in the context of classic econometric and machine learning models lending
themselves to be a useful framework to compare these different approaches to poverty
predictions. This section clarifies the steps required to classify households into poor

4See details of this competition on https://www.drivendata.co/blog/poverty-winners/.

8



and non-poor households and the difference between these two sets of models.
To illustrate these differences, we use a simple OLS model based on a continu-

ous income variable and a logit model based on a categorical binary variable that
classifies the population into poor and non-poor statuses.5 In the remaining of the
paper, we refer to the first model as the ‘income’ model and the second model as
the ‘poverty’ model, with both models leading to poverty predictions. Predicting
household poverty with these two models requires three steps which we define as
‘Modeling’, ‘Prediction’ and ‘Classification’ and are described as follows:

Step 1 - Modeling

Wi = α + β1Xi + ηi + εi (1)

Pi = δ + γ1Xi + νi + ψi (2)

where i is the unit of observation (usually a household or an individual, household
for short), Wi = income, Pi =poor where Pi =1 if the unit is on or under the poverty
line and Pi = 0 otherwise, X is a vector of household or individual characteristics,
ηi and νi are random errors and εi and ψi are model fitting errors.

The second step is the prediction of income or poverty based on the coefficients
estimated under the modeling equations:

Step 2 - Prediction

Ŵi = β̂1Xi + η̃i + ε̃i (3)

P̂i = γ̂1Xi + ν̃i + ψ̃i (4)

where Ŵi, P̂i are predicted income and poverty and η̃i, ε̃i, ν̃i, ψ̃i are the estimated
random and model fitting errors. Step 2 is the key step for addressing missing data
issues. This is where missing incomes or poverty status are replaced with predicted
values.

The third and final step is to divide the population into estimated poor and non-
poor groups. For this purpose, the welfare and poverty models critically differ in
several important respects. Under the income model, the poverty line is used after
the second step to separate the poor from the non-poor. Under the poverty model,

5Note that one could use an OLS model with a binary dependent variable but this practice is
rare.
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the same poverty line is used to separate the poor from the non poor to construct the
poor dichotomous variable in step 1 based on observed values. Once the probability
of being poor is estimated for missing incomes in Step 2, a probability cut-point is
used to separate the poor from the non poor. Therefore, Step 3 can be described as
follows:

Step 3 - Classification

if Ŵi ≤ z : i = poor

else : i = nonpoor
(5)

if P̂i > prob∗ : i = poor

else : i = nonpoor
(6)

where z is the poverty line with Wmin ≤ z ≤ Wmax and prob∗ is a probability cut-
point with 0 ≤ p ≤ 1 that can be arbitrary or defined with some form of optimization
criteria.

A second important difference between the welfare and poverty models is that the
income model is typically estimated with an Ordinary Least Squares (OLS) estimator
whereas the poverty model is estimated with a Logit or Probit maximum likelihood
estimator.

A third difference is that the income model produces income predictions whereas
the poverty model produces probabilities of poverty predictions. One can easily
turn the monetary predictions from the income model into probability of poverty
predictions. In fact, for each poverty line z = x0, ..., xn the probability of poverty
of a household with income x is 1-F(x). Therefore, we can express both models in
terms of probabilities of being poor. However, in practice, scholars have used income
or probability of poverty predictions depending on the model used. This implies that
comparisons between the two models can only be made after the classification step.

Poverty predictions from both models can be improved after Step 2. The OLS in-
come model produces a distribution of predicted values that is narrower than the true
distribution. This is a statistical artifact that has important implications for poverty
predictions and that has induced scholars working on cross-survey imputations to
propose specific solutions. Poverty predictions from the logit/probit models can also
be improved by shifting the probability threshold in order to optimize the trade-off
between coverage and leakage. This is done using Receiver-Operating Characteristic
(ROC) curves and indexes initially introduced in clinical medicines but also used by
poverty specialists (Wodon, 1997; Verme and Gigliarano, 2019). These adjustments
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will be considered further in the paper.
The income and poverty models described above is what we refer to as ‘classic

econometrics’ models. We also consider three families of machine learning models:
Decision Trees, Regularization, and Neural Networks. In particular, we use Random
Forest, Elastic Nets, and Neural Networks with two hidden layers as representative
choices of these families. As already discussed, these models are the most popular
among economists. Regularization models rely on the same OLS and Logistic models
described with the important difference of ‘regularization’ as a method to shrink
parameters. Random forest uses its own classification method based on entropy
measures used to split the data in groups as homogeneous as possible and a random
selection process for data and variables (bootstrap aggregation) to obtain optimal
out-of-sample predictions. Neural networks can be seen as parametric functions such
as OLS models with a very high number of parameters that are determined by the
trial and error process in-built in the model.6

4.2 Confusion matrix and Type I and II errors

All poverty prediction models illustrated above will result in true and false predictions
that are best illustrated with a confusion matrix (also known as error matrix or
contingency table with two entries) resulting after Step 3 of the modeling exercise
(Table1). The matrix divides the population into four groups based on whether
predictions are correct or not: True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN). The primary objective of any classification
exercise is to maximize TP and TN and minimize FP and FN. Incorrect classifications
result in errors Type I and Type II. In the case of poverty predictions, Type I error
refers to non-poor persons who are erroneously predicted as being poor. This error is
also known as False Positive Rate (FPR), inclusion error or leakage rate and is defined
as FP/(FP+TN). Type II error refers to persons who are poor but are erroneously
predicted to be non-poor. This error is also known as False Negative Rate (FNR),
exclusion error or undercoverage rate and is defined as FN/(FN+TP).

4.3 Objective functions

To determine the objective function to optimize when predicting poverty, one has to
be clear about the type of error to minimize. Both Type I and Type II errors can be

6All the machine learning models used by this paper are explained in details in Appendix 1
showing algebraically and in simple words the differences of these models from classic econometric
models.
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Table 1: True and Predicted Poverty Confusion Matrix

Note: [x,y] indicates row and column.

regarded as important from the perspective of an administrator of a poverty reduction
program. Minimizing Type II error (exclusion error) is clearly more important from
a poverty perspective but Type I error (inclusion error) may also be considered
important if budgets are constrained, which is a common feature of poverty reduction
programs worldwide. How much importance should be given to each objective is, of
course, a matter of preferences and the trade-offs between the two objectives also
depend on the relative cost of inclusion or exclusion, which is case/country specific.

Also, in the case of poverty predictions, the objective function to consider is
different depending on whether one is interested in estimating the poverty rate as
a population statistics (anonymous case), or estimating the poverty status correctly
for each household (or individual, non-anonymous case). Below, we consider these
two cases in turn.

