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Abstract

Conditional heteroskedasticity of the error terms is a common occurrence in financial factor

models, such as the CAPM and Fama-French factor models. This feature necessitates the use

of heteroskedasticity consistent (HC) standard errors to make valid inference for regression

coefficients. In this paper, we show that using weighted least squares (WLS) or adaptive least

squares (ALS) to estimate model parameters generally leads to smaller HC standard errors

compared to ordinary least squares (OLS), which translates into improved inference in the form

of shorter confidence intervals and more powerful hypothesis tests. In an extensive empirical

analysis based on historical stock returns and commonly used factors, we find that conditional

heteroskedasticity is pronounced and that WLS and ALS can dramatically shorten confidence

intervals compared to OLS, especially during times of financial turmoil.
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1 Introduction

The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) is a cornerstone of

finance and marks the birth of asset pricing theory. It is part of just about any finance curriculum

in academia and is also widely used in the industry; for an in-depth review, see Fama and French

(2004). The model states that the expected excess return of a stock is proportional to the expected

excess return of the market:

E(R− rf ) = βE(Rm − rf ) ,

where R denotes the return of the stock, rf denotes the risk-free rate, and Rm denotes the return of

the market. The coefficient β is known as the “beta” of the stock and measures its riskiness with

respect to the market: the larger is β, the riskier is the stock compared to the market and the larger

is also the expected (excess) return of the stock.

In practice, the beta of a stock is unknown and needs to be estimated from historical data.

To this end it is common to consider a regression model of the following kind:

rt = α+ βrm,t + εt , (1.1)

with E(εt|rm,t) = 0. Here, t ∈ {1, . . . , n} indexes dates,

• rf,t denotes the return of the risk-free asset at date t,

• rt ..= Rt − rf,t denotes the excess return of the stock at date t,

• rm,t ..= Rm,t − rf,t denotes the excess return of the market at date t, and

• εt denotes a mean-zero error term.

Even though the CAPM postulates that α = 0 in regression (1.1), it still is customary to include

an intercept in practice when estimating the model. One of the reasons is that one might be

interested in testing a violation of the CAPM, that is, in testing the hypothesis H0 : α = 0 against

the alternative H1 : α 6= 0. Another reason is that the usual interpretation of the R2 statistic of an

OLS regression (as the percentage of the variation in the regressand explained by the estimated

model) is not valid if the regression does not contain an intercept.

More generally, the Arbitrage Pricing Theory (APT) of Ross (1976) states that the expected

excess return of a stock can be modeled as a linear function of several factors or theoretical market

indices. Thereby, the sensitivity to changes in each factor is represented by a factor-specific beta

coefficient. In slight abuse of notation, a general (multi-)factor model can be written as

rt = β′xt + εt , (1.2)

where
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• xk,t denotes the return of factor k at date t, stacked into xt ..= (x1,t, . . . , xK,t)
′,

• x1,t ≡ 1 in case an intercept is included,

• βk denotes the beta of factor k, stacked into β ..= (β1, . . . , βK)′, and

• εt denotes a mean-zero error term.

Clearly, model (1.2) nests model (1.1) with the choices xt ..= (1, rm,t)
′ and β ..= (α, β)′. For

reasons that will become apparent below, it is more convenient for our purposes to include a

(potential) intercept in xt, in which case its coefficient is β1, as opposed to ‘list’ it separately, with

coefficient α; of course, in such a case one would not think of the intercept as an actual factor. For

the same reasons, it is more convenient to denote the vector of factors by xt rather than by ft, with

the latter convention being more standard in the literature.

The search for factors that explain the cross-section of expected stock returns has produced

hundreds of potential candidates. Both Green et al. (2013) and Harvey et al. (2016) find more

than 300 articles and factors in this strand of literature. Additionally, Cochrane (2011) and more

recently McLean and Pontiff (2016) state that we have a “zoo” of (new) factors. Note that Hou

et al. (2017) even replicate the entire anomalies literature in finance and accounting by compiling a

largest-to-date data library that contains 447 anomaly variables.

Arguably, the classic multi-factor model is the three-factor model of Fama and French (1993):

xt ..= (1, rm,t,SMBt,HMLt)
′ , (1.3)

where SMB denotes the size factor and HML the value factor. The Fama-French three-factor model

was extended to a four-factor model by Carhart (1997):

xt ..= (1, rm,t,SMBt,HMLt,UMDt)
′ , (1.4)

where UMD denotes the momentum (winners minus losers) factor, and recently to a five-factor

model by Fama and French (2015):

xt ..= (1, rm,t,SMBt,HMLt,RMWt,CMAt)
′ , (1.5)

where RMW denotes the profitability factor, and CMA the investment factor. There are of course

many other (multi-) factor models, but to make our point clear, and as it is not obvious from the

literature which and how many factors should be considered, we will first focus on the most common

ones listed above.

