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Abstract. A random variable is difference-form decomposable (DFD) if it may be

written as the difference of two i.i.d. random terms. We show that densities of such

variables exhibit a remarkable degree of structure. Specifically, a DFD density can

be neither approximately uniform, nor quasiconvex, nor strictly concave. On the

other hand, a DFD density need, in general, be neither unimodal nor logconcave.

Regarding smoothness, we show that a compactly supported DFD density cannot

be analytic and will often exhibit a kink even if its components are smooth. The

analysis highlights the risks for model consistency resulting from the strategy widely

adopted in the economics literature of imposing assumptions directly on a difference

of noise terms rather than on its components.
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1. Preliminaries

1.1 Introduction

In a large variety of economic models, uncertainty enters the framework in the form

of the difference of two i.i.d. random variables, say ε1 and ε2. For instance, in a rank-

order tournament á la Lazear and Rosen (1981), individual performance is the sum

of input and some randomness, and the winner is determined by comparing levels

of individual performance across contestants. The economic prediction (or power

of statistical test) may then crucially depend on the distribution of the difference

of the noise terms, ε1—ε2. This is similarly the case in a variety of other settings,

including contests (Hirshleifer, 1989; Che and Gale, 2000), models of location choice

(Rosen, 1979; Roback, 1982), vertical differentiation (Lin, 1988), probabilistic voting

(Lindbeck and Weibull, 1987), random utility (Becker et al., 1963; Goeree et al.,

2005), and paired comparisons (Thurstone, 1927; Bradley and Terry, 1952). For the

applied economist entrusted with the analysis of such models, it may appear natural

and convenient to impose assumptions directly on the distribution of the difference

rather than on the distribution of the components ε1 and ε2. This approach, however,

is not entirely innocuous. Indeed, as will be discussed, certain familiar probability

distributions, such as the uniform distribution, simply cannot be represented as the

difference of two i.i.d. random variables. This fact does not seem to be widely known

and is sometimes neglected in economic modeling. Thus, there is the risk of ending

up with an inconsistent set of assumptions. At the same time, there does not seem

to be a single reference that offers help on this issue.1

The present paper aims at providing an initial, systematic, and accessible study

of the class of random variables that correspond to the difference of two i.i.d. ran-

dom variables. We refer to such random variables as difference-form decomposable

(DFD). It turns out that density functions of DFD random variables exhibit a re-

markable degree of structure. Starting from the important special case of the uniform

1The related literature will be reviewed later in this section.
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distribution, the analysis identifies several broad classes of distributions that have

the property of not being DFD. We show that random variables with an approxi-

mately uniform, quasiconvex, or strictly concave density function cannot be DFD.

The observation that a strictly concave density never corresponds to a DFD ran-

dom variable may be of particular interest. To prove this necessary condition, we

recycle the argument underlying Pólya’s (1949) suffi cient condition for a function

to be the characteristic function of a real-valued random variable. To illustrate the

applicability of this result, we point out that the strictly concave beta density is

never DFD. We also show that other properties that may be expected from a DFD

density, such as unimodality or logconcavity, need not hold in general (but do so if

the components possess these properties).

To study the smoothness properties of DFD densities, we analyze the limit be-

havior of characteristic functions using a theorem of Erdélyi (1955). Results are

obtained for compactly supported densities. Specifically, it turns out that the con-

tinuous differentiability of a DFD density implies that it necessarily vanishes at the

lower and upper boundaries of its support interval. A similar relationship holds

for the higher derivatives. Going to the limit, we find that a compactly supported

DFD density is never analytic, i.e., there must be at least one point in its support

interval where the density cannot be approximated arbitrarily well by its Taylor se-

ries. This necessary condition is easy to apply. E.g., we use it to show that neither

the beta distribution with integer parameter nor the raised cosine distribution can

be DFD. We also point out that a DFD density will often exhibit kinks even if its

difference-form components are smooth.

We go on and explore suffi cient conditions for difference-form decomposability.

We note that any random variable with the property that the square root of its

characteristic function is a positive definite function is DFD. An example are fami-

lies of infinitely divisible distributions. This suffi cient condition is strong enough to

allow the computation of the (identical) densities of the components ε1 and ε2 from
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a given distribution of the difference ε1—ε2. Several extensions will be offered as well.

Specifically, we will discuss distributions with finite support, functional inequalities

(i.e., inequalities that restrict the values of DFD densities), and ratio-form decom-

posability. The last extension regarding ratio-form decomposability sheds light on

Jia’s (2008) characterization of the Tullock contest technology.

Our conditions will be formulated without any reference to the complex numbers.

In particular, the characteristic function will be generally expressed as a cosine

transform, which is an ordinary integral of a real-valued integrand. As we believe,

this helps intuition but also simplifies the application of our results.

1.2 Economic motivation

Despite Lazear and Rosen (1981) having noted the impossibility of an i.i.d. differ-

ence being uniform,2 this fact does not seem to be widely known. Screening the

economics literature on the before-mentioned applications where difference-form de-

composability emerges quite naturally, we found numerous papers assuming uniform

differences. Very few of those papers, however, are explicit about the problem.

Working with an inconsistent set of assumptions is risky not only because the

conclusions may become shaky but also because the intuitive interpretation of the

model may become diffi cult. In a standard tournament, for instance, assuming that

ε1—ε2 is uniform would render the marginal probability of winning independent of

the opponent’s effort, and therefore blur the borderline between relative performance

evaluation and individual contracts.3 Similarly, in a model of location choice or in a

random utility model, assuming a non-DFD stochastic difference of the utility of two

options would be at odds with the usual understanding that individual choices have

a well-defined utility level after the resolution of uncertainty. Finally, a statistical

test might be biased if the difference of two noise terms is assumed to follow a

distribution that is not DFD.
2Lazear and Rosen (1981, p. 860) wrote “Since g is symmetric and nonuniform [...]”, where g is

the distribution of the difference between the two (worker-idiosyncratic) i.i.d. random components.
3A number of notable recent contributions has stressed the salience of the shape of noise for

economic predictions (e.g., Morgan et al., 2018; Drugov and Ryvkin, 2020; Morgan et al., 2022).
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In those and other economic models, the question of whether a density is DFD

naturally emerges. It thus seems important to understand which random variables

can be represented as the difference of two i.i.d. terms, and how stochastic properties

of the components relate to properties of the difference term.

1.3 Related literature

We are not aware of any work that tried characterizing the set of DFD distributions.

Notwithstanding, almost any treatment of the topic of characteristic functions, our

main tool of investigation, touches upon the matter (see, e.g., Linnik, 1964, or

Lukacs, 1970). Feller (1970) explains how symmetrization helps avoiding messy

arguments in probability theory, e.g., because the tails of the distribution functions

of a random variable and its symmetrization are of comparable magnitude. The

celebrated 123 Theorem by Alon and Yuster (1995) offers inequalities satisfied by

DFD distribution functions and is, therefore, complementary to our investigation of

DFD densities.