Population poverty. If the objective is to predict the poverty rate for the
population, it is not essential to minimize both Type I and Type II errors. It is
sufficient to minimize the difference between the true population poverty rate P and
the predicted poverty rate P̃ :

min(P − P̃ ) = min[(P̂ + ε)− P̂ ] = min(ε) (7)

If we refer to the confusion matrix, this is equivalent to maximizing the sum of
the true predictions (max(TN + TP )) or minimizing the sum of the false predic-
tions (min(FN + FP )) irrespective of the actual TN or TP (FN or FP) values. In
econometric terms, this amounts to minimizing the average model error term for the
population (not the idiosyncratic error term which averages zero). In this case, and
provided we are conducting an experiment where we know the true poverty rate, a
possible test to evaluate the performance of the models is a means difference test
between the true and predicted poverty rates. However, a means difference test be-
tween true and predicted poverty can only be conducted in an experimental context
where the true poverty rate is known. In statistics, prediction errors are usually

12



evaluated with a range of indicators such as the Mean Bias Error (MBE), Mean Ab-
solute Error (MAE), Root Mean Squared Error (RMSE), the fraction of prediction
within a Factor of Two (FACT2), correlation coefficient (R), or Index of Agreement
(IA). These indicators are also been used to validate poverty predictions when the
true poverty rate is unknown.

Household (individual) poverty. Estimating the correct population poverty
rate may not be sufficient if one has an interest in correctly estimating the poverty
status of each household included in the sample. This complicates the objective
function and the optimization process as we now have two elements to maximize (TN
and TP) or minimize (FP and FN). We also need to attribute relative preferences to
the two elements unless we consider the two elements equally valuable. One simple
way to do that is to maximize the weighted sum of TP and TN as

max[a ∗ TP + b ∗ TN ]. (8)

With a and b indicating preferences for TP and TN. In general, one would prefer to
maximize TP and maximize coverage as opposed to maximizing TN and minimizing
leakage. However, budget considerations may also be important and different policy
makers may have different preferences for a and b.

Maximizing the weighted sum of TP and TN may also not be the best alterna-
tive to evaluate the performance of a model for targeting. In addition to the FPR
(Type I) and the FNR (Type II) ratios, other popular ratios are the True Positive
Rate, sensitivity or recall (TPR=TP/(FN+TP)), the True Negative Rate or speci-
ficity (TNR=TN/(TN+FP)), precision (TP/(TP+FP)) or the False Discovery Rate
(FP/(TP+FP), the accuracy ratio ((TP + TN)/N), Pearson’s Chi squared, and
F2 statistics (5 ∗ TP/(5 ∗ TP + 4 ∗ FN ∗ FP )). All these objective functions are
constructed starting from the same confusion matrix. The difference between these
functions is simply the weight attributed to each of the four elements in the matrix. In
a sense, they are different ways of expressing preferences for different types of errors.
Throughout the paper, we will focus on max(TP + TN) and max[a ∗ TP + b ∗ TN ]
but we will also use these others functions to illustrate how different preferences may
lead to different choice of prediction model.

5 Data

In order to observe the true poverty rate and measure the true prediction error,
we generate a dummy data set from real data characterized by an extremely low
non-response rate, and then corrupt the data with alternative missing data patterns.
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We take the 2007 household consumption survey of Morocco, which is a data set
of a middle income country known for its good quality and a non-response rate
below 2%, an exceptionally low value by global standards. The sample we use is
the one publicly provided by the statistical agency of Morocco which includes 7,062
household observations. The main variable of interest is income per capita. The
main statistics of interest is the poverty rate calculated with income per capita on
households rather than individuals for simplicity to avoid a discussion on individual
weights, which is beyond the scope of this paper. The poverty rate is therefore the
share of poor households in the population of households. Summary statistics of
all variables considered in this paper are reported in Annex with income reported
in local currency. None of the poverty statistics reported in this paper should be
considered as an accurate estimate of poverty for Morocco.7.

In order to compare models’ performance when missing data patterns change,
we corrupt the initial complete data set mimicking eight missing data patterns: five
MCAR selecting randomly different shares of missing data (5, 25, 50, 75, and 95%),
“MAR pure” meaning that we randomly selected 50% of the sample conditional
on one independent variable that is not correlated with income (we use working
individuals in the secondary sector which we tested for independence of income),
“MAR-MNAR” where we randomly selected 50% of the sample conditional on a
variable which is associated with income (we use household size¡5), and “MNARpure”
where we randomly selected 50% of the sample conditional on income only (we use
income¿mean income). The most common and relevant case for this paper is MAR-
MNAR whereas MNARpure is a rare case in empirical contexts.

The resulting income distributions are plotted in Figure 1. It is shown that
the distributions are different in size and shape. Comparing models’ performance
across the eight data set generated is, therefore, a test across different missing data
patterns, but also a test across different shapes of the income distribution as if we
were comparing different data sets.

7Full information on the survey can be obtained from the High Commission for the Plan of
Morocco (https://www.hcp.ma.) and from Douidich et al. (2016)
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Figure 1: Distributions of Income with Missing Data Patterns
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6 Predicting poverty with econometric and ma-

chine learning models

6.1 Baseline econometric models

A simple example may illustrate some of the challenges associated with the esti-
mation of poverty with predicted incomes. Using the complete data set with no
missing incomes, we compare poverty estimates based on predicted values derived
from the observed full distribution of incomes, which implies that all predictions will
be in-sample. In other words, we predict all incomes based on the fully observed
distribution of incomes. This is useful to understand the statistical implications of
predicting incomes with OLS and Logit models when all information on incomes is
available. In practice and for practitioners, this is not a recurrent case since one
can use original observations rather than predicted values to estimate poverty. But
in some cases, such as for vulnerability analyses or cross-survey imputations, one
may want to use predicted values from the fully observed distribution of incomes to
estimate the probability of future poverty (vulnerability) or the poverty rate in a
different sample (cross-survey imputations).

We compare four models: 1) OLS with continuous dependent variable and pre-
dicted incomes; 2) OLS with continuous dependent variable and predicted probabil-
ities of poverty; 3) OLS with binary dependent variable and predicted probabilities
of poverty and 4) Logit with binary dependent variable and predicted probabilities
of poverty. In all these cases, the final objective is to estimate poverty after classifi-
cation. The difference between these models is whether we estimate poverty based
on predicted incomes applying the poverty line on the post-predictions distribution
(1), estimate the probability of poverty after the income model and use a probability
cut-off point to determine poor/non-poor status (2) or estimate the probability of
poverty after an OLS or logit model with a poverty status dichotomous dependent
variable and then use a probability cut-off point to separate the poor from the non-
poor (4). Preferences for each of these models vary across practitioners but all these
four models have been used in published journals’ articles to estimate poverty with
predicted values (Ravallion 1996; Gibson 2019). The continuous dependent variable
and the poverty lines are set in logs so that we avoid the issue of converting logs
of income back into incomes from the log-linear model (Smearing transformation).
We test results with three poverty lines set at the 25th, 50th (median) and 75th
percentile.