The parameter vector β in a factor model is typically estimated via ordinary least squares (OLS).

To this end, it is standard to use daily data with the most common samples sizes being

252 ≤ n ≤ 1260, that is, one to five years of past data; for example, see Frazzini and Pedersen (2014)
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or De Nard et al. (2021). Alternatively, Bloomberg uses two years of weekly data for their beta

estimates and some even use monthly data with the most common samples sizes being n = 60 or

n = 120, that is, five or ten years of past data; for example, see Damodaran (2012, Chapter 8) and

Stock and Watson (2019, Section 4.2).

Some researchers still assume that stock and factor returns are independent and identically

distributed (i.i.d.) through time; for example, see Campbell et al. (2012, Section 4.3). It is more

general, and more realistic, however, to assume that stock and factor returns are (strictly) stationary

through time. Even this weaker assumption implies that the error terms are unconditionally

homoskedastic, that is, E(ε2t ) is a constant number and does not depend on t. A common occurrence,

which tends to be ignored by many applied researchers, is the one of conditional heteroskedasticity

of the error terms. In our general formulation (1.2), which will be the basis of our analysis from

here on (unless otherwise stated), this means that E(ε2t |xt) in general is not a constant number but

a function of xt.

2 Dealing with Conditional Heteroskedasticity

2.1 Methodology

Conditional heteroskedasticity does not present a problem for the estimation of model (1.2) via OLS

in the sense that the OLS estimator of β is still consistent under weak regularity conditions; having

said this, the OLS estimator is no longer efficient in the sense of having the smallest asymptotic

covariance matrix.

On the other hand, conditional heteroskedasticity does present a problem for inference in

model (1.2) in the sense that the usual standard errors of the OLS estimators of linear combinations

of β (such as specific elements of β) are no longer valid, since these standard errors are based on

an assumption of conditional homoskedasticity. Here, by the “usual” standard errors we mean the

default textbook standard errors; for example, see (Hayashi, 2000, Section 2.6).

The common way to deal with this problem is to combine OLS estimation with heteroskedasticity

consistent (HC) standard errors, which guarantees asymptotically valid inference under conditional

heteroskedasticity of unknown form. Such HC standard errors go back to the seminal paper of

White (1980) but, importantly, there have been subsequent alternative proposals to deliver better

finite-sample performance; for example, see Romano and Wolf (2017, Section 4) who describe in

detail five versions of HC standard errors (HC0–HC4) and recommend HC3 standard errors for

practical use.

As an alternative to OLS, Romano and Wolf (2017) suggest to use weighted least squares (WLS)

or adaptive least squares (ALS). These methods are based on the concept of a skedastic function
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that maps the factor (vector) xt into the corresponding conditional variance of the error term:

v(xt) ..= E(ε2t |xt) .

This function is unknown in practice but can be estimated from the observed data, resulting in an

estimator v̂(·); see below for a specific proposal.

The WLS method weights the data by division by
√
v̂(xt) before applying OLS. That is, one

considers the ‘transformed’ regression model

rt√
v̂(xt)

= β′
xt√
v̂(xt)

+ ε∗t with ε∗t
..=

εt√
v̂(xt)

. (2.1)

The parameter vector β is identical in model (2.1) compared to the original model (1.2), otherwise

the exercise of transforming the model would be pointless. Importantly, one also needs to use HC

standard errors for the inference in model (2.1) to allow for the possibility that v̂(·) may not be

a consistent estimator of the true skedastic function, as explained in detail by Romano and Wolf

(2017).

The ALS method ‘decides’ between the OLS method and the WLS method based on a pre-test

for conditional homoskedasticity. Only if this test rejects the null, that is, if this tests detects a

significant amount of conditional heteroskedasticity in the data, does one use WLS; otherwise one

uses OLS. Of course, either way, one must use corresponding HC standard errors for the inference.

In Monte Carlo studies, Romano and Wolf (2017) demonstrate two advantages of WLS and ALS

over OLS in the presence of conditional heteroskedasticity. First, the point estimators tend to have

smaller mean squared error (MSE); second, the HC3 standard errors for the point estimators tend

to be smaller, resulting in shorter confidence intervals and more powerful hypothesis tests. Further

empirical evidence is provided in Sterchi and Wolf (2017).

2.2 Parametric Specification of the Skedastic Function

We use the following parametric specification for the skedastic function:

vθ(xt) ..= exp(ν + γ2|x2,t|+ . . .+ γK |xK,t|) with θ ..= (ν, γ2, . . . , γK)′ . (2.2)

This specification tacitly assumes that an intercept is included in the factor model, that is, x1,t ≡ 1;

otherwise the specification should be

vθ(xt) ..= exp(ν + γ1|x1,t|+ . . .+ γK |xK,t|) with θ ..= (ν, γ1, . . . , γK)′ . (2.3)

Specification (2.2) without the absolute values around the xk,t is proposed by Wooldridge (2012,
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Chapter 8). Since in our case the xk,t can take on both negative and positive values, and it is

reasonable to assume that conditional heteroskedasticity depends on the magnitude only, using

tbsolute values makes more sense.

