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Abstract We generalize the stochastic revealed preference methodology of

McFadden and Richter (1990) for finite choice sets to settings with limited

consideration. Our approach is nonparametric and requires partial choice set

variation. We impose a monotonicity condition on attention first proposed

by Cattaneo et al. (2020) and a stability condition on the marginal distribu-

tion of preferences. Our framework is amenable to statistical testing. These

new restrictions extend widely known parametric models of consideration with

heterogeneous preferences.
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1. Introduction

The stochastic revealed preference methodology of McFadden and Richter (1990) is a cor-

nerstone of economic analysis. This research agenda aims at explaining the behavior of

a population of decision makers (DMs) as if each DM maximizes her utility, which is an

independent identically distributed draw from a distribution of preferences, over their choice

set (i.e., menus). This theory is usually referred to as random utility model (RUM).1 If RUM

is successful at describing behavior, then the analyst can use it to recover the distribution

of heterogeneous preferences solely from observing the probability of choice of a finite set of

alternatives from different menus justifying the name of revealed preference.2 This distribu-

tion of preferences is an important input for many social sciences and can play a key role

in policymaking. However, RUM may fail at describing behavior if DMs do not consider all

available alternatives. This may happen, for instance, if there is a cost to understanding the

decision task. In this situation, DMs may use a two-stage procedure:3 first selecting a subset

of the given menu (consideration set), and only then choosing the best alternative from that

set. Given that there may be latent heterogeneity in DMs preferences, and in how DMs form

consideration sets, from the analyst’s standpoint, both the consideration sets and choices

from these sets are random. As a result of this two-stage procedure, if the consideration set

does not contain the most preferred alternative of a DM, the DM will choose a dominated

alternative, failing to be consistent with RUM.4

1RUM was originally formulated by Block and Marschak (1960) and Falmagne (1978).
2Since Fishburn (1998), it is known that only partial identification of the distribution of preferences is

possible under RUM. The probability of an item being ranked first is uniquely identified (Aguiar et al., 2016).
3Since Manzini and Mariotti (2007), there has been a renewed interest in studying models of sequential

choice in economics. The main aim of this research is to accommodate context effects that produce violations
of the standard utility maximization framework. In a sequential procedure of choice or a two-stage choice
procedure, the DMs first simplify the original choice problem using some heuristic and then choose rationality
from the simplified choice problem. Limited consideration is just one example of a factor that affects the first
stage, which determines the effective choice set used in the second stage. Other factors may be willpower and
status-quo bias (Horan, 2016).

4For examples of the distortions created by limited consideration, see Ho et al. (2017) and Heiss et al.
(2016) (the health insurance market), Hortaçsu et al. (2017) (the residential electricity market in Texas),
Honka (2014) and Honka et al. (2017) (the US auto insurance and banking industries), De Los Santos et al.
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This paper proposes a generalization of the stochastic revealed preference methodology that is

robust to limited consideration, allows for heterogeneous preferences that can be correlated with

consideration, and is amenable to statistical testing. In doing so, we provide nonparametric

restrictions on limited consideration and preferences that make partial recoverability of the

distribution of preferences possible in a large class of stochastic choice data sets. Similar to

Kitamura and Stoye (2019), our framework also permits robust counterfactual welfare analysis

and out-of-sample predictions.

A large literature, pioneered by Masatlioglu et al. (2012) and Manzini and Mariotti (2014),

has proposed theories of consideration-mediated choice. These theories accommodate some

departures from RUM caused by inattention, feasibility, categorization, and search.5 However,

in contrast to our work, most existing theories of random consideration have assumed that

preferences are homogeneous (Cattaneo et al., 2020). This restriction implies that these

models are not well suited to describe behavior at the population level. Our framework allows

for homogeneous and heterogeneous preferences that may be correlated with consideration,

making it suitable for both experimental and field data sets.

The closest paper to our work is Cattaneo et al. (2020). They provide a general framework,

Random Attention Model (RAM), to test different models of stochastic consideration when

preferences are homogeneous. Therefore, their work is applicable to individual stochastic

choice data. Cattaneo et al. (2020) impose a set-monotonicity restriction on the probability of

considering a set of alternatives given the menu. Namely, they assume that the probability of

considering a given set cannot increase if the menu is getting larger. We study the implications

of imposing this set-monotonicity constraint as well, but we allow for heterogeneous preferences.

Hence, our model is applicable to both individual and population stochastic choice data.

The second assumption we impose is preference stability. This condition requires that the

(2012) (web browsing behavior of consumers when shopping online), Barseghyan et al. (2021) (insurance
purchases).

5See, for instance, Aguiar et al. (2016), Brady and Rehbeck (2016), Caplin et al. (2016), Aguiar (2017),
Kovach and Ülkü (2020), Lleras et al. (2017), and Horan (2019).
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marginal distribution of preferences does not depend on the menu. The same stability

assumption is used in McFadden and Richter (1990) and it means that the variation in

menus does not change the preferences of DMs. The stability assumption is satisfied in many

empirical and theoretical settings (see Sections 3 and 4 for further details). Together with

set-monotonicity, it extends the RAM framework to settings with preference heterogeneity

and the RUM framework to settings with limited consideration. Importantly, stability puts no

restrictions on the dependence structure between menus and consideration, is consistent with

statistical dependence between random consideration and random preferences, and together

with set-monotonicity makes our framework testable. We show that none of these assumptions

alone has empirical content, but together they restrict behavior meaningfully and allow for

welfare and counterfactual analysis.

Set-monotonicity and stability are compatible with the behavior of a mixture of DMs, where

each DM’s behavior is consistent with stochastic limited consideration governed by a RAM (i.e.,

requiring set-monotonicity). Under this interpretation, stability requires that the heterogeneity

of preferences of the population of DMs is independent of the choice set, as in the McFadden

and Richter’s (1990) stochastic revealed preference framework.

We also demonstrate that set-monotocity and stability are satisfied by several important models

of limited consideration with heterogeneous preferences, such as a variant of Manzini and

Mariotti’s (2007) model of alternative specific consideration with heterogeneous preferences,

Brady and Rehbecks’s (2016) model of logit attention with random utility, Tversky’s (1972)

model of elimination by aspects, search and satisficing with random search and random utility

(Aguiar et al., 2016), and a version of rational inattention with Shannon’s cost of information

Caplin et al. (2018).6

Our approach differs from previous works that have used enhanced data sets to test for the

presence of consideration. In particular, we only need a standard stochastic choice data
6Aguiar et al. (2021) considers the same primitives but imposes full independence between random

preferences and attention. In contrast to this paper, Aguiar et al. (2021) requires the presence of a default
alternative and imposes parametric restrictions on the random attention.
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set widely used in the discrete-choice literature.7 Recently, Abaluck and Adams (2021) use

structural restrictions on the elasticity behavior of demand to identify consideration sets and

preferences. We differ from that work because we do not observe attributes (e.g., prices).

Barseghyan et al. (2021) obtain information about parametric distribution of preferences in a

domain with attributes variation by introducing a support restriction on possible consideration

sets. Our framework does not impose any parametric restrictions on the distribution of

preferences, and allows both shape and support restrictions on consideration probabilities.

Kashaev and Lazzati (2021) develop a dynamic model of discrete choice that incorporates

peer effects into random consideration sets. They identify preferences and consideration

probabilities in a fixed menu settings by using variation in choices of peers. We assume menu

variation and do not have access to panel data.

Aguiar r© Kashaev (2021) study nonparametric identification and estimation of the distribution

of consideration sets and preferences without menu variation in panel data settings. Dardanoni

et al. (2020b) provide identification of the consideration probabilities given a known distribution

of preferences in a fixed menu. They also consider grouped data sets where three instances of

choice of the same consumers is observed to enhance identification. We assume menu variation,

do not need to know the distribution of preferences, and do not use enriched stochastic choice

data sets. More recently, Dardanoni et al. (2020a) provide identification arguments for both

preferences and cognition heterogeneity (including consideration probabilities) in mixture

data sets. In contrast to our work, their method requires observing the joint distribution of

choice over different menus. Also, their results are focused on parametric heterogeneity.

The paper is organized as follows. Section 2 introduces our general framework. In Section 3,

we provide several justifications of the stability assumption. Section 4 shows that our

framework generalizes several important models of limited consideration. Section 5 provides
7For examples of enriched data sets that identify limited consideration, see Reutskaja et al. (2011) (eye-

tracking data); Honka et al. (2017) and Draganska and Klapper (2011) (additional surveys); Kawaguchi et al.
(2016) and Conlon and Mortimer (2013) (variation in product availability); Dehmamy and Otter (2014) and
Huang and Bronnenberg (2018) (variations in quantity purchased and products purchased); and Gabaix et al.
(2006) (mouse-tracking data).
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the characterization of our model which is amenable for statistical testing, and discusses

the computational aspects of our model. Section 6 studies the implications of our model for

preference revelation and counterfactual welfare analysis. Section 7 concludes our paper. All

proofs can be found in Appendix A.

