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Abstract 

Computing population moments for heterogeneous agent models is a necessary step 

for their estimation and evaluation. Computation based on Monte Carlo methods is 
usually time- and resource-consuming because it involves simulating a large sample of 
agents and potentially tracking them over time. We argue in favor of an alternative non-
stochastic method for computing cross-sectional and longitudinal moments that exploits 
the endogenous Markov transition function that defnes the stationary distribution of 
agents in the model. The method relies on following the distribution of populations of 
interest by iterating forward the Markov transition function rather than focusing on a 

simulated sample of agents. Approximations of this function are readily available from 

standard solution methods of dynamic programming problems. The method provides 
precise estimates of moments like top-wealth shares, auto-correlations, transition rates, 
age-profles, or coefcients of population regressions at lower time- and resource-costs 
compared to Monte Carlo based methods. The method is particularly useful for moments 
of small groups of agents or involving rare events. 
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Computing cross-sectional and longitudinal moments is integral to the estimation and 

use of heterogeneous agents models that are common in the study of a wide variety of 

economic phenomena (e.g., Heathcote, Storesletten, and Violante 2009; De Nardi, French, 

and Jones 2016; De Nardi and Fella 2017). However, calculating these moments frequently 

poses computational challenges that arise from the repeated simulation of the models. These 

challenges limit how researchers can use these models and the features they are able to include 

in them, even as computational power continues to improve. 

One key challenge is the cost of calculating longitudinal moments that require following 

individuals over time (e.g., mobility rates across occupations or the wealth distribution, 

income persistence, or inter-generational correlations), or population regressions used in the 

models’ estimation. Standard Monte Carlo based methods used to compute these moments 

rely on a simulated panel of agents that can fail to be representative of small sub-populations 

like the “very rich”, or of the efects of rare events (e.g., health shocks, tail risks). So, in order 

to obtain accurate moments, these panels must be simulated with a large number of agents, 

often millions of them, which is computationally costly. 

We argue in favor of an alternative non-stochastic method for computing longitudinal 

moments that directly follows the distribution of any sub-population over time. We do this by 

iterating forward the Markov kernel that characterizes how agents transition between states. 

This method comes at minimal cost because the Markov kernel is already approximated as 

part of most solution methods (e.g., Young 2010; Heer and Maußner 2005, Ch. 7). Moreover, it 

generates moments that avoid the impreciseness and inefciencies of Monte Carlo simulation 

that result from the use of random number generators and costly simulation initialization. 

We take as given the model’s solution in the form of policy functions for agents that, 

together with the stochastic processes of exogenous states, imply the evolution of the 

distribution of agents in the economy. This evolution is captured by a Markov kernel, � � 
T s 

′ 
|s , that maps the transition of a mass of agents from a current state s into a future 
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′ state s in the state space S. The stationary distribution, λ, is the solution to 

Z� ′ � � ′ � 
λ s = T s |s λ (s) ds . (1) 

s∈S 

We describe how to use λ and T to directly compute cross-sectional and longitudinal 

moments, rather than using a simulated panel of agents. 

Cross-sectional moments. These moments involve taking expectations over some outcome 

of interest, x (s), for some sub-population characterized by states s ∈ S ⊆ S, 

Z 
E [x |s ∈ S ] = x (s) λS (s) ds , (2) 

s∈S 

R
where λS ≡ Is∈S λ(s)/ Is∈S λ(s)ds is the marginal distribution of the sub-population in S , and 

where Is∈S is an indicator variable for whether or not s ∈ S . Equation (2) applies to a 

wide range of moments. For example, the skewness or kurtosis of the endogenous wealth 

distribution for the whole population (when S = S) or for a subgroup (say top income 

earners).1 These moments can be computed immediately from the solution of the model’s 

stationary distribution (λ), either by approximating the integral (Judd 1998, Ch. 7) or by 

calculating the moment from a discrete approximation of the distribution (Young 2010). 

Longitudinal moments. Many other moments require knowing either the collective 

outcomes of a group of agents over time (e.g., for computing transition rates across occupations) 

or the outcomes of individual agents (e.g., for computing the auto-correlation of their wealth).2 

Calculating these moments is difcult because of the stochastic nature of the individuals’ 

time-paths. However, we show that it is possible to extend the approach described above for 

cross-sectional moments to the calculation of longitudinal moments at low computational 
1Equation (2) can also be used to defne percentiles or other descriptors of the distribution. These 

expectations can also characterize the population value of coefcients in cross-sectional regressions. 
2Moments that require collective outcomes include mobility rates across the income or wealth distribution, 

or inter-generational mobility in life cycle models. Moments that require individual outcomes include the 
distribution of growth rates of income or wealth for individual agents, or the distribution of lifetime earnings. 
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cost. This is accomplished by focusing on the transition of the distribution of agents, taking 

into account all possible paths an individual can take rather than relying on a sample of 

realized paths from a Monte Carlo simulation. � � 
In general, we consider an outcome of interest x s , s 

′ 
that depends on some initial and 

fnal state of an agent. This outcome could be any function of the agent’s initial or fnal 

states. However, the procedure for computing the expectation of interest depends on whether 

we focus on the outcomes of a group of agents (as in transition rates) or of individual agents 

(as in the auto-correlation of wealth). We tackle these cases separately. 

