Hahn, Jinyong; Hirano, Keisuke; Karlan, Dean S.

Working Paper

Adaptive experimental design using the propensity score

Center Discussion Paper, No. 969

Provided in Cooperation with:
Economic Growth Center (EGC), Yale University

Suggested Citation: Hahn, Jinyong; Hirano, Keisuke; Karlan, Dean S. (2008) : Adaptive experimental design using the propensity score, Center Discussion Paper, No. 969, Yale University, Economic Growth Center, New Haven, CT

This Version is available at:
http://hdl.handle.net/10419/27008

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Adaptive Experimental Design Using the Propensity Score

Jinyong Hahn
UCLA

Keisuke Hirano
University of Arizona

Dean Karlan
Yale University
M.I.T. Jameel Poverty Action Lab

January 2009

Notes: Center Discussion Papers are preliminary materials circulated to stimulate discussions and critical comments.

We thank seminar and conference participants at Chicago GSB, Cornell, the Econometric Society Winter Meetings, Ohio, Osaka University, Princeton, Singapore Management University, Stanford, Texas A & M, UBC, UC Berkeley, UC Davis, UC Irvine, UCLA, Uppsala University, USC, Vanderbilt, Yonsei University, and Xiamen University for their comments and suggestions.

This paper can be downloaded without charge from the Social Science Research Network electronic library at: http://ssrn.com/abstract=1334689

An index to papers in the Economic Growth Center Discussion Paper Series is located at: http://www.econ.yale.edu/~egcenter/publications.html
Adaptive Experimental Design using the Propensity Score*

Jinyong Hahn
UCLA†

Keisuke Hirano
University of Arizona‡

Dean Karlan
Yale University and M.I.T. Jameel Poverty Action Lab§

15 April 2008

Abstract

Many social experiments are run in multiple waves, or are replications of earlier social experiments. In principle, the sampling design can be modified in later stages or replications to allow for more efficient estimation of causal effects. We consider the design of a two-stage experiment for estimating an average treatment effect, when covariate information is available for experimental subjects. We use data from the first stage to choose a conditional treatment assignment rule for units in the second stage of the experiment. This amounts to choosing the propensity score, the conditional probability of treatment given covariates. We propose to select the propensity score to minimize the asymptotic variance bound for estimating the average treatment effect. Our procedure can be implemented simply using standard statistical software and has attractive large-sample properties.

JEL codes: C1, C9, C13, C14, C93
Other keywords: experimental design, propensity score, efficiency bound

1 Introduction

Social experiments have become increasingly important for the evaluation of social policies and the testing of economic theories. Random assignment of individuals to different treatments makes it possible to conduct valid counterfactual comparisons without strong auxiliary assumptions. On the other hand, social experiments can be costly, especially when they involve policy-relevant

*We thank seminar and conference participants at Chicago GSB, Cornell, the Econometric Society Winter Meetings, Ohio, Osaka University, Princeton, Singapore Management University, Stanford, Texas A & M, UBC, UC Berkeley, UC Davis, UC Irvine, UCLA, Uppsala University, USC, Vanderbilt, Yonsei University, and Xiamen University for their comments and suggestions.
†Department of Economics, University of California, Los Angeles, Box 951477, Los Angeles, CA 90095-1477 (hahn@econ.ucla.edu)
‡Department of Economics, University of Arizona, Tucson, AZ 85721 (hirano@u.arizona.edu)
§Department of Economics, Yale University, PO Box 208209, New Haven, CT 06520-8209 (dean.karlan@yale.edu)
treatments and a large number of individuals. Thus, it is important to design experiments carefully
to maximize the information gained from them. In this paper, we consider social experiments run
in multiple stages, and examine the possibility of using initial results from the first stage of an
experiment to modify the design of the second stage, in order to estimate the average treatment
effect more precisely. Replications of earlier social experiments can also be viewed as multiple
stage experiments, and researchers may find it useful to use earlier published results to improve the
design of new experiments. We suppose that in the second stage, assignment to different treatments
can be randomized conditional on some observed characteristics of the individual. We show that
data from the first wave can reveal potential efficiency gains from altering conditional treatment
assignment probabilities, and suggest a procedure for using the first-stage data to construct second-
stage assignment probabilities. In general, the treatment effect can be estimated with a lower
variance than under pure random sampling using our sequential procedure.

This technique can be applied to two types of studies. First, many social experiments have a
pilot phase or some more general multi-stage or group-sequential structure. For instance, Johnson
and Simester (2006) conduct repeated experiments with the same retailers to study price sensitiv-
ties. Karlan and Zinman (2006) conduct repeated experiments with a microfinance lender in
South Africa to study interest rate sensitivities. Second, for many research questions we have seen
a plethora of related social experiments, such as get-out-the-vote experiments in political science
(see Green and Gerber, 2004), charitable fundraising experiments in public finance, and conditional
cash transfer evaluations in development economics. To illustrate our procedure, we use data from
three studies to optimize a hypothetical future wave of a similar social experiment: the first and
second from two charitable fundraising experiments, and the third from a conditional cash transfer
evaluation (Gertler, Martinez and Rubio-Codina, 2006). Our approach is appropriate when later
stages or replications are applied to the same population and same treatments as in the initial
stage; if the later replications do not satisfy this requirement, but involve similar populations or
have similar treatments, then our results could still be useful to suggest alternative designs which
maintain the key benefits of randomization but can improve precision.

Randomizing treatment conditional on covariates amounts to choosing the propensity score—the
conditional treatment probability. Rosenbaum and Rubin (1983) proposed to use the propensity
score to estimate treatment effects in observational studies of treatments under the assumption of
unconfoundedness. Propensity score methods can also be used in pure randomized experiments
to improve precision (for example, see Flores-Lagunes, Gonzalez, and Neumann, 2006). When
treatment is random conditional on covariates, the semiparametric variance bound for estimating
the average treatment effect depends on the propensity score and the conditional variance of out-
comes given treatment and covariates. We propose to use data from the first stage to estimate the
conditional variance. Then we choose the propensity score in the second stage in order to mini-
mize the asymptotic variance for estimating the average treatment effect. Finally, after data from both stages has been collected, we pool the data and construct an overall estimate of the average treatment effect. If both stages have a large number of observations, the estimation error in the first-stage preliminary estimates does not affect the asymptotic distribution of the final, pooled estimate of the treatment effect. Our procedure is “adaptive” in the sense that the design uses an intermediate estimate of the conditional variance structure, and does as well asymptotically as an infeasible procedure that uses knowledge of the conditional variances.

There is an extensive literature on sequential experimentation and experimental design, but much of this work focuses on stopping rules for sequential sampling of individuals, or on “play-the-winner” rules which increase the probability of treatments which appear to be better based on past data. Bayesian methods have also been developed for sequential experimental design; for a recent review of Bayesian experimental design, see Chaloner and Verdinelli (1995). Unlike some recent work taking a simulation-based Bayesian approach, our approach is very simple and does not require extensive computations. However, our analysis is based on asymptotic approximations where the sample size in each stage of the experiment is taken as large. Thus, our formal results would apply best to large-scale social experiments, rather than the small experiments sometimes conducted in laboratory settings.

Our approach is also closely related to the Neyman allocation formula (Neyman, 1934) for optimal stratified sampling. Some authors, such as Sukhatme (1935), have considered the problem of estimating the optimal strata sizes using preliminary samples, but in a finite-population setting where it is difficult to obtain sharp results on optimal procedures. A review of this literature is given in Solomon and Zacks (1970). Our asymptotic analysis lead to a simple adaptive rule which has attractive large-sample properties.