Table 2 shows the results. With a low poverty line (25th percentile) all models
underestimate poverty significantly whereas a high poverty line (75th percentile)
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results in poverty over-estimations across models. Poverty estimates are closer to
the true values with the poverty line set at the median value, although some of the
models severely under-estimate poverty also in this case.8

Table 2: Models’ Comparison

pl25 pl50 pl75
OLSpredinc 12.36 43.17 82.21
stderr .39 .59 .46
OLSpredprob 12.36 43.17 82.21
stderr .39 .59 .46
OLSbinary 8.24 48.58 88.23
stderr .33 .59 .38
Logitprob 11.51 49.22 84.18
stderr .38 .59 .43
OLSbinary 12.45 48.58 83.55
stderr .39 .59 .44

Figure 2 illustrates some of the issues associated with these predictions. The left-
hand panel shows income and predicted incomes in log form from the OLS continuous
dependent variable model and the right-hand panel shows the probabilities of poverty
derived from the other models considered in Table 2 (poverty line = median value).
The continuous case shows how predicted incomes are a much narrower distribution
than incomes resulting in an underestimation of poverty. The discrete case shows
how the distributions of predicted probabilities are very different across the three
models considered particularly around the standard probability threshold used to
divide poor and non-poor people (0.5). This results in rather different predictions of
the poverty rate.

Living aside questions of measurement error that we described as normally dis-
tributed with zero mean and of sampling errors, these biases are explained by two
main factors. The first factor is purely statistical and is the fact that predictions in
the continuous case result in a narrower distribution of incomes as compared to the
original distribution. This implies that the tails of the predicted income distribution
are shallow as compared to the original distribution. This is well-known of course but
what is important to keep in mind is the effect on poverty with severe under and over

8Standard errors in Table 2 are estimated with the standard formula for proportions. However,
it should be noted that this is likely to underestimate the standard error when one estimates poverty
based on probabilities of being poor as in models 2) and 4).
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Figure 2: Predicted Values and Probabilities
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estimations with low or high poverty lines respectively. A low poverty line results in
underestimations because the left tail of the distribution has less observations than
it should (there are less poor than there should be). Vice-versa, a high poverty line
results in over estimation of poverty because the right tail of the distribution has less
observations than it should (there are less non-poor than there should be).

The second factor depends on the explanatory power of the original model. In our
case, the first OLS model has an explanatory power (R squared) of 33.2%. This re-
sults in many predictions that are incorrectly classified as poor/non-poor contribut-
ing to the overall bias. However, the direction of this bias cannot be anticipated
unless we know for certain that the original set of independent variables excludes
variables that matter for the poor or the non-poor only, therefore systematically un-
der or overestimating poverty. In general, one cannot anticipate the direction of the
bias due to model specification implying that, for poverty estimations, the statistical
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factor should be expected to be the prevalent source of bias for poverty estimations
in models with a continuous dependent variable model.

This simple statistical artifact is often ignored when researchers estimate statistics
from partially or totally predicted values because many of the statistics of interest are
means and the OLS model centers predictions around the mean by design. However,
when one estimates percentages or proportions that are far from the mean, as it
is often the case for poverty measures, OLS predictions are no longer suitable for
accurate predictions. The cross-survey imputation literature solves this problem
using spatial variability to reconstitute a distribution of predicted values that mimics
in shape the original distribution. But many practitioners that use OLS imputations
to replace missing values are most likely to underestimate poverty.

This section has shown that, even with all incomes observed, one cannot exclude
biased predictions of poverty because no model predicts incomes perfectly, and pre-
dicting incomes with OLS or Logit models will always result in bias distributions of
incomes on the tails, which affects the estimation of poverty.

6.2 Classic econometric Vs. machine learning models

We now expand comparisons to machine learning models using the same complete
set of observations as before and predictions of all incomes9, and compare models
with a full set of objective functions that can be used to compare the performance of
prediction models. In particular, we compare the performance of eight models: The
welfare and poverty models which we described as classic econometric models, and
random forest, elastic net and neural network models which we selected as represen-
tative models among machine learning models. All models will be estimated in two
flavors, with continuous and categorical dependent variable. We label these models
wcn, rcn, ecn, ncn, pct, rct, ect and nct where ‘w’ stands for welfare, ‘p’ for poverty,
‘r’ for random forest, ‘e’ for elastic net, ‘n’ for neural network, ‘cn’ for continuous and
‘ct’ for categorical model. This allows us comparing the performance of econometric
and machine learning models and also the performance of continuous and dichoto-
mous dependent variable models. Note that these are “naive” comparisons as we
are using off the shelves Stata packages with none of the models being optimized or
tuned, something that we will address later in the paper.

For all models, we use the same poverty line set at median income and the
same set of explanatory variables with no interactions between variables10, we do

9As in the previous section, all predictions are, therefore, in-sample.
10Some models such as random forest will work in a way that amounts to interacting variables

but this is not done by design with the inclusion of interactions variables among regressors.
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not use any kind of weight and we do not use clustering of standard errors or any
other estimation options. All estimations are conducted in Stata11 and all codes are
available on request. For the ML models, we use the simplest possible specification as
allowed by the Stata codes used in this paper. This is a naive choice of course because
the tuning of ML models is what makes them effective, but the optimization of these
models require normative decisions that may vary across specialists, and poverty
analysts are not necessarily ML specialists. In other words, this choice allows us to
take the specialists’ abilities to optimize models out of the picture and also capture
basic applications that non-specialists are likely to use. We leave the questions of
tuning and optimization to the next sections. In this section, we should keep in mind
that ML models are expected to under-perform.

Table 3 compares these baseline models. The top of the table reports the true
poverty rate set at 50% by design (poverty lines across the income distribution are
tested in the next section), predicted poverty rates, the difference and the t-tests for
means difference between the true and predicted poverty rates. We also report the
share of true positives and negatives which can be interpreted as a simple objective
function with type I and II errors given the same weight and two alternative functions
where we give larger preference for TP and TN respectively (prefTN with a = 1.25
and b = 0.75; prefTP with a = 0.25 and b = 1.25). The rest of the indicators
reported are those which are popular across the social sciences and illustrated under
the objective function section. Each indicator gives different weights to the different
cells of the confusion matrix. With the exception of the leakage and undercoverage
rates, higher values indicate better performance.

The table shows an overall better performance of dichotomous dependent variable
models as compared to continuous models, and a better performance of the random
forest model as compared to all other models. This is clearly visible when poverty rate
predictions and shares of true positive and negative predicted values are compared
meaning that this superiority persists if we consider anonymous population poverty
and non-anonymous household poverty. These findings also persist if we consider
Chi2, Chi2r and F2 evaluation functions.12 Results may differ, instead, if we consider
indicators that privilege certain cells of the confusion matrix such sensitivity vs.
specificity, leakage rate vs. undercoverage rate, or precision vs. accuracy. Once we

11The Stata commands used for the estimation of the different models are: ‘reg’ (income model),
‘logit’ (poverty model), rforest (random forest), ‘elasticnet’ (elastic net, continuous and dichoto-
mous), and ‘mpl2’ (Neural Network).