In the frst case, only group outcomes matter. This is the case for the transition rate in or 

out of a particular wealth quantile, say the share of individuals in the top 1% of the wealth 

distribution who remain in the top 1% at some future period. To compute this, we must 

follow the group of individuals in the top 1% at a given time, characterized by the subset of 

the state space S ⊆ S, in order to obtain 

Z Z � � � �′ ′ ′ ′ 
E [x |s ∈ S ] = x s , s λ s ds λS (s) ds , (3)

′ S 
s∈S s ∈S 

′where x (s , s ′ ) is a binary variable equal to one if both s and s place an individual in the top 

1% of the wealth distribution, λS is the distribution of individuals in the top 1%, those with 

s ∈ S , and λS 
′ 

is the future distribution of agents conditional on the initial distribution λS . 

We directly compute the distribution λS 
′ 

as: 

Z� � � �′ ′ ′ 
λ s = T s |s λS (s) ds (4)S 

s∈S 

For any initial and fnal state, computing this integral merely employs the same Markov 

kernel T as in equation (1). 

In the second case, individual outcomes matter. This is the case for the auto-correlation of 

individual wealth. To compute this, we must follow all the possible paths of each individual 
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and compute 

Z Z � � � �′ ′ ′ ′ 
E [x |s ∈ S ] = x s , s λ s ds λS (s) ds . (5)

′ {s}
s∈S s ∈S 

′ ′ ′ ′ 
Here, the outcome of interest is x (s , s ) = (w(s) − w̄ )(w (s ) − w̄ ), where we denote the 

wealth of an agent by w(s). The average wealth can change across periods, w̄ ≠ w̄ 
′ 
, refecting 

potential non-stationary environments, like in transition paths. Finally, λ 
′ 

is the future {s} 

distribution of the mass of agents that starts in state s ∈ S , which we again compute using 

the Markov kernel T as: 

Z� � � � ′ ′ ′ 
λ{s} s = T s |s δ{s} (s) ds , (6) 

s∈S 

3where δ{s} is the (degenerate) distribution concentrated in state s . 

In practice, the stationary distribution of heterogeneous agents models is typically 

computed using a discrete approximation of the Markov kernel T̂ that operates over a 

discrete state space and induces a discrete distribution λ̂ in the form of a histogram (see, 

Young 2010; Tan 2020; Gouin-Bonenfant and Toda 2023).4 In this case, the formulas in 

(1)-(5) replace integrals for sums over the discretized state space. Accordingly, we call our 

method the histogram iteration method. We show that it provides fast and precise estimates 

of moments of interest without involving the computation of new objects, relative to those 

involved in the model’s solution. 

We apply our method to two partial equilibrium versions of the standard heterogeneous 

agent model based on Aiyagari (1994), one with infnitely lived agents and one with overlapping 

generations. We approximate the stationary distribution and its associated Markov kernel 

following Young (2010). We calculate moments characterizing the right tail of the wealth 

3The integral in the computation of λ 
′ 

is of course initially superfuous. Nevertheless, it becomes {s}
necessary when iterating more than one period, as δ{s} generically distributes mass across the state space S. 

4Alternatively, projection methods can also be used to represent the distribution of heterogeneous agents. 
See Algan, Allais, and Den Haan (2008) for a demonstration for how projection methods can minimize 
cross-sectional sampling variation in heterogeneous agent models. 
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distribution and the persistence of consumption and wealth in the infnitely lived agents 

model. In the overlapping-generations model, we calculate the age-profle of wealth and fve-

and ffteen-year auto-correlation of wealth. In this way, we use our method to calculate 

cross-sectional and longitudinal moments for both the entire population of agents and specifc 

sub-populations, like the wealthiest and poorest agents. We compare the results with those 

from a Monte Carlo simulation, which is common in the literature (e.g., Judd 1998, Ch. 8). 

