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We study the extent to which physician treatment styles are determined by their practice environment 
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1 Introduction

It is well known that traditional demand factors, such as patient preferences
and needs, are by and large unable to explain the substantial geographic varia-
tions in healthcare utilization observed in many countries (see, e.g., Wennberg
and Gittelsohn, 1973; Skinner, 2011; Skinner et al., 2011; Chandra et al.,
2012; Finkelstein et al., 2016).1 Furthermore, it is unclear whether areas with
higher-than-average healthcare spending per capita perform better than lower-
spending areas with respect to quality of care to legitimate such discrepancies
(McClellan and Newhouse, 1997; Baicker and Chandra, 2004). These observa-
tions serve to fuel long-standing questions on the extent of resource waste and
cost-efficiency in healthcare delivery (see, e.g., Wennberg et al., 2002; Fisher
et al., 2003a,b; Doyle et al., 2015, 2017; Shrank et al., 2019).

The lack of explanatory power by demand factors in decomposing geo-
graphic variations in healthcare use has led some researchers to shift focus
to the supply side and the behavior of healthcare providers. A small but
growing literature has sought to understand the causes of variation in physi-
cian practice styles and their consequences for patients (see, e.g., Grytten
and Sørensen, 2003; Epstein and Nicholson, 2009; Skinner and Staiger, 2015;
Currie et al., 2016; Molitor, 2018; Cutler et al., 2019; Chandra and Staiger,
2020; Currie and MacLeod, 2020).2 Understanding why variations in physi-
cian treatment behavior exist and how they impact healthcare delivery are
important steps to design effective policies that seek to reduce inappropriate
variations in healthcare use (OECD, 2014).

This paper seeks to add to the literature on the determinants of provider
practice styles by studying how physicians’ treatment choices are influenced
by their practice environment and the consequences these choices have for
their patients’ welfare. To this end, we make two major contributions that so

1For studies based on non-US data, see Phelps (2000); Prieto and Lago-Peñas (2012);
Reich et al. (2012); Bojke et al. (2013); Corallo et al. (2014); Kopetsch and Schmitz (2014);
Moura et al. (2019); Godøy and Huitfeldt (2020). Salm and Wübker (2020) provide an
exception to this rule, showing that the vast majority of variation in ambulatory care use
stems from demand factors which they argue is due to supply-side constraints.

2Chandra et al. (2012) provide an overview of different explanations for why provider
treatment decisions may vary across similar patients. Such reasons include (i) “defensive
medicine”, where providers perform unnecessary procedures to avoid complaints, bad rep-
utation and possible lawsuits from patients; (ii) financial incentives associated with fee-for-
service reimbursement models (McClellan, 2011); and (iii) unobserved heterogeneity across
providers (Doyle et al., 2010).
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far have been largely overlooked in the literature. First, we propose a method
to decompose the environmental effect into a physical and a social component,
corresponding to a hospital-specific and a peer group-specific component. As
we argue further below, this is an important distinction to make since the
two components provide very different implications for policy. In addition, by
relating data on physicians’ treatment choices to optimal management and to
associated patient outcomes, we are able to gauge and directly measure the
impact of environmentally induced variation in physician treatment behavior
on changes in the appropriateness, treatment costs and quality of care received
by patients. This is in contrast to most existing studies on physician practice
styles, which mainly rely on quantity, rather than quality, measures to evaluate
the consequences of physician choices.

To provide an empirical framework for the identification and consistent
estimation of causal effects, we apply and extend the physician migration ap-
proach used by Molitor (2018) in the important context of stent choice in coro-
nary angioplasty. We identify physicians who move (migrate) across hospitals
and relate variation in the rate of use of a specific stent type between the physi-
cian’s pre-move (origin) and post-move (destination) hospitals to changes in
the physician’s own stent use across time in a difference-in-differences model.
To estimate the model, we use rich administrative data from the Swedish
Coronary Angiography and Angioplasty Register (SCAAR) on all percuta-
neous coronary interventions (PCI) performed in Sweden between 2004 and
2013 and study how interventional cardiologists’ choices between the bare-
metal stent (BMS) and the drug-eluting stent (DES) are determined by their
environment. Since the procedure is identically executed irrespective of the
type of stent used, this context provides an essentially ideal setting to study
how the practice environment shapes physician treatment preferences.

While empirical evidence on the extent to which physician practice styles
are influenced by their work environment is informative, it does not per se
convey much detail on which environmental factors are the drivers of such
changes. Yet, such knowledge could be important. For example, physical,
or provider-specific, factors may be less informative about the malleability of
physicians’ underlying preferences if the possibility to operate in line with such
preferences is restricted by factors beyond the individual physician’s control,
such as resource constraints or hospital-specific guidelines. In contrast, social,
or peer group-specific, factors are more directly related to the adjustment
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of physician beliefs for which much of the economic literature on physician
practice styles lies at the heart of (see, e.g., Epstein and Nicholson, 2009).

To address this important question, we propose and implement a method
to decompose the combined impact of the environment on physician treatment
styles into a provider-specific and a peer group-specific factor by exploiting
quasi-random variation on physicians working together on given days. Specif-
ically, given sufficient practice style variation among migrating physicians’
coworkers (peers) within a hospital, the inclusion of hospital fixed effects in our
econometric model will effectively purge all time-invariant provider-specific
variation in practice styles across hospitals from the analysis. Any remaining
practice variation will consequently be derived from changes in the migrat-
ing physicians’ coworker mix. Thus, resulting estimates of the environmental
effect with and without hospital fixed effects gauge the relative magnitude
of the adjustment in physician practice style arising from provider- and peer
group-specific factors, respectively.

One potential concern with our decomposition approach is that migrat-
ing physicians are non-randomly matched with their peers after their move.
Such matching would introduce bias in our estimated parameters if migrants
exert some control over whom they are working with and use this control to
choose coworkers with matching preferences. While this is unlikely to occur
in practice, and would lead our estimates to be a lower bound on the true
effect if it did, we nevertheless evaluate the robustness of our results to such
endogeneity concerns by replacing our measure of practice environment with
a synthetic environment. Based on the synthetic control method (see, e.g.,
Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015), we construct an
artificial matched comparison group using the sample of non-migrating car-
diologists in our data. This method safeguards against estimation bias by
comparing practice styles of migrating cardiologists with non-migrating car-
diologists who were exposed to similar peer practice environments prior to the
relocation. Reassuringly, we find that our estimates are largely robust to the
definition of practice environment.

Our estimation results show that Swedish cardiologists’ use of DES in
angioplasty treatments are strongly determined by the practice style of the
hospital they currently work in. Migrating cardiologists rapidly adapt to their
prevailing practice environment after relocation by changing their DES use
with on average half a percentage point for each percentage point difference in
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DES utilization rates between the origin and destination hospitals. This result
is robust to a set of alternative specifications and close to the corresponding
estimate found by Molitor (2018). Furthermore, when decomposing the overall
effect into a provider-specific and a peer group-specific effect, we find that each
component is responsible for roughly half of the practice style adjustment. To
assess the extent of heterogeneity in response across cardiologists, we also
provide results from a series of split-sample regressions which reveal that our
results are mainly driven by younger migrants who move to more innovative
hospitals.

In contrast, we find no empirical evidence to support the hypothesis that
environmentally induced changes in migrating physicians’ practice styles had
important consequences for the quality of care received by patients. In ad-
dition to analyzing a set of adverse clinical events related to the medical
procedure, we employ a machine learning algorithm to classify appropriate
stent choices for each case based on out-of-sample predictions from teaching
hospitals and a rich set of patient characteristics. While our analyses do not
reveal important systematic impacts on patient health as a result of changes
in their physician’s practice environment, we do find that migrating physi-
cians are somewhat more likely to incorrectly apply DES after their move.
This result suggests that the environmentally induced changes in physicians’
practice behavior are mainly based on marginal “gray-zone” cases who run
little risk of serious adverse medical events as a consequence of such choices.
Moreover, a back-of-the-envelope calculation of the potential monetary sav-
ings from following the most efficient treatment approach suggests that the
average migrating cardiologist incurred an additional cost of USD 1,200 per
year from inappropriate stent choices, corresponding to roughly one-sixth of
the price of a PCI.

Our findings contribute to the scant literature on peer effects and social
learning in healthcare. Social learning is broadly defined as the process of
information transmission between economic agents when they observe and in-
teract with each other within their social networks (see, e.g., Lin et al., 1981).
In line with our results, Huesch (2011) finds evidence for intragroup spillovers
in the use of DES, suggesting that physicians are influenced by their peers.
Furthermore, Nair et al. (2010) study peer effects in prescribing choices of
physicians and find that such behavior is particularly influenced by research-
active peers within physician groups. Heijmans et al. (2017) find similar re-
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sults studying peer effects in cardiovascular risk management in networks with
and without opinion leaders. On the other hand, Yang et al. (2014) document
only small peer effects in prescription behavior for new drugs among physicians
working in the same hospital at the same time. Epstein and Nicholson (2009)
find that physician’s treatment styles are responsive to changes in treatment
styles of other physicians in the same hospital region in the context of Ce-
sarean sections, but the effect dampens when accounting for common shocks
at the hospital level. This is in line with our finding that both providers and
peers are influential in altering practice styles of physicians. Finally, Burke
et al. (2003) find that patients are more likely to receive certain procedures
if an attending physician is in a group that performs these procedures more
frequently, and Yuan et al. (2020) show that shared beliefs are crucial for
successful implementation of new health technology within a peer network.
Complementing these findings, the results from our split-sample analyses show
that our effects are mainly driven by younger cardiologists moving to more
DES-intensive practice environments.