The indecomposability of the continuous uniform distribution dates back to M.

Puri and Sen (1968, p. 970), who thank Basu and P. Puri for the short proof. We

have not seen attempts to generalize this result, however. Our criterion that strict

concavity of the density of incompatible with being DFD is related to Pólya’s (1949)

suffi cient condition for being a characteristic function (see also Tuck, 2006).

In optics and crystallography, the task of recovering a measure from its sym-

metrization or, equivalently, from the modulus of its characteristic function, is known

as phase retrieval. This problem arises in optics because the measurement of a dif-

fracted wavefront (e.g., resulting from a beam of laser light sent through a gap) gives

only the intensity of the wave form rather than its complex amplitude (Patterson,

1935; Walther, 1963; Rosenblatt, 1984). In related work, Giraud and Peschanski

(2006) and Gori (2017) studied nonnegative functions whose Fourier transform is

likewise nonnegative.4

4Our suffi cient conditions loosely relate to the Wiener-Khintchine-Kolmogorov criterion and
convolution roots studied by Boas and Kac (1945). See also Ehm et al. (2004) and Akopyan and
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1.4 Overview of the paper

The remainder of this paper is structured as follows. In Section 2, we introduce

the notion of difference-form decomposability. Section 3 deals with conditions on

the shape of DFD densities. Section 4 discusses smoothness conditions. Section

5 derives suffi cient conditions for difference-form decomposability and a formula

for the construction of the difference-form component. Section 6 offers extensions.

Section 7 concludes. Technical proofs have been relegated to an Appendix.

2. Difference-form decomposability

In this section, we introduce the class of DFD distributions. We will provide ba-

sic definitions in Subsection 2.1, review the necessary background on characteristic

functions in Subsection 2.2, survey examples of DFD distributions in Subsection 2.3,

and similarly survey examples of distributions that are not DFD in Subsection 2.4.

2.1 Basic definitions

All random variables considered in this paper are assumed to be real-valued. The

following concept is central to our analysis.

Definition 1. Let Z be a random variable. We will say that Z is difference-form

decomposable (DFD) if there are two i.i.d. random variables X and Y such that

Z
d
= X—Y .

The equation Z d
= X—Y says that Z and X—Y follow the same probability law.

When a random variable Z is DFD as specified in Definition 1, then the random

variable X is referred to as a difference-form component of Z.5

To understand the specific nature of the analysis pursued in the present paper,

it is important to acknowledge that the components X and Y are required be iden-

Efimov (2017). However, while that literature admits such roots to be complex-valued, we are
seeking convolution roots that are probability densities, i.e., that are real-valued and nonnegative.

5Note that we do not take the absolute value of the difference. Puri and Rubin (1970) and
Stadje (1994) studied distributions with the property that the absolute difference Z = |X − Y |
is identically distributed as its two i.i.d. components X and Y . Interestingly, if the distribution
admits a density, then this property characterizes the exponential distribution.
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tically distributed. Indeed, dropping that requirement would lead to an entirely

different research question, easily seen to be equivalent to the problem of additive

decomposability. That problem, however, has been well-studied (e.g., Linnik, 1964;

Linnik et al., 1977). Similarly important is the requirement that X and Y are

independent. For example, if X and Y are uniform and perfectly negatively cor-

related, then Z is again uniform (Meyer, 1991; Bagnoli et al., 2001). Thus, the

i.i.d. requirement is crucial to all what follows.6

Definition 2. A random variable Z is called symmetric (about zero) if Z d
= —Z.

The following observation is simple but important.

Lemma 1. Any DFD random variable Z is symmetric.

Proof. Suppose that Z is DFD. Then, there exist i.i.d. random variables X and Y

such that Z d
= X—Y . But then, —Z d

= Y—X, which proves the claim. �

In view of Lemma 1, a DFD random-variable Z with component X is called the

symmetrization of X.

Suppose that X is a difference-form component of Z. Then the distribution

functions of Z and X will be denoted by G = G(z) and F = F (x), respectively. In

view of our applications, we will mostly focus on continuous distributions, i.e., on

distributions that admit a density. If densities exist, these will correspondingly be

denoted by g = g(z) and f = f(x). Moreover, the convolution relationship

g(z) =

∫ ∞
−∞

f(x+ z)f(x)dx (1)

admits an interpretation as an autocorrelation function. To avoid clumsy language,

the concepts introduced above, i.e., DFD, difference-form component, and symme-

try, will be informally extended to distributions and density functions.
6It is immediate to see that if X is a difference-form component of Z, then so is —X. In

fact, this is even the case for c + X and c —X, for any constant c ∈ R. Thus, any difference-form
decomposition, provided it exists, can be unique at most up to reflection at the origin and arbitrary
translations.
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2.2 Characteristic functions

In general, the characteristic function of a random variable Z is defined as ϕZ(t) =

E[eitZ ] ≡
∫∞
—∞ e

itzdG(z), where i =
√
—1, and the parameter t is real (e.g., Lukacs,

1970). The relevance of the characteristic function for the problem at hand is the

following important observation.

Lemma 2. Suppose that Z is DFD with component X. Then, ϕZ(t) = |ϕX(t)|2 ≥ 0

for all t ∈ R, where ϕX(t) denotes the characteristic function of X.

Proof. The characteristic function of —X is given by ϕ—X(t) = E[e—itX ]. Since t ∈ R

and X is real-valued, this implies ϕ—X(t) = ϕX(t), where the upper bar denotes

complex conjugation. Hence, by the multiplication theorem for characteristic func-

tions, ϕZ(t) = ϕX(t)ϕ—X(t) = ϕX(t)ϕX(t) = |ϕX(t)|2. In particular, ϕZ(t) ≥ 0 for

any t ∈ R. The claim follows. �

Thus, a necessary condition for Z to be DFD is that its characteristic function is

real-valued and nonnegative. Using Lemma 2 as a first numerical check of decom-

posability of a given density is feasible. However, the reader is cautioned that the

computation of Fourier transforms is not trivial (e.g., Ahmed et al., 1974). The

nonnegativity condition on the integral transform is, however, not suffi cient for Z

to be DFD. A counterexample due to Lukacs (1970) is replicated in Table II be-

low. In fact, we will exhibit a more elementary counterexample in our discussion of

distributions with finite support.

While the characteristic function is, in general, complex-valued, there is an in-

tuitive representation of ϕZ(t) as a cosine transform if Z is symmetric (e.g., DFD).

Lemma 3. If Z is symmetric, then ϕZ(t) =
∫∞
—∞ cos(tz)dG(z), for any t ∈ R.

