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FINANCIAL ECONOMICS | RESEARCH ARTICLE

Nonparametric performance hypothesis testing 
with the information ratio
Jacque Bon-Isaac Aboy1* and Joselito Magadia2

Abstract:  This study proposes a nonparametric bootstrap-based test to compare 
performances between two portfolios in terms of their information ratio. This 
serves as an extension to the literature that tests performance between two 
portfolio investment strategies that uses Sharpe ratio. Monte Carlo experiments 
show that the test has appropriate sizes and is powerful to most of the scenarios. 
However, the test does not perform well in highly correlated portfolio returns, but 
is better when the mean of portfolio return is modeled using an autocorrelated 
process.

Subjects: Statistics & Computing; Statistics for Business, Finance & Economics; Investment 
& Securities  

Keywords: Information ratio; bootstrap test

1. Introduction
A fund manager or an investor should assess how the portfolio performs in a time period through 
portfolio performance assessment. There are two major categories of portfolio assessment; the 
conventional and risk-adjusted methods. Conventional methods simply compare the return of the 
managed portfolio to the return of the benchmark portfolio. Risk-adjusted methods, on the other 
hand, calibrate returns in such a way that differences in risk levels between the managed portfolio 
and benchmark portfolio are taken into account. Some of the traditional risk-adjusted performance 
measures were influenced by the Capital Asset Pricing Model of Sharpe (1964).
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For this study, we will use a risk-adjusted performance measure, in particular, the information ratio. 
It is one of the popular measures being used by investors to assess performance of their portfolio as it 
is more advanced, because it measures the fund’s performance relative to its benchmark and adjusts it 
for the volatility in the dispersion between the two, compared to Sharpe ratio. It is defined to be the 
active return of the fund divided by its tracking error, where active return is the difference between the 
fund’s return and that of its benchmark index, and tracking error is the standard deviation of the active 
return. Rather than take the ratio of the expected difference between the return of managed portfolio 
and market to the risk of the portfolio, we can also take the ratio of the expected difference to the 
standard deviation of the difference. According to Kidd (2011), the information ratio tells an investor 
how much excess return is generated from the amount of excess risk taken relative to the benchmark. 
The ratio is given by 

ζp ¼
EðRp � RmÞ

σp� m
; (1) 

where σp� m :¼ VarðRp � RmÞ
� �1

2.

This measure is often referred to be a generalized version of Sharpe ratio (generalized Sharpe 
ratio). There are advantages in using information ratio as compared to Sharpe ratio because 
information ratio measures extra return an investor or fund manager can obtain from security 
analysis compared to the firm-specific risk and is best used for measuring active managers against 
a passive benchmark portfolio. Moreover, according to a report from Dhanorkar (2016), the Sharpe 
ratio simply tells an investor how much he or she was compensated for taking risks, while the 
information ratio tells the investor the rewards the fund manager generated by deviating from the 
benchmark, and also, for those tracking fund manager performance and alpha generation, infor
mation ratio gives better insight, provided the investor used the right benchmark or knows how to 
compare the right funds.

A study of Goodwin (1998) provided a narrative regarding the information ratio in terms of how 
it should be correctly interpreted and what constitutes a “good” information ratio. He argued that 
the simplest form and interpretation of the information ratio is the most useful for investors. 
Furthermore, the study clarified the relationship between the information ratio and a t-statistic. 
Also, numerous applications of information ratio are also seen across literature. For instance in the 
study of Gupta et al. (1999), they have found that it is more difficult for domestic asset class 
managers (small-cap is an exception) to outperform their respective benchmarks than it is for 
international asset class managers. Hence, it is the information ratio—not the alpha and/or 
tracking error—that is the strongest predictor of persistence of manager performance.