We also add contextual depth to the more general economic literature on
peer effects. A number of papers have investigated the influence of peers on
academic performance, yielding mixed results. While some authors find signif-
icant peer effects (Sacerdote, 2001; Zimmerman, 2003), others find no effects
at all (Foster, 2006; Lyle, 2007), or effects only for particular subgroups (Stine-
brickner and Stinebrickner, 2006). In contrast, there exists strong evidence
for positive social spillovers on task-oriented work behavior and productiv-
ity in non-academic settings. Mas and Moretti (2009) study peer effects at
the workplace by analyzing the productivity of coworkers within the same
team. They find evidence of positive productivity spillovers when working
with highly productive peers, especially when they interact more frequently.
Moreover, in an experimental setting, Falk and Ichino (2006) study individu-
als working on separate tasks within the sight of one another, finding that the
productivity of workers is influenced by the productivity of their peers. These
results motivate our approach to use physicians working on the same days as
relevant peers in the analysis. Finally, Bandiera et al. (2010) study whether
workers’ behaviors are affected by the presence of peers that they are socially
tied to, with the main finding that a given worker’s productivity is positively
correlated with the ability of a worker’s personal friends.

Lastly, our results have broad implications for healthcare system efficiency.
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The fact that physicians’ treatment behaviors are influenced not only by their
physical but also by their social environment suggests a rationale for why spe-
cific practice styles cluster in certain areas. While such clustering may gen-
erate positive productivity and learning spillovers as in Chandra and Staiger
(2007), it also implies that patients may receive suboptimal care depending
on the prevailing practice style at the admitting healthcare provider. In par-
ticular in supply-sensitive areas of healthcare, where the frequency of use of a
given activity is related to its local capacity, and where the choice of health-
care provider is subject to restrictions, such as place of residence, this may
lead to substantial allocation inefficiencies. If the quality of provided care is
largely insensitive to such variations, as this paper shows in the context of
cardiac catheterizations, a more integrated system where inappropriate prac-
tice variation can be mitigated through enhanced care coordination, monitor-
ing, and follow-up based on evidence-based clinical guidelines could be vastly
resource-saving (Wennberg, 2010). However, broadly defined uniform guide-
lines may not be the most efficient way to reduce inappropriate healthcare
variations when patient populations are clinically diverse. Specifically, Chan
et al. (2019) show that decisions in diagnosing pneumonia vary substantially
across physicians with different skill levels, and that less skilled physicians
are more likely to choose lower thresholds to reduce the risk of failing to cor-
rectly diagnose a patient with pneumonia. Similarly, we find that younger
and less experienced migrating physicians are more likely to inappropriately
apply DES after their move. These findings suggest that investments in train-
ing to increase physician skill may be a cost-efficient alternative to national
guidelines to reduce unwarranted resource use.

The paper proceeds as follows. Section 2 gives an overview of the Swedish
healthcare system and the clinical context. Section 3 outlines our empirical
framework. Section 4 describes the data, sample and variables we use in our
analysis. Section 5 presents our estimation results. Section 6 concludes.

2 Institutional Setting

The empirical analyses in this paper are based on inpatient medical records
on all percutaneous coronary interventions performed in Sweden between 2004
and 2013. In this section, we first provide relevant background information on
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the Swedish healthcare system. This is followed by a brief description of the
general treatment of coronary heart disease and the specific medical procedure
we study.

2.1 Healthcare in Sweden3

Healthcare in Sweden is mainly funded by direct income taxes raised by the
three different levels of government: central, regional (21 county councils)
and local (290 municipalities). Responsibilities for health and medical care
are shared between the governments according to a scheme stipulated in the
Swedish Health and Medical Service Act from 1982. Within each government
tier, principals (i.e., elected politicians and bureaucrats) have substantial dis-
cretion in designing the system in their area of administration subject to a
few general principles, such as that all citizens are entitled to accessible and
high-quality healthcare services based on their individual needs. Both county
councils and municipality executive boards are political bodies that consist
of representatives elected by residents every four years coinciding with the
national election.

The main responsibilities of the central government are to set goals for
national health policy, coordinate and provide advice to health and medical
care providers and to regulate prices and approval of new medical services and
products. Municipalities are mainly responsible for organizing long-term care
for the elderly in their home or in aged care facilities and to accommodate
the needs of residents with physical or psychological disabilities. Finally, the
county councils are the main providers and financiers of healthcare in Sweden
being responsible for primary and specialized healthcare on both the in- and
outpatient basis in their respective geographical area. Since the end of the
1990’s, both municipality and county healthcare boards are allowed to contract
out services to private providers in purchaser-provider split models. While the
outsourcing of healthcare services to private agents have become increasingly
commonplace within the primary, outpatient and long-term care sectors over
time, virtually all inpatient care is still operated by public providers.

The vast majority of healthcare spending in Sweden is paid for by county
and municipal-level direct income taxes raised from area residents. Contri-

3www.kliniskastudier.se/english/sweden-research-country/swedish-healthcare-
system.html provides a concise summary of the main features of the Swedish healthcare
system in English.
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butions from the central government are relatively small and mainly consist
of provider pay-for-performance incentive schemes and redistribution between
regions. Each county council sets its own patient fees, although there is a na-
tional limit for the amount a patient has to pay out of pocket (approximately
USD 130 per annum as of 2020). Consequently, patient fees only account for
around three percent of total spending on healthcare. Both employed and
unemployed Swedish citizens are also covered by a national statutory sickness
and disability insurance, replacing up to eighty percent of lost earnings and
financed through employer social contributions. This insurance can be further
topped up for employees covered by collective agreements or complementary
private insurance schemes. Hence, virtually all Swedish citizens have strong fi-
nancial protection from both direct healthcare costs as well as indirect income
losses from temporary and permanent work disabilities.

One important feature of the Swedish inpatient healthcare system that is
relevant for our empirical strategy is that recipients of healthcare are con-
strained in their choices of hospital service provider and treating physician.
Specifically, each hospital is responsible for providing care to all residents
within a geographical catchment area. This means that place of residence
determines which hospital a patient will be admitted to when seeking care.
Furthermore, hospitals are not obliged to accommodate patient requests for
a specific treating physician. As a general rule, a patient will be assigned
to an on-duty physician on the day of admission. This implies that patients
are quasi-randomly allocated to physicians and that selection bias arising from
endogenous patient-physician sorting is unlikely to be a concern in our setting.

2.2 Treatment of coronary heart disease

Coronary arteries supply oxygen and blood to the heart. When cholesterol and
other fatty plaque build up inside these arteries, the wall of the blood vessel
thickens, narrowing the channel within the artery and reduces blood flow to
the heart. This process, called atherosclerosis, starves the heart muscle of
oxygen and may cause heart tissue damage, known as Myocardial Infarction
(MI) or, more commonly, a heart attack. Worldwide, about 15.9 million
myocardial infarctions occurred in 2015 (Vos et al., 2016).

Coronary heart disease is generally treated by interventional cardiologists
using a catheter-based treatment method called percutaneous coronary inter-
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vention (PCI), or coronary angioplasty.4 In a PCI, the cardiologist first inserts
a catheter through either the femoral or radial artery, which is subsequently
transported to the site of the blockage using a guide wire. Once the obstructed
area is reached, a tiny balloon attached to the catheter is inflated, compressing
the atherosclerotic plaque against the artery wall and thereby restoring blood
flow. To keep the artery open at the site of the blockage after balloon dilation,
the cardiologist may also place and leave a stent (an expandable small metal
mesh tube) in the artery to reinforce the blood vessel’s wall and prevent it
from reoccluding.

Prior to invasive treatment, a diagnostic technique, angiography, is used to
determine the size, severity and location of the suspected artery blockage(s).
To this end, a catheter is guided into one of the major coronary arteries to
inject a contrast dye into the blood passing through the heart. The diagnosing
physician, the angiographer, can then determine the locations with restricted
blood flow from a series of images (angiograms) taken by an X-ray machine.
Sometimes, when considered suitable by the responsible physician, the angiog-
raphy is directly followed by a PCI in the same treatment session, a procedure
known as ad-hoc PCI.

2.3 Bare-Metal and Drug-Eluting Stents

Two main types of stents are associated with performing a PCI: Bare-Metal
Stents (BMS), commonly referred to as first-generation stents, and the newer
Drug-Eluting Stents (DES), first approved in Europe in 2002. The principal
difference between the BMS and the DES is that the latter is coated with a
drug that reduces the incidence of restenosis, the medical term for the gradual
re-narrowing of a coronary artery after a blockage has been treated with angio-
plasty. Because the process of compressing, or “crushing”, the atherosclerotic
plaque often causes trauma to the artery wall, the body will attempt to heal
itself by repairing the tissue damage caused by the intervention by prolifera-
tion of endothelial cells (a layer on the surface of blood vessels). Restenosis
occurs from excessive tissue growth as a consequence of such healing processes,
which reoccludes the blood vessel at the site of the stent. In contrast to the
BMS, the DES was developed to counteract reocclusion of the artery by being

4PCI began as percutaneous transluminal coronary angioplasty (PTCA), a term still
found in the literature. It now encompasses balloons, stents, and other modifications to the
catheter tip, including devices that cut out plaque to open narrowed arteries.
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coated with drugs that inhibit cell proliferation, thus significantly reducing
the risk of restenosis.