Proof. Since Z is symmetric, E[eitZ ] = 1
2
E[eitZ + e—itZ ] = E[cos(tZ)]. �

The advantage of expressing the characteristic function in that way is that no refer-

ence to complex numbers is needed. In addition, there is an intuitive interpretation
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now that is not so immediate otherwise. Specifically, the cosine factor works like

an amplitude modulation (AM). Amplitude modulation is used in electronic com-

munication, radio transmission, computer modems, etc. to transmit a low-frequency

audio signal via a high-frequency radio signal (see, e.g., Carson, 1915). Similarly, the

density of Z may be understood to modulate the cosine signal of a given frequency

t, so that some information about the distribution of Z is captured in ϕZ(t).7

Table I. Examples of difference-form decomposable distributions.

2.3 Examples of distributions that are DFD

Table I provides details on the difference-form decomposability of several standard

families of probability distributions. See also Figure 1 for an illustration of the

corresponding density functions. The list starts with the examples of the normal

and Cauchy distributions, both of which are infinitely divisible. As these examples

suggest, any infinitely divisible distribution that is symmetric about zero is DFD.

Particularly strong implications are feasible for normal distributions. Indeed, by

Cramér’s (1936) theorem, any non-degenerate component of a normal distribution

7The moment-generating function E[etZ ] has the same advantage of being real-valued, but its
use would obscure the idea of the Fourier analysis. In addition, the moment-generating function
does not exist for all distributions of interest (e.g., for the Cauchy distribution).
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is normal. Thus, the difference-form decomposition shown in Table I is essentially

unique in the normal case. Conversely, as shown by Carnal and Dozzi (1989), this

uniqueness property regarding difference-form decomposability is shared by no other

infinitely divisible distribution.

Figure 1. Examples of difference-form decomposable distributions. Shown are densities
of the normal (solid), Cauchy (dashed), logistic (crossed), Laplace (thin), and triangular
(dotted) distributions.

In the general case (i.e., if the distribution is not necessarily infinitely divisible),

one can still show that any representation of a random variable as the difference

of two symmetric i.i.d. noise terms is essentially unique. However, the difference-

form decomposition is not unique in general if one allows for components that are

not symmetric. For instance, the Laplace distribution may be represented either

as the difference of two symmetric Bessel distributions or as the difference of two

exponential distributions (which are not symmetric).

An example of a DFD distribution with compact support is the triangular dis-

tribution.8 Apart from this example, we do not know of any DFD distribution with

compact support that has been (correctly) used in applications.
8The fact that the difference of two i.i.d. uniform random terms follows a triangular density has

found numerous applications. See, e.g., Bull et al. (1987), Schotter and Weigelt (1992), Prendergast
(2002), Altmann et al. (2012), Moldovanu et al. (2012), and Ewerhart (2016).
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Table II. Examples of distributions that are not difference-form decomposable. Only distributions
that are symmetric with respect to the origin are listed (cf. Lemma 1).

2.4 Examples of distributions that are not DFD

Table II lists a number of distributions that are not DFD. Particularly prominent

is the example of the uniform distribution. But as will be shown below, the beta

distribution and the raised cosine distribution likewise fall in this class. All these

examples have compact support. Dugué (1957) constructed a distribution with full

support that is not DFD. While that example is still covered by Lemma 2 above, the

more complicated example of Lukacs (1970) even has a nonnegative characteristic

function, and therefore illustrates the fact that the conclusion of Lemma 2 is only

necessary, but not suffi cient for a random variable to be DFD. In fact, both distrib-

utions are entirely indecomposable (i.e., even allowing for nontrivial heterogeneous

factors). The density functions of these examples are illustrated in Figure 2.
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Figure 2. Examples of distributions that are not difference-form decomposable. Shown
are the densities of the uniform (solid), raised cosine (dashed), concave beta (diamonds),
convex beta (thin), Dugué (bold), and Lukacs (crosses) distributions.

3. Shape conditions

This section starts the formal analysis by deriving a variety of necessary conditions

on the shape of DFD distributions. We will discuss uniform and approximately

uniform distributions (see Subsection 3.1), quasiconvex densities (see Subsection

3.2), and strictly concave densities (see Subsection 3.3). The section concludes with

a discussion of unimodality of the density (see Subsection 3.4).

3.1 Uniform and approximately uniform distributions

The following classic result sets the stage for our analysis.

Example 1. Z ∼ U [−1, 1] is not DFD.

This observation, a formal proof of which is included in the Appendix, is stated in

Puri and Sen (1968, p. 970), for instance.9 Example 1 also shows that symmetry is

not suffi cient for a random variable to be DFD. To understand how this observation

follows from Lemma 2 (the nonnegativity of the cosine transform), see Figure 3. The

9Lewis (1967) characterized the complete set of decompositions of the uniform distribution into
arbitrarily many independent, but not necessarily identically distributed, components. See also
Tortrat (1969), cited by Rusza (1982-1983), and Topolyan (2014).
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point to note is that the signed area between the plotted graph and the horizontal

axis is negative. Intuitively, the uniform density declines too slowly, so that the

integral ϕZ(t) turns negative for a suitably chosen value of t, which is inconsistent

with difference-form decomposability. For t = 3π
2
, for instance, one obtains

ϕZ(t) =
1

2

∫ 1

−1
cos(

3πz

2
)dz = − 2

3π
< 0. (2)

This, however, is in conflict with Lemma 2.10

Figure 3. Plot of the function z 7→ cos( 32πz) over the interval [0, 1].

As discussed in the Introduction, such an impossibility result is relevant for economic

applications. Below, we will see that broad classes of distributions that either contain

the uniform distribution as a special case or feature it as a limit case are likewise

not DFD.

To start with, one might ask if, despite a uniform distribution not being DFD,

there exist two i.i.d. random variables whose difference can at least approximate a

uniform distribution. The answer is negative.

Proposition 1. Any density function on the interval [−1, 1] that has values in the

interval (1
2
− δ, 1

2
+ δ), where δ > 0 is small, is not DFD.

Proof. See the Appendix. �
10Further intuition may be gained from considering a discrete setting. Suppose that the compo-

nents X and Y independently realize as x = 0 with probability q0 and as x = 1 with probability
q1. Then, Z = X−Y realizes as z = 0 with probability p0 = q20+ q

2
1 , and as z = 1 with probability

p1 = q0q1. Hence, p0−2p1 ≥ 0 if Z is DFD. Thus, p0 ≥ 1
2 and p1 ≤

1
4 , i.e., the uniform distribution

on {−1, 0, 1} is not DFD.
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The proof shows that δ = 1
6
' 0.166. To understand why Proposition 1 holds true,

one takes another look at Figure 3 and note that the area with the negative weight,

where g(z) > 1
2
− 1

6
= 1

3
, is precisely twice as large as the area with the positive

weight, where g(z) < 1
2

+ 1
6

= 2
3
. Thus, again, the cosine transform has a negative

sign.