Another specification proposed by Romano and Wolf (2017) is

vθ(xt) = exp(ν + γ2 log |x2,t|+ . . .+ log γK |xK,t|) .

But this specification is problematic when not all of the |xk,t| are bounded away from zero, which is

clearly the case in our context.

In order to estimate the parameter vector θ in (2.2), we first estimate model (1.2) via OLS

and denote the corresponding residuals by ε̂t. Then, in principle, we would estimate the following

regression by OLS:

log
[
max(δ2, ε̂2t )

]
= ν + γ2|x2,t|+ . . .+ γK |xK,t|+ ut

and denote the resulting estimator by θ̂ ..= (ν̂, γ̂2, . . . , γ̂K)′.

The introduction of the lower bound δ2 on the left-hand side in this regression is necessary in

order to avoid taking the log of values very close (or even equal) to zero. Romano and Wolf (2017)

recommend the generic choice δ = 0.1 but we find that, for many data sets, truncation at δ2 = 0.01

takes place in a large fraction of the observations, which is not conducive to an accurate estimation

of θ. If necessary, we therefore ‘blow up’ all the variables in the regression by a factor of ten until

the fraction of truncations is at most 5%. More specifically, the parameter vector θ is estimated by

the OLS regression

log
[
max(δ2, 10q ε̂2t )

]
= ν10q + γ2|10qx2,t|+ . . .+ γK |10qxK,t|+ ut , (2.4)

where q ∈ {0, 1, 2, . . .} is the smallest non-negative integer such that the fraction of truncations on the

left-hand side is at most 5% with the lower bound δ2 = 0.01. With the resulting θ̂ ..= (ν̂, γ̂2, . . . , γ̂K)′

in hand, the estimator of the skedastic function used in regression (2.1) is then given by v̂(·) ..= vθ̂(·).
Regression (2.4) also determines the ‘decision’ underlying for the ALS estimator and the

corresponding inference: If the (joint) null hypothesis H0 : γ2 = . . . = γK = 0 is rejected in

this regression at significance level 0.1, then ALS coincides with WLS; otherwise, it coincides

with OLS.

Remark 2.1. Free programming code in the R language that implements this methodology can be

downloaded at www.econ.uzh.ch/en/people/faculty/wolf/publications.html.
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3 Theoretical Analysis

Romano and Wolf (2017) assume i.i.d. data to prove (asymptotic) validity of inference based on

WLS or ALS. But making such an assumption is unrealistic in the context of financial returns, for

example because of the well-known phenomenon of volatility clustering, at least at shorter horizons

such as at the daily or at the weekly horizon. For this reason we need to extend the methodology of

Romano and Wolf (2017) by proving its validity under a more general set set of assumptions that

is realistic for financial returns (at least when the assets are stocks and commonly used factors).

We maintain the following set of assumptions throughout the paper:

(A1) The linear model is of the form

rt = x′tβ + εt (t = 1, . . . , n) , (3.1)

where xt ∈ RK is a vector of explanatory variables (regressors) possibly including a constant,

β ∈ RK is a coefficient vector, and εt is the unobservable error term with certain properties

to be specified below.

(A2) The sample
{

(rt, x
′
t)
}n
t=1

is strictly stationary and ergodic.

(A3) The error terms satisfy

E(εt|xt, . . . , x1, εt−1, . . . , ε1) = 0 ∀t . (3.2)

(A4) The K ×K matrix Σxx
..= E(xtx

′
t) is nonsingular (and hence finite). Furthermore,

∑n
t=1 xtx

′
t

is invertible with probability one.

(A5) The K ×K matrix Ω ..= E(ε2txtx
′
t) is nonsingular (and hence finite).

(A6) There exists a nonrandom function v : RK → R+ such that

E(ε2t |xt) = v(xt) . (3.3)

Therefore, the skedastic function v(·) determines the functional form of the conditional

heteroskedasticity. Note that under (A6),

Ω = E
[
v(xt) · xtx′t

]
.

The two generalizations compared to Romano and Wolf (2017) are Assumptions (A2)–(A3), the

remaining assumptions being identical. This new set of assumptions allows for time-series dynamics
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that are realistic, or at least plausible, for many financial returns; in particular, time-varying

conditional (co)-volatilities can be incorporated, such as (multivariate) GARCH dynamics.

It is useful to introduce the customary vector-matrix notations

r ..=


r1
...

rn

 , ε ..=


ε1
...

εn

 , X ..=


x′1
...

x′n

 =


x11 . . . x1K

... . . .
...

xn1 . . . xnK

 ,

so that equation (3.1) can be written more compactly as

r = Xβ + ε . (3.4)

Furthermore, Assumptions (A2), (A3), and (A5) imply that

Var(ε|X) =


v(x1)

. . .

v(xn)

 .