Although the DES represents a major medical advance for angioplasty over
the BMS, it has also been associated with the more severe side effect of stent
thrombosis (ST); the formation of blood clots in the blood vessels caused by
the stent itself.5 As the drugs coated on the DES inhibit the body’s natural
healing process (i.e., the formation of an endothelial layer), they simultane-
ously expose the body to an increased risk of thrombus formation (blood
clots). Thus, the DES has been linked with an increased risk of ST occurring
up to several years after the initial intervention. So-called Dual Anti-Platelet
Therapy (DAPT), most commonly involving acetylsalicylic acid (aspirin) and
clopidogrel, is considered crucial to reduce the risk of ST. Early cessation of
these drugs after angioplasty using DES significantly increases the risk of both
ST and MI.

The above discussion suggests that the choice between a BMS and a DES
when performing angioplasty is not trivial. Although clearer guidelines exist
today as to which type of stent should be used in each case, this choice be-
longed to the “gray zone” of medical decision-making, where guidance from
clinical evidence is inadequate in providing clear indications for use, during
the time period we study in this paper. In addition, the choice between a
BMS and a DES does not involve significant differences in other categories
of use, such as prices6 (e.g., costs of equipment necessary for the procedure),
mode of treatment (e.g., minimally invasive versus highly invasive), or physi-
cal attributes of the clinician (e.g., visual acuity or motor skills). This context
provides us with a close to ideal setting for studying how physician preferences
for treatments vary with their environment, since observed choices are likely

5While this is true for the first generation of DES (Taxus and Cypher), the second
generation DES has been associated with significantly less ST than its predecessor (Chitkara
and Gershlick, 2010). However, the latter stent type only began gaining popularity at the
end of our analysis period.

6See, e.g., Ekman et al. (2006) who estimate that the expected one-year cost of a PCI
with a Taxus DES in 2004 amounted to SEK 72,000 (USD 8,500) versus SEK 67,000 (USD
7,900) for a BMS. In 2014, the corresponding figures were SEK 67,000 and SEK 65,000,
respectively (SBU, 2014). Both direct and indirect (i.e., repeat revascularization) treatment
costs are included as Swedish hospitals are typically paid prospectively on a capitation basis
with global budgets. This contrasts, for example, with much larger cost differences in the
US (see, e.g., Karaca-Mandic et al., 2017). In addition, we can rule out large incentives for
adoption from lobbying by the medical device industry as this is much more muted in the
Swedish centralized healthcare system compared to more market-based systems.
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to be mainly a function of the physician’s personal preferences with respect
to the relative efficacy of each treatment option.

3 Econometric framework

In this section we describe our empirical approach for quantifying the effect of
the environment on physician treatment styles in the context of the choice of
stent type in angioplasty treatments. We first define how we measure physi-
cian exposure to their practice environment and how the overall environment
can be partitioned into a provider-specific and a peer group-specific compo-
nent. Next, we describe our empirical model from which physician responses
to a change in their practice environment can be identified and estimated
using empirical variation from cardiologists moving across hospitals.

3.1 Definition of physician practice environment

The practice environment a physician is exposed to is a latent variable, mean-
ing that it exists but is not directly quantifiable. A challenge is therefore to
define a variable that captures the relevant features of the practice environ-
ment for our purposes. Following the methodology taken in Molitor (2018)
and adapted to our setting, we characterize cardiologist j ∈ J ’s practice en-
vironment in hospital h ∈ H, where patient i ∈ Nht received a PCI in time
period t ∈ T , as the ratio

Ejht =
∑
i∈Nkht

1(DESi = 1)
Nkht

∀ k 6= j ∈ J, (1)

whereNkht ⊂ Nht is the subset of patients not treated by cardiologist j. Hence,
Ejht is j’s exposure to the practice environment with respect to the rate of
DES use among eligible patients in hospital h and time t. Next, we define the
difference in practice environments between a migrating cardiologist’s origin
(hOj

) and destination (hDj
) hospital at a given point in time as

∆jt = EjhDj
t − EjhOj

t. (2)

In other words, ∆jt is the period-specific difference in DES leave-out shares
between the hospital that cardiologist j practiced in before and after reloca-
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tion, respectively. Note that this setup provides an intuitive framework for
defining counterfactual treatment states of migrating physicians that we will
use to motivate our empirical approach below.

Equations (1) and (2) constitute the basic framework for quantifying physi-
cians’ exposure to their practice environment over time and across hospitals.
We now extend this framework by partitioning the overall practice environ-
ment into two separate dimensions: a physical (provider-specific) and a social
(peer group-specific) component, respectively. Conceptually, we can think of
a physician’s practice environment as a combination of physical (e.g., hos-
pital infrastructure, technology, assets and resources) and social (e.g., peers,
physician networks and coworkers) factors. The former component may be
less relevant from a behavioral point of view, since physician responses to the
availability of physical resources are not directly related to his or her pref-
erences for a particular treatment.7 On the other hand, social interactions
may be highly influential in forming and developing physician preferences for
treatments and beliefs in their efficacy. Studying the net as well as the relative
impact of these components in their capacity to alter physician practice styles
is therefore important; theoretically, in terms of understanding the anatomy
of physician decision-making; and in practice, to provide a basis for policy to
enhance the effectiveness of healthcare delivery.

To empirically disentangle provider- and peer group-specific components
in physician practice environment, we postulate that cardiologists who are
working in the same hospital on the same day form a relevant peer group
from which we can draw inference.8 Formally, let

Pkjht =
∑
i∈Nkj ht

1(DESi = 1)
Nkjht

∀ kj 6= j ∈ Kj (3)

be the average DES share used by cardiologist j’s peers kj in hospital h and
period t. Cardiologist j’s peers are defined as all other Kj cardiologists who
performed PCI on patients in the same hospital and at the same point in time

7This is not to say that the provider-specific environment does not include any
preference-related factors, such as, for example, hospital management cultures. The ar-
gument here is that such factors are assumed to be fixed within the specific provider in
contrast to social factors that vary on the individual physician level.

8This definition makes intuitive sense, as individuals who work together are able to
observe and directly influence each other. It is also supported by the economic literature
on peer effects in the workplace (see, e.g., Falk and Ichino, 2006; Mas and Moretti, 2009).
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as physician j. We use this within-hospital variation to define and estimate
physician j’s peer exposure in time period t by the relation

EP
jht =

∑
kj∈Kj

∑
dt∈Dt

1(dtj = 1, dtkj
= 1)× Pkjht, (4)

where dt ∈ Dt is the specific calendar date within period t, and dtj and dtkj

are indicator variables for whether physicians j and kj were both treating
patients on day dt. In other words, EP

jht is a weighted average of the overall
practice environment of hospital h in time period t, with weights defined by
the correspondence between cardiologist j and each of his or her peers with
respect to the days they both performed PCI on admitted patients. Note that
giving all Kj peers the same weight in Equation (3) would return Ejht from
Equation (1).

The difference in peer practice environment between a migrating cardi-
ologist’s origin and destination hospitals, ∆P

jt, is correspondingly defined by
replacing E with EP in Equation (2). The counterfactual practice environ-
ment (i.e., the environment in the hospital cardiologist j is not currently
working in) is simply defined as the potential peer exposure derived from all
cardiologists who worked in the counterfactual hospital over that period,

∆P
jt = EP

jhDj
t − EP

jhOj
t. (5)

The total variation in the hospital’s practice environment is equal to the
sum of the within- and the between-components, implying that we can de-
compose physician j’s overall practice environment as

Ejht = EP
jht + EH

ht, (6)

where EH
ht is equal to the provider-specific component, varying only across

hospitals and time, and EP
jht as the peer group-specific component, varying

across cardiologists within hospitals over time. It follows that the total change
in a migrating physician’s practice environment can be decomposed as

∆jt = ∆P
jt + ∆H

jt . (7)

That is, the total impact of the change in environment of a migrating cardi-
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ologist at a given point in time consists of a physician-specific and a hospital-
specific effect. Our approach to empirically disentangle these two effects is
described in the following subsection.

3.2 Empirical model

The point of departure for our empirical modeling is based on the method
in Molitor (2018) who uses longitudinal administrative data on cardiologists
moving across hospitals to obtain empirical variation in physician practice
environment. This variation is used to estimate causal effects of changes in
the migrating physicians’ practice environment on their own treatment choices
in a difference-in-differences (DD) empirical design. The idea is simple yet
intuitive: if physicians’ practice styles are malleable to the environment they
operate in, then we would expect to observe patients managed by migrating
physicians to receive treatments more aligned with the practice environment
in the destination hospital after, but not prior to, their relocation.

Formally, the patient-level DD model for patient i ∈ N , treated by cardi-
ologist j ∈ J at time t ∈ T can be described by the equation

yijt = αPostt + β∆jt + γ(∆jt × Postt) +X ′ijtΓ + λj + λt + εijt. (8)

The outcome yijt is defined by a dummy indicator variable equal to one if
a patient undergoing PCI received a DES, and equal to zero if a BMS was
used. Moreover, Postt = 1t≥t0 is a dummy variable which equals one for all
time periods subsequent to cardiologist j’s move to a new hospital at time t0.
The model also includes controls for cardiologist, λj, and time, λt, cluster-
specific effects (i.e., ∑

z θz1λz′=z
for z = j, t) and a vector of potentially time-

varying observable patient and cardiologist characteristics, Xijt, to adjust for
observed and unobserved heterogeneity across patients, physicians and time.
Finally, ∆jt, defined in Equation (7), is a continuous variable with range
[−1, 1], characterized as the difference in physician j’s practice environment
between the origin (pre-migration) and destination (post-migration) hospitals
with respect to the share of DES used in patients undergoing PCI at time t.