3.2 Quasiconvex densities

While Proposition 1 is useful, it cannot deal with the following example.

Example 2. The density of the symmetric beta distribution is given as

g(z) =
Γ(α + 1

2
)√

πΓ(α)
(1− z2)α−1 (z ∈ [−1, 1]), (3)

where α > 0 is a shape parameter.11 For α ∈ (0, 1], this density is convex, where

the boundary case α = 1 corresponds to the uniform distribution. For α ∈ (1, 2],

the density is strictly concave. For α > 2, however, g is neither convex nor concave.

In the example, the conditions of Proposition 1 are not satisfied. However, the

intuition underlying the uniform case admits another generalization, viz. to the class

of quasiconvex density functions. We say that a density function g of a symmetric

distribution with compact support [−c, c], where c > 0, is quasiconvex if and only if g

is weakly decreasing on (−c, 0] and weakly increasing on [0, c) (i.e., we disregard the

boundary points of the support for convenience). Clearly, the uniform distribution

satisfies this definition, as does the convex beta density.

Proposition 2. A quasiconvex density cannot be DFD.

Proof. See the Appendix. �

This result is again derived by extending the graphical proof of the uniform case.

If the symmetric density is strictly declining on [0, 1], the signed integral outlined

11See Figure 2 for illustration. Details on this example can be found in the Appendix.
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in Figure 3 is smaller than for the uniform distribution, in which case it is already

negative.

To see Proposition 2 at work, it suffi ces to briefly go back to the example of the

beta distribution. Specifically, if the density is convex (i.e., if α ∈ (0, 1]), then the

beta distribution cannot be DFD.

Further below, we will obtain a variation of Proposition 2 saying that a random

variable represented by a continuous density function g on [−1, 1] does not admit a

difference-form component with continuously differentiable density unless g assumes

its maximum at the origin.

3.3 Strictly concave densities

For α ∈ (1, 2], the density of the beta distribution is strictly concave. Our previous

observations do not apply. This case is, however, covered by the following result,

which for us was the least expected finding of the present analysis.

Proposition 3. A density that is strictly concave on its support cannot be DFD.

Proof. See the Appendix. �

The proof of Proposition 3 is inspired by Pólya’s (1949) suffi cient condition for

characteristic functions.12 The first point to note is that a strictly concave density

must be compactly supported, say on [−1, 1]. Next, one notes that the evaluation

of the cosine transform at the special value t = 2π decomposes the interval [0, 1]

into four subintervals of length 1
4
. Moreover, for any z ∈ [0, 1

4
), we know that

cos(2πz) = − cos(2π(1
2
− z)) = − cos(2π(1

2
+ z)) = cos(2π(1− z)), as illustrated in

12Pólya’s suffi cient criterion says that a function φ is a characteristic function if φ is continuous,
convex on the positive real line, and satisfies φ(0) = 1. For an account of Pólya’s suffi cient condition
and other suffi cient conditions, we refer the reader to Lukacs’(1972) survey.
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Figure 4. Hence, the integrand of the cosine transform satisfies

g(z) cos(2πz) + g(1
2
− z) cos(2π(1

2
− z))

+ g(1
2

+ z) cos(2π(1
2

+ z)) + g(1− z) cos(2π(1− z))

=
(
g(z)− g(1

2
− z)− g(1

2
+ z) + g(1− z)

)︸ ︷︷ ︸
<0

cos(2πz)︸ ︷︷ ︸
>0

< 0, (4)

as a consequence of strict concavity of g. Integrating over [0, 1
4
), the cosine transform

is seen to be negative, i.e., ϕZ(2π) < 0, in conflict with Lemma 2. The proof given in

the Appendix works with partial integration like Pólya’s original proof but captures

the very same intuition.

Figure 4. Intuition underlying the proof of Proposition 3.

3.4 Unimodal densities

Unimodal densities are widely used in economics. It is known that the difference (but

not necessarily the sum, see Chung, 1953) of two i.i.d. unimodal random variables is

necessarily unimodal (Hodges and Lehmann, 1954; Vogt, 1983; see also Barlevy and

Neal, 2012, for application). The same is true for strongly unimodal (i.e., logconcave)

densities (Ibragimov, 1956; An, 1998). As mentioned before, we will later show that

any DFD density with well-behaved components necessarily assumes its maximum

at the origin. However, even though unimodality with mode at zero seems to be a

common feature of many DFD densities, neither unimodality nor logconcavity are

necessary for a density to be DFD. E.g., let f(x) = 3
2
if x ∈ [0, 1

3
] ∪ [2

3
, 1], and
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f(x) = 0 otherwise. Clearly, f is a density. Let X, Y be i.i.d. according to f . Then,

the random variable Z = X−Y does not admit a unimodal density g. Unimodality

and, similarly, logconcavity are neither suffi cient for, say, a symmetric density to be

DFD, as follows immediately from Proposition 3.

4. Smoothness conditions

In this section, we will derive necessary conditions that rely on smoothness properties

of the DFD density. We first discuss boundary conditions (see Subsection 4.1), then

analyticity (see Subsection 4.2), and finally kinks (see Subsection 4.3).

4.1 Boundary conditions

So far, we have evaluated the characteristic function ϕZ = ϕZ(t) at specific values

for t. Additional necessary conditions can be deduced by considering the asymptotic

behavior of the characteristic function ϕZ(t) for t→∞. Intuitively, large values for

t correspond to the case where the cosine term is changing sign very frequently, so

that the integral approaches zero over intervals where g is smooth. And indeed, as

discussed in Erdélyi (1955), the asymptotics of ϕZ depend entirely on the behavior

of the integrand in the neighborhood of certain distinguished points, called critical

points. These critical points are either the endpoints of the interval of integration

or the points at which the integrand (or some derivative thereof) exhibits a discon-

tinuity. Given this intuition, it should not be too surprising that one may obtain

the following auxiliary result for compactly supported DFD densities.

Lemma 4. Suppose that g : [−1, 1]→ R+ is N-times continuously differentiable as

well as DFD. Then, g(M)(1) = g(M)(−1) = 0 for any M ∈ {0, . . . , N − 1}.13

Proof. See the Appendix. �

4.2 Analyticity

13As usual, g(M)(z) denotes the M -th derivative of g at z, provided it exists. In particular,
g(0)(z) = g(z).
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A function is analytic if it admits derivatives of any finite order and can be ex-

tended into a Taylor series at each point of its domain of definition. Examples for

analytic functions are polynomials and the exponential function. Sums, differences,

and products of analytic functions are likewise analytic. On the other hand, the an-

alyticity condition is violated, e.g., when higher-order differentiability fails or when,

even though derivatives of all orders exist, the Taylor series does not converge to

the density.

Letting N → ∞ in Lemma 4 and subsequently exploiting the fact that an an-

alytic function is identified by its derivatives at any single point of its domain of

definition, we arrive at the following useful observation.