We now can state the following theorem.

Theorem 3.1. With the above re-definitions of Assumptions (A.2)–(A.3), the following results of

Romano and Wolf (2017) continue to hold:

• Lemma 3.1

• Corollary 3.1

• Theorem 3.1

• Theorem 4.1

• An analog of Verification B.2 of assumptions for the parametric specification vθ(·) of (2.2)

Wherever necessary, the role of yi in these results is now taken over by rt, which is just a different

notation for the response variable in the regression model (3.1). Also, to point out the obvious,

observations are now indexed by t instead of by i as in Romano and Wolf (2017), and the sample

size is denoted by T instead of by n. The proof of the theorem is deferred to Appendix A.

For the detailed statements of the five results listed in Theorem 3.1 the reader is referred to

Romano and Wolf (2017). But to make this paper (more) self-contained in terms of grasping the

essentials for practical applications, we now briefly describe the import and the implications of the

various results.

Given two real-valued functions a(·) and b(·) defined on RK (the space where xi lives), define

8



Ωa/b to be the matrix given by

Ωa/b
..= E

[
a(xi)

b(xi)
· xix′i

]
,

assuming the expectation exists, of course. By the final (that is, fifth) result listed in Theorem 3.1,

θ̂ converges in probability to a limiting non-stochastic value θ0 for the parametric specification vθ(·)
of (2.2); recall here that θ̂ is the OLS estimator of θ based on the linear model (2.4). For compactness

of notation let w ..= vθ0 , and recall that v denotes the true skedastic function.

Under the stated assumptions (A.1)–(A.6) and some further moment assumptions, it then follows

from the first three results listed in Theorem 3.1 that the WLS estimator is asymptotically normal:

√
T (β̂WLS − β)

d−→ N
(
0,Avar((β̂WLS)

)
with Avar(β̂WLS) ..= Ω−11/wΩv/w2Ω−11/w ,

where
d−→ denotes convergence in distribution. Of course, this result implies that the WLS estimator

is consistent, that is,

β̂WLS

p−→ β ,

where
p−→ denotes convergence in probability.

Furthermore, under some moment conditions, it follows from the fourth result listed in Theorem 3.1

that the asymptotic covariance matrix Avar(β̂WLS) can be estimated consistently by applying standard

HC technology to the weighted data specified in (2.1); for example, see Long and Ervin (2000).

Inference on β can therefore be based on β̂WLS in conjunction with a consistent HC estimator

Âvar(β̂WLS) of Avar(β̂WLS) by applying the usual ‘textbook formulas’ for the t-test, for the F -test,

and for confidence intervals. The fourth result listed in Theorem 3.1, together with the discussion

just below it, implies that such inference is asymptotically valid following the reasoning; for example,

a correct null hypothesis will be rejected with a probability that is bounded above by the nominal

significance level in the limit;1 and a confidence interval will contain the true parameter with a

probability that converges to the nominal coverage level in the limit.

Analogously, consistency of the ALS estimator β̂ALS and asymptotic validity of the inference on β

based on β̂ALS is established as well.

4 Empirical Analysis

4.1 Data and Model Construction

We download daily stock return data from the Center for Research in Security Prices starting on

January 1, 1964, and ending on December 31, 2019. We restrict attention to stocks from the NYSE,

1When the parameter under test is univariate and the test is one-sided, the limiting rejection probability typically
is below the nominal significance level, unless the parameter is on the boundary of the null space.
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AMEX, and NASDAQ stock exchanges. We also download the daily risk-free rate and the returns

on the five factors of Fama and French (2015) and the momentum (winners minus losers) factor of

Carhart (1997) during the same period from the website of Ken French.

We restrict our attention to a one-factor and three multi-factor models: the CAPM, which uses

xt ..= (1, rm,t)
′; the three- and five-factor model of Fama and French (1993, 2015), which uses xt as

defined in (1.3), respectively in (1.5); and the four-factor model of Carhart (1997) which uses xt as

defined in (1.4).2 The models are re-estimated once a year on December 31, starting in 1968 and

ending in 2019. Doing so results in a total of 52 yearly estimates, indexed by h = 1, . . . , 52. For

any h, the models are estimated based on the most recent n = 1260 daily returns, which roughly

corresponds to using five years of past data; therefore, we are using a rolling-window rather than an

expanding-window approach, which is standard in the literature. For any h, the investment universe

is comprised of the set of stocks that have a complete return history over the corresponding past 1260

days. The top panel of Figure 1 displays the resulting size of the investment universe over time (Nh),

together with its decomposition into large-, small-, and micro-cap stocks.3 The middle panel of

the figure displays the percentage of stocks for which significant conditional heteroskedasticity is

detected in the CAPM, for the entire universe and also for the three sub-universes; the bottom

panel does the same for the Fama-French five-factor model. The resulting message is loud and clear:

There is ample evidence for conditional heteroskedasticity; indeed, the percentages are generally

well above 0.5 and can even get very close to 1, such as in the years after the financial crisis of 2008.