The main parameter of interest in Equation (8) is γ, which, under standard
identifying assumptions of the DD estimator, captures the average physician
response in their DES use to the difference in practice environments between
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the origin and destination hospitals after, relative to before, their relocation.
Defining practice environment as the hospital’s risk-adjusted share of DES
used on patients undergoing PCI, γ can be interpreted as the percentage
change in physician j’s own DES practice style for each percentage point
difference in practice style environment. We refer to Equation (8) as our
baseline model in order to provide a link to and compare the results in Molitor
(2018) to our decomposition approach described below.

To study the dynamic pattern of the migrating cardiologists’ responses to
their practice environment and test the common trend assumption, we extend
our baseline model in Equation (8) by replacing Postt with a set of period-
specific indicators

yijt = β∆jt +
T ′∑

s=−T ′
1(s = t′) (αt′ + γt′∆jt′) +XijtΓ + λj + λt + εijt, (9)

where t′ = t−t0 ∈ (−T ′, T ′) is the period-specific index recentered around the
time of the cardiologist’s move, t0. This modification allows us to interpret
the average period-specific cardiologist responses by time from their move on
a common time index that can be plotted in an event-study fashion.

3.3 Effect decomposition and quality of care

Our approach to identify physician responses to their practice environment
relies on empirical variation derived from cardiologists moving across hospitals
at different points in time. Whenever this happens, we maintain that they
are exposed to a combined shift in practice environment arising from two
sources: a provider-specific, ∆H

jt , and a peer group-specific, ∆P
jt, component,

as defined in Equation (7). To empirically disentangle these two effects, we
make use of the fact that the former component is assumed to be constant
within a hospital provider. Therefore, the additional inclusion of hospital-
specific effects, λh, in Equations (8) and (9) will effectively purge the practice
environment of the hospital-specific component and any remaining variation
will hence be attributed to the peer effect, ∆P

jt. Thus, we estimate Equations
(8) and (9) with and without hospital fixed effects for our sample of movers
and attribute the estimated γ without hospital fixed effects as the net impact
of the practice environment. In contrast, the estimated effect with hospital
fixed effects will be attributed to the peer group-specific effect component.
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Finally, the relative difference between these two effects as a share of the net
effect is interpreted as the provider-specific effect.9

So far our model framework has focused on changes in the practice styles of
cardiologists induced by their practice environment. However, we are also in-
terested in knowing whether any environmentally induced behavioral changes
of physicians translate into changes in the quality of care received by patients
who were treated by the migrating cardiologists. In particular, knowing how
these behavioral changes affect the appropriateness of the treatment and pa-
tient health outcomes would provide useful information on whether and to
which extent physician adaptation to their practice environment improved or
worsened quality of healthcare services. To this end, we consider two addi-
tional sets of outcomes within our regression framework: physician decision
errors and patient health outcomes. The latter category is based on a com-
posite measure of relevant post-intervention adverse clinical events, including
death, myocardial infarction and restenosis, requiring a new intervention. The
former outcome category is based on defining a measure of stent appropriate-
ness using an auxiliary sample from which we employ a classification exercise
based on machine learning techniques. We defer the details of this approach
to the next section.

4 Data

We use data from the Swedish Coronary Angiography and Angioplasty Reg-
istry (SCAAR) for our empirical analyses.10 Since 1998, SCAAR registers
cardiac catheterization procedures performed in Swedish hospitals, including
detailed clinical information on patient health status and comorbidities (e.g.,

9It is possible that the hospital fixed effects do not capture the full range of dynamics in
cardiologist responses since the estimated average response may conceal significant hetero-
geneity across migrants. Therefore, in Section 5.3 we also estimate split-sample models to
study heterogeneity in cardiologist response by direction of the move (to more or less DES
intensive hospitals) and by cardiologist experience (age in years).

10SCAAR is maintained by the Uppsala Clinical Research Center (UCR), sponsored
by the Swedish Health Authorities and independent of commercial funding. Reporting
in the SCAAR is Internet-based. The data are recorded online through a Web interface
in the cardiac catheter laboratory, encrypted and sent to the UCR central server. Each
hospital receives a feedback on the processes and quality of care measures. To monitor and
maintain quality, a continuous screening process of the registry data is in place, operating
by comparing 50 entered variables in 20 randomly selected interventions per hospital-year
with the patients’ hospital records. The overall correspondence in data during the study
period is 95.2%.
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diabetes mellitus, smoking status and BMI), angiography diagnostic results
(e.g., location and severity of blockage by coronary artery segment) and rele-
vant treatment outcomes (e.g., complications and adverse clinical events such
as myocardial infarction or death). Importantly, the register also includes
information on the treating hospital and responsible physician, performed
procedure(s) and the time and dates of intervention, hospital admission and
discharge.

4.1 Analysis sample

We initially sample all instances of PCI performed in Swedish hospitals and
reported in SCAAR between 2004 and 2013.11 To clearly identify our main
outcome variable, the cardiologist’s choice between using a DES and a BMS
in the procedure, we drop patients who received multiple stents in the same
treatment session from the sample. This restriction leaves us with a total of
51, 381 PCI cases performed by 199 cardiologists in 28 hospitals.

The data include daily information on each cardiologist’s angioplasty treat-
ments and the hospital the activity takes place in. We use this information
to define physician practice episodes by indicating the first and the last date
a cardiologist practiced in a particular hospital. This method defines an ori-
gin and a destination hospital and a specific time-stamp for when the move
took place. As a few cardiologists may occationally practice in several hos-
pitals, we classify physician practice episodes to hospitals where the cardi-
ologist continuously treated patients over a period of at least six months.12

With these restrictions we identify 51 migrating cardiologists treating 8, 589
patients across 25 hospitals over the analysis period. Remaining cardiolo-
gists, who were based at the same hospital throughout the analysis period,
are referred to as non-migrating cardiologists.

Columns (1) and (2) of Table 1 present means and standard deviations
for our analysis sample of migrating cardiologists while columns (3) and (4)
present corresponding figures for non-migrating physicians for comparison.

11We restrict the starting year of our analysis to 2004 as this is the first year all hospital
in Sweden that performed PCI contributed to the registry. The endpoint is chosen because
the market for stents included additional options from 2013 onward due to the entry of a
new second-generation DES and the corresponding sharp decline in the use of the BMS.

12We exclude a few cases where a cardiologist continuously practices in several hospitals
over an extended time period (e.g., Karolinska hospital in Solna and Huddinge in Stockholm
county and Lund and Malmö hospital in Skåne county).
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The upper, middle and lower panels of the table partition this information into
hospital-, cardiologist- and patient-specific characteristics, respectively. With
respect to hospital characteristics, we observe no major differences across the
two groups other than that non-moving cardiologists seem to work in mod-
erately larger hospitals in terms of annual case volume. With respect to the
characteristics of the cardiologists themselves, migrants tend to be somewhat
younger and more likely to have a specialization in cardiology (in contrast
to, e.g., radiology or surgery). Patient case-mix is remarkably similar in all
aspects across the groups on average, although migrating cardiologists appear
to be somewhat less prone to use DES. However, there are no differences in
terms of patient health outcomes between migrants and non-migrants.

[Table 1 about here]

4.2 Decision errors and patient health outcomes

To study the impact of migrating cardiologists’ changes in practice environ-
ment on quality of care, we replace our main outcome variable from Equations
(8) and (9) with two sets of outcomes proxying for the appropriateness of
the chosen treatment and for any adverse patient health consequence of such
choices. We first define a dummy indicator variable for whether the treat-
ment decision was the appropriate choice based on a risk-adjusted measure
of treatment suitability and classified using an machine learning method for
classification. To this end, we employ the Random Forest (RF) algorithm
which has been demonstrated to have improved prediction accuracy in com-
parison with other supervised learning methods (Breiman, 2001; Svetnik et al.,
2003).13

We assess the appropriateness of cardiologists’ stent choices by relating
actual physician choices to predicted “gold standard” choices derived from the
RF algorithm using auxiliary data based on angioplasty procedures performed

13RF is a supervised machine learning method for classification based on the construction
of decision trees. The computational steps of the RF algorithm are illustrated in Figure A.1
of Appendix A. A decision tree splits the data into a set of subsamples defined by a classifi-
cation rule represented by a tree branch. Each branch could either lead to another subtree
or have a leaf/terminal node with an assigned class. The most frequently classified outcome
among all individual decision trees performed defines the terminal prediction (class) of the
RF. Application of this data splitting method can be further pruned by setting constraints
on model parameters to boost the accuracy on the out-of-sample predictions and stability
of the tree.
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in Swedish teaching hospitals with no migrating cardiologists in 2011–2012.14

We predict the appropriate stent choice for each case in our analysis sample
and define a dummy variable for overall error, equal to one whenever the
observed choice does not match the predicted choice irrespective of the choice
of stent. Figure 1 shows the distribution of predicted probabilities (left panel)
and respective error rates (right panel).

[Figure 1 about here]

We furthermore decompose the overall decision error into Type I and Type
II errors under the null hypothesis that the BMS is the appropriate treatment
choice. To this end, a Type I error (i.e., a false positive) pertains to incorrectly
inserting a DES when a BMS is suitable and a Type II error (i.e., a false
negative) is defined by inserting a BMS when a DES was the correct option.
This decomposition may provide additional insights into the consequences of
inappropriate treatment choices since incorrect use of the DES potentially
put patients at risk of more severe adverse events, such as ST, and higher
treatment costs, since the DES is more expensive than the BMS (although
the stent itself only constitutes a minor part of the total cost of treatment).15

Table 2 presents a matrix of the cardiologists’ treatment decisions in our
sample and corresponding error rates.