2. The problem
Suppose we have two portfolio investment strategies p and q whose excess returns over a bench
mark at time t are given by rtp and rtq, respectively. Risk-free rate as a benchmark is typically used, 
but for this study, we strictly use a stock index. Then we observe a total of T return pairs 
ðr1p; r1qÞ

0; . . . ; ðrTp; rTqÞ
0. Here we assume that these observed pairs follow a stationary time series, 

in other words, the bivariate distribution, denoted by f , is constant over time. In particular, the 
distribution has mean vector μ and covariance matrix �, that is, 

rtp rtq
� �0

,fðμ;�Þ

where 

μ ¼
μp
μq

� �

(2:1) 
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and 

� ¼
σ2

p ρσpσq

ρσpσq σ2
q

" #

: (2:2) 

From the observed samples of f , sample means and sample variances will be denoted by μ̂p; μ̂q and 
σ̂2

p ; σ̂2
q , respectively. Note that μ and σ2 are the average and variance of excess returns. Then the 

difference between two information ratios is given by 

Δ ¼ ζp � ζq ¼
μp

σp
�

μq

σq
(2:3) 

and its estimator is 

Δ̂ ¼ ζ̂p � ζ̂q ¼
μ̂p

σ̂p
�

μ̂q

σ̂q
: (2:4) 

We want to test H0 : Δ ¼ 0, that is, we want to test the null hypothesis that the difference of two 
information ratios between two portfolio investment strategies is zero, that the performance 
between the two is not different at all.

According to Goodwin (1998), 

ffiffiffi
T
p
� Δ̂ ,

d tT� 1 

where T � 1 is the degrees of freedom. However, the test statistic 
ffiffiffi
T
p
� Δ̂ may not be robust to 

returns that are not necessarily normally distributed or if the observations are correlated over time. 
This study therefore will cover other cases where portfolio returns are not the typical normally 
distributed portfolio returns.

The goal now is to derive a test of comparison between two portfolio investment strategies in 
terms of their respective information ratios. This paradigm of research is no longer new. For 
instance, the works of Jobson & Korkie (1981), Lo (2002), and Memmel (2003) are influential in 
the pursuit of portfolio performance testing based from performance measures, in particular, the 
Sharpe ratio. They provided a formal statistical comparison between the Sharpe ratios of two 
portfolios. Then, a robust performance hypothesis testing with the Sharpe ratio was formulated by 
Ledoit & Wolf (2008). The test took into consideration returns having tails heavier than the normal 
distribution or are of time-series nature, which has been overlooked by the previous studies. In 
particular, the study constructed a studentized time-series bootstrap confidence interval for the 
difference of the Sharpe ratios and to declare the two ratios different if zero is not contained in the 
obtained interval. As a result, the study has demonstrated the improved finite sample performance 
compared to existing methods. This study has influenced Auer & Schuhmacher (2013) in the case 
of hedge funds.

On the other hand, a recent study of Kazak & Pohlmeier (2019) performed one-sided and two- 
sided tests on out-of-sample performance of portfolios constructed naïvely and through global 
minimum variance in terms of their Sharpe ratio and certainty equivalent. The methods used were 
delta and bootstrap methods for which a multivariate normal distribution is assumed to be the 
distribution of portfolio returns. The study provided an alternative way of using the information of 
performance test within an algorithmic pre-testing strategy. More related works can also be found 
in DeMiguel & Nogales (2009) and Gasbarro et al. (2007).
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3. Methodology
The tests provided by Jobson & Korkie (1981) and Memmel (2003) have been the standard in 
the literature in testing for the equality of Sharpe ratios between two portfolio investment 
strategies. Hence, it is just fitting to use their notations. Note that we want to test the null 
hypothesis H0 : Δ ¼ ζp � ζq ¼ 0, where ζp ¼ μp=σp and ζq ¼ μq=σq are the respective information 
ratios of two portfolio investment strategies with average excess returns μp and μq over a 
market proxy and standard deviations of excess returns σp and σq (also called the tracking 
errors). Now given a confidence level α, we reject the null hypothesis if zero lies outside the 
confidence interval 

Δ̂� t1� α=2ŝðΔ̂Þ; (3:1) 

where Δ̂ ¼ ζ̂p � ζ̂q; ŝðΔ̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T ½2 � 2ρ̂pq þ

1
2 ðζ̂

2
p þ ζ̂2

q � 2ζ̂2
p ζ̂2

q ρ̂2
pqÞ�

q

; ζ̂p; ζ̂q and ρ̂pq are estimators of the 

information ratio difference, the standard error of the difference estimator, the information ratios, 
and the correlation between the investment strategies p and q. Also, T denotes the number of 
observations of excess returns for each portfolio and t1� α=2 represents the ð1 � α=2Þ-quantile of the 
t distribution with T � 1 degrees of freedom. In the event that the null hypothesis is rejected, it will 
imply that one portfolio outperforms the other.