2 Adaptive Design Algorithm and Asymptotic Theory

2.1 Two-Stage Design Problem

We consider a two-stage social experiment comparing two treatments. In each stage, we draw a random sample from the population. We assume that the population of interest remains the same across the two stages of experimentation. For each individual, we observe some background variables X, and assign the individual to one of two treatments. We will use “treatment” and “control” and “1”, “0” to denote the two treatments. Let n_1 denote the number of observations in the first stage, and let n_2 denote the number of observations in the second stage, and let $n = n_1 + n_2$.

1 We have written simple programs in Stata to implement our procedures, which are available at http://research.yale.edu/karlan/downloads/hhk.zip.

2 Manski and McFadden (1981) also discuss the possibility of using pilot or previous studies to help choose a stratification design.
In order to develop the formal results below, we assume that the covariate \(X_i \) has finite support. If \(X_i \) is continuously distributed, we can always discretize it. Further, since we will be making treatment assignment probabilities depend on \(X_i \), it often would be sensible to work with discretized covariates for operational purposes. All of our results to follow will still hold under discretization, although discretizing too coarsely may sacrifice some precision in estimating treatment effects.

In the first stage, individuals are assigned to treatment 1 with probability \(\pi_1 \), which does not depend on their observed covariates. Before the second stage, the outcomes from the first stage are realized, and observed by the experimental designer. In the second stage, the designer can make treatment assignment probabilities depend on the individual’s covariate \(X \). Let \(\hat{\pi}_2(x) \) denote the probability that a second-stage individual with \(X_i = x \) receives treatment 1. We use the “hat” to indicate the these probabilities can depend on all the data from the first stage. The goal is to estimate the population average treatment effect with low mean-squared error.

Formally, for individuals \(i = 1, 2, \ldots, (n_1 + n_2) \), let \((X_i, Y_{0i}, Y_{1i}) \) be IID from a joint distribution. We interpret \(X_i \) as the (always observed) vector of covariates, and \(Y_{ti} \) as the potential outcome under treatment \(t = 0, 1 \). We are interested in estimation of the average treatment effect

\[
\beta := E[Y_{1i} - Y_{0i}].
\]

Individuals \(i = 1, \ldots, n_1 \), drawn in the first stage, are assigned treatment \(D_i \) equal to 1 with probability \(\pi_1 \), and 0 with probability \(1 - \pi_1 \). The experimental planner then observes \((X_i, D_i, Y_i) \), where

\[
Y_i := D_i Y_{1i} + (1 - D_i) Y_{0i}.
\]

Similarly, for \(i = n_1 + 1, \ldots, n_1 + n_2 \), we assign individuals to treatments according to \(P(D_i = 1|X_i = x) = \hat{\pi}_2(x) \), and we observe \((X_i, D_i, Y_i) \).

We can also consider a constrained version of the experimental design problem, where the overall probability of treatment is required to equal a fixed value \(p \). In this case, the assignment rule \(\hat{\pi}_2(\cdot) \) must satisfy

\[
p = \frac{n_1}{n} \pi_1 + \frac{n_2}{n} E[\hat{\pi}_2(X_i)],
\]

where \(n = n_1 + n_2 \) and the expectation is with respect to the marginal distribution of \(X \). In the sequel, we will consider both the unconstrained and constrained design problems. It would also be straightforward to extend the analysis to cases where there is an upper or lower bound on the the overall treatment probability, or other constraints.
2.2 One-Stage Problem and Optimal Propensity Score

Before giving our proposal for an adaptive experimental design rule, it is useful to consider the simpler problem of estimating the average treatment effect under a fixed treatment assignment rule.

Suppose that \((X_i, Y_{0i}, Y_{1i}, D_i)\) are IID from a population for \(i = 1, \ldots, n\), and that the treatment assignment rule depends only on \(X_i\):

\[D_i \perp (Y_{0i}, Y_{1i})|X_i. \]

Let

\[p(x) := Pr(D_i = 1|X_i = x). \]

The function \(p(x)\) is often called the propensity score (Rosenbaum and Rubin, 1984). We also require that for all possible values of \(X\), \(0 < p(X) < 1\).

As before, the average treatment effect \(\beta = E[Y_{1i} - Y_{0i}]\) is the object of interest. Typically, there will exist estimators \(\hat{\beta}\) that \(\hat{\beta} \xrightarrow{p} \beta\) and

\[\sqrt{n}(\hat{\beta} - \beta) \xrightarrow{d} N(0, V). \]

We wish to find an estimator with minimal asymptotic variance \(V\). The following result, due to Hahn (1998), provides a lower bound for the variance of regular estimators:

Proposition 1 (Hahn, 1998) Let

\[\beta(x) := E[Y_{1i} - Y_{0i}|X_i = x], \]

\[\sigma_0^2(x) := V[Y_{0i}|X_i = x], \]

\[\sigma_1^2(x) := V[Y_{1i}|X_i = x] \]

Then any regular estimator \(\hat{\beta}\) for \(\beta\) has asymptotic variance

\[V \geq E \left[\frac{\sigma_1^2(X_i)}{p(X_i)} + \frac{\sigma_0^2(X_i)}{1 - p(X_i)} + (\beta(X_i) - \beta)^2 \right]. \]

Estimators that achieve this bound have been constructed by Hahn (1998), Hirano, Imbens, and Ridder (2003) (hereafter HIR), and others. Consider the following two-step estimator proposed by HIR. Let \(\hat{p}(x)\) be a nonparametric regression estimate of \(p(x) = E[D_i|X_i = x]\). The HIR estimator

\(^3\)In a randomized experiment, this overlap condition can be guaranteed by design.

\(^4\)See Chamberlain (1986), for a discussion of regularity and semiparametric variance bounds.
is
\[
\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_i Y_i}{\hat{p}(X_i)} - \frac{(1 - D_i) Y_i}{1 - \hat{p}(X_i)} \right).
\]

HIR consider the case where \(X \) is continuous, and \(\hat{p} \) is estimated using a sieve estimator, and they show that the estimator achieves the semiparametric efficiency bound. In the case that \(X \) is finitely supported, it is natural to estimate the propensity score as
\[
\hat{p}(x) = \frac{\sum_{i=1}^{n} D_i 1 (X_i = x)}{\sum_{i=1}^{n} 1 (X_i = x)}.
\]
This is simply the empirical probability of treatment for observations with \(X_i = x \).

An alternative estimator suggested by Hahn (1998) is:
\[
\tilde{\beta} = \frac{1}{n} \sum_{i=1}^{n} \left(\hat{r}_1(X_i) - \hat{r}_0(X_i) \right)
\]
where \(\hat{r}_1(X_i) \) and \(\hat{r}_0(X_i) \) are nonparametric analogs of
\[
\begin{align*}
\hat{r}_1(X_i) &= \frac{E[D_i Y_i | X_i = x]}{E[D_i | X_i = x]}, \quad \hat{r}_0(X_i) = \frac{E[(1 - D_i) Y_i | X_i = x]}{E[1 - D_i | X_i = x]}
\end{align*}
\]

In the case we consider here, where the covariate \(X \) has finite support, the two estimators are equal. The proof of the following proposition is straightforward and is omitted.

Proposition 2 \(\hat{\beta} = \tilde{\beta} \) when \(X \) is multinomial with finite support.