[Table 2 about here]

Finally, we include a set of patient outcomes based on the prevalence of
one-year post-intervention adverse clinical events, including patient death,

14The auxiliary data sample was randomly divided into two parts: a training sample that
is used to fit the RF algorithm and a validation sample used to validate the performance.
This resampling procedure is based on a 70:30% split. We grow 500 individual decision
trees to improve the performance of the RF and achieve the best prediction accuracy in
the validation sample. Each tree’s terminal node has at least 15 observations, but the total
number of terminal nodes in each tree does not exceed 200 nodes in total. Out of total 190
predictors, we randomly sampled 50 variables at each split. The tuning of all parameters
is based on the performance evaluation on the validation sample. Figure A.2 of Appendix
A presents the importance of variables used in prediction.

15Another interesting analysis suggested by David Molitor is to study whether the decision
errors of a migrating cardiologist’s peers impacts his or her own performance. This could
be evaluated by simply replacing the environmental variable by the average decision error
among peers in the origin and destination hospitals for each migrant and using the decision
error dummy as outcome in the regression model. Unfortunately, while constructing this
analysis we realized that the variation in decision errors across hospitals in Sweden is too
small to provide reliable inference for answering this question empirically.
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myocardial infarction (MI), and total leison revascularization (TLR) to our
regression model. The bottom panel of Table 1 shows the rates of these events
in our analysis sample.

4.3 Estimation of physician practice environment

Since both the absolute number and the case-mix of patients treated by car-
diologists may vary substantially, we modify each cardiologist’s use of DES
using the Empirical Bayes (EB) method. To this end, we estimate a mixed-
effects model with both fixed (risk-adjustment) and random (shrinking im-
precise physician DES shares to the population mean) elements to correct for
potentially biased estimates of the physicians’ practice environment as well as
any existing risk selection between cardiologists and their patients (see, e.g.,
Rabe-Hesketh and Skrondal, 2008).

The distribution of the EB-adjusted practice environment across all mi-
grating cardiologists and periods in our sample is shown in the upper left
panel of Figure 2. The variation is large, covering almost the full range
of the variable, and slightly skewed to the left with a mean of 0.31. The
corresponding distribution after regression adjustment for hospital fixed ef-
fects (i.e., the within-hospital variation) is visualized in the upper right panel
of the same figure. There is substantial variation remaining even after the
hospital-specific component has been eliminated from the environment, sug-
gesting that including provider-specific effects is unlikely to generate problems
of model overfitting.16 The lower left and right panels of Figure 2 show corre-
sponding distributions of ∆jt with and without hospital-specific fixed effects,
respectively. Interestingly, the change in practice environment among mi-
grating cardiologists in our sample is symmetrically distributed across higher
and lower shares of DES. Hence, our empirical approach is able to capture a
wide range of treatment effects in both the positive and negative domains of
changes in the physicians’ practice environment.

[Figure 2 about here]

Figure 3 provides a graphical illustration of the intuition behind the iden-
tification approach we use in our empirical analysis. The solid lines indicate

16The distribution of the risk-adjusted DES rates across the 21 county councils in Sweden
is displayed in Figure A.3 of Appendix A.
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the average practice style environment, measured by the average quarterly
share of DES used among migrating cardiologists’ peers, by time from their
relocation. To avoid canceling out positive and negative changes in the prac-
tice environment, physicians moving from more to less DES-intensive environ-
ments and from less to more DES-intensive environments are plotted in the
left and right panels of the figure, respectively. Moreover, the dashed lines
show the corresponding estimated counterfactual environment in the hospitals
associated with the migrating cardiologists: the destination hospital, prior to
the relocation, and the origin hospital, after the relocation took place. At any
point in time, the vertical difference between the two lines is computationally
equivalent to the average difference in physician practice environments, ∆jt,
averaged over all J migrating cardiologists.

The figure shows that there are significant jumps in the practice environ-
ment for both groups of migrating cardiologists at the time of relocation when
the actual and the counterfactual environments are switched. The quarter of
the move has been interpolated in the graph (and omitted from our analysis),
since the cardiologist may treat patients in both the origin and destination
hospitals during this period. The counterfactual environment can hence be
interpreted as an estimate of the hypothetical environment that would have
prevailed if the migrating physician would not have relocated. We can use
this estimate to derive and evaluate the common trend assumption when es-
timating our DD model. In particular, if migrants react to the counterfactual
environment prior to their move, we would conclude that our empirical ap-
proach is invalid. We study this in further detail in the next section.

[Figure 3 about here]

5 Results

This section reports results from estimation of the econometric models de-
scribed in Section 3 using our analysis sample explained in Section 4. We first
provide main results obtained from estimation of our DD model on migrat-
ing cardiologists’ responses to a change in their practice environment with
respect to their use of DES when performing PCI. Next, we investigate the
extent to which these responses improved or worsened the appropriateness of
physicians’ treatment choices and whether they were associated with signifi-

22



cant changes in patient health outcomes and costs of treatment. Finally, we
provide results from a set of robustness checks and heterogeneity analyses to
evaluate the stability of our inference with respect to model specification and
variable definitions.

5.1 Do physicians adapt to their practice environment?

Columns (1)–(4) of Table 3 report results from estimation of different models
using our sample of migrating cardiologists. Column (1) provides correspond-
ing coefficient estimates from the model used in Molitor (2018) to estimate the
response of migrating cardiologists to changes in their practice environment.
Our reported DD estimate of 0.72, interpreted as the average percentage point
change in the physician’s own practice style for each percentage point change
in the practice environment between the origin and destination hospitals af-
ter relocation, is very close to the estimate of 0.67 found in Molitor (2018).
Moreover, the coefficient of ∆jt, interpreted as migrating physicians’ aver-
age response to the destination hospital’s practice environment prior to the
move, is insignificant. This result supports our maintained common trend as-
sumption that migrating cardiologists do not systematically change their own
practice style in response to the destination hospital’s practice environment
before they relocate.

Next, Columns (2) and (3) show estimation results from our baseline DD
model, defined in Equation (8), by successive inclusion of control variables.
While the results from Column (2), in which only the control variables listed
in Table 1 have been added, suggest a marginally significant response to ∆jt

prior to the move, this coefficient is once again insignificant after further
adjustment for period-specific and cardiologist-specific effects in Column (3).
The DD point estimates for these model specifications suggest a somewhat
smaller physician response of between 0.49 and 0.52. In other words, about
half of the migrating cardiologists’ DES use can be attributed to their overall
practice environment for our sample.

Finally, in Column (4) we decompose the overall effect from the change
in practice environment by including hospital fixed effects in our regression
model. Recall that migrating cardiologists face both a change in the provider-
specific and the peer group-specific practice environment when they move
across hospitals. Assuming that the provider-specific component is constant
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within a hospital, whereas the peer group-specific component varies within
hospitals, we include hospital fixed effects to eliminate the impact of the for-
mer from the practice environment variable. This adjustment reduces the DD
estimate by another fifty percent to 0.25. We interpret this result as that
the peer group-specific effect is responsible for roughly half of the response in
physician practice style. This suggests that physicians’ reactions to their prac-
tice environment embody both the characteristics of the hospital itself, such as
infrastructure, management and resources, as well as the social environment,
captured by the physicians’ workplace peers.

[Table 3 about here]

The left and right panels of Figure 4 display estimation results from the
event study model in Equation (9) without and with hospital fixed effects,
corresponding to the specifications in Columns (3) and (4) of Table 3, respec-
tively. Each dot in the figure refers to an estimated γt′ parameter and the
associated vertical spikes indicate corresponding 95% confidence bands. The
solid vertical line in each panel pertains to the specific recentered year-quarter
of cardiologists’ move from the origin to the destination hospital. The quar-
ter of relocation is omitted from the analysis and replaced with the predicted
value based on a cubic polynomial, indicated by the solid line, and estimated
separately for quarters before and after the move. The predicted discontinuity
at the quarter of move is reported in the panel header. To ensure sufficient
number of leads and lags while simultaneously keeping the panel of migrating
cardiologists balanced, we follow the migrating cardiologist for eight quarters
before and after the move. As the estimated parameters are only identified up
to scale, we use the quarter prior to the move normalized to zero as baseline.

The estimated parameters prior to the physician’s relocation are not sig-
nificantly distinguishable from zero (i.e., the baseline period), suggesting that
migrating physicians did not systematically respond to the counterfactual
practice environment prior to their move. Moreover, for the model with-
out hospital fixed effects, there is a visible sharp discontinuity occurring at
the time of cardiologist relocation where the estimated γt′ coefficients become
positive and highly significant. The estimated magnitude of this discontinuity
is around 0.51 and close to the one reported in Column (3) of Table 3. In-
terestingly, the cardiologists appear to rapidly and permanently adapt to the
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prevailing practice style at the destination hospital for the entire duration of
the follow-up period.

The corresponding period-specific effect pattern in the right figure panel,
where hospital fixed effects have been added to the model, describes a smaller,
but still pronounced, change in the moving cardiologist’s behavior at the time
of relocation. In this case, we observe a somewhat more gradual adaptation to
the destination hospital’s practice environment over time and that the initial
discontinuity at the time of relocation is somewhat smaller. We conclude from
this analysis that cardiologists in our sample are partially malleable to their
practice environment in terms of their own practice behavior, and that they
are responsive to both their social and their physical environments.

[Figure 4 about here]

5.2 Impact on quality of care

We next study the extent to which the environmentally induced changes in
migrating cardiologists’ DES use affected the appropriateness of physician
treatment choice and their consequences for patients’ health outcomes and
the costs of treatment. To this end, we estimate versions of Equation (8)
and Equation (9) by replacing our outcome variable with the three indica-
tors for major adverse cardiac events we consider: patient death, myocardial
infarction (MI), and total lesion revascularization (TLR) within a year from
the initial intervention. Moreover, we compare changes in physicians’ rates of
decision errors before and after their relocation using predictions from the RF
machine learning algorithm to predict optimal treatment choice. Based on the
results from these analyses, we conclude by providing a back-of-the-envelope
calculation of the excess costs incurred from the inappropriate use of stents
as a consequence of the change in practice environment.