4.2 Performance Measure

Since WLS is based on an OLS regression after weighting the data, the point estimates for β differ

between WLS and OLS. In their Monte Carlo study, Romano and Wolf (2017) show that WLS and

ALS estimators for specific entries of β typically have smaller mean squared error (MSE) than the

OLS estimator; further numerical evidence is provided by Sterchi and Wolf (2017). Unfortunately,

in an application to real data, the MSE values cannot be compared, since the true parameters are

unknown.

Therefore, we restrict the comparison to the resulting standard errors when inference for univariate

parameters is carried out. In the following, we restrict attention to an arbitrary element βk of β;

more generally, inference for (non)linear combinations of β could be considered as well. Note that

the ratio of any two standard errors is equal to the ratio of the lengths of the two corresponding

confidence intervals, as the confidence intervals that we consider are the usual ‘textbook’ ones.

2To safe space and avoid repetitiveness, we sometimes only show results for the largest factor model, hence the
five-factor model of Fama and French (2015), as the results for the multi-factor models are very similar. If note stated
otherwise the results are comparable and representative for the other two multi-factor models.

3In principle, we could allow for small percentage of missing returns during the estimation period, to be replaced by
zeros, which would result in even larger investment universe. But even with our ‘strict’ rule the investment universes
are large, as the figure shows.
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Specifically, a generic nominal 1− λ confidence interval for βk is given by

β̂k,*LS ± tn−K,1−λ
2
× SEHC(β̂k,∗LS) ,

where ∗LS ∈ {OLS, WLS, ALS}, tn−K,λ denotes the λ quantile of the tn−K distribution, and SEHC

denotes a HC3 standard error. Consequently, the length of a confidence interval is proportional to

the underlying standard error irrespective of the nominal level 1− λ.

For any year we compute the two ratios

SEHC(β̂k,WLS)

SEHC(β̂k,OLS)
and

SEHC(β̂k,ALS)

SEHC(β̂k,OLS)
, (4.1)

and then use boxplots to visually ‘summarize’ their distribution over the 52 years.4 A ratio larger

(smaller) than one implies that the HC3 standard error for WLS, respectively ALS, is larger (smaller)

than the corresponding standard error for OLS. For both WLS and ALS, we report the percentage

of ratios that are smaller than one, and thus the percentage of cases where WLS, respectively ALS,

leads to improved inference compared to OLS.

Remark 4.1. Comparing the (average) lengths of confidence intervals computed from two different

inference methods could, in principle, be misleading, namely if one inference method is valid, in the

sense of producing confidence intervals whose true coverage probability is equal to (or larger) than

the nominal confidence level, whereas the other one is not. But this is not a concern here, since we

are estimating linear regression models with either K = 2, K = 4, K = 5 or K = 6 regressors based

on samples of size of n = 1260, in which case finite-sample validity is, for all practical purposes,

guaranteed for inference based on OLS, WLS, and ALS.

We also report the results on the pretest for conditional homoskedasticity, namely the percentage

of times the null hypothesis got rejected. These results shed light on whether (statistically significant)

conditional heteroskedasticity is indeed a common occurrence in financial factor-model regressions.

4.3 Results: CAPM

First, we focus on α ..= β1 and look at the entire investment universe. Figure 2 shows that for both

methods, WLS and ALS, the median ratio (4.1) is always (weakly) below one. Furthermore, in

most of the 52 years roughly 75% of the ratios (or more) lie weakly below one. Additionally, we find

that for 49 out of the 52 years, the mean ratio lies below one. This is a remarkable finding because,

by construction, (potential) small outliers of the ratios are bounded below by zero, but (potential)

large outliers are unbounded, so that outliers should move the mean in the direction “above one”.

The bottom line is that using WLS or ALS generally results in shorter confidence intervals for α

4Note that each boxplot is based on the time-varying investment universe depicted in Figure 1.
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compared to using OLS. This is particularly the case during times of financial turmoil (e.g., Black

Monday in 1987 or the financial crisis in 2008); intuitively, this finding can be explained by the

fact that after a stock market crash or during a financial crisis, volatility clustering is a (more)

pronounced phenomenon, especially at the daily return frequency as considered here.

Second, we focus on β ..= β2 and look again at the entire investment universe. The results are

similar to the ones for α. Figure 3 shows that (i) for both methods, WLS and ALS, the median

ratio (4.1) is also always (weakly) below one; (ii) in most of the 52 years at least 75% of the ratios

lie (weakly) below one; and (iii) even most of the mean ratios lie (weakly) below one. It is worth to

mention that for most of the periods the results for ALS are a bit more ‘condensed’ compared to

those for WLS. In particular in the 80s and 90s, the 75th percentile of ALS avoids ratios in excess

of one. Therefore, using WLS and especially ALS generally results in shorter confidence intervals

for β compared to using OLS. As already discussed above, the benefit of WLS and ALS increases

during times of financial turmoil due to the higher degree of conditional heteroskedasticity then.