Proposition 4. Suppose that g is the density of a compactly supported DFD dis-

tribution. Then, g is not equal on its support to some analytic function.

Proof. See the Appendix. �

Proposition 4 may be used to extend our earlier observations regarding the beta

distribution. Indeed, the beta density with integer parameter α ∈ N = {1, 2, . . .}

is a polynomial on [−1, 1], hence analytic. Therefore, the beta density is not DFD

for any integer value α > 0. In particular, this includes cases (viz., for α = 3, 4, . . .)

where the density is neither convex nor concave. A similar example is the raised

cosine, which likewise admits an analytic density and consequently is not DFD.

4.3 Kinks

As illustrated by the examples of the triangular and the Laplace distribution, DFD

densities may exhibit a kink at the origin (cf. Figure 2). In fact, the triangular

density, if considered as a function on the real line, has two additional kinks, viz. at

the boundary of its support. The following result shows that such kinks are, under

smoothness conditions on the component densities, a quite typical feature of a DFD

density with bounded support.
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Proposition 5. Let X and Y be i.i.d. random variables admitting a continuously

differentiable density f on [0, 1].

(i) If max{f(0), f(1)} > 0, then g has a kink at the origin.

(ii) If min{f(0), f(1)} > 0, then g has kinks also at ±1.

Proof. See the Appendix. �

Thus, if the component density is positive at at least one boundary point of its

support interval, then the density g of the DFD distribution necessarily exhibits a

kink at the center of its support. If the component density is positive even at both

boundary points of its support interval (as in the case of the uniform density), then

g exhibits additional kinks at the boundary points of its own support interval.

5. Suffi cient conditions and the construction of components

This section explores conditions suffi cient for a density to be DFD and derives a for-

mula for the construction of the difference-form component under those conditions.

Proposition 6. Suppose that ϕZ ≥ 0 and that
√
ϕZ is positive definite. Then, Z

is DFD, and a difference-form component of Z is given by the density function

f(x) =
1

2π

∫ ∞
−∞

√
ϕZ(t) cos(tx)dt. (5)

Proof. See the Appendix. �

Positive definiteness of the square root of
√
ϕZ intuitively imposes restrictions on

the shape of ϕZ . We will discuss the positive definiteness condition in more detail

further below. In principle, any of the suffi cient conditions known for character-

istic functions may be used to check the conditions of Proposition 6. E.g., in a

straightforward application of Pólya’s condition, if
√
ϕZ is convex on R≥0, then Z

is DFD. In applications, however, the often most convenient way to verify positive
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definiteness of a function is by checking that the inverse Fourier transform (5) is

globally nonnegative. For illustration of this approach, we reconstruct the uniform

component from the triangular distribution.

Example 3. The characteristic function of the triangular density on [−1, 1] is given

as ϕZ(t) = 4 sin2(t/2)
t2

≥ 0. To find a difference-form component, we apply formula

(5). This yields

f(x) =
1

π

∫ ∞
−∞

sin
(
t
2

)
cos(tx)

dt

t
(6)

=
1

2π

∫ ∞
−∞

{
sin
(
t
(
1
2

+ x
))

+ sin
(
t
(
1
2
− x
))} dt

t
(7)

=
1

π

∫ ∞
0

sin t

t
dt (8)

= 1. (9)

Thus,
√
ϕZ(t) is positive definite, and by Proposition 6, the uniform distribution on

the unit interval has been retrieved as a difference-form component of the triangular

distribution.14

Similar calculations are feasible for any of the relevant examples listed in Table I

(i.e., with the exceptions of the Gumbel, exponential, and Poisson components).

The proof of Proposition 6 is not deep but abstract. Technically, the assumptions

of Proposition 6 ensure that g admits a convolution root that is a symmetric density.

This automatically leads to a condition suffi cient for difference-form decomposability,

since any sum of two symmetric i.i.d. random variables is obviously DFD.15

Finally, recall that a characteristic function ϕ is called infinitely divisible if, for

every positive integer n, there is a characteristic function φ such that ϕ = φn. A

probability distribution is called infinitely divisible if its characteristic function is

14In fact, this decomposition is unique (cf. O’Neill and Walther, 1963).
15Notably, the converse statement is not generally true. I.e., there are DFD densities that do

not admit a symmetric difference-form component. E.g., the component X given by the density
f(x) = 2x on [0, 1] cannot be replaced by any symmetric component (Carnal and Dozzi, 1989,
p. 168). In fact, the same is true for any strictly monotone component density (Gushchin and
Küchler, 2005).
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infinitely divisible (e.g., Lukacs, 1972, p. 19).

Corollary 1. Any symmetric infinitely divisible distribution is DFD.

Proof. See the Appendix. �

6. Extensions

6.1 Distributions with finite support

One might wonder if a consideration of distributions with finite support might help

to shed light on the class of DFD distributions. The insights from such exercise are

limited, however. To understand why, consider the simplest case of an equidistant

grid. Suppose given a vector of probabilities (p0, p1, . . . , pN), for N ≥ 1, such that

p0 + 2
∑N

n=1
pn = 1. The interpretation is that pn corresponds to the probability

that the symmetric random variable Z realizes as n ∈ {0, . . . , N}, and for any n > 0,

likewise to the probability that Z realizes as −n. A difference-form component X, if

it exists, may then be represented by a vector of probabilities (q0, . . . , qN), where qn

denotes the probability that X realizes as n ∈ {0, . . . , N}. The system of equations

to be solved is the following (cf. Hodges and Lehmann, 1954):

p0 = q20 + . . .+ q2N (10)

p1 = q0q1 + . . .+ qN−1qN (11)

...

pN−1 = q0qN−1 + q1qN (12)

pN = q0qN (13)

The set of vectors (p0, p1, . . . , pN) for which a solution (q0, . . . , qN) exists may, in

principle, be characterized in explicit terms.

Proposition 7. For any fixed N ≥ 2, the set of DFD discrete distributions forms a

semi-algebraic set, i.e., it may be described by a finite number of algebraic identities
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and inequalities in the variables (p0, p1, . . . , pN).

Proof. See the Appendix. �

We illustrate this general result with the help of a tractable example, the details of

which may be found in the Appendix.

Example 4. For N = 2, a distribution given by (p0, p1, p2) is DFD if and only if

p1 ≤ 1
4
and p2 ≤

(1+
√
1−4p1)

2

16
. In this case, the set of difference-form components

may be described in explicit terms.

Figure 5 illustrates the set of DFD distributions for N = 2 as the area below the

thick curve. The straight lines correspond to three nonnegativity constraints of

the discrete cosine transform (defined in analogy to the continuous case), which

are p1 ≤ 1
4
, p1 + p2 ≤ 1

3
, and p1 + 2p2 ≤ 1

2
. As can be seen, the set of DFD

distributions is a strict subset of the distributions with nonnegative cosine transform.