The problem however with the formulation for the standard error of Δ̂ is that it heavily relies on i. 
i.d. excess returns from a bivariate normal distribution. It means that the formulation for the 
standard error is void if the distribution of the excess returns is non-normal or if it follows an 
autocorrelated process. The following are the remedies that this study will employ to construct a 
confidence interval whose returns are not necessarily normal.

3.1. Bootstrap inference
Nonparametric bootstrap has been proven to be a very good tool in various statistical analysis and 
is commonly used by various researches in statistical sciences. It may involve inferences about a 
parameter, but we use a nonparametric procedure in approximating the parametric distribution 
using the empirical cumulative distribution function. Nonparametric bootstrap is also used in 
solving hypothesis testing problems with which this study will be based upon. In doing so, we 
follow the guidelines that are established in the study of Hall & Wilson (1991).

Suppose ζ̂ is a function of the sample r1; r2; . . . ; rn and is an estimator of the unknown quantity ζ, 
and denote by ζ̂� the value of ζ̂ for a resample r�1; r�2; . . . ; r�n drawn from the sample with replace
ment. The first guideline states that we must resample from ζ̂� � ζ̂ and not from ζ̂� � ζ0. This first 
guideline of bootstrap hypothesis testing has the effect of increasing power. The second guideline, 
on the other hand, reduces error in level of significance. Suppose ς̂ is an estimate of the scale of ζ̂ 
and ς̂� denote the value of ς̂ computed for the resample. The second guideline states that we have 
to base the test on the bootstrap distribution of ðζ̂� � ζ̂Þ=ς̂� since it estimates the distribution of 
ðζ̂ � ζ0Þ=ς̂ under the null hypothesis.

For this study, we approximate the distribution function of the difference through an empirical 
cumulative distribution function taken from B bootstrap resamples, that is, 

FΔ̂;B � FΔ̂
�
;B (3:2) 

where Δ̂ is the observed difference or the estimator for Δ and Δ̂� is the observed difference from 
the bootstrap data, and F denotes the cumulative distribution function. A bootstrap 1 � α con
fidence interval for Δ is then given by 
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F� 1
Δ̂;B

α
2

� �
; F� 1

Δ̂;B 1 �
α
2

� �h i
: (3:3) 

For us to generate portfolio resamples, we simply apply that of Efron (1992). Here, we resample 
residuals from the observed pairs of ðrtp; rtqÞ

0, for all t ¼ 1; . . . ; T, with replacement. The following is 
the procedure we use for this resampling technique:

Step 1: Let Rn be an empirical cumulative distribution fuction of the portfolio returns r1; r2; . . . ; rn. 
Assign a probability of 1=n to each of the points in R.

Step 2: From the empirical distribution Rn, draw a random sample of size n with replacement and 
denote the resample data by R�n ¼ r�1; r�2; . . . ; r�n.

Step 3: Estimate the statistics of interest by using bootstrap sample 

ζ�n ¼ ζnðr�1; r
�
2; . . . ; r�nÞ:

Step 4: Repeat steps 2 and 3 B times to get bootstrap distribution and probability of obtaining a 

test statistic ζ̂nðζ; RnÞ ¼ P�ðR�nζÞ ¼ 1
B ∑

B

b¼1
IðR�n;bζÞ.

3.2. Simulation studies
The purpose of this Monte Carlo experiment is to evaluate finite sample performance of the 
method we propose. Table 1 shows the simulation boundaries of this study.

There will be 5,000 simulations per scenario each with M ¼ 10000 bootstrap resamples. The 
sample size is T ¼ 120 for all scenarios. This is based from empirical applications for which 10 years 
worth of monthly data or 4 months worth of daily data is usually used.

Moreover, a within-pair correlation of ρ ¼ 0 means that the two portfolio investment returns are 
independent. The value ρ ¼ 0:75, however, is based from daily returns of two stock returns of 
Philippine Stock Exchange, Inc. Composite Index. For the effect sizes, Δ ¼ 0 means that the true 
null hypothesis of equal information ratio is true. Otherwise, it is false, which is represented by 
effect sizes of 0.05 and 0.10, respectively. Lastly, we also would want to invoke skewness in our 
bivariate distributions for there are times where returns are skewed, for instance, during crisis.