12The Chi tests measure the expected distribution of incomes against the actual distribution of
incomes. The F measure is the harmonic mean of precision and recall with F2 adding a parameter
that allows for more or less weight attributed to precision or recall. See section on confusion matrix
for the F2 formula we use.
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introduce preferences for certain outcomes, the choice of optimal model may change.

Table 3: Poverty Predictions

wcn rcn ecn ncn pct rct ect nct
TruePov 50 50 50 50 50 50 50 50
PredPov 43.17 50.08 43.2 54.77 49.22 49.97 49.39 50.64
Diff. 6.83 -.08 6.8 -4.77 .78 .03 .61 -.64
Diff.(tstat) 10.49 -.17 10.46 -7.54 1.22 .07 .95 -1
TrueShare 69.67 83.12 69.73 71.52 71.01 87.68 70.82 71.1
PrefTP 67.96 83.14 68.03 72.72 70.82 87.67 70.66 71.26
PrefTN 71.37 83.1 71.42 70.33 71.21 87.69 70.97 70.94
Observations 7062 7062 7062 7062 7062 7062 7062 7062
TN 2701 2932 2702 2357 2535 3097 2522 2488
FP 830 599 829 1174 996 434 1009 1043
FN 1312 593 1309 837 1051 436 1052 998
TP 2219 2938 2222 2694 2480 3095 2479 2533
TPR=CR=Sens. 62.84 83.21 62.93 76.3 70.24 87.65 70.21 71.74
TNR=Spec. 76.49 83.04 76.52 66.75 71.79 87.71 71.42 70.46
FPR=IE=LR 23.51 16.96 23.48 33.25 28.21 12.29 28.58 29.54
FNR=ER=UR 37.16 16.79 37.07 23.7 29.76 12.35 29.79 28.26
chi2 1113.54 3098.8 1119.79 1320.67 1247.69 4010.72 1224.14 1257.7
chi2lr 1147.57 3378.25 1154.19 1367.2 1287.34 4518.34 1262.24 1298
Precision 72.78 83.06 72.83 69.65 71.35 87.7 71.07 70.83
Accuracy 69.67 83.12 69.73 71.52 71.01 87.68 70.82 71.1
F2 64.61 83.18 64.69 74.87 70.45 87.66 70.38 71.55

To better understand what determines these findings, it is useful to plot the
distributions of predicted values in the continuous case and the distributions of the
predicted probabilities in the dichotomous case. These can be found in Figures 3.

Figure 3 shows that the different models perform relatively well in some parts
of the distributions but not in others. For the continuous case, all models tend
to better perform around the center of the distribution and much less on the tails
with the OLS and Elastic Net models being particularly poor on the tails and the
Neural Network model being better on the lower tail but very poor on the upper
tail. The only model that performs well around the middle of the distribution and
has a relatively better performance on the tails is the random forest model. For the
dichotomous case, we see similar patterns for all models except the random forest
model. This model seems to be better able to split the poor and non-poor into two
clearly distinguishable groups as opposed to the other models which have a large
area of predictions that could easily switch between poor and non-poor depending
on the probability cut-point chosen (an arbitrary choice of 50% in our case. Other
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Figure 3: Categorical Dep. Var. Models
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thresholds including optimized thresholds are considered in the next section). Again,
the random forest model would seem less susceptible to changes in the distribution
of incomes and also to the probability cut point chosen to split the poor and the
non-poor.

In essence, with a 50% poverty line and by predicting the full distribution of
incomes, dichotomous dependent variable models perform better than continuous
models but they can be sensitive to the choice of probability cut point used for
classification. The random forest model seems less sensitive than other models to
changes in these parameters.

7 Robustness and sensitivity tests

7.1 Missing data patterns

Most empirical estimations of poverty have to address some form of missing data
issue. To see how different prediction models perform with different forms of missing
data we compare the performance of the baseline econometric and ML models using

22



the corrupted samples illustrated in the data section. Table 4 compares estimated
poverty rates across the different models and missing data patterns.13 Note that, by
imposing different shares and patterns of missing observations, we are also dictating
the partition of observations between in-sample (observed incomes used for training
the model) and out-of-sample (unobserved incomes used for testing the model). We
are also testing, therefore, how models behave when the partition between train-
ing and testing samples changes. This is particularly relevant for machine learning
models.14

We can see that all models struggle to maintain accuracy as the share of missing
observations increases from 5 to 95% with the exception of random forest in the
continuous case and, to a lesser extent, in the dichotomous case. With only 5%
of missing observations, all models perform rather well but beyond that threshold
income models tend to increasingly underestimate poverty whereas poverty models
tend to increasingly overestimate poverty. With MARpure, all models seem to per-
form relatively well with the exception of the welfare OLS and elastic net models.
With MAR-MNAR, all models perform poorly with the exception of random forest.
With MNARpure, none of the models performs well. We clearly see that random
forest handles various types of missing observations shares and patterns better than
other models, although this model too struggles with MNARpure. Considering that
most surveys have a share of missing observations higher than 5%, missing observa-
tions should always be of concern, even if they are random. MNARpure is a rare
case in practice but MAR-MNAR data are the norm with income variables and only
random forest seems to handle this case well.15

For the welfare and poverty models, we also report results using multiple imputa-
tions as opposed to single imputations. We can see that results do not vary for any of
the two cases. This is well-known of course but useful as a reminder. Values predicted
with multiple imputation are means across repeated samples with replacement and
these means center around the simple mean obtained with single imputation. What
multiple imputation does is to improve on the estimate of the standard error, which
can be larger or smaller than the standard error obtained with single imputation
depending on the specification of the model. Therefore, multiple imputation, per se,

13Standard errors are omitted for simplicity.
14There are more sophisticated methods to partition the training and test samples such as “up-

sampling”. Given the variety of shares and patterns of missing observations tested in this section,
we will not discuss or use alternative methods.

15It is important to stress here that ML models are not adapted to the size of training sample.
Some models like neural network require a minimum size for the training set whereas other models
need to adapt the choice of parameters to the training sample size. These aspects are ignored here
and we should consider that ML models can be improved as shown further in the paper.
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does not improve on mean estimates such as the poverty rate, it can only improve
on the standard error and the confidence interval, i.e. the confidence we have in the
mean estimate.

Table 4: Type and Share of Missing Observations (Pov.Line=Median)

wcn wcnMI rcn ecn ncn pct pctMI rct ect nct
MCAR95 49.6 49.6 50 49.6 49.1 49.9 49.9 50.1 49.9 49.8
MCAR75 47.8 47.8 49.4 47.8 51.3 49.6 49.6 49.6 49.5 48.6
MCAR50 45.7 45.7 48.7 45.5 59.4 49.2 49.2 49.5 49.7 49.5
MCAR25 43.6 43.6 47.4 43.6 12.5 49.3 49.3 50.2 49.1 48.5
MCAR5 44.3 44.3 50.5 44.9 58.3 52.1 52.1 51.6 51.8 43.8
MARpure 44.4 44.4 47.8 44.3 29.1 47.2 47.2 49.1 47 48.9
MAR MNAR 42.3 42.3 43.3 42.2 40.4 43.1 43.1 44.4 43.2 43.9
MNARpure 44.4 44.4 45.7 44.4 46.1 44.5 44.5 46.2 44.5 44.4

Note: Numbers such as “95” represent the share of observed incomes.