2. Model

Let X be a finite choice set. The collection of choice sets (menus) is denoted by a nonempty

subset of the power set A ⊆ 2X \ {∅}. We define the stochastic choice function ρA ∈ ∆(A),

where ∆(A) denotes the set of all probability distributions on A, for A ∈ A such that ρA(a)

denotes the probability of choosing a ∈ A. The stochastic choice data set is the vector

ρ = (ρA)A∈A. We call a stochastic choice data set complete if A = 2X \ {∅} and incomplete

otherwise.

We let U ⊆ X ×X be the set of linear orders (strict preference relations) defined on X. The

typical element will be denoted by �∈ U .

Within our framework, DMs may exhibit limited consideration. DMs exhibit limited consider-

ation when they maximize their preferences in a strict subset of the menu. This strict subset

is called a consideration set. We model limited consideration using the notion of consideration

filters.

Definition 1 (Consideration Filter). We say that φ : 2X\{∅} → 2X is a feasible (consideration)

filter if there exists D ∈ 2X \ {∅} such that

φ(A) =


D, D ⊆ A,

∅, otherwise
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for all A ∈ 2X \ {∅}.

Let Φ be a finite collection of all feasible filters. The typical element of it will be denoted by

φ ∈ Φ.

We consider a random attention and utility model (RAUM). A behavioral type of this model is

determined by a pair of preferences and filter (�, φ) ∈ U ×Φ. A RAUM rule π = (πA)A∈2X\{∅}

is a collection of probability distribution over preferences and filters πA ∈ ∆(U ×Φ) such that

πA(�, φ) = 0 whenever φ(A) = ∅ for all choice sets A ∈ 2X \ {∅}.

Given menu A, let πA(·| �) denote the conditional distribution over filters conditional on

the random preference order being �. Then, for φ such that φ(A) = D, πA(φ| �) is the

probability that set D is considered in menu A by DMs with preferences �. Essentially,

consideration filters are indexed by all possible consideration sets D: different filters will

generate all subsets of a given menu A.

We work with filters that are indexed by consideration sets because of two main reasons.

First, we think of ρ as coming from repeated cross-sections. (See the experiment in Aguiar

et al., 2021 for an example of a setting where each DM faces a menu at random and has

only one choice instance.) Thus, for a given menu A, DM with filter φ considers φ(A) and a

pair (�, φ) completely describes her behavior. For a different menu, a different DM may be

endowed with a different filter and preferences. Second, consideration filters are convenient

since most of the models of limited consideration and assumptions about them are defined in

terms of probabilities of considering a given set D. This greatly simplifies our notation and

mathematical exposition without loss of generality.8

Definition 2. A stochastic choice data set ρ admits a RAUM representation π if

ρA(a) =
∑

(�,φ)∈U×Φ
πA(�, φ)1 ( a ∈ φ(A), a � b, ∀b ∈ φ(A) \ {a} ) ,

8For example, our RAUM rule is empirically equivalent to another less mathematically convenient rule that
uses alternative behavioral types consisting of a preference and a consideration mapping that maps menus to
their nonempty subsets. See Section 3.
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for all a ∈ A and all A ∈ A.

RAUM is so general that it does not have any empirical content. That is, feasible filters

together with unrestricted (possibly menu dependent) distribution of preferences are permissive

enough to explain any behavior. Hence, without further constraints, it is impossible to falsify

RAUM or to recover the (marginal) distribution of preferences of a population of DMs

(i.e., π∗A(�) = ∑
φ πA(�, φ)). We impose the following stability constraint on the RAUM

representation π.

Assumption 1 (Stability). There exists π∗ ∈ ∆(U) such that π∗A(�) = π∗(�) for any

A ∈ 2X \ {∅} and �∈ U .

Note that stability is equivalent to requiring that π∗A(�) = π∗B(�) for any A,B ∈ 2X \ {∅}

and �∈ U , thus, justifying its name.

One interpretation of stability is that it restricts limited consideration such that the marginal

distribution of preferences of the general RAUM is equivalent to the true distribution of

heterogeneous preferences in the population. The true distribution of preferences is the

distribution on U that controls behavior in the counterfactual situation of absence of limited

consideration. Stability does not require the knowledge of such distribution. Moreover,

our stability assumption is a natural analogue, within our more general framework, of the

assumption of preference stability in the stochastic rationality model of McFadden and Richter

(1990).

Importantly, stability is consistent with stochastic dependence between consideration filters and

random preferences. We only require that the (marginal) distribution of preferences remains

the same across exogenously given menus of alternatives. We further explore limitations of

the stability assumption in the next section (Section 3).

Even under stability, limited consideration has to be further restricted to have empirical bite

as we will show in Proposition 1. Here, we follow Cattaneo et al. (2020) and impose the

following restriction.

8



Assumption 2 (Set-monotonicity). For any �, φ, A, and B such that A ⊆ B and φ(A) 6= ∅,

it must be that πA(φ| �) ≥ πB(φ| �).

Set-monotonicity means that the conditional probability of a given filter, φ, conditional on

a preference type, �, cannot increase as the menu expands. That is, DMs will pay more

attention to a set when the menu of alternatives is smaller. Intuitively, larger menus have a

higher opportunity cost of consideration. Cattaneo et al. (2020) show that many models of

random consideration satisfy set-monotonicity.

The interaction of set-monotonicity and stability does not imply independence of consideration

and preferences, as the following example demonstrates.

Example 1. Let X = {a, b} and A = {{a}, {b}, {a, b}}. Let a �1 b and b �2 a, and assume

that only two filters below realize with nonzero probability:

φ1(A) =


{a}, {a} ⊆ A,

∅, otherwise,
φ2(A) =


{b}, {b} ⊆ A,

∅, otherwise.

Consider the following distributions πA(�, φ) over the above two preference orders and two

filters for different menus:

πA(�, φ) (�1, φ1) (�1, φ2) (�2, φ1) (�2, φ2)

{a, b} 1/3 1/6 1/6 1/3

{a} 1/2 0 1/2 0

{b} 0 1/2 0 1/2

Note that πA(�1) = πA(�2) = 1/2 for all A. However,

1
3 = π{a,b}(�1, φ1) 6= π{a,b}(�1)

2∑
i=1

π{a,b}(�i, φ1) = 1
2 ·

1
2 = 1

4 .

That is, preferences and filters are not independent. Moreover, set-monotonicity is also
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satisfied. For instance, π{a}(φ1| �1) = 1 ≥ 2/3 = π{a,b}(φ1| �1).

The next proposition qualifies the importance of stability and set-monotonicity working

together. Neither of these restrictions alone are enough for empirical relevance of the model.

However, when they are combined together, the model becomes falsifiable even with limited

menu variation. We see the combination of these two restrictions as a baseline of empirical

content that makes our study empirically meaningful.

Proposition 1. The following statements are true:

(i) Any ρ admits a stable RAUM representation.

(ii) Any ρ admits a set-monotone RAUM representation.

(iii) There exists an incomplete ρ that does not admit a set-monotone and stable RAUM

representation.

Here we provide a sketch of the proof of (iii). We construct an incomplete data set (i.e.,

A 6= 2X \ {∅}) that does not admit a set-monotone and stable RAUM. Let X = {a, b, c, d}

and

A = {{a, b}, {a, c}, {b, d}, {a, b, d}, {a, c, d}, {b, c, d}}.

Suppose the observed ρ is as follows

{a, b} {a, c} {b, d} {a, b, d} {a, c, d} {b, c, d}

ρA(a) 1 1 - 0 0 -

ρA(b) 0 - 1 1 - αb

ρA(c) - 0 - - 1 αc

ρA(d) - - 0 0 0 αd

where αd > 0. Consider the pair {a, b} and {a, b, d}. From observing ρ{a,b}(b) = 0 and

ρ{a,b,d}(b) = 1, we can conclude that b � d with probability 1 or b and d are never considered

10



together. Similarly, from observing ρ{a,c}(c) = 0 and ρ{a,c,d}(c) = 1, we can make analogous

conclusion about c and d. As a result, the fact that αd > 0 then implies that the probability

of considering the singleton consideration set {d} must be nonzero (otherwise d is either never

considered or dominated by b or c). But the latter is impossible because in menu {b, d} option

d is never chosen. The formal details of the sketch above can be found in Appendix A.1.

3. Stability of Preferences as Structured Heterogeneity in a Population

of Inattentive DMs

The set-monotonicity property is well-understood and justified due to Cattaneo et al. (2020).