As a robustness check, motivated by Fama and French (2008), we now repeat the analysis by

breaking up the entire investment universe into large-, small-, and micro-cap stocks. For a particular

year, a stock is classified as ‘large’ if it has a market cap above the 50th NYSE percentile; as ‘small’

if it has a market cap between the 20th and 50th NYSE percentile; and as ‘micro’ if it has a market

cap below the 20th NYSE percentile. The resulting ‘sub-universe sizes’ are displayed in the top panel

of Figure 1. We point out that although micro-cap stocks generally have the largest sub-universe

size (on average as large as the other two sizes together), they only make up a minor fraction of the

total market capitalization (on average about 3%).

Figures 4 and 5 are the equivalents of Figures 2 and 3 when attention is restricted to large-cap

stocks. One can see that, in a given year, the ratios now show less dispersion: In general the length

of the boxes is reduced and the number of outliers as well. The benefit of using WLS/ALS during

times of financial turmoil is even more pronounced now; for example, the mean ratios for both

WLS and ALS are down to about 0.5 in the years after Black Monday 1987 when the parameter of

interest is β. We also report the combined results for small- and micro-caps in Figure 6, where for

readability we restrict attention to the ratios for ALS. The benefits compared to OLS are still there,

if less pronounced compared to large-cap stocks.

The graph in the middle panel of Figure 1 sheds some light on the amount of conditional

heteroskedasticity present in the CAPM: On average, over the years, the null of conditional

homoskedasticity gets rejected roughly 74% of the time.

Finally, is there any preference between WLS and ALS? To address this question, Figure 7

presents, over the 52 years, the percentage of the standard-error ratios, WLS/OLS and ALS/OLS,

that are below one; this done for the entire universe and also for the three sub-universes. According to

this metric, ALS uniformly dominates OLS, whereas WLS does not. Therefore, our recommendation
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in the end is to use ALS.

4.4 Results: Multi-Factor Models

In this section we analyze the effect of conditional heteroskedasticity in multi-factor models. More

specifically, we extend the CAPM with the small minus big (SMB) size factor, the high minus low

(HML) value factor, the robust minus weak (RMW) profitability factor, the conservative minus

aggressive (CMA) investment factor, and the winners minus loser (UMD) momentum factor. Of

course many other factors could be included in the model; however, we restrict our attention to the

arguably most common multi-factor models of Fama and French (1993, 2015) and Carhart (1997).

In general, we find that also for the multi-factor models conditional heteroskedasticity of the error

terms is a common occurrence and that WLS, respectively ALS, tend to reduce HC3 standard errors

compared to OLS.

The graph in the bottom panel of Figure 1 sheds some light on the amount of conditional

heteroskedasticity present in the five-factor model: On average, over the years, the null of conditional

homoskedasticity gets rejected roughly 75% of the time.

As for the CAPM, we find that usually the null gets rejected more frequently during periods

of financial turmoil, as volatility clustering is then more pronounced, and that the percentage of

rejecting the null is robust across the investment universes. In terms of the investment universe,

we find again that WLS and ALS work across all NYSE breakpoints categories. Thus, for sake of

simplicity we report only the results for large-cap stocks.

Figure 8 presents the α HC3 standard-error ratios for large-cap stocks. Note that the median

and mean α ratios are always below one and that the power of WLS and ALS is slightly higher in

the five-factor model compared to the CAPM. We also plot the βrm,t HC3 standard-error ratios

for large-cap stocks in Figure 9. The results for the market factor look similar to those for the

CAPM, but again they are even slightly better. Finally, we also report the results for the other

four Fama-French factors in Figure 10. In sum, WLS and ALS overall prominently reduce the HC3

standard errors compared to OLS for all investigated factors (and also for the intercept).

Even more impressive are the results concerning the percentages of HC3 standard-error ratios

that lie below one, presented in Figure 11 and Table 1. We find that ALS consistently and often

markedly outperforms WLS across all factors, and also for the intercept. Therefore, again, applied

researchers are advised to abandon OLS and update instead to ALS, which reduces the HC3 standard

errors, and thus the length of the confidence intervals, in 79%–94% of the cases (depending on the

coefficient).
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HC3 Standard-Error Ratios < 1

α βrm,t βSMB βHML βRMW βCMA βUMD

CAPM

WLS 83% 74% − − − − −
ALS 90% 83% − − − − −

Fama-French 3-Factor Model

WLS 87% 74% 73% 75% − − −
ALS 93% 83% 83% 84% − − −

Carhart 4-Factor Model

WLS 87% 73% 75% 76% − − 69%

ALS 93% 82% 83% 84% − − 79%

Fama-French 5-Factor Model

WLS 87% 75% 75% 76% 77% 77% −
ALS 94% 84% 85% 85% 86% 86% −

Table 1: Percentages of HC3 standard-error ratios that lie below one for all coefficients of the various
factor models. All percentages are based on daily data for large-cap stocks from 12/31/1968 through
12/31/2019. For any coefficient and model, the highest number appears in bold face.