We fnd that our histogram iteration method is at least as precise as using large simulated 

panels while signifcantly reducing computational time. Time savings come from avoiding 

the simulation of a large enough panel of agents, in favor of computing the histogram 

that approximates the distribution of agents. In most cases, these time savings more than 

compensate for the time it takes to compute longitudinal moments by iterating on the 

histogram, which is somewhat greater than the time it takes to compute them from a 

simulated panel. There are further gains when computing cross-sectional moments because 

no iteration or simulation is needed when using the histogram. 

1. Baseline heterogeneous agent models 

We illustrate our method in the context of the baseline Bewley-Hugget-Aiyagari-Imrohoroglu 

model. The economy is populated by a continuum of agents indexed by i ∈ [0, 1] that difer 

on their age (h), labor productivity (ε), rate of return (ζ), and endogenous asset holdings 

(a). Labor productivity and rates of return follow discrete Markov processes with transition 

matrices Pε and Pζ . Agents are price takers. They receive income from the return on their 

savings, r(ζ), and from wages, w , paid for their supply of efciency units of labor, ℓ(h, ε), 

which depends on their age and labor productivity. 

The dynamic programming problem of an agent of age h is 

h � � i′ ′ ′ 
Vh (ε, ζ, a) = max u (c) + βϕh E Vh+1 ε , ζ , a |ε, ζ (7)

′ a ,c 
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s.t. [1 + r(ζ)] a + wℓ (h, ε) = c + a 
′ 
; a 

′ 
≥ a. 

⋆ ⋆The solution to (7) is a savings function (ah ), such that ah (ε, ζ, a) ≥ a for all (ε, ζ, a) and 

h � � i� � ′ ′ ⋆ ⋆Vh (ε, ζ, a) = u [1 + r(ζ)] a + wℓ (h, ε) − ah (ε, ζ, a) + βE Vh+1 ε , ζ , ah (ε, a) |ε, ζ . 

(8) 

We will focus on a stationary equilibrium with a time-invariant distribution of agents. S 

is the state space with typical element s = (h, ε, ζ, a). Given a birth and death process for 

agents, the transition function of labor productivity, and the savings functions, the stationary� � 
distribution is a solution to (1), where the Markov kernel T s 

′ 
|s is constructed using the 

policy functions and the evolution of exogenous states. 

We solve the model in partial equilibrium taking the wage rate, w , and the average return 

on savings, r̄ , as exogenous. We do this to focus on the computation of moments for any 

given solution of the agents’ problem. Our results apply in a general equilibrium setting when 

computing the moments after fnding the market clearing prices. 

We solve for two versions of the model that difer in the birth and death process of agents. 

In both models, we adopt the following functional form for agents’ utility: 

c1−σ − 1 
u (c) = . (9)

1 − σ 

We set σ equal to 2 which is in the range of values used in Aiyagari (1994). We take r̄  to 

be 3.2 in line with historical values for the U.S. and we set w so that labour income in our 

model matches average labor income for the U.S. in 2019, which is $53,624.5 We set a = 0, 

preventing borrowing. Below, we outline the diferences between the two diferent versions of 

the model and their parametrization. 
5We construct this value from FRED Data (U.S. Bureau of Economic Analysis 2022) as Total Wages and 

Salaries (BA06RC1A027NBEA) divided by the 12-month average of Civilian Labor Force Level (CLF16OV). 
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Infnitely lived heterogeneous agent model. We consider a version of the model where 

agents are infnitely lived and their labor efciency depends only on their labor productivity. 

In particular, ℓ (h, ε) = exp (ε). We focus on the age-invariant solutions to (7) and (8), a 

value function V (ε, ζ, a) and a savings function a ⋆ (ε, ζ, a). Accordingly, we drop age from 

the state vector when referring to the infnitely lived agents model. 

Labor productivity follows a discrete Markov process with nε = 11. We obtain Pε 

by discretizing an AR(1) process using Rouwenhorst (1995)’s method and use persistence 

ρε = 0.963 and innovation variance σ2 = 0.162 from Storesletten, Telmer, and Yaron (2004).ε 

We include heterogeneous returns on savings, a key ingredient for generating high levels 

of wealth inequality (Benhabib, Bisin, and Zhu 2011; Stachurski and Toda 2019), by setting 

an agent’s returns to be r(ζ) = r̄  exp (ζ). The state ζ follows a discrete Markov process with 

nζ = 7 states. We obtain P ζ by discretizing an AR(1) process with persistence ρζ = 0.70 and 

innovation variance σ2 = 1.3 using Tauchen (1986)’s method. ζ 

Overlapping generations heterogeneous agent model. In the second version of the 

model agents live for H > 0 periods and have a terminal value of VH +1 = 0. Agents face 

mortality risk and have a survival probability ϕh of surviving into age h, conditional on 

surviving to age h − 1. We set the survival probabilities following Bell and Miller (2002) 

projections for the U.S., with each model period corresponding to a single year. Agents are 

born at age 20 (h = 1) and can live to a maximum age of 100 (H = 81), when ϕH +1 = 0. 