Here, we provide several justifications of stability as a reasonable assumption for the RAUM

representation.

One possible interpretation of the set-monotone and stable RAUM representation is that it

represents a mixture of the behavior of a population of DMs, where the behavior of each DM

is consistent with RAM.

Definition 3 (Random Attention Model, RAM, Cattaneo et al., 2020). A stochastic choice

data set ρ admits a RAM representation if there exist a preference order � and a collection of

distributions over consideration filters (an attention rule) λ� = (λA,�)A∈A ∈ ∆(Φ)|A|, where

|A| is the cardinality of A, such that λA,�(φ) = 0 whenever φ(A) = ∅; λA,�(φ) ≥ λB,�(φ) for

all A,B ∈ A such that A ⊆ B and φ(A) 6= ∅; and

ρA(a) =
∑
φ

λA,�(φ)1 ( a ∈ φ(A), a � b, ∀b ∈ φ(A) \ {a} )

for each A ∈ A.

To better understand the relation between RAM and RAUM, consider the following data

11



generating process for ρ. Fix some distribution over preference orders π∗ ∈ ∆(U) and some

collection of attention rules for all possible preference orders {λ�}�∈U . Every DM draws a

preference order � from π∗ independently of other DMs, as in the McFadden and Richter

(1990)’s framework. Given the preference order � and attention rule λ�, the DM chooses

alternatives from A according to the RAM rule (that induces a probability of choice)

ρA,�(a) =
∑
φ

λA,�(φ)1 ( a ∈ φ(A), a � b, ∀b ∈ φ(A) \ {a} ) .

Let ρ be a mixture of the above RAM rules weighted by π∗. That is,

ρA(a) =
∑
�
π∗(�)ρA,�(a)

for each A ∈ A. Note that this data set admits a set-monotone and stable RAUM representa-

tion π with πA(�, φ) = λA,�(φ)π∗(�) for all �, λ, and A. Moreover, by construction, any ρ

that admits a set-monotone and stable RAUM π is also a mixture of RAM rules induced by

π∗ and attention rules {πA(·| �)}�∈U . In other words, the set-monotone and stable RAUM

framework is an extension of the RAM framework to heterogeneous preferences structured as

in the McFadden and Richter (1990)’s framework.

Alternatively, since ρ admits a RUM representation if there exists a distribution over preference

orders π∗ ∈ ∆(U) such that

ρA(a) =
∑
�
π∗(�)1 ( a � b, ∀b ∈ A \ {a} ) ,

we can think of RUM rules as mixtures of RAM rules obtained from particular degenerate

attention rules (i.e., λA,�(φ) = 1 (φ(A) = A )). Hence, the set-monotone and stable RAUM

framework is an extension of the RUM framework to heterogeneous consideration filters, as in

the Cattaneo et al. (2020)’s framework.9

9Note that this interpretation of the stable and set-monotone RAUM rule means that we could alternatively
and equivalently define our behavioral types as a pair of a preference and a consideration mapping, describing
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It is important to point out that in this generalization of the RAM framework, which allows for

heterogeneous preferences, we use the same stability assumption as in the classical stochastic

revealed preference framework of McFadden and Richter (1990). Kitamura and Stoye (2018)

have given a modern interpretation to this assumption as an exogeneity restriction requiring

preferences and menus to be independent. There are many settings where this assumption

is satisfied: (i) experiments, where the experimenter exogenously varies the menus (Aguiar

et al., 2021); (ii) environments with predetermined choice sets in time (e.g., such as modes of

transport or elections McFadden, 1986); (iii) choice problems with frequently-purchased and

inexpensive products (Lu, 2021).10 Moreover, the stability assumption has been the standard

in decision theory with menu variation since the work of Falmagne (1978).

An important reason why the distribution of preferences is assumed to be independent of

menus is that this restriction allows for well-defined and informative welfare and counterfactual

choice analysis out-of-sample (i.e., in menus that are not part of the data set). This stable

distribution over preferences or types can be interpreted as a true preference distribution.

This follows the tradition of the seminal consideration set papers in assuming that each DM is

endowed with a menu independent strict preference relation (Masatlioglu et al., 2012, Manzini

and Mariotti, 2014, Cattaneo et al., 2020).

The stability assumption may not be suitable for all choice situations. A classical example

arises in survey data, such as the application studied in Kitamura and Stoye (2018). Stability

may fail because income, which determines the budget faced by a DM, may be correlated

with preferences. In these situations, Kitamura and Stoye (2018) suggest using the control

function approach (Blundell and Powell, 2001, Imbens and Newey, 2009) to suitably modify

the stochastic revealed preference framework in McFadden and Richter (1990). A study of

the nonempty consideration sets for each menu. Indeed, following Cattaneo et al. (2020) we can restrict the
consideration mapping to be an attention filter. The attention filter property states that if we remove an item
from a menu that is not in the deterministic consideration set, then the consideration set in the new menu is
the same as the consideration set in the original menu.

10Note that if there are observable covariates (e.g., product characteristics), then our analysis goes through
after conditioning on such covariates. In that case, stability would require preferences to be independent of
menus conditional on observed covariates.
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the connection between their solution to the problem of endogeneity and our framework is

left for future work.

4. Examples of RAUM

Notwithstanding the apparent restrictiveness of the stability and set-monotonicity assumptions,

RAUM generalizes a wide variety of models of limited consideration and random utility,

allowing for correlation between attention and preferences, as showcased in the next examples.

Attention-index Models

Given �, an attention-index η� : 2X → R+ such that η�(∅) = 0 is a capacity over subsets

of X capturing how enticing they are conditional on a given preference type. The following

models of consideration are examples of rules that are governed by attention-indexes. These

type of models are studied in Aguiar et al. (2021) with an independence assumption between

preferences and consideration. Abaluck and Adams (2021) also uses these type of models

in a different domain with the same independence assumption. Here, we show that models

with an attention-index consideration that depends on heterogeneous preferences admit a

set-monotone and stable RAUM representation.

Example 2 (Attention-index). Assume that there is a vector of random utilities associated

with X, u = (uy)y∈X and a vector of random saliency ξ = (ξy)y∈X with a menu-independent

cumulative distribution function (c.d.f.) F(ξ,u). Moreover, assume that the marginal c.d.f. of

u, Fu, is continuous.11 Let U� = {u ∈ R|X| : ∀y, y′ ∈ X, uy > uy′ ⇐⇒ y � y′} be the set of

utility values that imply � (Fishburn, 1998). Then, for every �∈ U , define an attention-index
11Continuity of Fu implies that uy = uy′ with probability zero for any y 6= y′.
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η� as

η�(D) =
∫
1 (u ∈ U� ) |{y ∈ D : uy + ξy ≥ κ}| dF(ξ,u)(ξ, u)

for some κ ∈ R.12 The attention index η� captures the attractiveness of D by computing the

average cardinality of the set of all alternatives in D that are above a threshold κ.13 Next, we

let π∗A be defined as

π∗A(�) =
∫
1 (u ∈ U� ) dFu(u)

for all �∈ U . Finally, for any φ and A such that φ(A) 6= ∅, we define πA(φ| �) as

πA(φ| �) =
∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A\{∅}
∑
B⊆X\g̃(A) η�(C ∪B)

for a known mapping g̃ : 2X → 2X .

In Example 2, stability holds because the marginal c.d.f. Fu does not depend on the menu. In

the absence of limited consideration, the distribution over preferences π∗ constitutes a random

utility rule, as in McFadden and Richter (1990). For instance, if |X| = 3, uy = w(y) + εy

for some mean-utility function w : X → R, and ε is distributed according to the Gumbel

distribution, then the random utility (marginal) takes the logit form and

π∗A(�) = ew(y1)∑
y∈X ew(y)

ew(y2)

ew(y2) + ew(y3) ,

for all y1, y2, y3 ∈ X and �∈ U such that y1 � y2 � y3.

Set-monotonicity holds for two important special cases in the literature: (i) the logit attention

model (Brady and Rehbeck, 2016) with g̃(A) = X for all A; (ii) and the elimination by aspects

(Tversky, 1972, Aguiar, 2017) with g̃(A) = A for all A.14 The item-specific attention model
12The support of the random variables and κ have to be such that η�(D) > 0 for all D and �.
13When κ→ −∞ the attention-index converges to |D| and there is no dependence on preferences. This

special case has been explored in Aguiar et al. (2021) in the presence of a default alternative.
14See Appendix C for additional details about these special cases. Sometimes we have an alternative that

is present in every menu–the default alternative. The eliminations by aspects model is also called Random
Categorization Rule (Aguiar, 2017) when there is a default alternative that always attracts attention.
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(Manzini and Mariotti, 2014) is also another special case (Suleymanov, 2018).15

We highlight that correlation between random saliency and random utility is not restricted

(i.e., F(ξ,u) is unrestricted). Finally, in Example 2, we use the cardinality of the set of salient

alternatives

|{y ∈ D : uy + ξy ≥ κ}|

to construct η�(D). However, any other mappings can be used to construct η� without the

resulting model deviating from the stable and set-monotone RAUM framework.