4.5 Robustness Checks

To further robustify our results, we carry out the following two exercises. First, we use a different

data frequency, namely monthly data. Second, we stick to the daily frequency but use alternative

(past-window) sample sizes n, corresponding to one year, two years, five years, and ten years.

To save space, we simply report the main findings here; but the detailed results are also available

upon request.

For the monthly data frequency we consider only the most common sample sizes, being n = 60

and n = 120, that is, five and ten years of past data. Compared to daily data the sample size is

very small, however, if we consider more than ten years of past data the investment universe shrinks

significantly. In sum, we find similar, but less impressive results for monthly stock returns and

factors. Also for monthly data we find evidence that WLS and especially ALS reduce HC3 standard

errors, however the reduction is often marginal. Nevertheless, ALS still reduces the HC3 standard

errors compared to OLS in 95% of the cases, whereas WLS achieves the same in only 55% of the

cases. Consequently, using ALS (or WLS) results in shorter confidence intervals for all investigated

coefficients compared to using OLS most of the time, too. However, with monthly data the confidence

intervals cannot be reduced as much as for daily data, since conditional heteroskedasticity is less
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pronounced: On average only in about 15% of the cases the null of homoskedasticity gets rejected.

In terms of different (past-window) sample sizes n, while sticking to the daily frequency, the

results are also robust and lead to similar overall conclusions compared to Sections 4.3 and 4.4.

Nevertheless, some deviations do exist owing to the fact that the smaller is n, the larger is the

eligible investment universe. As the universe increases (by lowering n), most of the additional stocks

are micro-caps, so that the percentage of micro-caps increases as well. As a consequence, for smaller

sample sizes n, the results become more dispersed and there are more outliers in the boxplots, which

leads to somewhat less favorable findings on balance, that is, combined over all caps. On the other

hand, within each category — (i) large-cap stocks, (ii) small-cap stocks, and (iii) micro-cap stocks

— the benefits of upgrading from OLS to ALS are roughly ‘constant’ across the different sample

sizes n considered; in particular, the largest benefits are obtained throughout for large-cap stocks.

5 Conclusion

In this paper, we show that conditional heteroskedasticity is a common occurrence in CAPM and

multi-factor-model regressions and how to carry out improved inference for corresponding regression

coefficients. The use of WLS, and especially ALS, has been promoted before by Romano and

Wolf (2017). However, we needed to extend their theory, since they assume i.i.d. data, which is

unrealistic for financial returns. We now demonstrate that the validity of their proposed inference

methods based on WLS and ALS continues to hold under a more general set of assumptions that is

reasonable for financial factor models; in particular, volatility clustering and (G)ARCH effects can

be accommodated.

We run an extensive empirical analysis and find that weighted least squares (WLS) and adaptive

least squares (ALS) generally lead to smaller HC standard errors compared to ordinary least squares

(OLS). This finding directly translates into shorter confidence intervals and more powerful hypothesis

tests. Additionally, we find that ALS consistently outperforms WLS in terms of the percentage of

standard errors that are reduced compared to OLS. Note that especially for monthly data, where

conditional heteroskedasticity is less pronounced, the flexibility of ALS to choose between WLS and

OLS is advantageous. We also find differences with respect to the market capitalization: Generally,

the larger the stock, the larger the benefit of using WLS and ALS instead of OLS.

It can be seen that especially during times of financial turmoil the confidence intervals based

on WLS and ALS are much shorter compared to OLS for most of the stocks. This is due to the

fact that after a stock market crash or during a financial crisis, volatility clustering is much more

pronounced, especially for daily data. For some years, and larger stocks, WLS and ALS can cut

standard errors almost in half compared to OLS. Further research could investigate if our findings

hold for stocks outside of the US and, more generally, for other asset classes.

To sum up, the still-quite-common practice of using OLS in conjunction with the ‘usual’ standard
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errors based on an assumption of conditional homoskedasticity should be abandoned because it

generally leads to invalid inference. Using OLS in conjunctions with HC standard fixes this problem

but an even better practice is to use WLS or ALS with HC standard errors. In the end, our specific

proposal is to use ALS with HC3 standard errors for the overall best performance.

Last but not least, our methodology should not be used when asset or factor returns display

noticeable serial correlation as is, for example, the case in hedge-fund performance evaluation; e.g.,

see Fung et al. (2008) and the references therein.
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A Proof of Theorem 3.1

To show that the stated results of Romano and Wolf (2017) continue to hold under our more general

set of assumption always uses the same method of verification. For this reason, it is enough consider

Lemma 3.1 as a typical example.