5.2.1 Decision errors

Table 4 reports DD estimation results using decision errors, based on the
correspondence between migrating cardiologists’ choices and predictions from
our RF machine learning algorithm, as outcomes. Columns (1), (2) and (3)
show the estimates on the overall propensity to make inappropriate decisions,
and for Type I and Type II errors, respectively. Recall that Type I errors (false
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positives) refer to the application of DES when BMS is the recommended
treatment choice, and vice versa for Type II errors (false negatives). This
distinction is relevant as it is possible that making errors of the former type
may be subject to more severe risks for the patient due to the possibility of ST
and higher medical expenses due to increased unit costs of DES. In contrast,
the latter error type may be associated with higher total treatment costs in
the form of a higher prevalence of restenosis and the consequential need for
subsequent intervention.

The results from estimation show that the overall probability of making a
treatment error is positive, although not significantly different after, relative
to before, cardiologist relocation. Splitting the decision errors into Type I
and Type II errors, we find that physicians are somewhat more likely to make
Type I errors after their change in practice environment. In contrast, the
risk of committing Type II errors is reduced, but not significantly so. Hence,
this result suggests that migrating cardiologists are more likely to overuse
DES when they move to a hospital with higher use of DES than they are to
overuse BMS when moving to a hospital with lower DES use.

[Table 4 about here]

5.2.2 Patient health outcomes

Columns (2)-(4) of Table 5 report results from estimation of Equation (8)
for the three adverse patient health outcomes we consider: patient death,
myocardial infarction (MI), and total lesion revascularization (TLR) within
a year from the initial intervention. For comparison, the first column of the
table reproduces the results from our preferred specification in Column (4)
of Table 3. Each column corresponds to a specific outcome for our model
with hospital fixed effects, implying that the reported point estimates refer
to physician responses to the change in their peer environment. As before,
the reported parameter estimates are interpreted as the rate of change in
the outcome from a one percentage point change in the physicians’ practice
environment between the origin and destination hospitals. A negative sign
implies that the risk of the event is less likely, whereas a positive coefficient
indicates a higher risk.

The reported parameter estimates suggest that rates of changes in patient
outcomes are generally small and statistically indistinguishable from zero. The
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point estimate of 0.04 for MI is greatest in magnitude, but is only one-sixth
of the response for the choice of stent. We interpret this finding as indicat-
ing that patient health outcomes are not systematically related to migrating
physicians’ adaptation to their peer practice environment. One possible rea-
son for this result could be that the estimated changes in the cardiologists’
use of DES after relocation were mainly based on low-risk patients for which
the choice between a BMS and a DES was unlikely to put patients at serious
health risks.

[Table 5 about here]

Figure 5 illustrates the corresponding event study graphs based on Equa-
tion (9) and the outcomes from Table 5. The four panels in the figure, sepa-
rated by patient outcome, provide a similar pattern as above with no indica-
tions of important changes in patient health outcomes at any point over the
two years before or after cardiologists’ relocation. These results show that the
changes in treatment behavior induced by variation in the migrating cardiol-
ogists’ peer practice environment did not affect the quality of care in terms of
patient outcomes to any important extent.

[Figure 5 about here]

5.2.3 Costs of treatment

We have previously argued in Section 2 that the costs of using DES and BMS
are comparable in terms of the direct and indirect costs of treatment. In
particular, using figures from the Swedish agency for health technology as-
sessment (SBU), the total expected cost of using a DES and a BMS for an
average patient in Sweden in 2014 was SEK 66,901 and SEK 64,866, respec-
tively. The lion’s share of this cost (SEK 59,000) is derived from a fixed
hospital reimbursement fee based on the PCI procedure and two nights stay
at the hospital, according to figures used in the Nordic DRG patient classi-
fication system.17 The remainder is the cost of the stent, modified by the
expected number of stents inserted per intervention and the probability of a
subsequent intervention. While the expected cost of a DES is significantly
higher than the cost of a BMS, SEK 3,500 versus SEK 1,000, this is traded

17See http://www.nordcase.org/eng/materials/manuals
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off against a lower risk of restenosis, 0.039 versus 0.074, while the expected
number of inserted stents is the same for both stent types (SBU, 2014).

We use our previous estimation results in this section to calculate a rough
estimate of the average excess cost that a migrating cardiologist incurred from
adaptation to the new practice environment after relocation. Given that we
do not find a difference in the propensity of revascularization for the migrating
cardiologists, a back-of-the-envelope calculation of the increased cost burden
from the additional Type I errors we estimate can be produced by multiplying
the estimated number of inappropriately used DES by the difference in unit
costs between the two stent types. Table 1 shows that the average absolute
change in practice environment for the migrating cardiologists is 0.3 and the
average annual number of PCIs per cardiologist is 65. The estimated increase
in Type I errors in roughly 0.2 percentage points for each percentage point
change in practice environment. Thus, on average, a migrating cardiologist
inappropriately inserted 0.3 × 0.2 = 0.06 additional DES after relocation,
amounting to an increase of around four stents per year. Multiplying this
number with the cost difference between the BMS and the DES yields a cost
increase of approximately SEK 10,000 (USD 1,200), or around one-sixth of the
total cost of a PCI per migrating cardiologist. We conclude that this figure is
rather small in the specific context of treatment of coronary heart disease.

5.3 Robustness and sensitivity checks

Lastly, we report estimation results from a set of extensions to our main anal-
ysis to gauge the sensitivity of our findings to alternative model and sample
specifications. We first study effect heterogeneity with respect to physician age
and the direction of the change in practice environment of migrants. Next,
we analyze the stability of our results with respect to the definition of the
practice environment by reestimating our main DD model using a synthetic
environment and non-moving cardiologists to predict counterfactual states.

5.3.1 Heterogeneity across physicians and change in practice envi-
ronment

Table 6 reports split-sample results from estimation of our main DD model
separately for cardiologists moving to hospitals with higher and lower shares
of DES, displayed in Columns (1) and (2), and for younger and older migrants,
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based on the median age of migrating cardiologists, displayed in Columns (3)
and (4), respectively. Again, we focus on the peer environment by includ-
ing hospital fixed effects in the model. The motive behind this analysis is to
evaluate whether our main results are driven by specific subgroups. We antic-
ipate that relatively younger physicians’ practice styles are likely to be more
malleable due to their lower practical experience and being in an earlier stage
of their careers, consistent with the theory of champions, or opinion leaders,
of clinical care (see, e.g., Shortell et al., 2004). Furthermore, it is possible
that migrating physicians are more susceptible to adopting treatment styles
in more innovative practice environments, here characterized as a higher share
of the relatively newer DES, due to the attractiveness of new technology (see,
e.g., Hofmann, 2015).

Our predictions align with the empirical evidence reported in Table 6 in
that the estimated response to the change in practice environment is mainly
driven by younger cardiologists who move to more innovative environments.
While the first two columns suggest that the effect is positive for both positive
and negative ∆jt’s (albeit the latter coefficient is not statistically significant),
the last two columns indicate that more senior cardiologists do not respond at
all to their peer practice environment when relocating. Thus, heterogeneity in
the effect across both physicians and their environments seem to be important
to understand clinicians’ reactions to their practice environment.

[Table 6 about here]

5.3.2 Synthetic environment

One empirical issue with the DD approach outlined so far is that migrating
cardiologists are unlikely to randomly relocate between hospitals. This leads
to two inferential problems with respect to the interpretation of our main find-
ings. The first problem relates to the external validity of our estimated effects.
Migrating physicians may constitute a selected group that is unrepresentative
for the physician population at large. While Table 1 suggests some differences
in observable characteristics between moving and non-moving physicians, such
as age, the case-mix of patients they treat and the quality of care they provide
is indistinguishable from those of non-moving cardiologists. We take this as
evidence supporting the notion that the subpopulation of cardiologists mov-
ing across hospitals is not widely different from non-moving cardiologists with
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respect to relevant characteristics.
The second problem relates to the internal validity of our estimates and is

potentially more severe as it may invalidate our approach altogether. Specif-
ically, if physicians generally move to hospitals based on their preferences for
using DES, the associations we estimate and interpret as caused by changes in
practice environment cannot be empirically distinguished from the sorting of
physicians to hospitals with practice environments based on their clinical pref-
erences. A similar argument can be raised with respect to the specific peers
that the physicians are working together with within a hospital. Although
the results from Figure 3 and Table 3 are reassuring in the sense that the
common trend assumption is not rejected, we may still be concerned that the
counterfactual practice environment is estimated with bias.18 To test whether
our approach is robust to alternative definitions of practice environments, we
propose to extend our analysis by using a synthetic control method derived
from a different source of variation to estimate the counterfactual practice
environment.

To find a suitable control group that can serve to identify the counterfac-
tual state of migrating cardiologists should they not have moved, we define a
synthetic practice style environment from the pool of non-migrating cardiol-
ogists (see, e.g., Abadie and Gardeazabal, 2003; Abadie et al., 2010, 2015).19

For each migrating cardiologist j ∈ J , we define ∆̃jt = ∑
cwc∆ct as the coun-

terfactual environment based on non-migrating cardiologists, c ∈ C /∈ J . The
weights, wc, are chosen to minimize functions of pre-migration DES share
levels (∑s∈t<t0 ∆js − ∆̃js) and slopes (∑s∈t<t0 ∂∆js/∂s − ∂∆̃js/∂s) based on
a constrained quadratic optimization routine. A corresponding approach is

18It is a priori unlikely that physician sorting based on preferences for individual treat-
ments occurs due to that they do not possess the individual freedom to schedule their work
hours in such detail. Moreover, such sorting would most likely generate conservative bias in
our estimates since estimated changes in both the practice environment and the responses
therefrom would be based on matching of physicians with similar preferences. In such cases,
these changes would thus be smaller than if they were truly random.