Upon death, agents are replaced by a newborn who starts life with a ⋆ = $1, 000 of assets.1 

Efciency units of labor are ℓ (h, ε) = exp (ξ (h) + ε), where ξ (h) is a quadratic polynomial 

that generates a 50 percent rise in average labor income from age 21 to its peak at age 51 as 

in Guvenen, Kambourov, Kuruscu, Ocampo, and Chen (2023).6 We use the same process 

for labor productivity (ε) as in the infnitely lived agent model. Finally, we eliminate rate of 

return heterogeneity, so that all agents earn ri = r̄ . Accordingly, we drop ζ from the state 

vector when referring to the overlapping generations model. 
6ξ (h) = 

� 
60(h − 1) − (h − 1)2

� 
/1800. 
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2. Solving the models 

We solve for the policy functions in (7) using readily available solution methods that exploit 

the optimality conditions of the savings choice (i.e., Carroll 2006). Having computed the 

policy functions, we approximate the Markov kernel, T , of the distribution of agents by 

discretizing it over assets on a grid a⃗na following Young (2010).7 The result is a transition � � 
matrix T̂ , whose elements T̂ s , s 

′ 
gives the probability that an agent with current state s 

transitions to state s 
′ 
. 8 This probability depends on the birth and death process (for instance, 

agents of age h = H transition to age h = 1 with certainty), the transition matrix of the 

labor productivity process (ε), the transition matrix of the return heterogeneity process (ζ), 

and the approximation of the transition of assets on the fxed grid a⃗na . 
9 Finally, we compute 

the stationary distribution of agents on the discrete grid by iterating over 

� � X � � 
λ̂n+1 ′ ˆ ′ ˆs = T s , s λn (s) , (10) 

s 

for some initial λ̂0 . The stationary distribution, λ̂, is the limit of λ̂n as n grows large. 

In the next section, we use the approximated distribution, λ̂, and Markov kernel, T̂ , to 

compute moments for both models. The Markov kernel plays an important role in computing 

moments because it describes the evolution of states given any initial distribution. This 

is crucial for computing longitudinal moments where it is necessary to know how agents 

transition between states over time. We explore results with grids of diferent sizes for the 

approximation of the distribution and the Markov kernel. All grids are curved so that they 

7Young (2010)’s method can lead to sizeable approximation error for models with fat-tailed distributions. 
Methods based on Pareto extrapolation are more accurate, as shown by Gouin-Bonenfant and Toda (2023). 
The transition probability matrix that these method generate can be used instead of the one from Young 
(2010)’s method when calculating moments as we describe below. 

8The transition matrix T̂ can be further exploited to speed up the computation of the model’s solution as 
shown by Rendahl (2022). 

′ � �9An agent with state s transitions with certainty to having assets a = a ⋆ (ε (s) , ζ (s) , a (s)) ∈ a⃗j , ⃗ ,h(s) aj +1 

for some j . In the discrete approximation the agent transitions to either a⃗j with probability a⃗j +1−a 
′ 
/⃗aj +1−a⃗j 

or a⃗j +1 with probability a 
′ −a⃗j /⃗aj +1−a⃗j . 
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are denser for low wealth values. In particular, the nth node of an asset grid with N satisfes 

a⃗n = a + (a − a) (n−1/N −1)θa , where θa > 1 measures the curvature. We use a curvature of 

θa = 3.5 and solve for the policy functions on a grid with 250 nodes before approximating 

the Markov kernel and the stationary distribution. 

3. Computing moments 

We now compute cross-sectional and longitudinal moments for both the entire population 

and sub-populations of interest, like agents at the top or bottom of the wealth distribution. 

Cross-sectional moments, like the share of wealth owned by the wealthiest 1% of individuals,� � 
can be readily computed from the stationary distribution (λ) or its approximation λ̂ . 

However, it is often necessary to follow individuals over time when computing longitudinal 

moments like the auto-correlation of wealth. This is often achieved through costly Monte 

Carlo based simulations of a sample of individuals. Our histogram iteration method relies 

instead on tracking the distribution of the relevant group of individuals (the sub-population), 

following its evolution as described by the Markov kernel T . We now describe the method. 