3.3. Hypothesis testing procedure for equality of information ratio
The following procedure is proposed:

Step 1: Generate T� 2 samples from bivariate fðμ;�Þ. This will represent portfolio returns from 
two portfolio investment strategies rp and rq.

Step 2: Estimate Δ ¼ ζp � ζq by Δ̂ ¼ ζ̂p � ζ̂q.

Step 3: Take T bootstrap resamples each from rp and rq and denote them by r�p and r�q 
respectively.

Step 4: Compute Δ̂� ¼ ζ�p � ζ�q.

Step 5: Iterate steps 3 and 4 M times.

Step 6: Sort Δ̂�1; Δ̂
�
2; . . . ; Δ̂�M in either ascending or descending order.
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Step 7: From the M estimates, get the α
2 100% and the 1 � α

2
� �

100% percentiles from Step 6. 
These two values comprise the lower and upper limits of the 1 � α

2
� �

100% bootstrap confidence 
interval, respectively.

Step 8: Reject the null hypothesis of equal information ratio if zero lies outside the percentile 
bootstrap from step 7.

3.4. The data-generating processes
We assume that portfolio returns follow 

r ¼ μþ �
1
2ε (3:4) 

where μ and � are the parameters of a bivariate distribution f whose residuals is ε. With this, we 
bootstrap from the residual, that is, we get our bootstrap resamples from 

ε̂ ¼ �̂
1
2

� �� 1
� ð̂r � μ̂Þ: (3:5) 

In our data-generating processes, we have to control the parameters � and μ in such a way that it 
will satisfy the effect sizes Δ stated in Table 3.1. Note that Δ ¼ 0 means that the null hypothesis is 
true.

First case is when mean and variance are both constant. This is easy since we only need to set- 
up constant values that will satisfy the Δs that we desire. Second case is when we have a constant 
mean but with an ECCC-GARCH(1,1) variance. In this setting, assumption for variance is that of 
bivariate ECCC-GARCH(1,1). In particular, we use the model of He & Teräsvirta (2004). In this 
model, we assume that conditional correlation is constant over time and the conditional covar
iances are caused by changes in each of the corresponding two conditional covariances. Let 

Table 1. Boundaries of the simulation study

a. Distribution of portfolio returns Bivariate normal

Bivariate t4

b. Mean Constant

VAR(1)

c. Variance Constant

ECCC-GARCH(1,1)

d. Within-pair correlation ρ ¼ 0

ρ ¼ 0:20

ρ ¼ 0:75

e. Effect size Δ ¼ 0

Δ ¼ 0:05

Δ ¼ 0:10

f. Skewness k ¼ � 0:05

k ¼ 0

k ¼ 0:05
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εt ¼ ðεp; εqÞ
0. Then εtjÀt� 1,Nð0;�tÞ, where Àt� 1 is the σ-field generated by all the available 

information up to time t � 1 and 

�t ¼
ςp;t ρ ffiffiffiffiffiffiffiffiffiffiffiffiffiςp;tςq;t

p

ρ ffiffiffiffiffiffiffiffiffiffiffiffiffiςp;tςq;t
p ςq;t

� �

: (3:6) 

The conditional covariance matrix �t is positive definite for all t, almost surely, and 

ς t ¼ ωþ αε2
t� 1 þ βςt� 1: (3:7) 

We also consider the possibility of a changing mean over time in our data-generating process. To 
accommodate this, we model the mean as an autocorrelated process, in particular, a VAR(1) 
process. That is, 

rp;t ¼ μ�p þ φ11μp;t� 1 þ φ12μq;t� 1 þ εp;t (3:8)  

rq;t ¼ μ�q þ φ21μp;t� 1 þ φ22μq;t� 1 þ εq;t (3:9) 

where εt,Nð0;�Þ. First, we estimate the parameters μ� and φ from real data for which we use end- 
of-month stock returns of Mining Index and Industrials Index from the Philippine Stock Exchange, 

Inc. Upon estimation, we get the following estimates: μ� ¼ 0:0102
0:0076

� �

and φ ¼ 0:0813 0:0555
0:2082 0:1420

� �

. 

Note that when we use VAR(1) to model the mean, we use the distributions f specified in the 
simulation boundaries as innovations.