E.g., (p0, p1, p2) = (1
3
, 1
6
, 1
6
), satisfies the nonnegativity constraints but is not DFD.

This observation is in line with the corresponding fact for the continuous case, i.e.,

that a nonnegative cosine transform is a necessary, but not a suffi cient condition for

difference-form decomposability.

Figure 5. Illustration of the set of DFD distributions.

For N ≥ 3, however, running the Tarski-Seidenberg algorithm that leads to a char-

acterization of the set of DFD distributions through a finite number of algebraic

21



identities and inequalities, while theoretically feasible, becomes substantially more

involved. Moreover, determining a difference-form component in explicit form ceases

to be tractable for N ≥ 4.16

6.2 Functional inequalities

Additional necessary conditions on the shape of a DFD density may be derived if the

corresponding characteristic function is integrable. The following lemma provides a

simple condition suffi cient for this to be the case.

Lemma 5. Suppose that the difference-form component X of some random variable

Z is distributed according to some continuously differentiable density function fX

with compact support. Then, ϕZ is integrable.

Proof. See the Appendix. �

We are now all set to state our result regarding functional inequalities.

Proposition 8. Suppose that a DFD random variable Z is distributed according

to some density function g. Assume also that ϕZ is integrable. Then, g is positive

definite. In particular, the following inequalities hold:

(i) g(z) ≤ g(0) for any z ∈ R;

(ii) if g(z) = 0 outside of [−1, 1], then g(z) ≤ g(0) cos( π
1+b1/zc) for any z ∈ (0, 1

2
].17

Proof. See the Appendix. �

Thus, a DFD density with integrable characteristic function is positive definite,

which is a fairly strong property. E.g., it follows that any continuous DFD density

assumes its maximum at the origin (even if the component is not unimodal). This

observation is intuitively in line with the interpretation of g as an autocorrelation

16However, in analogy to Proposition 6, a symmetric difference-form component (i.e., satisfying
qn = qN−n for n ∈ {0, . . . ,

⌈
N
2

⌉
− 1}), can be computed (provided it exists) from the system

(10)-(13).
17Here, b1/zc denotes the largest integer weakly smaller than the ratio 1/z.

22



function (cf. Section 2) and admits a simple direct proof.18 The less obvious in-

equality in part (ii) says that g(z)/g(0) remains weakly below the staircase function

displayed in Figure 6. This inequality was shown to be an implication of positive

definiteness by Boas and Kac (1945). It should be noted that Proposition 8 is in a

sense equivalent to Lemma 2 and, hence, equally strong in its implications. Thus, the

two results may be seen as complementary methods for testing for difference-form

decomposability.

Figure 6. Illustration of the inequality in Proposition 8(ii).

To prove that g is positive definite under the conditions of Proposition 8, one com-

bines two powerful theorems in the literature on characteristic functions, Bochner’s

theorem, and the Fourier Inversion Theorem. Bochner’s theorem says that a func-

tion φ is a characteristic function if and only if φ is continuous, positive definite,

and satisfies φ(0) = 1.19 The proof then proceeds as follows. By the Fourier In-

version Theorem, we may reconstruct a density from its characteristic function. In

the case of a symmetric density, however, the cosine transform of the characteristic

function coincides (up to a constant factor) with the transform that generates the

characteristic function from the density. We may therefore interpret ϕZ , provided

it is integrable, as a density ĝ (after suitable normalization) of some “dual”random

18Specifically, it suffi ces to note that

g(0)− g(z) = 1

2

∫ ∞
−∞

(f(x+ z)− f(x))2 dx ≥ 0.

19A real-valued function φ is positive definite if, for every n ∈ {1, 2, . . .} and x1, . . . , xn ∈ R, the
matrix [φ(xi − xj)]ni,j=1 is positive semidefinite.
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variable Ẑ and apply Bochner’s theorem to Ẑ to derive necessary properties of its

characteristic function ϕ̂ that happens to coincide with g (again, up to a constant

factor).

Proposition 8 may be used to obtain another partial result for the beta distrib-

ution in the left-over case where α > 2 (and α not an integer). Indeed,

∂2

∂z2
cos(

π

1 + 1/z
)

∣∣∣∣
z=0

= −π2, (14)

∂2

∂z2
(1− z2)α−1

∣∣∣∣
z=0

= −2 (α− 1) . (15)

Thus, for α < α∗, where α∗ = π2

2
+ 1 ' 5.93, making use of Lemma 5, the density

of the beta distribution cannot be represented as the difference-form convolution of

two i.i.d. continuously differentiable densities.20

6.3 Ratio-form decomposability

Our results have equivalent formulations for distributions that may be represented as

the ratio Z = X/Y of two i.i.d. random variables X and Y , following Huntington

(1939) and Curtiss (1941). Given our focus on applications in economic theory, we

focus on the case that the components assume positive values only. Then, however,

it is always feasible to transform the argument of the distribution function using the

logarithm. E.g., any lognormal distribution may be expressed as the ratio of two

i.i.d. lognormal distributions. This observation also has some implications for contest

success functions of the ratio-form, such as Tullock’s (1980). If individual, multi-

plicative noise is distributed according to the inverse exponential distribution (Jia,

2008; Fu and Lu, 2012), then the density is given as f(x) = αmx−(m+1) exp(−αx−m)

on [0,∞), where α > 0 and m > 0 are parameters. Transforming the corresponding

distribution function F (x) = exp(−αx−m) via the transform x = exp(x) leads

to the distribution function of the corresponding additive noise term, which is

20The 123 Theorem (Alon and Yuster, 1995), suitably reformulated, says that if G is the distri-
bution function of a DFD random variable, then G(b)−G(a) ≤ 2(db/ae− 1)(G(a)−G(0)), for any
b > a > 0, where db/ae denotes the lowest integer weakly larger than the ratio b/a. That result,
however, cannot be used to easily derive Proposition 8 or any other result of the present paper.

24



F (x) = exp(−α exp(−mx)), i.e., a Gumbel distribution (cf. Table I). Therefore,

the stochastic foundation of the Tullock contest is a direct consequence of the fact

that the logistic distribution is the symmetrization of the Gumbel distribution.

7. Concluding remarks

In numerous economic models, uncertainty enters through a noise term that corre-

sponds to the difference of two i.i.d. random variables. Our results allow to decide

in many cases which distributions admit an i.i.d. difference-form decomposition and

which do not. This sheds some light on the elusive class of DFD distributions.

Our analysis shows that imposing distributional assumptions on the difference

term is far from innocuous. Even intuitively plausible assumptions on the density of

the difference term, such as approximate uniformity, quasiconvexity, strict concavity,

or compact support combined with analyticity are always inconsistent, and therefore

entail the risk of ending up with incorrect economic conclusions. We were also

able to show that the lack of decomposability of the uniform distribution, which is

particularly relevant for economic applications, is a robust problem, rather than an

isolated pathological case of limited relevance.