Search and Satisficing

The search and satisficing behavioral model (Simon, 1955) is an important example of a model

with dependence between preferences and consideration driven by random utility directly

affecting the way choice sets are formed.

Example 3 (Search and Satisficing). Given a choice set X, let s = (sy)y∈X be a random

search index and u = (uy)y∈X be a random utility with a joint continuous c.d.f. F(s,u). Similar

to Example 2, the random vector u induces π∗ such that

π∗A(�) =
∫
1 (u ∈ U� ) dFu(u)

for all �∈ U . An alternative y1 is searched earlier than y2 if and only if its search index is

bigger (i.e., sy1 ≥ sy2). All DMs face a common threshold τ ∈ R, and their preferences are

captured by random utility u. For every �∈ U define πA(·| �) as the conditional distribution

over filters such that πA(φ| �) = 0 if φ(A) = ∅ and for φ(A) 6= ∅

πA(φ| �) =
∫
1 (u ∈ U�, φ(A) = {y ∈ A | 6 ∃y′ ∈ A : sy < sy′ , uy′ ≥ τ} ) dF(s,u)(s, u),

15In Appendix C, we provide a restriction on g̃ that guarantees set-monotonicity. This condition is satisfied
by all these models.

16



where τ ∈ R is a threshold that is common for all DMs. We assume F(s,u) is continuous

to avoid indifference in preferences and to avoid the case that many items are searched

simultaneously. In words, the probability of the consideration set being equal to φ(A) = D is

given by the probability of items in D being searched before the items whose utility value are

above the threshold in a menu. If no item is satisficing, then the whole menu A is searched.

The rule π(�, φ) = πA(φ| �)π∗A(�) from Example 3 is set-monotone because the threshold

is constant and the distribution of the search index does not depend on the menu.16 In

addition, stability is satisfied because the joint distribution of the random utility and the

search index does not depend on the menu. This version of search and satisficing was studied

and characterized by Aguiar et al. (2016). The interpretation of this particular RAUM is

compatible with ρ being generated by the behavior of a population of DMs. Each of these

DMs chooses according to random satisficing behavior (with a fixed distribution of search) as

in Aguiar et al. (2016). The preference heterogeneity is governed by π∗.

Correlation between preferences and consideration arises endogenously due to the use of the

utility to stop the search process once a satisficing item is found. Caplin et al. (2011) showed

that search and satisficing behavior, as in our example, can be written as an optimization

problem that produces optimal consideration sets given search costs and expected value of

each alternative. In that sense, correlation between preferences and consideration is the result

of optimizing behavior of DMs.

Set-monotonicity breaks if we allow menu-dependent thresholds (Aguiar and Kimya, 2019) or

menu-dependent search indexes (Aguiar et al., 2016). However, if the threshold is random17,

as in Kovach and Ülkü (2020), then set-monotonicity is satisfied if the distribution of the

random threshold is menu independent.
16This example fits Example 9 in the supplement of Cattaneo et al. (2020). But it is easy to see that a

bigger menu (i.e., B ⊇ A) will only decrease the probability of filter φ (i.e., πB(φ| �) ≤ πA(φ| �)).
17τ becomes random and there is a joint c.d.f. F(τ ,s,u) governing the model.
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Rational Inattention

Caplin et al. (2016) pointed out the relationship between the theory of rational inattention in

discrete choice and the theory of consideration sets. Even though the domain of the theory of

rational inattention as presented in Caplin et al. (2016) is described in a different domain

than the one over which our theory is developed, we show next that some special cases of

the rational inattention model admit a set-monotone and stable RAUM representation. The

first example of this section follows the consumer problem 1 in Caplin et al. (2016), but in

contrast to them, (i) we allow for menu variation, and (ii) we assume that priors change with

the menu in a way consistent with Bayes’ rule.

Example 4 (Rational Inattention). Let X = {a, b, c} be the choice set and the (unobserved)

state space be equal to the choice set Ω = X. Consider an individual DM. Let µ(y), y ∈ X,

be the prior that y is of high quality and the rest of alternatives are of low quality. Without

loss of generality, assume that µ(a) ≥ µ(b) ≥ µ(c). Assume that, given menu A ⊆ X, the

prior belief about the state of the world is updated according to Bayes’ rule. That is, the

prior that y in menu A is of the high quality is µA(y) = µ(y)/∑y′∈A µ(y′).

There is a state dependent utility u : X × Ω → {0, 1} such that, u(a, y) = uG if a = y and

otherwise u(a, y) = uB with uG > uB. The DM expends attention effort following Shannon’s

model of rational inattention with a fixed parameter λ > 0.18 For tractability, define a net

payoff of identifying the high-quality item that takes into account the attention effort as

δ = exp
(
uG − uB

λ

)
− 1.

Define also,

δ∗1 = −3 + 1
µ(c) , δ∗2 = −1 + µ(a)

µ(c) , δ∗3 = −1 + µ(b)
µ(c) , δ∗4 = −1 + µ(a)

µ(b) .

18We consider several values of λ as a comparative statics analysis, but we assume that the DM has a fixed
cost of attention effort.
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Note that since 1 − 2µ(c) = µ(a) + µ(b) − µ(c) ≥ µ(a) and µ(a) ≥ µ(b) ≥ µ(c), it follows

that δ∗1 ≥ δ∗2 ≥ δ∗3 and δ∗2 ≥ δ∗4. Caplin et al. (2016) show that rational inattention produces a

deterministic consideration set that remains the same across states (i.e., for every A, there

exists φ∗ such that πA(φ∗| �) = 1 for all �∈ U). Tables 1 and 2 display the deterministic

considerations set (i.e., φ∗(A) with probability 1) for different values of δ and menu A. For

instance, the 2× 1 element of Table 1 is {a}, which corresponds to A = {a, b} and δ ∈ (0, δ∗4].

This means that if A = {a, b} and δ ∈ (0, δ∗4], then the whole probability mass goes to the

filter φ∗ that is such that φ∗({a, b}) = {a}. Table 1 corresponds to the case when δ∗3 ≥ δ∗4

(i.e., µ(b)/µ(c) ≥ µ(a)/µ(b)). Table 2 considers the case when δ∗4 ≥ δ∗3.

A/δ ∈ (0, δ∗4] (δ∗4, δ∗3] (δ∗3, δ∗2] (δ∗2, δ∗1] (δ∗1,+∞)
{a, b, c} {a} {a, b} {a, b} {a, b} {a, b, c}
{a, b} {a} {a, b} {a, b} {a, b} {a, b}
{b, c} {b} {b} {b, c} {b, c} {b, c}
{a, c} {a} {a} {a} {a, c} {a, c}

Table 1 – Consideration sets for different menus A and δ when δ∗3 ≥ δ∗4 .

A/δ ∈ (0, δ∗3] (δ∗3, δ∗4] (δ∗4, δ∗2] (δ∗2, δ∗1] (δ∗1,+∞)
{a, b, c} {a} {a} {a, b} {a, b} {a, b, c}
{a, b} {a} {a} {a, b} {a, b} {a, b}
{b, c} {b} {b, c} {b, c} {b, c} {b, c}
{a, c} {a} {a} {a} {a, c} {a, c}

Table 2 – Consideration sets for different menus A and δ when δ∗4 ≥ δ∗3

Tables 1-2 imply that set-monotonicity is satisfied. Indeed, the deterministic consideration

set described in each column of these tables satisfy the attention filter property described in

Masatlioglu et al. (2012).

Following Caplin et al. (2016), it can be shown that given a consideration setD, the distribution

over choices for this rationally inattentive DM in D is such that the probability of picking y

for a consideration set D is

PD(y) = µD(y)(|D|+ δ)− 1
δ

.
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For instance, if δ ∈ (δ∗2, δ∗1] and A = {a, b, c} (i.e, D = {a, b}), then ρ{a,b,c}(a) = P{a,b}(a),

ρ{a,b,c}(b) = P{a,b}(b), and ρ{a,b,c}(c) = 0. Stability also holds. Since ρA only depends on A via

consideration set D, for δ ≤ δ∗1, it is trivial to construct a menu independent distribution over

preference orders over X. Hence, ρ generated by this rational inattention model admits a

set-monotone and stable RAUM representation.