Lastly, we also consider the case where we still generate resamples from VAR(1) with innovation 
f ; however, the variance of the innovation is that of ECCC-GARCH(1,1) which is referred to as VAR- 
MGARCH by Carnero & Eratalay (2014).

Tables 2–5 summarize value specifications that will be used in the Monte Carlo procedures.

In the values herewith, we use the autocorrelation matrix φ from what we have estimated in the 
real data to supply variates from VAR(1).

Table 2. Value specifications for constant mean and constant variance

Value specifications μp σ2
p μq σ2

q

Δ ¼ 0 k ¼ � 0:05 0.010 0.025 0.022 121
1000

k ¼ 0 0.015 1
64 0.032 16

225

k ¼ 0:05 0.4 0.6 0.5 15
16

Δ ¼ 0:05 k ¼ � 0:05 0.010 0.025 0.022 2.758704

k ¼ 0 0.015 1
64 0.032 0.2089796

k ¼ 0:05 0.4 0.6 0.5 1.149283

Δ ¼ 0:10 k ¼ � 0:05 0.010 0.025 0.022 0.3582825

k ¼ 0 0.015 1
64 0.032 64

25

k ¼ 0:05 0.4 0.6 0.5 1.44186
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4. Results and discussion
For each of the simulation boundaries, results are presented by skewness of the distribution and 
within-pair correlation of portfolio returns. Note that for all simulations confidence level 
is α ¼ 0:05.

Table 3. Value specifications for constant mean and ECCC-GARCH(1,1) variance

Value specifications μp ωp αp βp

Δ ¼ 0 k ¼ � 0:05 0.010 29
4000 0.45 0.26

k ¼ 0 0.015 29
6400

0.45 0.26

k ¼ 0:05 0.020 87
1000 0.45 0.26

Δ ¼ 0:05 k ¼ � 0:05 0.010 29
4000 0.45 0.26

k ¼ 0 0.015 29
6400 0.45 0.26

k ¼ 0:05 0.020 87
1000

0.45 0.26

Δ ¼ 0:10 k ¼ � 0:05 0.010 29
4000 0.45 0.26

k ¼ 0 0.015 29
6400 0.45 0.26

k ¼ 0:05 0.020 87
1000 0.45 0.26

μq ωq αq βq

Δ ¼ 0 k ¼ � 0:05 0.032 1
25 0.36 0.14

k ¼ 0 0.032 1
6 0.36 0.14

k ¼ 0:05 0.032 6
25 0.36 0.14

Δ ¼ 0 k ¼ � 0:05 0.032 0.04571429 0.36 0.14

k ¼ 0 0.032 0.01758242 0.36 0.14

k ¼ 0:05 0.032 24
25 0.36 0.14

Δ ¼ 0 k ¼ � 0:05 0.032 8
15 0.36 0.14

k ¼ 0 0.032 0.01860465 0.36 0.14

k ¼ 0:05 0.032 � 12
25 0.36 0.14

Table 4. Value specifications for VAR(1) mean and constant variance

Value specifications μ�p σ2
p μ�q σ2

q

Δ ¼ 0 k ¼ � 0:05 0.010219 0.025 0.00759 0.01379135

k ¼ 0 0.010219 1
64 0.00759 0.00861959

k ¼ 0:05 0.010219 0.30 0.00759 0.1654962

Δ ¼ 0:05 k ¼ � 0:05 0.010219 0.025 0.00759 0.2691271

k ¼ 0 0.010219 1
64 0.00759 0.05714015

k ¼ 0:05 0.010219 0.30 0.00759 0.0586421

Δ ¼ 0:10 k ¼ � 0:05 0.010219 0.025 0.00759 0.04604992

k ¼ 0 0.010219 1
64 0.00759 0.1730028

k ¼ 0:05 0.010219 0.30 0.00759 0.00870655
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4.1. Size of the test
The size of the proposed test is computed for cases with varying skewness and increasing within- 
pair correlation of portfolio returns. Size is often defined as the probability of committing a Type I 
error. To compute for the size, we generate the cases under H0 : Δ ¼ 0, or when the difference 
between the two information ratios is zero and proportions of Monte Carlo draws where the null 
hypothesis was rejected is considered in computing the size.