Now suppose that the researcher can choose the propensity score \(p(x) \). The researcher would like to solve
\[
\min_{p(\cdot)} E \left[\frac{\sigma_1^2(X_i)}{p(X_i)} + \frac{\sigma_0^2(X_i)}{1 - p(X_i)} + (\beta(X_i) - \beta)^2 \right]
\]
If there is a constraint on the overall treatment probability, this minimization is subject to the constraint
\[
E[p(X_i)] = p
\]
In the constrained case, an interior solution \(p(\cdot) \) will satisfy
\[
\frac{-\sigma_1^2(x)}{p(x)^2} + \frac{\sigma_0^2(x)}{(1 - p(x))^2} = \lambda
\]
for all \(x \) in the support of \(X \), where \(\lambda \) denotes the Lagrange multiplier.

In both the constrained and unconstrained problems, the solution depends on the conditional variances \(\sigma_0(x) \) and \(\sigma_1(x) \). Intuitively, if the data exhibit large differences in conditional variances...
by \(x \), then allowing for different treatment probabilities for different \(x \) may permit more precise estimation of the treatment effect. In essence, heteroskedasticity drives the possibility for improved precision.

2.3 Two-Stage Adaptive Design and Estimator

The optimization problem (1) implicitly assumes that the conditional variance functions \(\sigma^2_1(X_i) \) and \(\sigma^2_0(X_i) \) are known to the researcher, and therefore is not feasible in a one-stage setting. However, if the experiment is run in two stages, one can use the first stage to estimate the unknown variance functions. We propose to use the first stage results to estimate \(\sigma^2_1(X_i) \) and \(\sigma^2_0(X_i) \), and then use these estimates to modify the treatment assignment probabilities in the second stage. We show that if the sample sizes in both stages are large, the overall design is “adaptive” — we achieve the same overall efficiency as the infeasible version that uses knowledge of the conditional variances.

Our overall design and estimation procedure is implemented in the following steps:

1. In Stage 1, we assign individuals \(i = 1, \ldots, n_1 \) to treatment 1 with probability \(\pi_1 \), irrespective of their covariate values. We collect data \((D_i, X_i, Y_i)\) for these individuals.

2. Using data from Stage 1, we estimate the conditional variances: \(\hat{\sigma}_0^2(x) \) and \(\hat{\sigma}_1^2(x) \) by their empirical analogs: \(\hat{\sigma}_0^2(x) \) is the sample variance of \(Y \) for first-stage observations with \(D = 0 \) and \(X = x \), and \(\hat{\sigma}_1(x) \) is the sample variance of \(Y \) for first-stage observations with \(D = 1 \) and \(X = x \). We then choose \(\hat{\pi}_2(x) \) to minimize:

\[
E \left[\frac{\hat{\sigma}_1^2(X_i)}{\pi(X_i)} + \frac{\hat{\sigma}_0^2(X_i)}{1 - \pi(X_i)} + (\beta(X_i) - \beta)^2 \right]
\]

where

\[
\pi(x) = \kappa \pi_1 + (1 - \kappa) \hat{\pi}_2(x).
\]

As before, if there is a constraint that the overall treatment probability is equal to \(p \), then the minimization is subject to:

\[
E[\pi(X_i)] = p.
\]

Here, all of the expectations are with respect to the marginal distribution of \(X_i \). Note that the solution does not depend on \((\beta(X_i) - \beta)^2\), so we can drop this term from the objective function when solving the minimization problem.

3. We assign individuals \(i = n_1 + 1, \ldots, n_1 + n_2 \) to treatment 1 with probabilities \(\hat{\pi}_2(X_i) \). We collect data \((D_i, X_i, Y_i)\) from the second stage individuals, and estimate the average treatment
effect β using the Hahn/HIR estimator

$$\hat{\beta} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_i Y_i}{\hat{p}(X_i)} - \frac{(1 - D_i) Y_i}{1 - \hat{p}(X_i)} \right).$$

Note that this estimator involves estimating a propensity score. Although the propensity score is known (because it is controlled by the researcher), the estimator does not use the true propensity score.\footnote{The efficiency gain from using an estimate of the propensity score rather than the true propensity score is discussed in HIR.}

In the second step of our procedure, it is possible to have a corner solution, because the first stage randomization restricts the set of possible propensity scores achievable over the two stages. In particular, for any x, the overall conditional probability $\pi(x)$ cannot be less than $\kappa \pi_1$, and cannot be greater than $\kappa \pi_1 + (1 - \kappa) = 1 - \kappa (1 - \pi_1)$. However, our results to follow do not require an interior solution.

2.4 Asymptotic Theory

Our asymptotic theory is based on the regularity conditions stated below as Assumption 1:

Assumption 1 (i) $n_1 \to \infty$ and $n_2 \to \infty$ such that $n_1/(n_1 + n_2) \to \kappa$; (ii) X_i has a multinomial distribution with finite support; (iii) $\pi^*_2(\cdot)$ depend smoothly on the vectors $\sigma^2_0(\cdot)$ and $\sigma^2_1(\cdot)$; (iv) the estimators $\hat{\sigma}^2_0(x)$ and $\hat{\sigma}^2_1(x)$ are \sqrt{n}-consistent for the true variances $\sigma^2_0(x)$ and $\sigma^2_1(x)$.

The most notable aspect of Assumption 1 is the double asymptotics, in which n_1 and n_2 go to infinity at the same rate.\footnote{This assumption can be relaxed somewhat, but we maintain it to keep the analysis relatively simple.} The assumption that $\pi^*_2(\cdot)$ depends smoothly on the vectors $\sigma^2_0(\cdot)$ and $\sigma^2_1(\cdot)$ is innocuous when the X_i has a multinomial distribution with finite support. The assumption that $\hat{\sigma}^2_0(x)$ and $\hat{\sigma}^2_1(x)$ are $\sqrt{m_1}$-consistent is also harmless under the multinomial assumption. Because $n_1 = O(n)$, it follows that $\hat{\sigma}^2_0(x)$ and $\hat{\sigma}^2_1(x)$ are \sqrt{n}-consistent.

Since the estimators $\hat{\sigma}^2_0(x)$ and $\hat{\sigma}^2_1(x)$ are \sqrt{n}-consistent for the true variances, it follows that the second stage assignment probabilities $\hat{\pi}_2(x)$ are \sqrt{n}-consistent for $\pi^*_2(x)$. We also use $\pi^*(x)$ to denote the target overall propensity scores, defined as

$$\pi^*(x) := \kappa \pi_1 + (1 - \kappa) \pi^*_2(x).$$

Because the assignment probabilities in the second stage depend on the realization of the first-stage data, we do not have classic IID sampling. To develop the formal results, we must take into
account the dependence of the second-stage DGP on the first stage data. We do this by viewing the treatment indicators as being generated by IID uniform random variables. In the first stage,

\[D_i = 1(U_i \leq \pi_1), \]

where \(U_i \) are IID Uniform[0,1] random variables, independent of the \(X \) and \(Y \) variables. For individuals \(i = n_1 + 1, \ldots, n_1 + n_2 \), drawn in the second stage, treatment is determined according to an assignment rule as \(\hat{\pi}_2(X_i) \), where the “hat” indicates that the rule can depend on first-stage data. Treatment is defined as

\[D_i = 1(U_i \leq \hat{\pi}_2(X_i)), \]

and we observe \((X_i, D_i, Y_i)\) where \(Y_i \) is defined as before. There is no loss of generality in defining treatment randomization this way, and it permits us to define empirical processes based on the \(U_i \) in the proof of the main theorem below.