The histogram iteration method. Consider a moment describing the expectation over � � 
some outcome in some future period x s 

′ 
, s for a sub-population satisfying some condition, 

say having a certain level of wealth or income. It is possible to determine a subset of the 

state space S ⊆ S such that any agent with state s ∈ S belongs to the sub-population of 

interest. These moments take the form of the expectations in equations (3) and (5). The 

objective is to approximate the value of these expectations. We obtain the sub-population’s 

initial distribution, λ̂S , from the stationary distribution λ̂ by restricting its domain to S and 

normalizing. Tracking the distribution of the sub-population over time involves iterating over 

λ̂S with the Markov kernel T̂ as in (10). 

When the moment requires tracking only the outcomes of the group in S , the expectation 
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of interest is 

XX � � � �′ ′ ′ 
Ê [x |s ∈ S ] = x s , s λ̂ s λ̂S (s) (11)S 

s ′ s 

and when the moment requires tracking the future outcomes of individuals, the expectation 

of interest is 

� � � �XX ′ ′ ′ 
Ê [x |s ∈ S ] = x s , s λ̂ s λ̂S (s) (12){s}

s ′ s 

In this case, λ̂ ′ is the future distribution of agents that started in state s ∈ S . Below, we {s} 

apply this method in the models described in Section 1. 

3.1. Moments for the infnitely lived agents model 

We now compute several moments for the infnitely lived agents model and compare the 

performance of the histogram iteration method relative to a traditional Monte Carlo simulation. 

We focus on moments characterizing the wealth distribution and the behaviour of consumption, 

which are the endogenous outcomes in our setting. In particular, we present results for the 

tail of the wealth distribution, top wealth shares, the persistence of consumption and wealth, 

and the ten-year transition rates across wealth deciles. 

In terms of the accuracy, we fnd that both methods provide similar estimates for the 

moments, except for those regarding top-wealth holders: the shape of the tail of the wealth 

distribution and top wealth shares. The challenge for the Monte Carlo simulation method 

comes from the large number of agents needed in order to obtain a representative sample of 

top-wealth holders. The histogram iteration method provides more consistent values of these 

moments when varying the number of grid nodes in the approximation. 

In terms of the computational cost of calculating moments, cross-sectional moments come 

almost for free after solving for the histogram or simulating a panel of agents. Longitudinal 
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moments are signifcantly more expensive to calculate with the histogram iteration method 

than from a simulated panel of agents. This is because the histogram iteration method requires 

iterating forward for all initial states, as all the possible histories of agents are mapped for 

each initial condition. This makes the computation more expensive than computing the same 

moment using an already existing panel of agents containing realized histories of consumption 

and wealth. However, the time required to solve for the histogram is substantially less than 

the time required to simulate the Monte Carlo panel of agents. As a result, the total time it 

takes to calculate longitudinal moments is less when using the histogram iteration method 

than when using the simulated panel.10 

Pareto Tail. One characteristic of the cross-sectional distribution of wealth that is often 

difcult to capture in heterogeneous agent models is the behavior of its right tail and the level 

of wealth concentration. These statistics are crucial when studying inequality, particularly 

because of their implications for taxation. We report the right tail of the wealth distribution 

(above ten million dollars) and the corresponding Pareto coefcient for simulations with 

sample sizes between two hundred and ffty thousand and one million agents in Figure 1 and 

contrast them with the tail of the stationary distribution of wealth approximated with a 

histogram with 500 grid points. We fnd that simulation-based results require a large number 

of agents to correctly represent the properties of the right tail of the wealth distribution,11 

and that, by contrast, the histogram provides a more stable picture of the distribution at 

lower computational cost.12 

The Monte Carlo simulation captures the general shape of the tail, but has issues 

populating the top end, even with one million agents. This is apparent in the discrepancies 

between the tail indexes (α) and the wealth shares of the richest agents across simulation 

samples, as shown in Table 1. Figure 1D shows that the histogram provides more stable 

10All times are for a Mac Mini with an M1 processor running Julia v1.7. 
11The same logic applies when studying the efects of rare events and tail risks, like extreme health shocks. 
12This is similar to Gouin-Bonenfant and Toda (2023), who propose replacing the grid at the right end of 

the distribution with an approximation of the continuous distribution using limit results. 
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Figure 1. Pareto Tail - Monte Carlo Simulation and Histogram Method 

(A) Monte Carlo: 250k Agents (B) Monte Carlo: 500k Agents 

(C) Monte Carlo: 1M Agents (D) Histograms 

Notes: The fgures plot the log counter CDF of the conditional distribution of wealth above $10 million. 
Panels 1A to 1C approximate the CDF using samples of agents from a Monte Carlo simulation and difer in 
the number of agents being simulated. The blue diamonds correspond to the approximation of the counter 
CDF using the histogram method with 500 grid nodes. The fnal panel approximates the CDF using the 
histogram method with 250, 500, and 1000 grid nodes. 