7.2 Poverty lines

As we have already seen, some models can perform better to predict poverty around
certain parts of the income distribution, which means that shifting the poverty line
along the distribution may result in different relative performance of the different
models. In this section, we consider five poverty lines set at 5, 25, 50, 75 and 95
percentiles of the income distribution to compare outcomes of the different models
across these choices. We then provide a stochastic dominance analysis of first degree
by comparing the Cumulative Distribution Functions (CDFs) of predicted incomes
and poverty in the case of the continuous and dichotomous dependent variables
models.

Table 5 provides results for changes in the poverty line. As in the first compari-
son table, we are predicting incomes for the entire distribution, which makes results
extreme. We can see that all models perform better when the poverty line is close to
the median value of the income distribution and, as already discussed, dichotomous
dependent variable models perform better than continuous dependent variable mod-
els while random forest seems to outperform other models. As we move away from
the median value, all models start to struggle and with poverty lines around the 25th
or 75th percentile poverty predictions are already very much off the mark with only
random forest coming anywhere close to the true poverty rate. This is remarkable
considering that poverty lines are most often in the range of the 20th-40th percentile
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in middle and low-income countries with rates above 40% only seen in extremely poor
countries. Recall that scholars working on vulnerability or cross-survey imputations
do predict the full distribution of incomes. In wealthy countries, non-response rates
may also be as high as 50% so that predicting half of incomes is a possibility.

Table 5: Models’ Comparison: Poverty Lines and Distributions

wcn rcn ecn ncn pct rct ect nct
PL5 .8 1.1 .6 .1 .2 3.3 .2 0
PL25 12.4 17.4 11.4 14.9 11.5 21.8 9.5 14.3
PL40 29.9 36.5 29.3 41.1 33.6 38.8 32 36.1
PL50 43.2 50.1 43.2 54.8 49.2 50 49.4 50.6
PL60 58.6 61.8 59 66.3 64.1 61.7 65.1 65.5
PL75 82.2 78.5 83 85 84.2 77.3 86.1 82.8
PL95 100 100 100 99.9 99.4 96.9 99.9 100

Looking at the Cumulative Distribution Functions of predicted values help us
understanding the results (Figure 4). It is clear that CDFs cut across each other
and some also cut across the original income distribution (left-hand panel). This
means that there is no absolute dominance along the distribution with some models
predicting income or poverty consistently lower or higher than other models or the
original income distribution. Models that may perform better with low poverty lines
(high probability thresholds) may not perform better with high poverty lines (low
probability thresholds) and vice-versa. Predicted values are the further away from
the original distribution on the tails explaining why poverty predictions are far from
the true values when we use poverty lines that approach the 25th or 75th percentile.
The real problem with predictions of any model really lies on the incapacity of these
models to fit the tails of the true income distribution. Random forest is an exception
in this respect as the CDF of predicted values is the closest of all models to the
tails of the true income distribution in the continuous case. In the dichotomous
case, random forest shows the most extreme curve on the tails indicating that its
mass is concentrated closer to 0 and 1 probabilities. This makes classification of
observations easier and more accurate with less observations located around the
cutpoint. Improvements to ML models could also be achieved by giving more weight
to the tails of the distribution but this assumes that we have some ex-ante knowledge
about the distribution of missing incomes, which is rare in practice.
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Figure 4: Predicted Incomes and Poverty (CDFs)
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7.3 Model specification

The set of independent variables and the explanatory power that this set determines
may also be a discriminatory factor for the choice of an optimal prediction model.
If an important variable is not included into the prediction equation, none of the
models will benefit from this variable. However, machine learning models have the
ability to improve on the use of the existing set of independent variables by including
or omitting variables, or interacting them. Therefore, the initial set of independent
variables may benefit some models more than others. We will see that for certain
models this applies not only to the number of independent variables but also to the
order in which these variables are listed in the model.

In Table 6 we compare the initial set of independent variables we used thus
far (Model1) with three other sets (Models2, Model3 and Model4). Model2 uses the
same variables as model1 but changes the order by placing the continuous dependent
variables at the bottom rather than at the top. Model 3 is a reduced model that
includes all original variables as in Model1 except age and hhsize, two important
predictors in our model. This reduces the R2 of the welfare OLS model from 0.33
to 0.22 and the Pseudo-R2 of the Logit poverty model from 0.18 to 0.11. Model4 is
an even smaller model that keeps only the variables male, marital status and urban
from Model1, which reduces the R2 of the OLS model to 0.12 and the Pseudo-R2 of
the Logit model to 0.06. We can therefore compare four models with different orders
of the independent variables and different sets of explanatory variables.

A first obvious result is that, with the largest model (Model1), all models tend
to perform better whereas none of the models performs well with the most reduced
of the models (Model4). However, the order in which the independent variables
are listed is important for the neural network model and, to a minor extent, the
random forest model. This is a question that arises with ML models that rely on
randomized processes such as RF and NN.16 We will return to this question in the
next section of the paper. With the most parsimonious of the models (Model4),
differences in poverty estimations across models almost disappear. With only three
variables that explain little of the outcome variance, there is not much that machine
learning models can add to simple OLS or logit models unless the model that best
fits the data is not a linear model.

An additional observation is that with an intermediary set of variables (Model3),
dichotomous models still perform better than continuous models, the random forest
model holds up well among the continuous models, and the poverty logit model

16For a discussion of permutation invariance in neural network models see:
https://gmarti.gitlab.io/ml/2019/09/01/correl-invariance-permutations-nn.html.
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outperforms all other dichotomous models. With parsimonious models, one may
want to stick to a simple logit model. However, ML models can also be optimized for
models with few predictors, which may improve further on the observed performance
of the ML models we considered.

Table 6: Models’ Comparison: Model Specification

wcn rcn ecn ncn pct rct ect nct
Model1 43.2 50.1 43.2 48 49.2 50 49.4 50.6
Model2 43.2 50.1 43.2 43 49.2 50.2 49.4 54.5
Model3 42.3 51.9 43 45.4 50.7 53.5 51.1 52.5
Model4 39.6 39.6 39.6 38.4 39.6 39.6 39.6 41.8

8 Models’ calibration

So far, we have been using all models with the most basic specifications and tuning
as provided by the Stata packages we used. In this section, we test how varying
models’ parameters can affect the estimation of poverty. With the exception of
weighting discussed below, these calibrations are model specific.