Table 6 shows that the size of the test is affected by the within-pair correlation of portfolio 
returns. It means that when the behavior of two portfolio returns is almost similar, the tendency of 
the test is to not reject the null hypothesis. This is not a good indication since at α ¼ 0:05 it is 
expected that the test should reject around 5% of the generated Monte Carlo draws under true 
null hypothesis. Regardless, the test is correctly sized and performs well under independent and 
weakly dependent portfolio returns.

Similar results can be seen when distribution used is symmetric and positively skewed 
(k ¼ 0;0:05). It means to say that the size of the test is really not affected by the skewness of 
the distribution. Also notice that size is better when we have an autocorrelated mean even at large 
within-pair correlation (Tables 7 and 8).

It can also be noticed that the size is unaffected by the form of the variance, whether the 
variance is constant or heteroskedastic.

Table 5. Value specifications for VAR(1) mean and ECCC-GARCH(1,1) variance

Value specifications μ�q ωp αp βp

Δ ¼ 0 k ¼ � 0:05 0.010219 29
4000

0.45 0.26

k ¼ 0 0.010219 29
6400 0.45 0.26

k ¼ 0:05 0.010219 87
1000 0.45 0.26

Δ ¼ 0:05 k ¼ � 0:05 0.010219 29
4000 0.45 0.26

k ¼ 0 0.010219 29
6400

0.45 0.26

k ¼ 0:05 0.010219 87
1000 0.45 0.26

Δ ¼ 0:10 k ¼ � 0:05 0.010219 29
4000 0.45 0.26

k ¼ 0 0.010219 29
6400 0.45 0.26

k ¼ 0:05 0.010219 87
1000

0.45 0.26

μ�q ωq αq βq

Δ ¼ 0 k ¼ � 0:05 0.00759 0.009284177 0.36 0.14

k ¼ 0 0.00759 0.00580261 0.36 0.14

k ¼ 0:05 0.00759 0.1114101 0.36 0.14

Δ ¼ 0 k ¼ � 0:05 0.00759 0.0105781 0.36 0.14

k ¼ 0 0.00759 0.006282946 0.36 0.14

k ¼ 0:05 0.00759 −0.2381301 0.36 0.14

Δ ¼ 0 k ¼ � 0:05 0.00759 0.0122911 0.36 0.14

k ¼ 0 0.00759 0.006849983 0.36 0.14

k ¼ 0:05 0.00759 −0.05755523 0.36 0.14
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Table 6. Size of the test at k ¼ � 0:05

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 0.07837 0.07882 0.06334 0.06656

ρ ¼ 0:20 0.07191 0.06987 0.05974 0.05925

ρ ¼ 0:75 0.02620 0.02971 0.03221 0.03823

Bivariate t4:

ρ ¼ 0 0.05013 0.05515 0.05612 0.05916

ρ ¼ 0:20 0.04382 0.04524 0.05210 0.05325

ρ ¼ 0:75 0.01666 0.01982 0.02007 0.02503

Table 7. Size of the test at k ¼ 0

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 0.05575 0.05004 0.06951 0.06339

ρ ¼ 0:20 0.04930 0.04995 0.06552 0.05812

ρ ¼ 0:75 0.02286 0.01924 0.03113 0.02882

Bivariate t4:

ρ ¼ 0 0.04024 0.05195 0.05716 0.05505

ρ ¼ 0:20 0.03914 0.04834 0.05596 0.05116

ρ ¼ 0:75 0.01832 0.02016 0.01112 0.02102

Table 8. Size of the test at k ¼ 0:05

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 0.06825 0.06112 0.06806 0.05916

ρ ¼ 0:20 0.06019 0.06020 0.06704 0.05623

ρ ¼ 0:75 0.02988 0.01790 0.01722 0.02553

Bivariate t4:

ρ ¼ 0 0.05692 0.05331 0.05105 0.05626

ρ ¼ 0:20 0.04980 0.04950 0.05016 0.04805

ρ ¼ 0:75 0.02320 0.01678 0.01401 0.01722
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4.2. Power of the test
The proposed test is also assessed for its power under similar restrictions of within-pair correla
tions and skewness. To compute for power, we generate Monte Carlo draws under false null 
hypothesis, specifically, when Δ ¼ 0:05 and Δ ¼ 0:10. By definition, power of the test is the 
probability of rejecting a false null hypothesis.

Table 9 shows that power is high and is affected by within-pair correlation. That is, when the null 
hypothesis is false, the tendency of the test is to reject it. Rejection probability is increasing as Δ is 
increasing (Table 10).