Consider the Proof of Lemma 3.1 in Appendix B.1 of Romano and Wolf (2017). Equality (B.1)

of course continues to hold and so we are still left to show (B.2) and (B.3).

(B.2) follows by ergodic stationarity, that is, by our more general Assumption (A.2) from the

Ergodic Theorem; for example, see (Hayashi, 2000, p. 101).

To show (B.3) note that

X ′W−1X =
n∑
t=1

ut with ut ..=
xtεt
w(xt)

.

It follows from Assumption (A.2) that the sequence {ui} is strictly stationary and ergodic. It follows

from Assumption (A.3) that {ut} is a martingale difference sequence; to see this let zt ..= (xt, εt)
′ and

use the “tower property” of conditional expectation, for example, see Williams (1991, Section 9.7):

E(ut|ut−1, . . . , ut) = E(E(ut|xt, zt−1, . . . , z1)|ut−1, . . . , u1) .

Since

E(ut|xt, zt−1, . . . , z1) = E
(
xtεt
w(xt)

|xt, zt−1, . . . , z1
)

=
xt

w(xt)
E(εt|xt, zt−1, . . . , z1) = 0 ,

where the final equality follows from our more general Assumption (A.3), we have established that

E(ut|ut−1, . . . , ut) = 0, that is, the MDS property.

The MDS property implies that E(ut) = 0. The fact that E(utu
′
t) = Ω1/w is derived in the

identical fashion as in the proof of Romano and Wolf (2017). The result (B.3) then follows by

applying the CLT for ergodic stationary MDS; for example, see (Hayashi, 2000, p. 106). This ends

the proof.

The proof of Lemma 3.1 illustrates the same two ‘tricks’ that are used over and over again also

in the proofs of the remaining results. On the one hand, the fact that sample averages converge in

probability to population expectations follows from the Erogdic Theorem, as opposed to the strong

law of large numbers for i.i.d. sequences; this is where our more general Assumption (A.2) comes

into play. On the other hand, the fact that certain (standardized) quantities have a limiting normal

distribution follows from the CLT for ergodic stationary MDS, as opposed to the Lindeberg-Lévy

CLT for i.i.d. sequences; this is where our more general Assumption (A.3) comes into play.
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Figure 1: The panel on the top plots the yearly time series of the (size of the) investment universe,
and its decomposition into large-, small-, and micro-cap stocks. The panel in the middle plots
the percentages of rejecting the null of conditional homoskedasticity in the CAPM for the entire
investment universe and its decomposition. The panel on the bottom plots the percentages of
rejecting the null of conditional homoskedasticity in the Fama-French five-factor model for the entire
investment universe and for its decomposition.
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Figure 2: CAPM boxplots for the two ratios defined in (4.1) over 52 years for the parameter of interest α ..= β1. For any year, we plot
first the WLS/OLS boxplots in blue, followed by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas
the diamond-shaped symbol indicates the average ratio.
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Figure 3: CAPM boxplots for the two ratios defined in (4.1) over 52 years for the parameter of interest β ..= β2. For any year, we plot first
the WLS/OLS boxplots in blue, followed by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas the
diamond-shaped symbol indicates the average ratio.
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Figure 4: Similar to Figure 2 except that we now restrict attention to large-cap stocks.
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Figure 5: Similar to Figure 3 except that we now restrict attention to large-cap stocks.
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Figure 6: Similar to Figures 2 and 3 except that we now restriction attention to small-cap stocks (column on the left) respectively
micro-cap stocks (column on the right). To improve readability, the figure only presents boxplots for the ALS/OLS ratios; in unreported
results we find similar patterns for the WLS/OLS ratios.
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Figure 7: Percentages of standard-error ratios (4.1) that lie below one for the CAPM. The results
are based alternatively on the entire investment universe and on its decomposition into large-, small-,
and micro-cap stocks.
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Figure 8: Five-factor-model boxplots for the two ratios defined in (4.1) for large-cap stocks. For any year, we plot first the WLS/OLS
boxplots in blue, followed by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas the diamond-shaped
symbol indicates the average ratio.
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Figure 9: Five-factor-model boxplots for the market factor β ratios defined in (4.1) for large-cap stocks. For any year, we plot first the
WLS/OLS boxplots in blue, followed by the ALS/OLS boxplots in green. In each box, the bar indicates the median ratio whereas the
diamond-shaped symbol indicates the average ratio.
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Figure 10: Five-factor-model boxplots for the SMB, HML, RMW and CMA β’s ratios defined in (4.1) for large-cap stocks. Due to
readability we plot only the ALS/OLS boxplots in green. However, in unreported results we find similar patterns for WLS/OLS.
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Figure 11: Percentages of standard-error ratios (4.1) that lie below one for the five-factor model (1.5)
based on large-cap stocks.
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