When δ > δ∗1, DMs consider all alternatives. Hence, in this case, since there are only 3

alternatives, ρ admits a RAUM representation if and only if ρ is regular (Block and Marschak,

1960, Falmagne, 1978). That is, ρA(y) ≥ ρX(y) for all A ⊆ X and y ∈ A. Note that

ρ{a,b}(a) = µ{a,b}(a)(2 + δ)− 1
δ

and ρ{a,b,c}(a) = µ(a)(3 + δ)− 1
δ

. Hence,

ρ{a,b}(a)− ρ{a,b,c}(a) = µ(a)µ(c)(δ − δ∗1)
δ(µ(a) + µ(b)) > 0,

where the last inequality is implied by δ > δ∗1. Similar inequalities can be derived for all other

menus and options. For the formal construction of π∗(�) see Appendix B.

Caplin et al. (2016) remark informally that the consideration sets produced by the Shannon’s

model of rational inattention satisfy the attention filter property first proposed in Masatlioglu

et al. (2012). Deterministic consideration sets that are attention filters satisfy set-monotonicity

(Cattaneo et al., 2020). However, this statement is only true under certain assumptions

about how the prior is defined and how it changes when menus change. In Example 4, the

deterministic consideration set is indeed an attention filter. However, if we replace µ with

another prior that arbitrarily depends on the menu, this property will not hold in general.

Stability also holds in Example 4. Note that randomness in choice for the rational inattentive

DM is driven by mistakes due to costly attentional effort. If λ = 0, then choice will be

deterministic and consistent with utility maximization. The fact that stability holds in this

setup is entirely due to the fact that Shannon’s model of rational inattention admits an

additive random utility equivalent representation, as stated in Fosgerau et al. (2017). Similarly,

this equivalence will hold only under certain assumptions on the priors and how they change
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across menus. If priors are fixed, this equivalence holds. In addition, we showed in our

example another way to change priors that also makes this equivalence hold. In other words,

stability holds here because we restrict the dependence of the priors on the menu, hence

making it possible for the implied distribution over preferences π∗ to be menu-independent as

stability requires.

Not all probabilities of choice generated by Shannon’s rational inattention model admit a

set-monotone and stable RAUM representation. A well-known example in Matějka and

McKay (2015) (see problem 4) exhibits Shannon’s rational inattention model where priors

change across menus such that stability is broken even with full consideration.

We conclude by noting that the example in this section admits neither a RUM represen-

tation nor a RAM representation. However, it admits a set-monotone and stable RAUM

representation.

5. Characterization of Set-monotone and Stable RAUM

In this section, we characterize set-monotone and stable RAUM in a form amenable to

(statistical) testing. In particular, we show that to conclude whether a given data set admits

a set-monotone and stable RAUM representation, it suffices to check whether a particular

linear program has a solution. This problem is similar to the one in McFadden and Richter

(1990) that characterizes RUM.

First, we informally describe how to construct the linear program that needs to be solved.

Suppose we have some ρ and some π and want to check whether π is a RAUM representation

of ρ. First, we need to check whether for all menus A and a ∈ A, ρA(a) is a mixture of
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preference-filter-types such that a is considered and is the best among those considered:

ρA(a) =
∑

(�,φ)∈U×Φ
πA(�, φ)1 ( a ∈ φ(A), a � b, ∀b ∈ φ(A) \ {a} ) .

If the choice set is X = {a, b}, preferences U are such that a �1 b and b �2 a, and

there are only 3 feasible filters in Φ: φ1, φ2 and φ3 such that φ1({a}) = φ1({a, b}) = {a},

φ2({b}) = φ2({a, b}) = {b}, φ3({a, b}) = {a, b}, then

π{a,b}(�1, φ1) + π{a,b}(�1, φ3) + π{a,b}(�2, φ1) = ρ{a,b}(a).

Thus, iterating over A and a ∈ A, we can construct a set of linear equality constrains that

must be satisfied by π and ρ.

Second, the definition of RAUM requires πA(�, φ) = 0 whenever φ(A) = ∅, which is another

linear equality constraint on π. For instance, π{b}(�1, φ1) = 0.

Third, each πA sums up to 1, giving us the third set of constraints. For instance,

π{a,b}(�1, φ1)+π{a,b}(�1, φ2)+π{a,b}(�1, φ3)+π{a,b}(�2, φ1)+π{a,b}(�2, φ2)+π{a,b}(�2, φ3) = 1.

Fourth, π has to be stable. That is, ∑φ(πA(�, φ)− πB(�, φ)) = 0 for every A,B ∈ A. For

instance,

π{a}(�1, φ1) + π{a}(�1, φ2)− π{a,b}(�1, φ1)− π{a,b}(�1, φ2) = 0.

Thus, we get another set of linear constraints on π.

Finally, to check set-monotonicity note that for A ⊆ B, under stability, πA(φ| �) ≥ πB(φ| �)

is equivalent to

πA(φ| �)π∗(�) = πA(�, φ) ≥ πB(�, φ) = πB(φ| �)π∗(�).
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To turn the inequality into equality, we can introduce a slack variable v̄A,B,�,φ ≥ 0. As a

result, we get that the final set of equality constraints is of the form

πA(�, φ)− πB(�, φ)− v̄A,B,�,φ = 0.

For example,

π{a}(�1, φ1)− π{a,b}(�1, φ1)− v̄{a},{a,b},�1,φ1 = 0.

These are 5 types of linear equality restrictions on v = (π′, v̄′)′, where v̄ = (v̄A,B,�,φ)A⊆B∈A,�∈U,φ∈Φ

(v̄ enters the first 4 restrictions with zero coefficients). Combining these linear equality restric-

tions for all menus, choices, filters, and preference orders, we can construct a matrix G that

consists of 0, 1, −1, and does not depend on ρ, and a vector g that depends on ρ. In order to

check whether π is a RAUM representation of ρ it is sufficient to check whether g = Gv. Our

main theorem formalizes the above construction.

Let dρ, dm, and dr denote the number of entries in ρ, the cardinality of 2X \ {∅}, and the

total number of linear restrictions imposed by feasibility, stability, and set-monotonicity on π,

respectively. Also, define g = (ρ′, 1′dm , 0′dr)′ ∈ Rdg , where 1dm is the vector of ones of length

dm; 0dr is the vector of zeros of length dr; and dg = dρ + dm + dr.

Theorem 1. Given a stochastic choice data set ρ the following are equivalent:

(i) ρ admits a set-monotone and stable RAUM.

(ii) There exists v ∈ Rd
+, d <∞, such that

g = Gv

where G is a known matrix that consists of −1, 0, 1.

Theorem 1 provides a linear characterization of a set-monotone and stable RAUM. It is

important to note that without stability the problem is quadratic since set-monotonicity is
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imposed on the conditional distribution over filters πA(φ| �). The linearity of our problem

makes it amenable to statistical testing using tools in Deb et al. (2018) as we discuss below.

Computational Aspects of Testing

We have assumed that we observe ρ. In reality, we have to estimate ρ from a sample of

choices. To do this, in our preferred interpretation of RAUM, we need a cross-section of

choices of a population of DMs with choice set variation.19 Once we have the estimator of ρ,

ρ̂, we can use the testing procedure delineated in Deb et al. (2018), which amounts to solve

a (convex)-quadratic problem with linear constraints. Such problems are well-known in the

optimization literature and typically easy to solve (Kitamura and Stoye, 2018, Deb et al.,

2018). The main computational cost can arise in the computation of the matrix G. The matrix

G does not depend on ρ̂n, hence, can be computed once and used for different datasets. Its

size, however, grows exponentially with the size of the choice set X. For instance, for |X| = 6,

G has about 1.8 million rows and 4.4 million columns. Fortunately, G is sparse–for |X| = 6

less than 0.00012 percent of entries of G are nonzero.20 There are dedicated algorithms that

can handle large-scale problems like ours by exploiting sparsity (see, for instance, Benson

et al., 2000, Andersen et al., 2003, Goldfarb and Scheinberg, 2005, Majumdar et al., 2020).21

In the extreme case where the choice set has a continuum of alternatives, such as in the

framework of Kitamura and Stoye (2018), the construction of the analogue matrix for the

special case of RUM can become computational prohibitive. However, this level of complexity

does not typically arise in our setup, as we focus on discrete choice with a moderate choice set

size. Another key difference from Cattaneo et al. (2020) is that we do not require the data
19One example of such data set is the one collected in Aguiar et al. (2021). In that particular sample,

there are 4099 independent choices from a choice set with |X| = 6 alternatives and |A| = 32 randomly and
exogenously assigned menus.

20In our simulations, the computation time grows exponentially as well. While for |X| = 3 matrix G is
computed in approximately 3 · 10−4 seconds, for |X| = 6 it takes about 74 minutes.