From Table 9, we see that the test has a higher chance of detecting a difference of information 
ratio if mean is modeled as an autocorrelated process. Also, note that at Δ ¼ 0:10, chances are, 
the test will always reject the null hypothesis. Similar results are found under symmetric and 
positively skewed distributions (Tables 11–14).

Table 9. Power of the test at k ¼ � 0:05 and Δ ¼ 0:05

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 0.85039 0.85084 0.94256 0.94578

ρ ¼ 0:20 0.77150 0.78241 0.92662 0.92613

ρ ¼ 0:75 0.34911 0.35262 0.49128 0.39624

Bivariate t4:

ρ ¼ 0 0.82215 0.82717 0.93534 0.93838

ρ ¼ 0:20 0.75636 0.75778 0.91898 0.92013

ρ ¼ 0:75 0.33957 0.34273 0.47914 0.38304

Table 10. Power of the test at k ¼ � 0:05 and Δ ¼ 0:10

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:20 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:75 0.98742 0.98662 0.99459 0.99596

Bivariate t4:

ρ ¼ 0 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:20 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:75 0.98926 0.99248 0.99716 0.99926
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Table 11. Power of the test at k ¼ 0 and Δ ¼ 0:05

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 0.75706 0.74135 0.87082 0.86470

ρ ¼ 0:20 0.72839 0.72904 0.84461 0.83849

ρ ¼ 0:75 0.32420 0.32058 0.33247 0.32635

Bivariate t4:

ρ ¼ 0 0.74155 0.75046 0.85847 0.85585

ρ ¼ 0:20 0.71823 0.72743 0.83505 0.83243

ρ ¼ 0:75 0.32420 0.32150 0.31246 0.30984

Table 12. Power of the test at k ¼ 0 and Δ ¼ 0:10

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:20 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:75 0.94273 0.93520 0.95771 0.95160

Bivariate t4:

ρ ¼ 0 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:20 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:75 0.92929 0.93895 0.94676 0.94414

Table 13. Power of the test at k ¼ 0:05 and Δ ¼ 0:05

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 0.83212 0.81499 0.92193 0.93303

ρ ¼ 0:20 0.80701 0.74905 0.90350 0.91462

ρ ¼ 0:75 0.34984 0.31371 0.39633 0.32631

Bivariate t4:

ρ ¼ 0 0.82079 0.80718 0.90492 0.93013

ρ ¼ 0:20 0.79662 0.79648 0.88662 0.90644

ρ ¼ 0:75 0.34316 0.31259 0.39633 0.31800
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We still see that at a higher Δ, power is high. We attain the highest power at uncorrelated and 
weakly dependent portfolio returns. Having high power means that the test will be able to reject 
the null of equal information ratio.

In the case of positively skewed returns, power is still high and is highest when mean of portfolio 
returns is modeled as an autocorrelated process. In a similar case from previous values of 
skewness, test will most likely detect a difference at Δ ¼ 0:10.
4.3. Empirical applications
In this section, we apply the test empirically to end-of-month returns of Services and Mining 
Indices of the Philippine Stock Exchange Inc. from January 2008 to December 2018. Since better 
performance is seen where mean is an autocorrelated process, then we use it. We first check the 
descriptive statistics of the data (Table 15).

EOM (End of Month) returns are both normally distributed with some degree of skewness. Note 
that we use the difference of natural logarithms to represent returns. Then we fit VAR(1) to the 
data (Table 16).

Table 14. Power of the test at k ¼ 0:05 and Δ ¼ 0:10

Mean Constant VAR(1)

Variance Constant ECCC-GARCH(1,1) Constant ECCC-GARCH(1,1)

Bivariate normal:

ρ ¼ 0 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:20 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:75 0.91957 0.93202 0.97272 0.96383

Bivariate t4:

ρ ¼ 0 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:20 1.00000 1.00000 1.00000 1.00000

ρ ¼ 0:75 0.90871 0.92183 0.95577 0.94829

Table 15. Descriptive statistics of EOM returns of services index and mining index

Ñ logðStÞ Ñ logðMtÞ

Mean −0.001358 −0.001526

Median −0.001347 −0.001934

Maximum 0.023006 0.039203

Minimum −0.035193 −0.047441

Std. dev 0.009816 0.014343

Skewness −0.350795 0.030802

Kurtosis 3.618144 3.225160

Jarque–Bera 4.335227 0.270189

Probability 0.114450 0.873633
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We then now check if VAR residuals is normally distributed and if it is heteroskedastic.