The following result shows that the two-stage design procedure, combined with the Hahn/HIR estimator, is “adaptive”: the estimator has asymptotic variance equal to the variance that would obtain had we used \(\pi^*(x) \) to assign individuals to treatment.

Theorem 1 Let (i) \(\pi_2^*(x) := \lim \hat{\pi}_2(x) \); and (ii) \(\pi^*(x) := \kappa \pi_1 + (1 - \kappa) \pi_2^*(x) \). Assume that \(\hat{\pi}_2(x) = \pi_2^*(x) + o_p \left(\frac{1}{\sqrt{n}} \right) \). Further assume that \(0 < \pi^*(x) < 1 \). We then have

\[\sqrt{n} (\hat{\beta} - \beta) \xrightarrow{d} N \left(0, E \left[\frac{1}{\pi^*(X_i)} \sigma_1^2(X_i) + \frac{1}{1 - \pi^*(X_i)} \sigma_0^2(X_i) + (\beta(X_i) - \beta)^2 \right] \right) \]

Proof: See Appendix A \(\square \)

3 Examples

In this section we give three simple numerical examples of our adaptive design algorithm, using data from recently conducted social experiments. Two of these applications were single-stage experiments. For the purpose of illustration, we suppose that the researcher has the ability to carry out a second round of the same experiment. We use our adaptive algorithm, along with the data from the “first” round, to determine how the second stage should be carried out. In the first example, a charitable fundraising experiment (Karlan and List, 2007), we find significant efficiency gains from employing our adaptive treatment assignment rule. In the second example, also a charitable fundraising experiment, we also find potential efficiency gains, and have used our procedure to guide the design of the second wave of the experiment, currently underway. In the third example, we use results reported in a World Bank working paper on an evaluation of a
conditional cash transfer program in Mexico (Progresa) to estimate the potential efficiency gains if
the study were to be replicated elsewhere. We find only a small efficiency gain, but include this as
an example of how to use third-party published results to improve power in new studies.

3.1 Direct Mail Fundraising Experiment

For the first example, we use data from a direct mail fundraising experiment reported in Karlan and
List (2007). In this experiment, a charitable organization mailed 50,083 direct mail solicitations to
prior donors to their organization. Of the 50,083, two-thirds (33,396) received a matching grant
offer, and one-third (16,687) received the same solicitation but without mention of a matching
grant. (The two-thirds treatment assignment rate was imposed by the charitable organization.)
The matching grant test included several sub-features (i.e., the ratio of the match, the ceiling of
the match, and the example amount provided), but for the sake of simplicity we will only consider
the main treatment of receiving the matching grant offer. We now ask the question: in a second
wave of an experiment with this organization, how should we allocate treatments, conditional on
covariates?

There are various covariates available to us, but to keep the analysis simple, we focus on a
single binary covariate, an indicator equal to one if the individual lived in a state that George
W. Bush won in the 2004 presidential election ("red state"), and zero if not ("blue state"). We
define $X_i = 1$ if the individual lives in a red state, and 0 otherwise. The outcome of interest is the
individual’s donation amount in dollars after receiving the direct mail solicitation. We set $\kappa = 1/2$, so that the second round will be the same size as the first round.

The results from this exercise are given in Table 1. Notice that, for $X = 1$ (donors living in red
states), the variance under treatment one is considerably larger than the variance under treatment
zero. This suggests that red state donors should be treated more, because it is more difficult to
learn the expected outcome under treatment for this subpopulation.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
 & $\#0$ & $\hat{\mu}_0$ & $\hat{\sigma}^2_0$ & $\#1$ & $\hat{\mu}_1$ & $\hat{\sigma}^2_1$ & π^* \\
\hline
Blue State & 10029 & 0.90 & 73.44 & 19777 & 0.89 & 67.74 & 0.49 \\
(X = 0) & & & & & & & \\
\hline
Red State & 6684 & 0.69 & 57.01 & 13594 & 1.06 & 97.67 & 0.57 \\
(X = 1) & & & & & & & \\
\hline
\end{tabular}
\caption{Karlan-List Experiment}
\end{table}

Note: $\#0$ is the number of observations with $D = 0$, and $\#1$ is the number of observations with $D = 1$.

\footnote{In the original data, the estimated treatment effect was found to be positive for residents of red states, but not
significantly different from zero for residents of blue states.}
We applied our algorithm without the constraint that the overall treatment probability be 2/3. The last column of Table 1 gives the overall treatment assignment probabilities calculated by our procedure. As we expected, the optimal rule gives a higher treatment probability to red state donors. For both types of donors, the overall optimal treatment probabilities are below 2/3, so the second stage probabilities will be lower than the overall probabilities. Using our adaptive rule would lead to a normalized asymptotic variance of 291, compared with 320 from 2/3 random sampling in the second stage. This is a 9.1% gain in efficiency. Given that the original sample size was 50083, this implies that we could have achieved the same efficiency with adaptive sampling using a sample size of 45525, or 4558 fewer observations.

We also considered adaptive treatment assignment under the constraint that the overall treatment probability be 2/3. In this case, we found that using our adaptive rule would lead to a normalized asymptotic variance of approximately 319, only a 0.04% gain in efficiency. So if we were constrained to running a second round with 2/3 overall treatment probability, there would be little lost by continuing to use pure randomization.

3.2 Freedom from Hunger Experiment

For the second example, we use data from an ongoing multi-wave experiment. Freedom from Hunger, in collaboration with Dean Karlan and Michael Kremer, is testing whether fundraising letters are more effective when the letters contain anecdotal discussions of the organization’s impact, or when they contain reference to research and randomized trials to measure impact. The first wave included a “research” insert, a “story” insert, and a control (no insert). We found noticeable heterogeneity in response to the treatment for those who had given more than $100 in the past, compared to those who had given less than $100. Table 2 shows the results from applying our procedure to the comparison between the research insert and the control.

<table>
<thead>
<tr>
<th></th>
<th>#0</th>
<th>(\hat{\mu}_0)</th>
<th>(\hat{\sigma}_0^2)</th>
<th>#1</th>
<th>(\hat{\mu}_1)</th>
<th>(\hat{\sigma}_1^2)</th>
<th>(\pi^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Prior Donors (prior donation < $100)</td>
<td>5044</td>
<td>1.09</td>
<td>42.64</td>
<td>5001</td>
<td>0.85</td>
<td>32.47</td>
<td>0.466</td>
</tr>
<tr>
<td>Large Prior Donors</td>
<td>640</td>
<td>5.19</td>
<td>1172.91</td>
<td>637</td>
<td>9.66</td>
<td>3369.29</td>
<td>0.629</td>
</tr>
</tbody>
</table>

We define the control as \(D = 0\) and the research insert as \(D = 1\).

For a second wave, to test “research” versus the control, the optimal proportion assigned to treatment falls to 46.6% for the small prior donors and rises to 62.9% for the large prior donors, which represents a significant departure from the first-stage 50% assignment rule. In the actual
experiment, the organization decided to drop the control group entirely, and test the research versus
the story treatments in the second wave. The results are given in Table 3. For this comparison,
the tool still improves power, but not by as much as it would have for a research versus control
test. The optimal assignment rule is 45.6% to treatment for the large prior donors, and 49.1% for
the small prior donors.