outcomes across grid sizes for both the shape of the distribution and the tail index.13 

The sensitivity of the right tail to the number of agents being simulated becomes an 

issue in models that aim to capture the extent of wealth inequality in the data. For instance, 

Guvenen et al. (2023) pose a model capable of reproducing the tail of the wealth distribution 

in the U.S., including the presence of multi-billionaires. In order to generate these very 

wealthy agents, they use a Monte Carlo simulation with twenty million agents. 
13This stability makes moments computed via the histogram iteration method more likely to be continuous 

in the model parameters than those computed via Monte Carlo simulation. This smoothness can beneft 
estimation or calibration routines as it smooths the objective function. 
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Table 1. Cross-sectional and Longitudinal Moments: Infnitely Lived Agents 

Percentage Point Deviations from Reference Value Ref. 
Monte Carlo: Sample Size Histogram: Grid Size Value 
250k 500k 1M 250 500 1000 

Top Wealth Shares 
Top 0.1% 0.12 0.14 −0.52 0.08 −0.04 −0.10 6.29 
Top 1% 0.08 0.02 −0.76 0.12 −0.06 0.03 19.00 
Pareto Coefcient −0.04 −0.01 0.03 0.03 0.01 0.02 1.91 

Auto-Correlations 
ρ (ct , ct+2) 0.24 0.00 0.05 0.13 0.01 0.04 82.52 
ρ (at , at+2) 0.20 0.97 0.08 1.04 0.07 0.43 49.73 

Transition Rates � � ′ 
Pr ai ∈ D1|ai ∈ D1� � 

0.17 −0.06 0.05 0.59 0.12 0.31 50.04 
′ 

Pr ai ∈ D2|ai ∈ D1 −0.10 0.24 −0.06 −0.19 0.02 −0.03 34.16 

Computational Time 
Simulation 689.3 1386.1 2744.3 — — — — 
Distribution λ̂ — — — 478.9 881.4 1827.0 — 
Top Inequality 0.01 0.02 0.04 1E-4 4E-4 2E-4 — 
Auto-Correlation 0.05 0.08 0.18 9.81 21.47 54.76 — 
Transition Rates 0.39 0.83 1.58 13.48 26.04 50.48 — 

Notes: The table reports the deviation of calculated moments and computational time in seconds for the 
infnitely lived agents model. The frst block computes the moments approximating the distribution with 
Monte Carlo simulation on three diferent samples of 250k, 500k, and 1M agents. The second block computes 
the moments approximating the stationary distribution with histograms on three diferent grids with 250, 
500, and 1000 nodes. The reference value is obtained from a histogram grid with 5000 nodes. 

Top Wealth Shares. We compute the share of wealth owned by the top 1% and top 0.1% 

of individuals in our model and report them in Table 1. Just as with the shape of the right 

tail, these measures of top wealth concentration are difcult to measure with the Monte Carlo 

simulation because a small number of “very rich” agents play a large role in determining the 

value of the moments. As a consequence, the top wealth shares are still varying even when 

the number of simulated agents is increased to one million. The time required to compute the 

moments is negligible next to the time required to either obtain the stationary distribution 

of the model or to simulate the agents. 
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Persistence of Consumption and Wealth. We continue by computing the two-year 

auto-correlations of consumption and wealth, which are informative about the ability of 

individuals to insure themselves against temporary income fuctuations. These are longitudinal 

moments that require comparing the level of consumption and wealth for individuals across 

time. Both the histogram iteration method and Monte Carlo simulation give very similar 

results for the moments, but they difer markedly on the time it takes to compute the moments. 

While it is faster to compute moments from an existing panel of agents, this does not take 

into account the time it takes to generate the panel. 

Mobility. Finally, we calculate the ten-year transition rates across deciles of the wealth 

distribution. These rates are commonly used to study the persistence of wealth inequality 

and mobility. Unlike the auto-correlation of wealth, computing transition rates does not 

require following the full path of individuals, rather, it is enough to follow a subset of the 

population, e.g., those in a given decile. The histogram iteration method takes advantage 

of this by iterating from the conditional distribution of agents of each decile to obtain their 

fnal distribution as in (11). The transition rates are calculated directly as the mass of the 

fnal distribution in each decile. As with the auto-correlations, these transition rates take 

longer to calculate via the histogram method than using an existing panel of agents. However, 

simulating that panel of agents is costly relative to solving for the histogram. 