8.1 Weighting

We have seen the inability of certain models to make proper income predictions
in the tails of a distribution. One way of addressing this problem would be to
attribute more weight to observations located in the tails. Some of the literature on
top incomes has followed this strategy by attributing to observed incomes a weight
equal to the inverse of the probability of incomes being observed (estimated at the
local level such as Probability Sampling Units (PSU), districts or regions) and this
approach has been shown to be very effective in improving estimates of inequality
across countries (Korinek et al., 2007; Hlasny et al., 2021). However, this approach
requires estimating the probability of income being observed which, in turns, requires
knowledge on response rates by geographical areas, information that is not always
available. In all other cases when no information is available on the distribution
of missing incomes, weighting amounts to a tentative experiment which is hard to
validate.
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8.2 OLS Regression

The real shortcoming of a linear regression model is its inability to predict incomes
on the tails correctly, a problem that extends to elastic net models. This is simply a
statistical artifact of OLS models which results in distributions of predicted values
that are narrower than the original distributions, particularly if the explanatory
power of the model is low. As surprising as it may seem, this is a problem that
is routinely ignored in empirical works. One strand of the poverty literature that
focused on this problem is the cross-survey imputation literature which proposed to
address it by correcting the error term. In essence, the error term can be split into an
idiosyncratic error term and a model error term. By estimating the model error term
using the original empirical distribution or a theoretical normal distribution, one can
add this error back into the predicted values mimicking in this way the variance of
the original distribution. This is what we do in this section replicating the same
technique used in cross-survey imputations.

Results are shown in Table 7 providing corrections using empirical and theoretical
normal data for a range of poverty lines. This form of imputation improves results
substantially for all poverty lines bringing estimations much closer to the true values.
Imputation with empirical data performs better than the one with normal data but
both methods improve estimations very visibly. In the presence of missing data,
particularly when the share of missing data is very large, and when the true poverty
rate is expected to be far from the center of the distribution, it is essential to use
this method when estimating poverty with OLS or elastic nets models. This simply
confirms a fact that is very well known among cross-survey imputation specialists
(Dang et al., 2019).

Table 7: Models’ Comparison with and without error adjustments

PL5 PL25 PL40 PL50 PL60 PL75 PL95
TruePov 5 25 40 50 60 75 95
PovOLS .7 12.9 31.6 44.4 60.3 83.4 100
st.err. .1 .6 .8 .8 .8 .6 0
PovImpNorm 7.1 25.6 38.3 47 56.2 72.3 96.7
st.err. .8 1.8 2.1 2.1 2.1 1.7 .4
PovImpEmp 6.7 25.8 39.3 48.4 57.8 73.6 96.2
st.err. .8 1.9 2.2 2.2 2.1 1.7 .4
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8.3 Logit

It is possible to improve on predictions generated by dichotomous dependent variable
models by optimizing the probability cutpoint used to separate the predicted poor
from the predicted non-poor when households are classified after the prediction step.
As probabilities of being poor vary between 0 and 1, most scholars use a cutpoint
of 0.5 for simplicity, which is what we used so far. This is also the threshold that is
normally selected if the purpose of the exercise is simply to reproduce the original
poverty rate. However, research across the social sciences has shown that one can
use Receiver Operating Characteristics (ROC) curves and the Youden index (defined
as y=max(sensitivity+specificity-1)), or the max vertical distance between the ROC
curve and the chance line) to optimize the cutpoint (see Verme and Gigliarano, 2019
for a detailed discussion).

Table 8 shows poverty rates for the four dichotomous dependent variable models
with the optimal cutpoint derived from the model and from artificial cutpoints that
we selected between 40 and 60%. The optimal cutpoint is derived from the ROC
curve described. An alternative approach to identify the optimal cutpoint would be
cross-validation by testing the performance of different cutpoints on out-of-sample
predictions. This is grossly mimicked by shifting the cutpoint artificially.

We see that the optimal cutpoint is similar across models except for the random
forest model. That is because, as we have already seen, random forest fits the tails
of the original income distribution better than the other models and this results in
a higher density of predicted poverty towards lower and higher percentiles. This, in
turn, results in a higher concavity of the ROC curve and a higher distance of the
ROC curve from the 45 degrees line (the chance line). This also explains why random
forest overestimates poverty with higher cutpoints and underestimates it with lower
cutpoints when compared to other models. The fact that random forest produces
thicker tails of predicted probabilities of being poor has very different implications
when one optimizes the cutpoint or selects different arbitrary cutpoints. This is
particularly important for policy makers working on targeting and interested in non-
anonymous predictions. The table also shows that, with the exception of rct,

8.4 Random Forest

In the case of random forest, we have three parameters that are particularly of
interest to understand the poverty prediction behavior of this model: the number of
iterations (trees), the depth of the trees, and the mtry parameter, which regulates the
number of input variables at each iteration. A higher number of trees is preferable
but increasing this number increases the computation time. Numbers between 100
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Table 8: Poverty rates with different probability cutpoints

pct rct ect nct
Pov(OptCut) 57.7 33.3 59.8 55.5
OptimalCut 42.5 75.4 42.2 42.7
Pov(Cut=0.40) 62.1 56.7 62.93 60.04
Pov(Cut=0.45) 55.4 54.62 56.24 53.65
Pov(Cut=0.50) 49.2 49.97 49.39 50.64
Pov(Cut=0.55) 43.9 46.11 42.69 42.78
Pov(Cut=0.60) 36.6 43.5 35.67 39.8

and 500 are usually considered good trade-offs. The depth of the trees determines
how many data splits should be allowed for variables. A higher depth increases the in-
sample prediction capacity but decreases the out-of-sample prediction capacity. The
optimal choice may also depend on the type and number of independent variables
one has. The mtry parameter can vary from a few variables to the total number of
independent variables. Increasing this parameter also increases computation time.

In what follows, we test the model with 1, 5, 10 100 and 1000 for both trees and
depth and across a set of poverty lines (5, 25, 40, 50, 60, 75, and 95 percentile).17

Table 9 shows results for the number of iterations (trees) and for the continuous
and dichotomous dependent variable models. Increasing trees does not seem to
improve predictions for neither the continuous nor the dichotomous case with the
exception of cases where the poverty line is located around the median of the original
income distribution. With extreme poverty lines, increasing iterations does not seem
to bring any benefit but it may help when poverty lines are set around center values.

Table 10 repeats the exercise for depth keeping iterations at 100. It shows that
shallow trees are incapable of making proper predictions. Only starting from a depth
of 10, we observe predictions becoming valuable with poverty lines set around the
median value of the income distribution but not with extreme poverty lines. Once
we reach a depth of 100, there is no more benefit in increasing depth. In this case,
one may want to find the optimal depth as increasing depth is very costly in terms
of computational time and may lead to overfitting out-of-sample predictions. Also,
increasing trees, while it reduces errors, also reduced the probability of having fully
independent trees.