Table 3: Freedom From Hunger Experiment, Research Insert vs. Story

<table>
<thead>
<tr>
<th></th>
<th>#0</th>
<th>µ₀</th>
<th>σ²₀</th>
<th>#1</th>
<th>µ₁</th>
<th>σ²₁</th>
<th>π*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Prior Donors</td>
<td>5000</td>
<td>0.84</td>
<td>34.97</td>
<td>5001</td>
<td>0.85</td>
<td>32.47</td>
<td>0.491</td>
</tr>
<tr>
<td>(prior donation < $100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Prior Donors</td>
<td>641</td>
<td>7.64</td>
<td>4800.38</td>
<td>637</td>
<td>9.66</td>
<td>3369.29</td>
<td>0.456</td>
</tr>
</tbody>
</table>

We define the story insert as $D = 0$ and the research insert as $D = 1$.

3.3 Progresa Experiment

For the third example, we use data reported in Gertler, Martinez, and Rubio-Codina (2006) on
the Progresa/Oportunidades experiment in Mexico. The Progresa program randomly allocated
cash and nutritional supplements to families, conditional on children attending school and visiting
health clinics. The Progresa experiment was conducted only once, but similar experiments have
since been conducted or begun in Colombia, Ecuador, Honduras, and Nicaragua.

We focus on one of the outcome measures: number of draft animals owned by the family. The
covariate we examine takes on four values, indicating the size of the family’s agricultural holdings
before the program. In one of their tables, Gertler, Martinez, and Rubio-Codina report sample sizes,
means and standard deviations, and treatment effects broken down by this covariate, so we are able
to calculate optimal treatment assignment probabilities directly from their tables, without requiring
access to the raw data. Table 4 gives some summary statistics from the Progresa experiment, along
with the variance-minimizing treatment probabilities calculated using our method. We find that
our treatment probabilities differ somewhat from the ones used in the original experiment, but the
reduction in variance is quite small, suggesting that the original design was not far from optimal.
Table 4: Progresa Experiment, Number of Draft Animals

<table>
<thead>
<tr>
<th></th>
<th>#0</th>
<th>$\hat{\mu}_0$</th>
<th>$\hat{\sigma}_0^2$</th>
<th>#1</th>
<th>$\hat{\mu}_1$</th>
<th>$\hat{\sigma}_1^2$</th>
<th>p_{orig}</th>
<th>π^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoAgAssets ($X = 0$)</td>
<td>137</td>
<td>0.41</td>
<td>0.34</td>
<td>110</td>
<td>0.34</td>
<td>0.07</td>
<td>0.55</td>
<td>0.69</td>
</tr>
<tr>
<td>Landless ($X = 1$)</td>
<td>1451</td>
<td>0.49</td>
<td>0.79</td>
<td>714</td>
<td>0.44</td>
<td>0.37</td>
<td>0.67</td>
<td>0.59</td>
</tr>
<tr>
<td>SmallerFarm ($X = 2$)</td>
<td>2847</td>
<td>0.68</td>
<td>1.3</td>
<td>1359</td>
<td>0.58</td>
<td>0.63</td>
<td>0.68</td>
<td>0.59</td>
</tr>
<tr>
<td>BiggerFarm ($X = 3$)</td>
<td>1187</td>
<td>0.83</td>
<td>1.2</td>
<td>728</td>
<td>0.87</td>
<td>1.83</td>
<td>0.62</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Note: p_{orig} denotes original treatment probabilities, and π^* gives the overall treatment probabilities selected by adaptive rule.
4 Conclusion

In this paper, we considered the optimal design of a two-stage experiment for estimating an average treatment effect. We propose to choose the propensity score in the second stage based on the data from the first stage, in order to minimize an estimated version of the asymptotic variance bound. We argue, using a double asymptotic approximation, that our proposal leads to an adaptive estimation procedure for the average treatment effect. Using this double asymptotics leads to a very simple, intuitive procedure that is easily implemented in practice, and has good theoretical properties. Extending our approach to more than two time periods is straightforward.

Throughout this paper, we have assumed that the population of interest, the treatments, and the effects of the treatments are stable across periods, so that it is meaningful to combine the data from both stages. In some cases, the second stage might be substantially different from the first stage, for example if the treatments under consideration are modified in later time periods, or in a replication of a social experiment in a different population. Then, the idea of using earlier experiments to inform experimental design could still be fruitful, but would require additional modeling assumptions to link the data across time periods.
A Proof of Theorem 1

We can write

\begin{align*}
\hat{\beta} - \beta &= \frac{1}{n} \sum_{i=1}^{n} (r_1(X_i) - r_0(X_i) - \beta) \\
&+ \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_i(Y_i - r_1(X_i))}{\hat{\pi}(X_i)} - \frac{(1 - D_i)(Y_i - r_0(X_i))}{1 - \hat{\pi}(X_i)} \right) \\
&+ \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_ir_1(X_i) - (1 - D_i)r_0(X_i)}{\hat{\pi}(X_i)} - (r_1(X_i) - r_0(X_i)) \right) \\
&+ \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_iY_i}{\hat{\pi}(X_i)} - \frac{D_iY_i}{\hat{\pi}(X_i)} \right) - \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(1 - D_i)Y_i}{1 - \hat{\pi}(X_i)} - \frac{(1 - D_i)Y_i}{1 - \hat{\pi}(X_i)} \right)
\end{align*}

(3)

Note that

\begin{align*}
\frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_ir_1(X_i) - r_1(X_i)}{\hat{\pi}(X_i)} \right) + \frac{1}{n} \sum_{i=1}^{n} \left(\frac{D_iY_i}{\hat{\pi}(X_i)} - \frac{D_iY_i}{\hat{\pi}(X_i)} \right) \\
= \sum_{x} (r_1(x) - \hat{r}_1(x)) \left(\frac{\hat{p}(x) - \hat{\pi}(x)}{\hat{\pi}(x)} \right) \left(\frac{1}{n} \sum_{i=1}^{n} 1(X_i = x) \right)
\end{align*}

(4)

and

\begin{align*}
\frac{1}{n} \sum_{i=1}^{n} \left(\frac{(1 - D_i)r_0(X_i) - r_0(X_i)}{1 - \hat{\pi}(X_i)} \right) + \frac{1}{n} \sum_{i=1}^{n} \left(\frac{(1 - D_i)Y_i}{1 - \hat{\pi}(X_i)} - \frac{(1 - D_i)Y_i}{1 - \hat{\pi}(X_i)} \right) \\
= -\sum_{x} (r_0(x) - \hat{r}_0(x)) \left(\frac{\hat{p}(x) - \hat{\pi}(x)}{1 - \hat{\pi}(x)} \right) \left(\frac{1}{n} \sum_{i=1}^{n} 1(X_i = x) \right)
\end{align*}

(5)

Furthermore, Lemmas 1 and 2 in Appendix B show that

\[\hat{p}(x) - \hat{\pi}(x) = O_p \left(n^{-1/2} \right), \ r_1(x) - \hat{r}_1(x) = O_p \left(n^{-1/2} \right), \ r_0(x) - \hat{r}_0(x) = O_p \left(n^{-1/2} \right), \]

which implies that (4) and (5) are \(o_p \left(n^{-1/2} \right) \). We therefore obtain the following approximation for (3):

\begin{align*}
\sqrt{n} \left(\hat{\beta} - \beta \right) &= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (r_1(X_i) - r_0(X_i) - \beta) \\
&+ \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{D_i(Y_i - r_1(X_i))}{\hat{\pi}(X_i)} - \frac{(1 - D_i)(Y_i - r_0(X_i))}{1 - \hat{\pi}(X_i)} \right) + o_p(1)
\end{align*}