3.2. Moments for the overlapping generations model 

We now conduct similar exercises on the overlapping generations model. We focus on the 

behavior of agents along their life-cycle. In particular, we present age-profles of the wealth 

distribution for agents with above median income at age 45 and the auto-correlation of wealth 

between the ages of 35 and 40, and the ages of 35 and 50. We compute the moments using 

the histogram iteration method to iterate over the evolution of a cohort and contrast the 
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Table 2. Cross-sectional and Longitudinal Moments: Overlapping Generations 

Monte Carlo: Sample Size Histogram: Grid Size 
100k 250k 500k 250 500 1000 

Wealth Auto-Correlation 
Age 35-40 89.43 89.44 89.46 89.39 89.59 89.66 
Age 35-50 62.94 62.85 62.69 63.70 63.84 63.96 

Computational Time 
Population Simulation 300.5 750.7 1501.1 — — — 
Cohort Simulation 17.57 43.71 87.33 — — — 
Distribution λ̂ — — — 113.1 223.9 459.0 
Wealth Profles 0.19 0.71 1.33 0.51 0.99 1.97 
Auto-Correlation 35-40 5E-4 4E-3 2E-3 12.45 42.13 145.5 
Auto-Correlation 35-50 5E-4 1E-3 2E-3 97.97 355.1 1450.8 

Notes: The table reports the auto-correlation of wealth between the ages of 35 and 55. The frst block 
computes the moments approximating the distribution with a Monte Carlo simulation. The second block 
computes the moments approximating the stationary distribution with histograms on three diferent grids 
with 250, 500, and 1000 nodes. The auto-correlation of wealth is computed from the simulation of cohorts 
between the ages of 35 and 50 of 100k, 250k, and 500k agents, without attrition. The initial distribution is 
obtained from the histogram with 500 nodes. All times are in seconds. 

results with those of Monte Carlo simulations of up to fve hundred thousand agents.14 

The two methods produce similar moments, with the exception of moments characterizing 

the top of the wealth distribution. The reason is again that a large number of agents must be 

simulated in order to have a representative sample of wealthy agents. This is especially the 

case for life-cycle moments because the sample is also conditioned by age, making it more 

difcult to ensure large sample sizes. In terms of the computational cost, the simulation time 

is again the main factor making Monte Carlo simulation-based moments more costly. 

Wealth Age Profles. We report the age profle of wealth for agents with above median 

income at age 45 in Figure 2. The fgures show the average, and the 99th and 99.9th percentile 

of wealth for every age. It is clear that the results obtained from Monte Carlo simulations 
14For the cross-sectional moments the sample size refers to the total sample, including agents of all ages. 

For the auto-correlation we simulate a single cohort of individuals. 
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Figure 2. Wealth-Age Profles - Monte Carlo Simulation and Histogram Method 

(A) Monte Carlo: 100k Agents (B) Monte Carlo: 250k Agents 

(C) Monte Carlo: 500k Agents (D) Histograms 

Notes: The fgures plot the age profle of wealth starting at age 45. Panels 2A to 2C compute the moments 
using samples of agents from Monte Carlo simulation and difer in the number of agents being simulated. 
Triangles correspond to the average wealth at every age, circles to the 99th percentile of the wealth distribution, 
and diamonds to the 99.9th percentile. Markers in blue correspond to the age profles using the histogram 
method. The fnal panel computes the moments from the conditional distribution of wealth by age using the 
histogram method with 250, 500, and 1000 grid nodes. 

struggle to capture the top percentiles of the wealth distribution, even though they do 

successfully capture the average wealth profle. As before, this is because there are only a 

small number of “very rich” agents in the Monte Carlo simulation, producing volatile age 

profles. This is in contrast with the results obtained from the histogram that provides stable 

results even for relatively coarse grids as shown in Figure 2D. 

The time required to compute the distribution or simulate the agents follows the same 

pattern described above. As we show in Table 2, the bulk of the computational time is 
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accounted for by computing the histogram λ̂ or performing the Monte Carlo simulation, with 

the calculation of the wealth profles taking just a few seconds at most. 

Auto-correlation of Wealth. Finally, we compute the fve- and ffteen-year 

auto-correlation of wealth starting at age 35. Both the histogram iteration method and 

Monte Carlo simulation produce similar results, see Table 2. However, the time required to 

iterate the histogram increases markedly with the time horizon, making the Monte Carlo 

simulation faster when computing the ffteen-year auto-correlation. 

This result is instructive about the practical limitations of the histogram iteration method. 

When using Monte Carlo methods, calculating the auto-correlation requires simulating a 

single cohort of agents, generating a representative sample of paths. This cohort simulation 

takes less time than a full simulation of the whole population and can take advantage of 

the histogram by using it to obtain the initial distribution of agents at age 35. By contrast, 

computing the auto-correlation with the histogram iteration method requires solving for the� � 
conditional distribution of agents at age 50 λ 

′ 
starting from each initial state s at ages 

35, see (12). λ 
′ 

describes all the possible paths that a 35 year old can take in their next s 

ffteen years. Computing λ 
′ 

requires iterating forward as in equation (6) multiple times. The s 

complexity of this step increases with the time horizon as the initial mass of agents fans out 

across the state space. 