To evaluate the performance of these models in and out-of-sample, we use AUC-

17Note that depth is also selected based on the type of model, classification or regression. In
classification models, a standard choice is 1 split while 5 splits is standard choice for regressions.
Here we apply all splits to all models.
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Table 9: Random Forest Iteration (trees) Test

PL5 PL25 PL40 PL50 PL60 PL75 PL95
rcn1 3.6 23.5 39 49.4 59.8 76.5 96.8
rcn5 1.6 19.3 37.3 50 61.9 78.3 98.1
rcn10 1.4 18.1 37.3 50.1 61.6 78.9 98.1
rcn100 1.1 17.4 36.5 50.1 61.8 78.5 98.2
rcn1000 1.2 17.2 36.3 49.9 61.7 78.5 98.3
rct1 4.2 23.1 37.7 47.9 58.2 74.3 95.3
rct5 3.4 21.8 38.5 50.1 61.2 77.2 96.7
rct10 3.4 21.4 38.4 50.3 60.9 77 96.8
rct100 3.3 21.8 38.8 50 61.7 77.3 96.9
rct1000 3.1 21 39 50.2 61.9 77.7 97

ROC values and plot these values against the level of depth for the train and test
sets of observations and with depth varying between 5 and 95. Recall that AUC = 1
represents perfect predictions, AUC = 0 represents non-overlap between true values
and predictions, and AUC = 0.5 represents predictions that correspond to random
predictions. The train (in-) sample was selected randomly extracting 75% of the
original incomes. The test (out-of-) sample is the remaining 25% of observations.
We can see in this way how random forest performs in and out-of-sample as we
increase the depth of the trees.

Figure 5 shows that the optimal depth which maximizes AUC values is around
6-7 where both the train and test curves are at their max for both the regression
and logit models. Around these values, in-sample (train) predictions are better than
out-of-sample (test) predictions as we should expect, but the difference is not very
large and out-of-sample predictions are very close to in-sample predictions all along
the curves. Higher depth reduces in-sample prediction invariably for train and test
samples, regression and logit models. Interestingly, when AUC values hit 0.5 (the
equivalent of random predictions), there is no more difference between the models,
In fact, beyond a depth of 10 (not shown in the graph) out-of-sample prediction
outpace in-sample predictions. This simply means that they remain closer to random
predictions and they should be ignored as this is not a choice of depth that one would
consider.

In order to preserve the consistency of results, it is also important to consider the
order of variables as briefly mentioned in the section above. In RF models, changing
the order of independent variables can change results, even when seeds are set. This
happens when the mtry parameter is set below the total number of independent
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Table 10: Random Forest Depth Test

PL5 PL25 PL40 PL50 PL60 PL75 PL95
rcn1 0 0 0 12.4 99.4 100 100
rcn5 0 0 18.7 43.4 67.3 97.7 100
rcn10 0 6.8 30.1 48.4 64.8 83.3 99.7
rcn100 1.1 17.4 36.5 50.1 61.8 78.5 98.2
rcn1000 1.1 17.4 36.5 50.1 61.8 78.5 98.2
rct1 0 0 0 54 100 100 100
rct5 0 0 22.3 49.8 76.4 98.8 100
rct10 .2 10.3 32.5 51.8 68 86 99.2
rct100 3.3 21.8 38.8 50 61.7 77.3 96.9
rct1000 3.3 21.8 38.8 50 61.7 77.3 96.9

variables and with low number of trees (random sub-space method), or when the
explanatory power of the original model is low. That is because RF samples groups
of variables in sets chosen based on the position of the independent variables. If
the position is changed, different variables are selected (bagged), which results in
different trees. To address this issue, one has to make the mtry parameter equal
to the total number of independent variables and use a very large number of trees.
This strategy will ensure that results are consistent, even if we change the order of
independent variables, similarly to OLS or Logit models. This was not the case with
the RF model used in this paper because we used one of the standard methods to
select mtry (the squared root of the total number of independent variables).

8.5 Elastic Nets

The two parameters to consider in Elastic Nets are the α parameter which controls
the relative weight given to the RIDGE and LASSO models (RIDGE with α = 0 and
LASSO with α = 1) and the λ parameter which controls the regularization parame-
ter, with a higher λ resulting in more reduced models (forcing more variables’ coeffi-
cients to zero. A λ = 0 is equivalent to an OLS model). Most statistical packages use
internal routines to optimize λ based on standard criteria designed to optimize out of
sample predictions. When these routines are used, the only important parameter to
regulate is α. However, in practice, changing the relative RIDGE/LASSO weight has
little effect on predicted means such as the poverty rate and only a marginal effect
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Figure 5: ROC-AUC Curves
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on standard errors.18 Imposing a λ, on the other hand, is not recommended in our
case as one would want to optimize λ based on out of sample predictions. Therefore,
provided we rely on standard routines to select the optimal λ, we don’t expect much
variance in poverty estimations across elastic nets models. In our particular case, the
optimal λ found is also rather close to zero resulting in poverty predictions that are
little different from standard OLS models as we have verified throughout the paper.
We should also expect this to be often the case with poverty prediction models that
have a similar number of variables and similar explanatory power to the model used
in this paper. A difference may be observed with initial models that have a very large
number of explanatory variables. In these cases, regularization parameters may play

18Note that standard errors may be difficult to interpret with Elastic Nets models given the
different weights attributed to the two models.
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a more important role and result in predictions that depart from a standard OLS
model than those we observed. However, the main shortcoming of the OLS model,
which is its incapacity to model the tails of the original income distribution, per-
sists with any elastic net model. Focusing on this question is more important than
searching for optimal α or λ parameters.

8.6 Neural Network

Neural network models can be very complex and there are tens of parameters that
can potentially be set by the user depending on the routine available. As an exam-
ple, the neural network model used in the paper is mlp2 programmed in Stata and
the parameters used are the default parameters provided by this program. These
include two hidden layers and the following choices: 1) number of neurons per layer
= number of layers of the outcome variable for both layers; 2) Added bias term ; 3)
SGD optimizer; 4) Softmax and MSE loss functions for categorical and continuous
dependent variables respectively; 5) Variance scaling factor = 1; 6) Maximum at-
tempts to find good initial values of the parameters=10; 7) Learning rate = 0.1; 8)
Dropout probability rate = 0; 9) Batch size for training = 50; 10) Maximum num-
ber of iterations of optimizer = 100; 11) Choice of metrics is accuracy for softmax
and MAE for MSE. Naturally, experimenting with variations in these choices would
require a separate paper.

Even if all options listed above are kept constant, neural network models can
quickly become unstable and time consuming. A model with one hidden layer and a
few neurons is more likely to provide stable results and be fast but also approximates
classic linear models and may not be suitable for more complex non-linearities, which
is the advantage of using neural networks. Vice-versa, a model with many hidden
layers and neurons can become very unstable and very time consuming. It is also
worth mentioning that neural network models perform best with very large data sets
and big data, which is not the typical case with survey income data.