(6)
By Lemma 4 in Appendix B, we have

\[
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{D_i (Y_i - r_1 (X_i))}{\hat{\pi} (X_i)} - \frac{(1 - D_i) (Y_i - r_0 (X_i))}{1 - \hat{\pi} (X_i)} \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{D_i^* (Y_i - r_1 (X_i))}{\pi^* (X_i)} - \frac{(1 - D_i^*) (Y_i - r_0 (X_i))}{1 - \pi^* (X_i)} \right) + o_p (1)
\]

where \(D_i^* := 1 \) for the first sample, and \(D_i^* := 1 \) for the second sample. Therefore, we can write

\[
\sqrt{n} \left(\hat{\beta} - \beta \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\beta (X_i) - \beta) + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{D_i^* (Y_i - r_1 (X_i))}{\pi^* (X_i)} - \frac{(1 - D_i^*) (Y_i - r_0 (X_i))}{1 - \pi^* (X_i)} \right) + o_p (1)
\]

or

\[
\sqrt{n} \left(\hat{\beta} - \beta \right) = \frac{\sqrt{n_1}}{\sqrt{n}} \times (I) + \frac{\sqrt{n_2}}{\sqrt{n}} \times (II) + o_p (1)
\]

where

\[
(I) := \frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} \left(\beta (X_i) - \beta + \frac{D_i^* (Y_i - r_1 (X_i))}{\pi^* (X_i)} - \frac{(1 - D_i^*) (Y_i - r_0 (X_i))}{1 - \pi^* (X_i)} \right)
\]

\[
(II) := \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \left(\beta (X_i) - \beta + \frac{D_i^* (Y_i - r_1 (X_i))}{\pi^* (X_i)} - \frac{(1 - D_i^*) (Y_i - r_0 (X_i))}{1 - \pi^* (X_i)} \right)
\]

By the Central Limit Theorem (CLT), we obtain that

\[
(I) \xrightarrow{d} N \left(0, E \left[\frac{\pi_1}{\pi^* (X_i)} \sigma_1^2 (X_i) + \frac{1 - \pi_1}{(1 - \pi^* (X_i))^2} \sigma_0^2 (X_i) + (\beta (X_i) - \beta)^2 \right] \right)
\]

\[
(II) \xrightarrow{d} N \left(0, E \left[\frac{\pi_2 (X_i)}{\pi^* (X_i)} \sigma_1^2 (X_i) + \frac{1 - \pi_2 (X_i)}{(1 - \pi^* (X_i))^2} \sigma_0^2 (X_i) \right] \right)
\]

Noting that \((I)\) and \((II)\) are independent of each other, and that \(\kappa \pi_1 + (1 - \kappa) \pi_2 (X_i) = \pi^* (X_i)\) by definition, we obtain that \(\sqrt{n} \left(\hat{\beta} - \beta \right)\) converges weakly to a normal distribution with mean
zero and variance equal to
\[
E \left[\frac{\kappa \pi_1 + (1 - \kappa) \pi_2^*(X_i)}{\pi^*(X_i)^2} \sigma_1^2(X_i) + \frac{1 - (\kappa \pi_1 + (1 - \kappa) \pi_2^*(X_i))}{(1 - \pi^*(X_i))^2} \sigma_0^2(X_i) + (\beta(X_i) - \beta)^2 \right] = E \left[\frac{1}{\pi^*(X_i)} \sigma_1^2(X_i) + \frac{1}{1 - \pi^*(X_i)} \sigma_0^2(X_i) + (\beta(X_i) - \beta)^2 \right]
\]
which proves the theorem.

B Auxiliary Results

Lemma 1 \(\hat{p}(x) - \hat{\pi}(x) = O_p(n^{-1/2}) \)

Proof: We will write
\[
\hat{p}(x) = \frac{\sum_{i=1}^n D_i 1(X_i = x)}{\sum_{i=1}^n 1(X_i = x)} = \frac{\sum_{i=1}^{n_1} D_i 1(X_i = x) + \sum_{i=n+1}^n D_i 1(X_i = x)}{\sum_{i=1}^n 1(X_i = x)} = \frac{\sum_{i=1}^{n_1} 1(U_i \leq \pi_1) 1(X_i = x) + \sum_{i=n+1}^n 1(U_i \leq \pi_2(x)) 1(X_i = x)}{\sum_{i=1}^n 1(X_i = x)}
\]

By the law of large numbers and central limit theorem, we would have
\[
\frac{1}{n_1} \sum_{i=1}^{n_1} 1(U_i \leq \pi_1) 1(X_i = x) = E[1(U_i \leq \pi_1) 1(X_i = x)] + O_p \left(\frac{1}{\sqrt{n_1}} \right) = \pi_1 \Pr(X_i = x) + O_p \left(\frac{1}{\sqrt{n_1}} \right)
\]

In order to deal with the second component on the far RHS of (7), we define the empirical process
\[
\xi_2(\cdot, \pi_2) := \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^n (1(U_i \leq \pi_2(x)) 1(X_i = x) - E[1(U_i \leq \pi_2(x)) 1(X_i = x)])
\]
The set of functions \{1(U_i \leq \pi_2(x)) 1(X_i = x)\} indexed by \(\pi_2(x) \) is Euclidean, and satisfies stochas-
tic equicontinuity. We therefore have \(\xi_2 (\cdot, \hat{\pi}_2) = \xi_2 (\cdot, \pi_2^*) + o_p (1)\), or

\[
\frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} 1 (U_i \leq \hat{\pi}_2 (x)) 1 (X_i = x) = \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} 1 (U_i \leq \pi_2^* (x)) 1 (X_i = x) \\
+ G_2 \sqrt{n_2} (\hat{\pi}_2 (x) - \pi_2^* (x)) + o_P (1) \tag{9}
\]

where

\[G_2 := \frac{\partial}{\partial \pi_2} E \left[1 (U_i \leq \pi_2 (x)) 1 (X_i = x) \right] \bigg|_{\pi_2 (x) = \pi_2^* (x)} \]

Because \(E \left[1 (U_i \leq \pi_2 (x)) 1 (X_i = x) \right] = \pi_2 (x) \Pr (X_i = x) \), we have \(G_2 = \Pr (X_i = x) \), and hence,

\[G_2 \sqrt{n_2} (\hat{\pi}_2 (x) - \pi_2^* (x)) = O_p (1) \tag{10} \]

as long as \(\hat{\pi}_2 (x) \) is chosen to be a \(\sqrt{n} \)-consistent estimator of \(\pi_2^* (x) \). We also have

\[\frac{1}{n_2} \sum_{i=n_1+1}^{n} 1 (U_i \leq \pi_2^* (x)) 1 (X_i = x) = \pi_2^* (x) E \left[1 (X_i = x) \right] + O_p \left(\frac{1}{\sqrt{n}} \right) \tag{11} \]

by the law of large numbers and CLT. Combining (9), (10), and (11), we obtain

\[\frac{1}{n_2} \sum_{i=n_1+1}^{n} 1 (U_i \leq \hat{\pi}_2 (x)) 1 (X_i = x) = \pi_2^* (x) \Pr (X_i = x) + O_p \left(\frac{1}{\sqrt{n}} \right) \tag{12} \]