4. Discussion 

We have shown how to use a histogram approximation of the stationary distribution of 

agents and its associated Markov kernel to efciently compute cross-sectional and longitudinal 

moments without having to simulate large samples of agents through Monte Carlo methods. 

We illustrated the workings of the method in the context of baseline models that abstract 

from many of the characteristics of applied work. However, the method we propose can also 

be used in other scenarios. We therefore end with a short discussion of some of the natural 
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extensions of the histogram iteration method and its main limitations. 

Extensions. The histogram iteration method can be easily applied to models that allow 

for additional endogenous choices (e.g., labor supply). In this case the policy functions can be 

solved with extensions of the endogenous grid method like those in Barillas and Fernández-

Villaverde (2007) and Fella (2014). Once the policy functions are obtained, the construction 

of the Markov kernel and the histogram that approximates the distribution follow as above. 

At this point it is also possible to complement the solution with methods that provide better 

approximation for the dynamics of wealthy agents (Gouin-Bonenfant and Toda 2023), or that 

speed up the computation by taking advantage of the sparseness of the Markov kernel (Tan 

2020; Rendahl 2022). 

Similarly, the method applies to non-stationary problems where the distribution of agents 

changes over time, or the agents’ choices change (therefore making the Markov kernel time-

varying). This can happen, for example, in the transition path to a new steady state after 

changes in policy variables. The histogram iteration method is already built to capture 

changes in the distribution, as the iteration in equation (6) shows. The only change comes in 

by indexing the Markov kernel by time when iterating over an initial distribution of agents. 

Continuous-time methods. The histogram iteration method can also be applied with only 

minor changes to continuous-time heterogeneous agent models (see for instance Herreño and 

Ocampo 2023). In particular, the solution of these models by means of the Finite Diference 

method is constructed from a (sparse) matrix A that characterizes the approximation to 

the Hamilton-Jacobi-Bellman equation (see, Achdou, Han, Lasry, Lions, and Moll 2021). 

The adjoint of this matrix plays the same role as the Markov kernel T described above and 

characterizes the solution to the Kolmogorov Forward equation that describes the evolution 

of the distribution of agents. In this way, the solution of the model generates a value function, 

policy functions, a distribution over states, and an operator to iterate the distribution just as 

in Section 2. 
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The changes in the implementation of the histogram iteration method come from how the 

method can take advantage of the sparseness of matrix A, the stipulation of a time step (∆t), 

and the need to integrate with respect to the distribution of continuous states. Alternative 

solution methods for continuous time models as those in Phelan and Eslami (2022) also allow 

for a direct implementation of the histogram iteration method. 

Limitations. The histogram iteration method is generally an efcient way for calculating 

cross-sectional and longitudinal moments. However, longitudinal moments that involve 

individual outcomes of a large subset of the population, or that involve long periods of time, 

can be expensive to calculate. As we discussed in Section 3, this is because the full history of 

individuals’ paths must be mapped in order to compare the individuals’ initial and fnal 

outcomes, unlike for other moments that focus on group outcomes like transition rates. This 

leads to cases where Monte Carlo methods can be more efcient, as was the case with the 

computation of the ffteen-year auto-correlation of wealth discussed in Section 3.2. 15 

The histogram iteration method takes advantage of the histogram approximation of the 

distribution of agents and the associated Markov kernel, which are often already computed 

as part of solving the model. Because of this, the histogram method will usually generate 

time-savings even when the computation of specifc moments is costlier than the computation 

from a simulated Monte Carlo panel, as the simulation has to be conducted on top of the 

model solution. This makes the key computational trade-of for computing moments clear: the 

complexity of the moment is weighed against the complexity of simulating a representative 

sample of agents. We have shown that this trade-of will usually land in favor of using the 

model’s own stationary distribution and Markov kernel, allowing researchers to avoid both 

coding and running computationally-costly Monte Carlo simulations. 

15The same principle applies to moments that involve the outcomes of agents in intervening periods, rather 
than just the initial and fnal outcomes. For example, computing the distribution of lifetime earnings in our 
OLG model proves to be unfeasible. Doing so would require us to compute the time paths of each possible 
income realization over the 81 year lifespan of agents. With 11 income states, there are 1181 ≈ 6.8 × 1017 

possible histories of lifetime income. 
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	A Monte Carlo 100k Agents: 
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