19Although the synthetic control method was originally developed for a single treated
unit, the framework can easily accommodate estimation with multiple treated units by fit-
ting separate synthetic controls for each of the treated units (see, e.g., Abadie, 2020). While
there is no important conceptual difference in the contexts of one versus multiple treated
units, practice issues relating to the non-uniqueness of the solution to the minimization
problem when selecting weights for the synthetic controls are exacerbated in the latter. To
address this issue, Abadie and L’Hour (2019) propose a synthetic control estimator that
incorporates a penalty for pairwise matching discrepancies between the treated units and
each of the units that contributes to their synthetic controls.
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applied to estimate the counterfactual environment in the pre-migration pe-
riod using post-migration DES share levels and slopes. Finally, the resulting
counterfactual estimates are applied to versions of the event study model in
Equation (9) where the original practice style environment, ∆jt, has been
replaced with its synthetic equivalent, ∆̃jt.

Figure 6 illustrates the synthetic environment approach (darker-colored
lines) and how it relates to the previous approach by overlaying the corre-
sponding trends in practice environment from Figure 3 (brighter-colored lines).
The two definitions mostly overlap, with the exception of the post-migration
counterfactual environment among cardiologists moving to less DES-intensive
hospitals that is somewhat lower than the corresponding environment using
the original approach. This suggests that, while the two types of counterfac-
tual environments are partially based on the same empirical variation, there
are also some notable differences between them.

[Figure 6 about here]

Finally, we study whether our main estimation results are sensitive to the
definition of practice environment. Table 7 reports estimation results from
our main DD model where we have replaced ∆jt with ∆̃jt in the analysis.
Reassuringly, the results are close to our main estimation from Table 5: a
change in DES use of migrating cardiologists of around 0.31 percentage points
for each percentage point change difference in synthetic practice environment
between origin and destination hospitals but no corresponding impacts on
adverse patient outcomes. We conclude from this analysis that our main
results are robust to the definition of practice environment with respect to
whether it is derived from the hospital or from the pool of non-migrating
cardiologists.

[Table 7 about here]

6 Conclusions

This paper empirically analyzes how physicians’ treatment decisions are influ-
enced by their practice environment and how such decisions affect the quality
of care received by patients. We study these questions in the context of the
choice between using bare metal stents (BMS) or drug-eluting stents (DES)
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among interventional cardiologists in Sweden performing percutaneous coro-
nary interventions (PCI) on patients diagnosed with coronary artery disease.
To obtain empirical variation in a physician’s practice environment, we iden-
tify cardiologists who moved between hospitals and relate changes in their
own treatment behavior and subsequent patient outcomes to differences in
the hospital’s practice environment before and after they relocated. The over-
all physician response to their environment is then decomposed into a physical
(provider-specific) and a social (peer group-specific) component by exploiting
quasi-random information on the practice behavior of migrating physicians’
coworkers within a hospital. Finally, we relate the environmentally induced
changes in practice environment to variations in physicians’ rate of decision
errors and patient adverse clinical events to gauge whether the practice style
changes led to important changes in quality of care provision.

Similar to the results reported in Molitor (2018), we find that migrating
cardiologists rapidly, but not fully, adapt to the prevailing practice environ-
ment in their use of DES after relocating. Our estimates suggest that cardi-
ologists change their use of DES with around 0.5 percentage points for each
percentage point difference in practice environment between the origin and
destination hospitals. Decomposing the overall effect into a provider-specific
and a peer group-specific component, we find that around half of the response
is driven by the latter effect, suggesting that a physician’s peer group is as
influential as the physical work environment in altering treatment styles. Fur-
thermore, we find no evidence that either major adverse cardiac events, such
as heart attacks or patient death, physician decision errors, measured using
a Random Forest (RF) machine learning algorithm, or treatment costs, were
strongly associated with changes in the migrating physicians’ treatment styles.
This could potentially be explained by the fact that medical decisions were
still made within prevailing medical guidelines and did not lead to signifi-
cantly increased health risks for cardiac patients. Finally, estimation results
from a set of split-sample heterogeneity analyses show that our main effects
are primarily driven by younger cardiologists who move to more innovative
environments (i.e., with higher use of DES), suggesting that both environ-
mental as well as individual characteristics appear to be important for the
magnitude of physician response.

In conclusion, the results obtained in this paper have important bear-
ing on current health policy with respect to the causes and consequences of
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unwarranted regional variations in healthcare use (see, e.g., Corallo et al.,
2014). Recent evidence on the extent to which regional variations are driven
by providers or individual clinicians have emphasized the role of the latter
(see, e.g., Gutacker et al., 2018). That physicians strongly respond and adapt
to their prevailing practice environment, and that such conforming arises from
both the provider itself and from the workplace peers, suggest a rationale for
why physician treatment styles may cluster in specific areas. The absence
of an impact on patient outcomes from such adjustments also provides an
explanation for the conundrum of a weak observable correlation between re-
gional variations in the costs and the quality of healthcare provision (see,
e.g., Fisher et al., 2003a,b). Although concrete policy advice may require
more substantiated evidence which we leave for further work, we believe that
our results show that information campaigns aimed at harmonizing treatment
choice among healthcare professionals, such as clinical guidelines, may need
to be complemented with alternative measures, such as additional physician
training, to significantly reduce unwarranted variations in healthcare use.
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Tables and figures

Table 1.
Descriptive sample statistics

Moving cardiologists Non-moving cardiologists

Mean SD Mean SD

Hospital characteristics
Teaching hospital 0.38 0.49 0.41 0.49
RiksHIA quality index 3.73 1.95 3.84 1.95
Case volume 7,861 7,349 8,912 7,468

Hospitals 25 28

Cardiologist characteristics
Male 0.93 0.25 0.90 0.30
Age 46.59 6.45 49.00 7.20
Specialization in cardiology 0.85 0.35 0.70 0.46
Total error rate 0.40 0.05 0.39 0.07
Type I error rate 0.14 0.06 0.15 0.08
Type II error rate 0.26 0.08 0.24 0.10

Cardiologists 51 148

Patient characteristics
Risk factors
Male 0.73 0.45 0.72 0.45
Age 65.81 10.94 66.00 11.11
Smoker 0.79 0.79 0.82 0.79
Diabetes 0.17 0.37 0.17 0.37
Chronic obstructive pulmonary disease 0.01 0.11 0.02 0.12
Peripheral vascular disease 0.00 0.05 0.00 0.07
Hypertension 0.49 0.50 0.50 0.50
Previous infarction 0.20 0.40 0.18 0.39
Previous CABG 0.09 0.28 0.08 0.27
Previous PCI 0.11 0.31 0.10 0.30

Outcomes
DES treatment 0.36 0.48 0.42 0.49
Death (1 year) 0.04 0.19 0.04 0.19
MI (1 year) 0.07 0.26 0.07 0.26
TLR (1 year) 0.06 0.24 0.06 0.23
Total error rate 0.42 0.49 0.40 0.49
Type I error rate 0.12 0.32 0.15 0.36
Type II error rate 0.30 0.46 0.25 0.43

Cases 8,589 51,381

Note.— SCAAR data for years 2004–2013. Means and standard deviations for samples of
moving and non-moving cardiologists. Patient characteristics are missing for a subset of observa-
tions: gender (28 cases), smoking (4,893 cases), diabetes (680 cases), hypertension (1,535 cases),
previous infarction (1,724 cases), previous CABG (158 cases), previous PCI (168 cases); and car-
diologist characteristics: age (739 cases); specialization (692 cases); and hospital characteristics:
RiksHIA quality index (693 cases). All observations with missing characteristics are included in
the analysis by defining dummy variables for the missing categories.
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Figure 1.
Distributions of predicted gold standard DES probabilities and

cardiologists’ decision errors

Note.— SCAAR data for years 2004–2013. Left panel presents distribution of predictions
of “gold standard” treatment, with respect to use of DES in angioplasty treatments, from
estimation of the random forest (RF) machine learning algorithm explained in Section 4.2.
Predictions are based on an auxiliary sample of non-moving cardiologists working in univer-
sity hospitals years 2011–2012. See also Breiman (2001); Svetnik et al. (2003). Right panel
shows corresponding decision errors by comparing migrating cardiologists’ actual choices
to gold standard predictions. Vertical lines correspond to thresholds for classification into
Type I and Type II errors.