Now note that, by the law of large numbers and CLT, we have

\[\frac{1}{n} \sum_{i=1}^{n} 1 (X_i = x) = \Pr (X_i = x) + O_p \left(\frac{1}{\sqrt{n}} \right) \tag{13} \]

Combining (7), (8), (12), and (13), we obtain

\[
\hat{p} (x) = \frac{n_1}{n} \pi_1 \Pr (X_i = x) + O_p \left(\frac{1}{\sqrt{n}} \right) + \frac{n_2}{n} \pi_2^* (x) \Pr (X_i = x) + O_p \left(\frac{1}{\sqrt{n}} \right) \\
= \kappa \pi_1 + (1 - \kappa) \pi_2^* (x) + O_p \left(\frac{1}{\sqrt{n}} \right)
\]

Therefore, as long as \(\hat{\pi}_2 (x) \) is chosen to be a \(\sqrt{n} \)-consistent estimator of \(\pi_2^* (x) \), we will have \(\hat{p} (x) = \hat{\pi}_2 (x) + O_p (1/\sqrt{n}) \). \(\Box \)

Lemma 2 \(r_1 (x) - \hat{r}_1 (x) = O_p (n^{-1/2}) \), \(r_0 (x) - \hat{r}_0 (x) = O_p (n^{-1/2}) \)
Proof: We only prove that \(r_1 (x) - \tilde{r}_1 (x) = O_p (n^{-1/2}) \). The proof of the other equality is similar, and omitted. Our proof is based on the equality

\[
\tilde{r}_1 (x) = \frac{\sum_{i=1}^{n} D_i Y_i 1 (X_i = x)}{\sum_{i=1}^{n} D_i 1 (X_i = x)} = \frac{\sum_{i=1}^{n} D_i Y_i 1 (X_i = x) + \sum_{i=n+1}^{n} D_i Y_i 1 (X_i = x)}{\sum_{i=1}^{n} D_i 1 (X_i = x) + \sum_{i=n+1}^{n} D_i 1 (X_i = x)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} (U_i \leq \pi_1) Y_i 1 (X_i = x) + \frac{1}{n} \sum_{i=n+1}^{n} \mathbf{1} (U_i \leq \tilde{\pi}_2 (x)) Y_i 1 (X_i = x)
\]

We take care of the numerator first. We note that

\[
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} (U_i \leq \pi_1) Y_i 1 (X_i = x) = E [1 (U_i \leq \pi_1) Y_i 1 (X_i = x)] + O_p \left(\frac{1}{\sqrt{n}} \right)
\]

by the law of large numbers and central limit theorem. Because

\[
E [1 (U_i \leq \pi_1) Y_i 1 (X_i = x)] = \pi_1 E [Y_i | X_i = x] \Pr (X_i = x)
\]

we obtain

\[
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} (U_i \leq \pi_1) Y_i 1 (X_i = x) = \pi_1 r_1 (x) \Pr (X_i = x),
\]

where

\[
G_3 := \frac{\partial}{\partial \pi_2} E [1 (U_i \leq \pi_2 (x)) Y_i 1 (X_i = x)] \bigg|_{\pi_2 (x) = \pi_2^* (x)}
\]

Because

\[
E [1 (U_i \leq \pi_2 (x)) Y_i 1 (X_i = x)] = \pi_2 (x) E [Y_i | X_i = x] \Pr (X_i = x)
\]

we have

\[
\frac{1}{\sqrt{n}} \sum_{i=n+1}^{n} \mathbf{1} (U_i \leq \tilde{\pi}_2 (x)) Y_i 1 (X_i = x) = \frac{1}{\sqrt{n}} \sum_{i=n+1}^{n} \mathbf{1} (U_i \leq \pi^*_2 (x)) Y_i 1 (X_i = x) + G_3 \sqrt{n} (\tilde{\pi}_2 (x) - \pi^*_2 (x)) + o_P (1)
\]

In order to deal with \(\frac{1}{\sqrt{n}} \sum_{i=n+1}^{n} \mathbf{1} (U_i \leq \tilde{\pi}_2 (x)) Y_i 1 (X_i = x) \), we note that the set of functions \(\{1 (U_i \leq \pi_2 (x)) Y_i 1 (X_i = x)\} \) indexed by \(\pi_2 (x) \) is Euclidean, and satisfies stochastic equicontinuity. We therefore have

\[
\frac{1}{\sqrt{n}} \sum_{i=n+1}^{n} \mathbf{1} (U_i \leq \tilde{\pi}_2 (x)) Y_i 1 (X_i = x) = \frac{1}{\sqrt{n}} \sum_{i=n+1}^{n} 1 (U_i \leq \pi^*_2 (x)) Y_i 1 (X_i = x)
\]

\[
+ G_3 \sqrt{n} (\tilde{\pi}_2 (x) - \pi^*_2 (x)) + o_P (1)
\]

Because

\[
E [1 (U_i \leq \pi_2 (x)) Y_i 1 (X_i = x)] = \pi_2 (x) E [Y_i | X_i = x] \Pr (X_i = x)
\]

we obtain

\[
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} (U_i \leq \pi_1) Y_i 1 (X_i = x) = \pi_1 r_1 (x) \Pr (X_i = x) + O_p \left(\frac{1}{\sqrt{n}} \right).
\]
we have \(G_3 = r_1(x) \Pr(X_i = x) \), and hence, \(G_3 \sqrt{n_2} (\hat{\pi}_2(x) - \pi^*_2(x)) = O_p(1) \) as long as \(\hat{\pi}_2(x) \) is chosen to be a \(\sqrt{n} \)-consistent estimator of \(\pi^*_2(x) \). We also have

\[
\frac{1}{n_2} \sum_{i=n_1+1}^{n} 1(U_i \leq \pi^*_2(x)) Y_i 1(X_i = x) = \pi^*_2(x) r_1(x) \Pr(X_i = x) + O_p\left(\frac{1}{\sqrt{n}}\right)
\]

by the law of large numbers and the central limit theorem. We may therefore conclude that

\[
\frac{1}{n_2} \sum_{i=n_1+1}^{n} 1(U_i \leq \hat{\pi}_2(x)) Y_i 1(X_i = x) = \pi^*_2(x) r_1(x) \Pr(X_i = x) + O_p\left(\frac{1}{\sqrt{n}}\right)
\]

(15)

Combining (14) and (15), we obtain

\[
\frac{n_1}{n} \frac{1}{n_1} \sum_{i=1}^{n_1} 1(U_i \leq \pi_1(x)) 1(X_i = x) + \frac{n_2}{n} \frac{1}{n_2} \sum_{i=n_1+1}^{n} 1(U_i \leq \hat{\pi}_2(x)) 1(X_i = x)
\]

\[
= \kappa \pi r_1(x) \Pr(X_i = x) + (1 - \kappa) \pi^*_2(x) r_1(x) \Pr(X_i = x) + O_p\left(\frac{1}{\sqrt{n}}\right)
\]

\[
= \pi^*(x) r_1(x) \Pr(X_i = x) + O_p\left(\frac{1}{\sqrt{n}}\right)
\]