21Many of these recently proposed algorithms exploit the fact that quadratic and linear programs can be
rewritten as semidefinite programming problems.
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set to be complete. We show that verifying the conditions on Theorem 1 is necessary and

sufficient to guarantee that there is a set-monotone and stable RAUM representation of the

data set. This means that our methodology can be applied to data sets that do not contain

full variation in menus, such as those collected in Apesteguia and Ballester (2021).22

6. Partial Identification of Preferences and Welfare Analysis

Partial Identification of Preferences

Although RAUM is falsifiable, given that preferences are not homogeneous, it is important

to learn whether RAUM reveals anything about preferences. In this section, we show that

RAUM reveals information about the distribution of preferences in population in some data

sets.

We say that ρ is regular if ρA(a) ≥ ρB(a) for all A ⊆ B and a ∈ A. Otherwise, we call ρ

irregular.

To formalize the notion of revelation of preferences, let Rρ be a set of all set-monotone and

stable RAUM representations of ρ. That is,

Rρ = {π ∈ ∆(U × Φ) : π is set-monotone and stable RAUM rule and ρ admits π} .

Next define the identified set for preference distributions implied by Rρ as

Π(Rρ) =

π∗ ∈ ∆(U) : exists π ∈ Rρ such that π∗(�) =
∑
φ

πA(�, φ) for all A,�

 .
22Incompleteness of the data set also leads to substantial decrease in the size of G since it is determined by
|A|.
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Proposition 2. Π(Rρ) is a strict subset of ∆(U) for any irregular ρ. In particular, π∗(�) < 1

for any �∈ U such that b � a for all b ∈ X and some a in

{a ∈ X : ρB(a) > ρA(a), a ∈ A ⊆ B, A,B ∈ A}.

Proposition 2 states that irregular data is always informative about preferences. For example,

if ρ{a,b,c}(a) > ρ{a,b}(a), then we can conclude that a cannot be the worst alternative with

probability 1. There must exist a DM who ranks a above something else. Since set-monotone

and stable RAUM is a generalization of RAM, the conclusion of Proposition 2 is a generalization

of the results in Cattaneo et al. (2020) for heterogeneous preferences.23

We conclude this section by noting that, since RAUM is a strict generalization of RAM, in

general, the distribution over preferences can not be pined down uniquely without imposing

more restrictions. Moreover, if there are several different preference orders that can explain

the observed data set under RAM, then any distribution over these orders can explain the

data set under RAUM. In particular, for regular data sets, nothing can be learned about

preferences under RAUM, since there is no revelation of information about preferences under

RAM (Cattaneo et al., 2020).

Out-of-Sample Predictions and Counterfactual Analysis

Similar to Kitamura and Stoye (2019) who analyzed RUM, we can use our framework to

conduct out-of-sample predictions and counterfactual analysis within the stable and set-

monotone RAUM framework. In particular, we are interested in (i) predicting the choices of

DMs in menus that are not observed in the data; and (ii) measuring welfare losses due to

inattention as the fraction of individuals that do not achieve their first best due to limited

consideration (i.e. the first best is the counterfactual situation where DMs consider the whole
23Note that Π(Rρ) and ∆(U) are closed sets, hence, the difference between ∆(U) and Π(Rρ) has a positive

Lebesgue measure.
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menu instead of its subsets).

By Theorem 1, we know that a given data set ρ, defined on the collection of menus A, admits

a set-monotone and stable RAUM representation π if and only if there exists v ∈ Rd
+ such

that

g = Gv. (1)

Recall that if v is a solution to Equation (1), then the first |U | · (2|X| − 1) · |Φ| components of

v correspond to the set-monotone and stable RAUM rule. We will abuse notation and use πv

to denote this rule. This πv includes rules for all menus (even those that are not observed in

the data). Thus, the set of solutions to Equation (1) characterizes all possible set-monotone

and stable RAUM rules that can be admitted by given ρ.

To make out-of-sample predictions, note that given v (hence, πv) that solves Equation (1),

πvA(�, φ) will be a fraction of DMs in the population with preferences � and filter φ for any

A that is consistent with ρ. So we can compute the maximal out-of-sample probability of

observing a from A 6∈ A (and A ⊆ X) that was not observed in ρ as

max
πv

∑
(�,φ)∈U×Φ

πvA(�, φ)1 ( a ∈ φ(A), a � b, ∀b ∈ φ(A) \ {a} ) ,

s.t. Gv = g.

The minimal out-of-sample probability of observing a from A 6∈ A (and A ⊆ X) can be

computed in the same way by replacing the max by the min operator.

Next, to measure welfare losses due to inattention as the fraction of individuals that do not

achieve their first best due to limited consideration, for any A ∈ A such that∑�′ πA(�′, φ) 6= 0

define

∆P c
A(πv) =

∑
a∈A,φ∈Φ,�∈U

πvA(�, φ)
[
1 ( a ∈ A, a � b, ∀b ∈ A \ {a} )

− 1 ( a ∈ φ(A), a � b, ∀b ∈ φ(A) \ {a} )
]
.
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∆PA(πv) measures that counterfactual fraction of DMs endowed with menu A who are strictly

better off from considering all available alternatives in menu A. Hence,

max
v∈Rd+

∆PA(πv)

s.t. Gv = g

will be the maximal fraction of DMs, who faced menu A, that would be better off if they

consider all alternatives in A. If one is interested in the total effect it suffices to replace

∆PA(v) by ∑A∈A∆PA(v) in the last optimization. Similar to the out-of-sample predictions,

the lower bound of ∆PA(πv) can be computed by replacing the max by the min operator.

Note that the counterfactual fully attentive behavior, assuming that each DM is fully attentive

or considers the whole menu, is equivalent to the DMs behaving consistently with RUM

governed by the true preference distribution (under our preferred interpretation of RAUM)

π∗,v, where π∗,v(�) = ∑
φ π

v(�, φ).

We highlight that our ordinal approach puts no restriction on the random utility distribution.

We do not need to integrate over (unknown) distributions of parameters of high order

polynomial approximations of the utility function or the consideration probability. Instead, by

taking a purely revealed preference approach, our out-of-sample predictions and counterfactual

welfare analysis require solving a linear program that delivers sharp bounds (i.e., a point is

within bounds if and only if there exists a data generating process that is consistent with

observed data and the point).

We finish this section by remaking that U can be restricted to any subset of linear orders

exhibiting some property (e.g., single-crossing, Apesteguia et al., 2017, or expected utility,

Kashaev and Aguiar, 2021). Our theory applies to these restrictions without changes. These

restrictions, when valid, can improve the informativeness of the bounds studied in this section.

However, we present our results for the unrestricted U to maximize generality.
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7. Conclusions

We have extended the classical stochastic revealed preference methodology in McFadden

and Richter (1990) for finite sets to allow for limited consideration. Our model allows

for heterogeneous preferences that are correlated with consideration sets. We assume that

consideration satisfies the set-monotonicity assumption of Cattaneo et al. (2020). We also

introduce a new condition, called stability, that requires the marginal distribution of preferences

to be independent of menus. We show that this new restriction is satisfied in many theoretical

and empirical settings. The proposed model and conditions are amenable to statistical testing

using the procedure proposed in Deb et al. (2018).
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A. Proofs

A.1. Proof of Proposition 1

Since any ρ can be completed, it is sufficient to establish validity of statements (i) and (ii) for

complete stochastic data sets (i.e., A = 2X \ {∅}).

Proof of (i). Fix any complete ρ and let πA(φ| �) = ρA(a)1 (φ(A) = {a} ) for all a,A,�.

Then ρ admits a stable RAUM representation πA(φ| �)π∗(�), where π∗ is any element in

∆(U).

Proof of (ii). Fix any complete ρ. For any � and A let a�,A be the best element in A

according to � and κ�,A = ∑
�′∈U 1 ( a�,A = a�′,A ) be the number of preference orders for

which a�,A is also the best. Take πA(�) = ρA(a�,A)/κ�,A. Then ρ admits a set-monotone

RAUM representation πA(φ| �)πA(�), where πA(φ| �) = 1 (φ(A) = A ) for all � and A.
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Proof of (iii). To prove (iii) we will construct an incomplete data set (i.e., A 6= 2X \ {∅}) that

does not admit a set-monotone and stable RAUM. Let X = {a, b, c, d} and

A = {{a, b}, {a, c}, {b, d}, {a, b, d}, {a, c, d}, {b, c, d}}.