Table 2.
Cardiologist treatment decision matrix

BMS recommended DES recommended Error rate

Treated BMS 3,026 2,603 46%
Treated DES 982 1,972 33%

Note.— SCAAR data for years 2004–2013. Recommended treatments are classified according
to predictions from estimation of the random forest (RF) machine learning algorithm explained
in Section 4.2. Predictions are based on an auxiliary sample of non-moving cardiologists working
in university hospitals years 2011–2012. Error rates are defined as the share of chosen non-
recommended treatments among all treatments using the specific stent type. See also Figure 1.
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Figure 2.
Distributions of migrating cardiologists’ practice environments

.Note.— SCAAR data for years 2004–2013. Upper panels pertain to physicians’ practice
environment prior to relocation without (left panel) and with (right panel) adjustment for
hospital fixed effects. Lower panels show corresponding distributions for the difference in
practice environment between migrating cardiologists’ origin and destination hospitals, ∆jt

Figure 3.
Average trends in migrating cardiologists’ practice environments

Note.— SCAAR data for years 2004–2013. Practice environment defined as the share of
DES used in angioplasty treatments in realized (solid lines) and counterfactual (dashed
lines) hospitals by quarter from the cardiologist’s move. Separate plots for cardiologists
moving to hospitals with lower and higher intensity of DES use. Vertical dashed line indi-
cates recentered quarter of physician relocation from the origin to the destination hospital.
Quarter of move linearly interpolated.
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Table 3.
Difference-in-Differences estimates of migrating cardiologists’

changes in practice environment: Use of DES
(1) (2) (3) (4)
DES DES DES DES

Post -0.003 -0.030 0.014 0.003
(0.022) (0.034) (0.020) (0.023)

∆jt -0.131 -0.253** -0.164 0.013
(0.085) (0.126) (0.105) (0.087)

Post × ∆jt 0.719*** 0.485** 0.523*** 0.247***
(0.130) (0.201) (0.114) (0.090)

Covariates X X X
Year FE X
Origin hospital FE X
Year-quarter FE X X
Cardiologist FE X X
Hospital FE X

Cardiologists 51 51 51 51
Observations 8,589 8,589 8,589 8,589

Note.— SCAAR data for years 2004–2013. Coefficient estimates from OLS estimation of Equa-
tion (8). Dependent variable is an indicator for whether a patient undergoing PCI received a
DES. Covariates include all hospital and cardiologist characteristics as well as patient risk factors
reported in Table 1. Robust standard errors clustered by hospital in parentheses. * p < 0.1, **
p < 0.05, *** p < 0.01.

Figure 4.
Event study estimates of migrating cardiologists’ changes in

practice environment: Use of DES

Note.— SCAAR data for years 2004–2013. Dots correspond to coefficient estimates of
γt′ from OLS estimation of Equation (9). Dependent variable is an indicator for whether
a patient undergoing PCI received a DES. Covariates include hospital, cardiologist char-
acteristics and patient risk factors reported in Table 1 and fixed effects for year-quarter,
cardiologist, and hospital (right panel only). Vertical spikes around coefficient estimates
pertain to robust 95 percent confidence intervals clustered by hospital.
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Table 4.
Difference-in-Differences estimates of migrating cardiologists’

changes in practice environment: Decision errors
(1) (2) (3)

Error Type I Type II

Post 0.005 0.026 -0.020
(0.027) (0.018) (0.024)

∆jt -0.025 -0.014 -0.014
(0.068) (0.053) (0.069)

Post × ∆jt 0.096 0.185** -0.081
(0.081) (0.075) (0.077)

Covariates X X X
Year-quarter FE X X X
Cardiologist FE X X X
Hospital FE X X X

Cardiologists 51 51 51
Observations 8,589 8,589 8,589

Note.— SCAAR data for years 2004–2013. Coefficient estimates from OLS estimation of Equa-
tion (8). Dependent variables are indicators for whether a patient undergoing PCI received a
non-recommended stent type. See Section 4.2 for details. Column (1) reports results for the
propensity to commit any error while Column (2) and (3) reports error decomposition results
for false positives and false negatives, respectively. Covariates include all hospital and cardiol-
ogist characteristics as well as patient risk factors reported in Table 1. Robust standard errors
clustered by hospital in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

Table 5.
Difference-in-Differences estimates of migrating cardiologists’

changes in practice environment: Patient outcomes
(1) (2) (3) (4)
DES Death Infarct TLR

Post 0.003 -0.009 0.001 -0.009
(0.023) (0.008) (0.011) (0.011)

∆jt 0.013 -0.047 -0.069* -0.053
(0.087) (0.030) (0.037) (0.033)

Post × ∆jt 0.247*** -0.011 0.041 0.028
(0.090) (0.027) (0.042) (0.033)

Covariates X X X X
Year-quarter FE X X X X
Cardiologist FE X X X X
Hospital FE X X X X

Cardiologists 51 51 51 51
Observations 8,589 8,589 8,589 8,589

Note.— SCAAR data for years 2004–2013. Coefficient estimates from OLS estimation of Equa-
tion (8). Dependent variables from left to right are indicators for whether a patient undergoing
PCI received a DES and whether the patient died, suffered a myocardial infarction, or had an-
other angioplasty within one year from the intervention, respectively. See Section 4.2 for details.
Covariates include all hospital and cardiologist characteristics as well as patient risk factors re-
ported in Table 1. Robust standard errors clustered by hospital in parentheses. * p < 0.1, **
p < 0.05, *** p < 0.01.
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Figure 5.
Event study estimates of migrating cardiologists’ changes in

practice environment: Patient outcomes

Note.— SCAAR data for years 2004–2013. Dots correspond to coefficient estimates of γt′
from OLS estimation of Equation (9). Dependent variables from top left to bottom right are
indicators for whether a patient undergoing PCI received a DES and whether the patient
died, suffered a myocardial infarction, or had another angioplasty within one year from
the intervention, respectively. Covariates include hospital, cardiologist characteristics and
patient risk factors reported in Table 1 and fixed effects for year-quarter, cardiologist, and
hospital. Vertical spikes around coefficient estimates pertain to robust 95 percent confidence
intervals clustered by hospital.

Table 6.
Difference-in-Differences estimates of migrating cardiologists’
changes in practice environment: Heterogeneity analyses

Environment ± Physician age

(1) (2) (3) (4)
∆jt > 0 ∆jt < 0 Below median Above median

Post -0.021 -0.002 0.020 -0.059
(0.051) (0.043) (0.025) (0.038)

∆jt -0.077 0.075 0.161 -0.032
(0.129) (0.146) (0.142) (0.106)

Post × ∆jt 0.323** 0.184 0.292* -0.080
(0.154) (0.187) (0.159) (0.121)

Covariates X X X X
Year-quarter FE X X X X
Cardiologist FE X X X X
Hospital FE X X X X

Cardiologists 24 27 23 28
Observations 3,776 4,813 4,429 4,160

Note.— SCAAR data for years 2004–2013. Coefficient estimates from OLS estimation of Equa-
tion (8). Dependent variable is an indicator for whether a patient undergoing PCI received a
DES for different subsamples. Columns (1) and (2) splits the sample into cardiologists moving to
more and less DES-intensive hospitals. Columns (3) and (4) splits the sample into younger and
older cardiologists with median cardiologist age as threshold. Covariates include all hospital and
cardiologist characteristics as well as patient risk factors reported in Table 1. Robust standard
errors clustered by hospital in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 6.
Average trends in migrating cardiologists’ realized and synthetic

practice environments

Note.— SCAAR data for years 2004–2013. Practice environment defined as the share of
DES used in angioplasty treatments in realized (solid lines) and counterfactual (dashed
lines) hospitals by quarter from cardiologist move. Brighter lines pertain to estimates of
∆jt while darker lines pertain to the estimated synthetic practice environment, ∆̃jt. See
Section 5.3.2 for details on the construction of this variable. Separate plots for cardiologists
moving to hospitals with higher and lower intensity of DES use. Vertical dashed line indi-
cates recentered quarter of physician relocation from the origin to the destination hospital.
Quarter of move linearly interpolated.

Table 7.
Difference-in-Differences estimates of migrating cardiologists’
changes in synthetic practice environment: Patient outcomes

(1) (2) (3) (4)
DES Death Infarct TLR

Post -0.022 -0.009 0.005 -0.011
(0.023) (0.008) (0.012) (0.011)

∆̃jt 0.122 -0.060 -0.019 -0.047
(0.139) (0.036) (0.025) (0.043)

Post × ∆̃jt 0.312** 0.019 0.006 0.056
(0.128) (0.028) (0.038) (0.053)

Covariates X X X X
Year-quarter FE X X X X
Cardiologist FE X X X X
Hospital FE X X X X

Cardiologists 51 51 51 51
Observations 6,729 6,729 6,729 6,729

Note.— SCAAR data for years 2004–2013. Coefficient estimates from OLS estimation of Equa-
tion (8) using the estimated synthetic practice environment, ∆̃jt in place of ∆jt. See Section 5.3.2
for details on the construction of this variable. Dependent variables from left to right are indica-
tors for whether a patient undergoing PCI received a DES and whether the patient died, suffered
a myocardial infarction, or had another angioplasty within one year from the intervention, respec-
tively. See Section 4.2 for details. Covariates include all hospital and cardiologist characteristics
as well as patient risk factors reported in Table 1. Robust standard errors clustered by hospital
in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Appendix A Additional tables and figures

Figure A.1.
Random Forest machine learning algorithm

Training Data

Bootstrap aggregating

. . .

Tree 1 Tree 2 Tree n

Classification

Prediction

Figure A.2.
Variable importance weights in Random Forest prediction

Note.— SCAAR data for years 2011–2012. Higher values indicate greater importance
of variable in predicting outcomes. Included variables: patient’s gender; age; reason for
hospitalization; diabetes; COPD; peripheral vascular disease; hypertension; hyperlipidemia;
previous infarction; previous CABG; previous PCI; previous stroke; patient creatinin clear;
hemoglobin test; any occlusion; angiography results by segment including degree of stenosis
severity and duration ; left ventricular ejection fraction; location of lesions; 3-vessel and/or
LM lesion; number of treated segments; primary diagnosis.
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Figure A.3.
Distribution of raw DES rates

across hospital regions in Sweden,
2004–2013

Note.— SCAAR data for years 2004–2013. Re-
gional administrative map of the 21 county councils
in Sweden. Intensity of shaded areas reflect aver-
age shares of DES use among patients undergoing
angioplasty treatment across all years.
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