We can take care of the denominator in a similar manner, and obtain

\[
\frac{n_1}{n} \frac{1}{n_1} \sum_{i=1}^{n_1} 1(U_i \leq \pi_1(x)) 1(X_i = x) + \frac{n_2}{n} \frac{1}{n_2} \sum_{i=n_1+1}^{n} 1(U_i \leq \hat{\pi}_2(x)) 1(X_i = x)
\]

\[
= \pi^*(x) \Pr(X_i = x) + O_p\left(\frac{1}{\sqrt{n}}\right)
\]

and hence, we conclude that

\[
\hat{r}_1(x) = \frac{\pi^*(x) r_1(x) \Pr(X_i = x) + O_p\left(\frac{1}{\sqrt{n}}\right)}{\pi^*(x) \Pr(X_i = x) + O_p\left(\frac{1}{\sqrt{n}}\right)} = r_1(x) + O_p\left(\frac{1}{\sqrt{n}}\right)
\]

\[\square\]

Lemma 3

\[
\frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} D_i (Y_{i1} - r_1(x)) \frac{1}{\pi(x)} 1(X_i = x) = \frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} \frac{1(U_i \leq \pi_1(x)) (Y_{i1} - r_1(x))}{\pi^*(x)} \frac{1}{\pi(x)} 1(X_i = x) + o_p(1)
\]

20
\[
\frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \frac{D_i (Y_{1i} - r_1 (x))}{\hat{\pi} (x)} 1 (X_i = x) = \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \frac{1 (U_i \leq \pi_2^* (x)) (Y_{1i} - r_1 (x))}{\pi^* (x)} 1 (X_i = x) + o_p (1)
\]

\[
\frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} \frac{(1 - D_i) (Y_{0i} - r_0 (x))}{1 - \hat{\pi} (x)} 1 (X_i = x) = \frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} \frac{1 (U_i > \pi_1) (Y_{0i} - r_0 (x))}{1 - \pi^* (x)} 1 (X_i = x) + o_p (1)
\]

\[
\frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \frac{(1 - D_i) (Y_{0i} - r_0 (x))}{1 - \hat{\pi} (x)} 1 (X_i = x) = \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \frac{1 (U_i > \pi_2^* (x)) (Y_{0i} - r_0 (x))}{1 - \pi^* (x)} 1 (X_i = x) + o_p (1)
\]

Proof: We only prove the first two claims. The proof of the last two claims is identical, and omitted.

We first note that

\[
\frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} \sum_{x} \frac{D_i (Y_{1i} - r_1 (x))}{\hat{\pi} (x)} 1 (X_i = x)
\]

\[
= \frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} \sum_{x} \frac{1 (U_i \leq \pi_1) (Y_{1i} - r_1 (x))}{\pi^* (x)} 1 (X_i = x) + O_p \left(\frac{1}{\sqrt{n}} \right)
\]

\[
= \frac{1}{\sqrt{n_1}} \sum_{i=1}^{n_1} \sum_{x} \frac{1 (U_i \leq \pi_1) (Y_{1i} - r_1 (x))}{\pi^* (x)} 1 (X_i = x) + O_p \left(\frac{1}{\sqrt{n}} \right)
\]

as long as \(\hat{\pi}_2 (x) \) is chosen to be a \(\sqrt{n} \)-consistent estimator of \(\pi_2^* (x) \), and the latter is an interior point of \((0, 1) \), which proves the first claim.

In order to prove the second claim, we define the empirical process

\[
\nu_2 (\cdot, \pi_2) := \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \left(\frac{D_i (Y_{1i} - r_1 (x))}{\pi (x)} 1 (X_i = x) - E \left[\frac{D_i (Y_{1i} - r_1 (x))}{\pi (x)} 1 (X_i = x) \right] \right)
\]

where \(\pi (x) = \kappa \pi_1 + (1 - \kappa) \pi_2 (x) \). Recall that \(D_1 = 1 (U_i \leq \pi_1) \) for the first sample, and \(D_i = 1 (U_i \leq \hat{\pi}_2 (X_i)) \) for the second sample. Because the sets of functions

\[
\left\{ \frac{1 (U_i \leq \pi_2 (x)) D_i (Y_{1i} - r_1 (x))}{\kappa \pi_1 + (1 - \kappa) \pi_2 (x)} 1 (X_i = x) \right\}
\]

indexed by \(\pi_2 (x) \) is Euclidean, we can use stochastic equicontinuity, and conclude that \(\nu_2 (\cdot, \hat{\pi}_2) = \)
\[\nu_2 (\cdot, \pi^*_2) + o_p (1), \]

or

\[\frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \frac{1}{\hat{\pi} (x)} \frac{1 (U_i \leq \hat{\pi}_2 (x)) (Y_{i1} - r_1 (x))}{\hat{\pi}_2 (x)} 1 (X_i = x) \]

\[= \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \frac{1 (U_i \leq \pi^*_2 (x)) (Y_{i1} - r_1 (x))}{\pi^*_2 (x)} 1 (X_i = x) + F_2 \sqrt{n_2} (\pi^*_2 - \pi^*_2) + o_p (1) \]

where

\[F_2 = \left. \frac{\partial}{\partial \pi^*_2} E \left[\frac{1 (U_i \leq \pi^*_2 (x)) (Y_{i1} - r_1 (x))}{\pi^*_2 (x)} 1 (X_i = x) \right] \right|_{\pi^*_2 = \pi^*_2} \]

Because \(U_i \) is independent of \((X_i, Y_{i1}, Y_{0i})\), we have

\[E \left[\frac{1 (U_i \leq \pi^*_2 (x)) (Y_{i1} - r_1 (x))}{\pi^*_2 (x)} 1 (X_i = x) \right] = 0 \]

regardless of the value of \(\pi (x) \). This implies that the derivative \(F_2 \) is identically zero, from which the validity of the second claim follows. \(\square \)

Lemma 4

\[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{D_i (Y_i - r_1 (X_i))}{\hat{\pi} (X_i)} - \frac{(1 - D_i) (Y_i - r_0 (X_i))}{1 - \hat{\pi} (X_i)} \right) \]

\[= \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{D_i^* (Y_{i1} - r_1 (X_i))}{\pi^* (X_i)} - \frac{(1 - D_i^*) (Y_{0i} - r_0 (X_i))}{1 - \pi^* (X_i)} \right) + o_p (1) \]

Proof: Write

\[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{D_i (Y_i - r_1 (X_i))}{\hat{\pi} (X_i)} = \sum_{x} \left(\frac{\sqrt{m_1}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{D_i (Y_{i1} - r_1 (x))}{\hat{\pi} (x)} 1 (X_i = x) \right) \right) \]

\[+ \sum_{x} \left(\frac{\sqrt{m_2}}{\sqrt{n}} \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \left(\frac{D_i (Y_{i1} - r_1 (x))}{\hat{\pi} (x)} 1 (X_i = x) \right) \right) \]

and

\[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{(1 - D_i) (Y_i - r_0 (X_i))}{1 - \hat{\pi} (X_i)} = \sum_{x} \left(\frac{\sqrt{m_1}}{\sqrt{n}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(\frac{(1 - D_i) (Y_i - r_0 (X_i))}{1 - \hat{\pi} (X_i)} 1 (X_i = x) \right) \right) \]

\[+ \sum_{x} \left(\frac{\sqrt{m_2}}{\sqrt{n}} \frac{1}{\sqrt{n_2}} \sum_{i=n_1+1}^{n} \left(\frac{(1 - D_i) (Y_i - r_0 (X_i))}{1 - \hat{\pi} (X_i)} 1 (X_i = x) \right) \right) \]
The conclusion then follows by using Lemma 3.

References