Suppose the observed ρ is as follows

Menu {a, b} {a, c} {b, d} {a, b, d} {a, c, d} {b, c, d}

ρA(a) 1 1 - 0 0 -

ρA(b) 0 - 1 1 - αb

ρA(c) - 0 - - 1 αc

ρA(d) - - 0 0 0 αd

where αd > 0. (Columns in the above matrix correspond to different menus. For instance,

the third element of the second row is ρ{b,d}(b).) By way of contradiction assume that ρ

admits a set-monotone and stable RAUM. We will abuse notation and associate filters with

consideration sets they imply. For example, if φ1 is such that φ1(A) = B we will write

πA(�, B) instead of πA(�, φ). Consider menus {a, b} and {a, b, d}. Note that

0 = ρ{a,b}(b) =
∑
�
π{a,b}(�, {b}) + π{a,b}(�, {a, b})1 ( b � a ) ,

1 = ρ{a,b,d}(b) =
∑
�
π{a,b,d}(�, {b}) + π{a,b,d}(�, {a, b})1 ( b � a )

+ π{a,b,d}(�, {b, d})1 ( b � d ) + π{a,b,d}(�, {a, b, d})1 ( b � a, d ) .

Subtracting the first equation from the second one, we get that

1 =
∑
�

[π{a,b,d}(�, {b})− π{a,b}(�, {b})] + [π{a,b,d}(�, {a, b})− π{a,b}(�, {a, b})]1 ( b � a )

+ π{a,b,d}(�, {b, d})1 ( b � d ) + π{a,b,d}(�, {a, b, d})1 ( b � a, d ) .
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Set-monotonicity of πA and stability of preferences then imply that

1 ≤
∑
�
π{a,b,d}(�, {b, d})1 ( b � d ) + π{a,b,d}(�, {a, b, d})1 ( b � a, d ) .

Since ∑�∑D⊆{a,b,d} π{a,b,d}(�, D) = 1, we can conclude that the distribution over preferences

π∗ is such that b � d with probability 1. If we apply the above arguments to ρ{a,c}(c) and

ρ{a,c,d}(c), we can deduce that c � d with probability 1. Thus, with probability 1, d is never

picked if it is considered together with b or c. Hence, in menu {b, c, d} it can be picked with

positive probability (i.e. αd > 0) if and only if set {d} is considered with positive probability.

The later is not possible since π{b,c,d}(�, {d}) ≤ π{b,d}(�, {d}) ≤ ρ{b,d}(d) = 0 (d is never

picked in menu {b, d}). The contradiction completes the proof.

A.2. Proof of Theorem 1

Assume that π is a set-monotone and stable RAUM representation of possibly incomplete

ρ. Let dm =
∣∣∣2X \ {∅} × U × Φ

∣∣∣ and Aa = {(a,A) ∈ X × A : a ∈ A}. Fix any one-to-one

mapping i1 : Aa → {1, 2, . . . , |Aa|} that maps a pair (a,A) to a corresponding element of

vector ρ. Also fix any one-to-one i2 : 2X \ {∅} × U × Φ→ {1, 2, . . . , dm}. Let B be a matrix

of size |Aa| × dm such that the (k, l)-element of it, Bk,l, is defined as follows

Bk,l =


1 ( a � b, ∀b ∈ φ(A) \ {a} ) , if k = i1((a,A)), l = i2(A,�, φ) for some �, φ, (a,A) ∈ Aa

0, otherwise
.

Hence, in matrix notation, if ρ admits a RAUM representation, then

ρ = Bπ,

where π = (πA(�, φ))i2(A,�,φ).
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The rest of the restrictions will be imposed on all menus (including the ones that are not

present in A). These restrictions do not use any data. First, we want to capture the fact that

πA(·, ·) is a probability distribution and needs to sum up to 1. For any A ∈ 2X \ {∅}, let an

i2(A,�, φ) element of a row of matrix O to be 1 for all � and φ and to be zero otherwise.

Hence, the constraint can be written as

Oπ = 1dm ,

where O is the matrix of size dm × d1.

The next set of restrictions captures feasibility: πA(�, φ) = 0 whenever φ(A) = ∅. Let

d2 = ∑
A,�,φ 1 (φ(A) = ∅ ). Then the feasibility constraint can be written as

Fπ = 0,

where F is a matrix of 0/1 that picks i2(A,�, φ) elements of π that should be set to zero

because of feasibility.

Next we want to rewrite the definition of stability in the matrix form. Note that stability can

be written as ∑φ πA(�, φ) = ∑
φ πB(�, φ) for all A,B. Fix any A,B, and �. Let ιA,B,� be a

vector of length d such that

ιA,B,�k = 1 (∃φ : k = i2(A,�, φ) )− 1 (∃φ : k = i2(B,�, φ) ) .

Take a collection of vectors
{
ιA,B,�k

}
A,B,�

and remove all linearly dependent or zero vectors.

Let every element of what is left to be a row of a matrix S. Then, stability is equivalent to

Sπ = 0.

Finally, we want to build a matrix representation of set-monotonicity. Note that, under
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stability, πA(φ| �) ≥ πB(φ| �) is equivalent to πA(�, φ) ≥ πB(�, φ). Hence, similarly to

stability, fix any A,B,�, φ such that A ⊆ B, A 6= B, and let ιA,B,�,φ be a vector of length d

such that

ιA,B,�,φk = 1 ( k = i2(A,�, φ) )− 1 ( k = i2(B,�, φ) ) .

Similarly to matrix S we can use vectors
{
ιA,B,�,φk

}
to build matrix M such that set-

monotonicity is equivalent to

Mπ = v̄,

where v̄ is a component-wise nonnegative vector. Define G as

G =



B 0

O 0

F 0

S 0

M −I


.

As a result, if ρ admits a set-monotone and stable RAUM representation, then the system

g = Gv has a component-wise nonnegative solution (π′, v̄′)′.

Now suppose g = Gv has a component-wise nonnegative solution (π′, v̄′)′, we want to show

that this π is a set-monotone and stable RAUM representation of ρ. By the definition of

G, π is a complete (i.e., includes all possible menus) collection of distributions over U × Φ.

Moreover, the constructed π is set-monotone and stable and can generate the observed ρ.

A.3. Proof of Proposition 2

Towards a contradiction assume Πρ = ∆(U). If ρ is irregular, then there exist A,B ∈ A,

A ⊆ B, and a ∈ A such that ε ≡ ρB(a)− ρA(a) > 0. Since by assumption Πρ = ∆(U), take

any π such that a is the worst with probability 1. If φ∗ is such that φ∗(A) = φ∗(B) = {a},
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then

ρB(a) =
∑
�

∑
φ

πB(φ| �)π(�)1 ( a � b, ∀b ∈ φ(B), a ∈ φ(B) ) =
∑
�
πB(φ∗| �)π(�).

Similarly,

ρA(a) =
∑
�
πA(φ∗| �)π(�).

Taking the difference between these two equations we get that

0 < ε =
∑
�

[πB(φ∗| �)− πA(φ∗| �)]π(�) ≤ 0,

where the last inequality follows from set-monotonicity. This contradiction completes the

proof.

B. Omitted Details from Example 4

There are 4 possible non-singleton menus: {a, b, c}, {a, b}, {b, c}, and {a, c}. Given δ and A,

let Dδ,A be the deterministic consideration set.

Case 1, A = {a, b, c}. Theorem 1 in Caplin et al. (2016) implies that if µ(c) > 1/(3 + δ) (i.e.,

δ > −3 + 1/µ(c) = δ∗1), then Dδ,A = A. If δ < δ∗1 and

µ(b) ≥ µ(a) + µ(b)
2 + δ

> µ(c)

(i.e., δ∗4 ≤ δ < δ∗1), then Dδ,A = {a, b}. Finally, if

µ(a) ≥ µ(a)
1 + δ

> µ(b)
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(i.e., δ < δ∗4), then the consideration set is {a}.

Case 2, A = {a, b}. Applying the same Theorem 1 in Caplin et al. (2016) we can obtain

that if

µA(b) = µ(b)
µ(a) + µ(b) > 1/(2 + δ)

(i.e., δ > −1 + µ(a)/µ(b) = δ∗4), then Dδ,A = {a, b}, and Dδ,A = {a} otherwise.

Case 3, A = {b, c}. Similarly to Case 2, if

µA(b) = µ(c)
µ(b) + µ(c) > 1/(2 + δ)

(i.e., δ > −1 + µ(b)/µ(c) = δ∗e), then Dδ,A = {b, c}, and Dδ,A = {b} otherwise.

Case 4, A = {a, c}. If

µA(c) = µ(c)
µ(a) + µ(c) > 1/(2 + δ)

(i.e., δ > −1 + µ(a)/µ(c) = δ∗2), then Dδ,A = {a, c}, and Dδ,A = {a} otherwise.