Tables 17 and 18 show that the residuals are normally distributed and homoskedastic. Hence, 
we can use normal distribution as innovation with mean zero and constant variance, as estimated 
from the residuals, 

9:701312152736229e � 05 6:286351051125198e � 05
6:286351051125198e � 05 0:00021052616955669

� �

:

Here are the results of the test (Table 19).

The p-value is computed by getting the proportion of bootstrap estimates that are greater than 
the observed test statistic over the number of bootstrap estimates, as discussed in Davison & 
Hinkley (1997). Results show that Services Index has significantly higher information ratio 

Table 16. Vector autoregression estimates of EOM returns of services index and mining index

Ñ logðStÞ Ñ logðMtÞ

Ñ logðSt� 1Þ −0.025599 0.063746

(0.10403) (0.15325)

[−0.24607] [0.41596]

Ñ logðMt� 1Þ 0.074386 −0.002019

(0.07039) (0.10369)

[1.05680] [−0.01947]

C −0.001195 −0.001395

(0.00092) (0.00135)

[−1.30059] [−1.03125]

Table 17. VAR residuals normality test

Component Skewness χ2 df Prob.

1 −0.327400 2.108089 1 0.1465

2 −0.198837 0.777544 1 0.3779

Joint 2.885633 2 0.2363

Component Kurtosis χ2 df Prob.

1 3.605211 1.800876 1 0.1796

2 −3.374185 0.688403 1 0.4067

Joint 2.489279 2 0.2880

Component Jarque–Bera df Prob.

1 3.908965 2 0.1796

2 1.465947 2 0.4805

Joint 5.374912 4 0.2509
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compared to Mining Index. One may use this as a basis for investing to assets listed in the Services 
Index for it shows a better performance than the Mining Index.

5. Conclusions
Testing for difference in performance between two investment strategies is important in perfor
mance evaluation. This study extends the works of Jobson & Korkie (1981), Lo (2002), and Memmel 
(2003) by developing a performance hypothesis test that determines whether two portfolios 
exhibit equal information ratio. Furthermore, this study also does not assume any distribution 
for the portfolio returns. One may opt to use the test of Goodwin (1998) but only under the 
assumption of normally distributed returns. In the test we proposed, we considered returns whose 
tails are heavier than normal and with varying skewness. We also considered returns with time- 
series characteristics. The selection of this portfolio performance measure is due to its desirable 
advantages as compared to Sharpe ratio.

Simulation studies suggest that the proposed test is correctly sized in most scenarios. However, 
the expected size α loses when portfolio returns are highly correlated. In other words, the test has 
a high tendency to reject a null hypothesis when the behavior of two portfolio returns is almost the 
same. Moreover, the test exhibits high power, also when portfolio returns are highly correlated. 
Under highly correlated returns, the power improves more whenever mean is modeled using an 
autocorrelated process. The overall performance of the test is consistent under varying skewness 
of the distributions and varying forms of variances.

In the Philippines, the use of the information ratio is relevant since the country is experiencing 
some volatility in its nation’s experience. It is helpful for us to gain feedback and derive insights 
relative to the additional risks brought about by this volatility. For fund managers (and even for us 
individual investors), this is helpful since we are “on the lookout” upfront with the risk we are 
tolerating when we invest. It is also with this motivation that we pursued with this portfolio 
performance measure and applied it to some of the indices in the Philippine Stock Exchange. We 
also look forward for this hypothesis testing strategy to be applied in the stock market from 
developing economies.

Table 19. Result of the test

ζS ζM Δ̂ p-Value

0.0279 0.0092 0.0187 0.0019

Table 18. VAR residuals heteroskedasticity test

Joint test

χ2 df Prob.

10.30145 12 0.5895

Individual components

Dependent R2 Fð4; 113Þ Prob. χ2ð4Þ Prob.

res1*res1 0.030816 0.898218 0.4676 3.636234 0.4575

res2*res2 0.010623 0.303327 0.8752 1.253533 0.8692

res2*res1 0.065679 1.985855 0.1014 1.750099 0.1012
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