To avoid the numerous pitfalls identified by the present studies, the applied

economist has essentially three choices. First, if a specific distribution with compact

support is desired, the triangular distribution, with its uniform components, seems

to be the most natural assumption. If instead the uniform difference must be chosen

(e.g., to ensure tractability), then this would require both a rationale (like perfect

negative correlation, see Meyer, 1991, or Bagnoli et al., 2005) and a discussion of

how a change in the assumptions about the distribution of noise would likely affect

the results. Second, if a specific distribution with full support is desired, then any

infinitely divisible distribution, with components taken from the same family, will do

the job. Common examples are the normal and the Cauchy distributions, but it may

be kept in mind that any infinitely divisible distribution will work. Finally, if the re-

searcher aims at keeping distributional assumptions at a minimum, then properties
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automatically fulfilled, like symmetry, positive definiteness, and functional inequali-

ties should be used. Any additional assumptions, such as unimodality (Hodges and

Lehmann, 1954) or logconcavity (Ibragimov, 1989), should be imposed on the com-

ponents, and the fact that such properties are inherited should be used to obtain

conclusions on the difference term.

There are several dimensions in which the present study could be extended. Of

interest, for instance, might be the consideration of multivariate distributions, i.e.,

random variables with values in Banach spaces. More interesting, albeit also more

challenging, might be the question of what happens if the number N of contestants

is larger than two. In that case, one would have to study the joint distribution of(
N
2

)
correlated difference terms, each of which would be DFD. We will, in any case,

leave such investigations to future work.

Appendix. Proofs

This appendix contains technical material omitted from the body of the paper.

Details on Example 1. Suppose that Z ∼ U [−1, 1]. The characteristic function

of Z is

ϕZ(t) =
1

2

∫ 1

−1
cos(tz)dz =

sin t

t
. (16)

It is then clear that ϕZ(t) < 0 for selected values of t, in conflict with Lemma 2. �

Proof of Proposition 1. Evaluating the characteristic function at t = 3π
2
yields

ϕZ(3π
2

) =

∫ 1/3

−1/3
cos(

3π

2
x)︸ ︷︷ ︸

≥0

g(x)dx+ 2

∫ 1

1/3

cos(
3π

2
x)︸ ︷︷ ︸

≤0

g(x)dx (17)

<

∫ 1/3

−1/3
cos(

3π

2
x)

(
1

2
+

1

6

)
dx+ 2

∫ 1

1/3

cos(
3π

2
x)

(
1

2
− 1

6

)
dx (18)

= 0. (19)

This proves the claim. �
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Proof of Proposition 2. By contradiction. Suppose that Z is DFD. Then, by

Lemma 2, ϕZ(t) ≥ 0 for any t > 0. However, evaluating ϕZ(t) at t = 2π, we see

that

0 ≤ ϕZ(2π) =

∫ 1

−1
cos(2πz)g(z)dz =

1

2π

∫ 2π

0

cos(ẑ)g

(
ẑ

2π

)
dẑ, (20)

with ẑ = 2πz. Since cos(ẑ + π) = − cos(ẑ), it follows that

ϕZ (2π) =
1

2π

∫ π

0

cos(ẑ)g

(
ẑ

2π

)
dẑ + cos(ẑ + π)g

(
ẑ + π

2π

)
dẑ. (21)

=
1

2π

∫ π

0

cos(ẑ)

{
g

(
ẑ

2π

)
− g

(
ẑ + π

2π

)}
dẑ (22)

< 0, (23)

where the inequality is strict because g is not uniform by Example 1. The contra-

diction proves the claim. �

Proof of Proposition 3. Suppose that g(z) is DFD and strictly concave on its

support. Then, g(z) is symmetric by Lemma 1. Clearly, therefore, Z has compact

support, say [−1, 1]. Moreover, by standard results on concave functions (e.g., Roy-

den and Fitzpatrick, 1988, p. 117), the derivative g′ is well-defined except possibly

at kinks that form a set of measure zero. Moreover, g′ is strictly declining. Hence,

evaluating the integral transform at t = 2π, integration by parts delivers

ϕ(2π) =

∫ 1

−1
cos(2πz)g(z)dz (24)

=
1

2π
sin(2πz)g(z)

∣∣∣∣1
−1︸ ︷︷ ︸

=0

− 1

π

∫ 1

0

sin(2πz)g′(z)dz (25)

<
1

π

∫ 1/2

0

(
sin(2πz) + sin(2π(z +

1

2
))

)
︸ ︷︷ ︸

=0

g′(z)dz, (26)

but this is in conflict with Lemma 2. �

Details on Example 2. On the unit interval, the density of the beta distribution
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with shape parameters α > 0, β > 0 is commonly defined as

g[0,1](x) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (x ∈ [0, 1]). (27)

A stretched variant with support [−1, 1] is given as

g(z) ≡ 1

2
g[0,1]

(
z + 1

2

)
=

Γ(α + β)

2α+β−1Γ(α)Γ(β)
(1 + z)α−1(1− z)β−1. (28)

Assuming α = β, and exploiting the duplication rule for the gamma function, i.e.,

Γ(2α) = 22α−1π−1/2Γ(α)Γ(α + 1
2
), leads to the parametric form considered in the

body of the paper. The shape of the beta density is determined by its second

derivative

∂2(1− x2)α−1
∂x2

= 2 (1− α)
(
1− x2

)α−3 (
2x2(2− α) +

(
1− x2

))
. (29)

Hence, the beta density g is convex for α ∈ (0, 1], strictly concave for α ∈ (1, 2], and

neither convex nor concave for α > 2.

The following auxiliary result will be used in the proofs of Lemmas 4 and 6. As

usual, o(t−N) denotes a function that goes to zero more quickly than t−N (i.e.,

limt→∞ tNo(t−N) = 0).