Given that 1− 2µ(c) = µ(a) + (µ(b)− µ(c) ≥ µ(a) and µ(a) ≥ µ(b) ≥ µ(c), it follows that

δ∗1 ≥ δ∗2 ≥ δ∗3 and δ∗2 ≥ δ∗4. Tables 1 and 2 summarize the above derivations for different values

of δ and menu A. Table 1 corresponds to the case when δ∗3 ≥ δ∗4. Table 2 considers the case

when δ∗4 < δ∗3.

Next, we compute the implied by the model probabilities of choosing different options.

Theorem 1 in Caplin et al. (2016) implies that the probability that y ∈ Dδ,A is chosen from

y ∈ Dδ,A satisfies

PDδ,A(y) =
µDδ,A(y(|Dδ,A|+ δ)− 1)

δ
.

Assume that δ∗3 > δ∗4 (the opposite case leads to the same conclusion). The following table
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displays PDδ,A(a).

A/δ ∈ (0, δ∗4] (δ∗4, δ∗3] (δ∗3, δ∗2] (δ∗2, δ∗1] (δ∗1,+∞)

{a, b, c} 1 P{a,b}(a) P{a,b}(a) P{a,b}(a) P{a,b,c}(a)

{a, b} 1 P{a,b}(a) P{a,b}(a) P{a,b}(a) P{a,b}(a)

{a, c} 1 1 1 P{a,c}(a) P{a,c}(a)

For options b and c the tables are

A/δ ∈ (0, δ∗4] (δ∗4, δ∗3] (δ∗3, δ∗2] (δ∗2, δ∗1] (δ∗1,+∞)

{a, b, c} 0 P{a,b}(b) P{a,b}(b) P{a,b}(b) P{a,b,c}(b)

{a, b} 0 P{a,b}(b) P{a,b}(b) P{a,b}(b) P{a,b}(b)

{b, c} 1 1 P{b,c}(b) P{b,c}(b) P{b,c}(b)

and
A/δ ∈ (0, δ∗4] (δ∗4, δ∗3] (δ∗3, δ∗2] (δ∗2, δ∗1] (δ∗1,+∞)

{a, b, c} 0 0 0 0 P{a,b,c}(c)

{b, c} 0 0 P{b,c}(c) P{b,c}(c) P{b,c}(c)

{a, c} 0 0 0 P{a,c}(c) P{a,c}(c)

Note that since P{a,b,c}(a) < P{a,b}(a) ≤ P{a,c}(a), P{a,b,c}(b) < P{a,b}(b) ≤ P{b,c}(b), and

P{a,b,c}(c) < P{a,c}(c) ≤ P{b,c}(c), the computes distributions do not violate regularity for all

values of δ and all menus A.

If �y1y2y3 is such that y1 �y1y2y3 y2 �y1y2y3 y3, then one can verify that the following π∗ is a

stable distribution that together with the deterministic consideration set is consistent with

observed choices:

π∗(�abc) = (δ − δ∗1 + κac)
(µ(b) + µ(c))

µ(a)µ(b)
δ

≥ 0,

π∗(�acb) = (δ − δ∗1 + κac)
(µ(b) + µ(c))

µ(a)µ(c)
δ

≥ 0,
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π∗(�bac) = (δ − δ∗1 + κbc)
(µ(a) + µ(c))

µ(a)µ(b)
δ

≥ 0,

π∗(�bca) = (δ − δ∗1 + κbc)
(µ(a) + µ(c))

µ(b)µ(c)
δ

≥ 0,

π∗(�cab) = (δ − δ∗1)
(µ(a) + µ(b))

µ(a)µ(c)
δ

≥ 0,

π∗(�cba) = 1− (π1 + π2 + π3 + π4 + π5) = (δ − δ∗1)
(µ(a) + µ(b))

µ(b)µ(c)
δ

≥ 0,

where κac = 1/µ(c)− 1/µ(a) ≥ 0 and κbc = 1/µ(c)− 1/µ(b) ≥ 0.

C. Omitted Details from Section 4

In this appendix, we verify the general formula for the attention-index models in Example 2 for

the representation of the logit attention model (Brady and Rehbeck, 2016) and the elimination

by aspects (Tversky, 1972, Aguiar, 2017). Recall that

πA(φ| �) =
∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A\{∅}
∑
B⊆X\g̃(A) η�(C ∪B) ,

for a known g̃ : 2X → 2X .

To prove the relation for the logit attention model, note that if g̃(A) = X for all A, then the

probability of considering D = φ(A) in menu A, m�,A(D), is equal to

m�,A(D) = πA(φ| �) =
∑
B⊆X\X η�(D ∪B)∑

C∈2A\{∅}
∑
B⊆X\X η�(C ∪B) = η�(D)∑

C∈2A\{∅} η�(C) .

The latter corresponds to the consideration rule in Brady and Rehbeck (2016), since, by

construction, η�(∅) = 0.
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Similarly, by definition, the consideration rule of the elimination by aspects is

m�,A(D) =
∑

C⊆X : C∩A=D

η�(C)∑
K⊆X :K∩A 6=∅ η�(K) .

From ∑
K :K∩A 6=∅

η�(K) =
∑

B⊆X\A

∑
C⊆A, C 6=∅

η�(C ∪B)

and ∑
C : C∩A=D

η�(C) =
∑

B⊆X\A
η�(D ∪B),

it follows that

m�,A(D) =
∑
B⊆X\A η�(D ∪B)∑

C∈2A\{∅}
∑
B⊆X\A η�(C ∪B) .

Hence, g̃(A) = A generates the elimination by aspects consideration rule.

Now we establish a sufficient condition on the mapping g̃ that imply set-monotonicity on the

induced π rule.

Lemma 1. If g̃(A) ⊆ g̃(A′) and g̃(A′) \ g̃(A) ⊆ A′ \ A for all A ⊆ A′, then

πA(φ| �) =
∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A\{∅}
∑
B⊆X\g̃(A) η�(C ∪B) ,

satisfies set-monotonicity.

This restriction on g̃ is not exhausted by the logit attention and the elimination by aspects

models. For example, g̃(A) = A\{a∗, b∗} for all A ∈ A; and g̃(A) = X \{a∗, b∗} for all A ∈ A,

where {a∗, b∗} ⊆ X are fixed items both satisfy the conditions of Lemma 1. The extent to

which these new mappings g̃ induce an empirically relevant consideration rules is outside the

scope of this paper.
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Proof of Lemma 1.

Proof. Let D = φ(A) = φ(A′) for A ⊆ A′. First, note that

∑
B⊆X\g̃(A)

η�(D ∪B)−
∑

B⊆X\g̃(A′)
η�(D ∪B) ≥ 0 (2)

since X \ g̃(A′) ⊆ X \ g̃(A). Second, let L = A′ \ A and T = g̃(A′) \ g̃(A), and note that

∑
C∈2A\{∅}

∑
B⊆X\g̃(A)

η�(C ∪B) =
∑

C∈2A\{∅}

∑
B⊆X\g̃(A′)

η�(C ∪B) +
∑

C∈2A\{∅}

∑
B⊆X\g̃(A′)

∑
K⊆T,K 6=∅

η�(C ∪B ∪K),

∑
C∈2A′\{∅}

∑
B⊆X\g̃(A′)

η�(C ∪B) =
∑

C∈2A\{∅}

∑
B⊆X\g̃(A′)

η�(C ∪B) +
∑

C∈2A\{∅}

∑
B⊆X\g̃(A′)

∑
K⊆L,K 6=∅

η�(C ∪B ∪K).

As a result, since we assume that T ⊆ L, we can conclude that

∑
C∈2A′\{∅}

∑
B⊆X\g̃(A′)

η�(C ∪B)−
∑

C∈2A\{∅}

∑
B⊆X\g̃(A)

η�(C ∪B) =

∑
C∈2A\{∅}

∑
B⊆X\g̃(A′)

∑
K⊆L\T,K 6=∅

η�(C ∪B ∪K) ≥ 0 (3)

Hence,

πA(φ| �)− πA′(φ| �) =
∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A\{∅}
∑
B⊆X\g̃(A) η�(C ∪B) −

∑
B⊆X\g̃(A′) η�(φ(A′) ∪B)∑

C∈2A′\{∅}
∑
B⊆X\g̃(A′) η�(C ∪B) ≥

≥
∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A\{∅}
∑
B⊆X\g̃(A) η�(C ∪B) −

∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A′\{∅}
∑
B⊆X\g̃(A′) η�(C ∪B) ≥

≥
∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A′\{∅}
∑
B⊆X\g̃(A′) η�(C ∪B) −

∑
B⊆X\g̃(A) η�(φ(A) ∪B)∑

C∈2A′\{∅}
∑
B⊆X\g̃(A′) η�(C ∪B) = 0,

where the first inequality follows from Equation (2) and the second one follows from Equation

(3). �
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