Stability of results in one important concern that we can test. In Table 11, we
run the neural network model multiple times without setting seeds and varying only
the number of nodes (neurons) per hidden layer using 20, 40, and 60 nodes for both
the continuous and categorical models. We can see that the variance of outcomes
across repetitions of the model is quite large and the mean across repetitions of
the model does not necessarily converge towards the true value. We repeated this
exercise multiple times (not shown in the paper) and we could not find any indication
that mean or variance would stabilize, or that the mean would converge towards the
true value. With several sets of nodes and at least ten repetitions, this model can
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easily run into hours of computation (with the Stata routine that we use, better
programming or software may reduce computation time). This feature of neural
network models together with their complexity makes these models less appealing
for poverty specialists working with empirical data.

Table 11: Neural Networks, Layers and Trials Test

ncn20 ncn40 ncn60 nct20 nct40 nct60
t1 47.9 51.4 49.9 49.6 55.9 51.3
t2 53.9 51.4 50.1 54.8 54.6 55.1
t3 50.2 51.4 35.7 50.2 54.4 55.6
t4 45.1 47.8 46.1 54.9 51.7 46.2
t5 44.9 48.4 45.8 53.6 61.7 58.7
t6 51.2 53.4 52.9 55.9 54.7 49.4
t7 48.9 55.3 51.1 52.8 51.9 53.6
t8 51.3 51.4 50.6 53.4 53.6 52.5
t9 53 51.9 49.6 51.8 55.4 53.9
t10 0 56.2 49.8 52.4 52.7 50.5
mean 44.6 52.2 48.2 52.9 54.7 52.7
var. 229.6 6.9 21.4 3.7 7.3 11.2

9 Concluding Remarks

The paper has provided a comparative analysis of classic econometric and machine
learning models used for the estimation of poverty at the population or household
level in the presence of missing data. We carried out an artificial experiment using
a dummy data set constructed on real data comparing eight different models and
testing the robustness of results to changes in data, parameters and preferences. This
strategy allowed us to address two important shortcomings of poverty prediction
models: Test how different models perform with different missing data patterns
including MNAR, and compare results with the true poverty rate. Below we provide
some indications that can help practitioners consider alternative models for poverty
predictions. These indications are preliminary, and some may be explained by a
naive use of the models, but they can help to orient practitioners in the use of these
models and scholars to structure future research.

• Missing observations should always be of concern for poverty predictions unless
they are a very low share of observations (say less than 5%). Some models are
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not effective in predicting poverty even if missing observations are Missing
Completely At random (MCAR).

• Overall and for poverty predictions, no model can be expected to outperform all
other models under any circumstance. The paper showed that models’ relative
performance depends on the original distribution of incomes, the poverty line,
models’ parameters, the pattern of missing observations, the objective function
and policy preferences. No model “dominates” others and predict incomes that
are closer to the original distribution of incomes all along the distribution and
in all cases tested.

• When missing data are MNAR-pure none of the models studied in this paper
performs well. MNAR-pure data are rare and the case of MAR-MNAR data
is the most common with empirical income data. In this case, most models
struggle to provide good poverty predictions with the exception of random
forest.

• The random forest model has proved to be the most consistent in predicting
poverty relatively well under almost any condition considered in this paper.
This is also consistent with tests conducted on other indicators of deprivation
(Andree et al., 2020). It makes this model the most flexible and a preferred
candidate when researchers lack key information for making a choice among
models such as information about missing data patterns. For these models, it
is important to have a sufficiently large number of iterations (trees) to have
stable predictions and a proper depth, which may vary from case to case and
needs to be tested with out-of-sample predictions.

• Simple OLS models are generally ineffective in predicting poverty accurately if
the model error term of predicted values is not adjusted post-estimation and
the true poverty rate is distant from the mean. That is because of the narrow
distribution of predicted values as compared to the original distribution (a
statistical artifact) and the incapacity of these models to predict income on
the tails well. This finding extends to elastic nets models which are based on
OLS models.

• OLS models can be substantially improved if the model error term is adjusted
post-estimation as it is done in the cross-survey imputation literature. The
paper found that error adjustments derived from the original empirical distri-
bution are better than those derived from a theoretical normal distribution.
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However, both methods are effective and preference for one method over the
other may depend on the data at hand.

• Dichotomous dependent variable models tend to perform better, on average,
than continuous dependent variable models because they do not suffer from
extreme errors on the tails of the distribution of predicted probabilities. This
relative superiority should not be given for granted if the model error of OLS
models is adjusted to reflect the original variance of the distribution of income.

• Dichotomous dependent variable models can be improved by searching for the
optimal probability cutpoint using ROC curves, but only marginally.

• The simple logit model performs, on average, better than machine learning
dichotomous dependent variable models with the exception of random forest.

• Elastic net models have a similar performance to OLS and logit models because
they use the same functions, but they add layers of complexity that rarely result
in better performance than a simple OLS or logit model. The α parameter
which regulates the weight of the RIDGE and LASSO components seems to
make little difference and does not improve on the fundamental problem of
OLS models. The λ parameter which is the regularization parameter is usually
optimized by the model itself and this optimization does not seem sufficient to
address prediction problems on the tails.

• With ML models re-ordering the variables can lead to different results if these
variables are continuous. It is therefore safer to transform these variables into
categorical or dummy variables.

• Neural network models are very complex, time consuming and not easy to
stabilize. These features make these models not particularly appealing for
poverty specialists working on standard poverty analyses and empirical data.

• Multiple imputation is effective in improving on the variance and standard
error of estimations but does not affect means. A model that predicts a poverty
rate that is far from the true value cannot be fixed by simply using multiple
imputation.

• In the case of extremely reduced models with few independent variables (say
2-4 variables), there is not much difference in what model is used. All models
will perform equally poorly.
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• With a large set of independent variables (say more than 15), machine learning
models have a comparative advantage in that they can test alternative reduced
models and find the most effective in predicting poverty sparing researchers a
complex and time consuming trial and error process.

• Finally, we should expect non-parametric models to handle non-linearities bet-
ter than parametric linear models. This question is really data specific and will
require to be addressed in future research.

To conclude, in the absence of complete information on data, parameters and
preferences, and in the absence of a deep understanding of machine learning models,
logistic and random forest models should be preferred to OLS and other machine
learning models. With time availability and a more nuanced knowledge of machine
learning models, a comparative analysis similar to what this paper has provided can
help practitioners making better choices.
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Annex

Table 12: Data Summary Statistics

Variable Obs Mean Std. Dev. Min Max
household income 7,062 56887 54561 2800 1113157
income per capita 7,062 13118 15098 826 261621
age 7,062 51.64 14.00 15 98
age squared 7,062 2863 1526 225 9604
household size 7,062 5.14 2.43 1 24
male 7,062 0.82 0.38 0 1
marital status 7,062 0.83 0.38 0 1
skills 7,062 0.19 0.39 0 1
urban 7,062 0.60 0.49 0 1
work salaried 7,062 0.39 0.49 0 1
work selfemployed 7,062 0.31 0.46 0 1
work unpaid 7,062 0.00 0.05 0 1
econ.sect. secondary 7,062 0.17 0.37 0 1
econ.sect tertiary 7,062 0.33 0.47 0 1
out of labor force 7,062 0.26 0.44 0 1
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