Lemma A.1 (A. Erdélyi) Suppose that g(z) is N-times continuously differentiable

on the interval [α, β], where −∞ < α < β <∞. Then,

∫ β

α

g(z) exp(itz)dz = ΦN(t, β)− ΦN(t, α) + o(t−N), (30)

where i =
√
−1, and

ΦN(t, z) =

N−1∑
M=0

iM−1g(M)(z)
exp(itz)

tM+1
. (31)

28



Proof. See Erdélyi (1955, Thm. 1). �

Proof of Lemma 4. By induction. (Induction basis) Suppose that g is continu-

ously differentiable on [−1, 1] as well as DFD. Since g is continuously differentiable,

Φ1(t, 1) = g(1) sin(t)
t

= −Φ1(t,−1). Moreover, since g is DFD, Lemma 2 implies

0 ≤ ϕZ(t) =

∫ 1

1

g(z) cos(zt)dz = 2g(1)
sin t

t
+ o(

1

t
). (32)

For t large, the sin t
t
term dominates, so that necessarily g(1) = g(−1) = 0. (Induction

step) Let N ≥ 1, and assume that the claim has been shown for N . Suppose that

g is (N + 1)-times continuously differentiable. Then, g is N -times continuously

differentiable so that, from the induction hypothesis, g(M)(1) = g(M)(−1) = 0 for

any M ∈ {0, . . . , N − 1}. Now, from the definition of ΦN+1(t, 1) and exp(it) =

cos(t) + i sin(t),

ΦN+1(t, 1) = sin(z)

bN2 c∑
k=0

(−1)k

t2k+1
g(2k)(1)

+ cos(z)

b
N+1
2 c∑

k=1

(−1)k+1

t2k
g(2k−1)(1)

 .
(33)

If N = 2K is even, then

ΦN+1(t, 1) =
(−1)K sin(z)

tN+1
g(N)(1) = −ΦN+1(t,−1), (34)

so that g(N)(1) = g(N)(−1) = 0. If N = 2K − 1 is odd, then

ΦN+1(t, 1) =
(−1)K+1 cos(z)

tN+1
g(N)(1) = −ΦN+1(t,−1), (35)

and we find g(N)(1) = g(N)(−1) = 0, as before. This proves the claim. �

Proof of Proposition 4. Suppose that g is DFD. Since g is analytic at −1 and

at 1, it is infinitely differentiable there, so that all derivatives at −1 and at 1 are

zero by Lemma 4. By the identity theorem for analytic functions, this implies that
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g vanishes on [−1, 1], which is impossible. The contradiction shows that g cannot

be DFD. �

Proof of Proposition 5. For z ∈ [0, 1], we have that

g(z) =

∫ 1−z

0

f(z + x)f(x)dx. (36)

Hence, using Leibniz’rule,

lim
z↘0

g(z)− g(0)

z
= lim

z↘0

1

z

{∫ 1−z

0

f(z + x)f(x)dx−
∫ 1

0

f(z + x)f(x)dx

}
(37)

= − lim
z↘0

1

z

∫ 1

1−z
f(z + x)f(x)dx (38)

= −f(1)2 +

∫ 1

0

f ′(x)f(x)dx (39)

= −f(1)2 +
f(1)2 − f(0)2

2
(40)

= −f(0)2 + f(1)2

2
(41)

< 0. (42)

On the other hand, by symmetry, g(z) = g(−z), so that

lim
z↗0

g(z)− g(0)

z
> 0. (43)

Similarly, one finds

lim
z↗1

g(z)− g(1)

z
= lim

z↗1

1

z

{∫ 1−z

0

f(z + x)f(x)dx

}
= −f(1)f(0), (44)

and a corresponding expression at z = −1. This proves the lemma. �

Proof of Proposition 6. Immediate from Bochner’s theorem and the Fourier

inversion theorem. �
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Proof of Corollary 1. Let the distribution of Z be infinitely divisible and sym-

metric. Then, ϕZ ≥ 0 is continuous (by Bochner’s theorem), and does not possess

any real zeros (Lukacs, 1972). Let φ be a characteristic function such that ϕ = φ2.

Then, φ > 0 or φ < 0, but the second alternative is not feasible because φ(0) = 1.

Hence, φ > 0, and ϕ = |φ|2. The claim follows. �

Proof of Proposition 7. Immediate from the Tarski-Seidenberg theorem (e.g.,

Neyman and Sorin, 1999, p. 65). �

Details on Example 4. Suppose that N = 2 and fix a vector of probabilities

(p0, p1, p2) such that p0 + 2p1 + 2p2 = 1. Taking account of redundancies, a vector

of probabilities (q0, q1, q2) is sought such that

p1 = q0q1 + q1q2 (45)

p2 = q0q2 (46)

1 = q0 + q1 + q2. (47)

Combining (45) and (47), we see that p1 = q1(1 − q1), hence necessarily p1 ≤ 1
4

and q1 ∈ {q+1 , q−1 }, where q+1 = 1
2

+
√

1
4
− p1 and q−1 = 1

2
−
√

1
4
− p1. From (46)

and (47), one notes that q0 + q2 = 1 − q1 and q0q2 = p2. Therefore, a difference-

form component with q1 ∈ {q+1 , q−1 } exists if and only if 4p2 ≤ (1− q1)2, and the

corresponding solution, or pair of solutions, is given by

{q0, q2} =
1− q1

2
±

√
(1− q1)2

4
− p2. (48)

Next, we note that q−1 ≤ q+1 ≤ 1, so that
(
1− q−1

)2 ≥ (1− q+1 )2. Thus, a necessary
and suffi cient condition for a solution to exist is p1 ≤ 1

4
and p2 ≤ 1

16

(
1 +
√

1− 4p1
)2
,

as claimed. Moreover, there are at most four solutions.21

21For the special case N = 2, this confirms a conjecture of Carnal and Dozzi (1989, p. 172),
according to which the number of difference-form decompositions is at most 2N .
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Proof of Proposition 8. Suppose that Z is DFD. Then, by Lemma 2, ϕZ(t) ≥ 0

for all t ∈ R. Moreover, ϕZ is continuous by Bochner’s theorem, with ϕZ(0) =∫∞
−∞ g(z)dz = 1. Hence, using that ϕZ is integrable, we see that

∫∞
−∞ ϕZ(s)ds > 0.

Moreover, the Fourier inversion theorem, g(0) = 1
2π

∫∞
−∞ ϕZ(s)ds. Let

ĝ(z) =
ϕZ(z)∫∞

−∞ ϕZ(s)ds
=

ϕZ(z)

2πg(0)
. (49)

Then, ĝ is a density of some random variable Ẑ. The characteristic function of Ẑ

is, therefore, given by

ϕẐ(t) =
1

g(0)

(
1

2π

∫ ∞
−∞

ϕZ(z) cos(tz)dt

)
=
g(t)

g(0)
, (50)

where we applied again the Fourier inversion theorem. But, by Bochner’s theorem,

the characteristic function of Ẑ is positive definite. Hence, g is positive definite

as well. Inequality (i) is an immediate consequence of the definition of positive

definiteness. Inequality (ii) was shown to follow from positive definiteness by Boas

and Kac (1945). �

Proof of Lemma 5. Since f is continuous differentiable, Lemma A.1 implies

ϕX(t) =

∫ c

0

f(z) exp(izt)dz =
1

t
(sin(ct) + i(f(0)− cos(ct)f(c))) + o(t−1). (51)

By Lemma 2,

ϕZ(t) = |ϕX(t)|2 =
(sin(ct)f(c))2 + (f(0)− cos(ct)f(c))2

t2
+ o(t−2). (52)

Thus, ϕZ is integrable, as claimed. �
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