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Exponentially fitted block backward 
differentiation formulas for pricing options
S. N. Jator1*, R. K. Sahi2, M. I. Akinyemi2 and D. Nyonna3

Abstract:  A family of Exponentially Fitted Block Backward Differentiation Formulas 
(EFBBDFs) whose coefficients depend on a parameter and step-size is developed 
and implemented on the Black–Scholes partial differential equation (PDE) for the 
valuation of options on a non-dividend-paying stock. Specific EFBBDFs of order 2 and 
4 are applied to solve the PDE after reducing it into a system of ordinary differential 
equations via the method of lines. The methods are shown to be superior to the 
well-known Crank–Nicolson method since they are L-stable and do not exhibit 
oscillations usually triggered by discontinuities inherent in the payoff function of 
financial contracts. We confirmed the accuracy of the methods by initially applying 
them to a prototype example based on the one-dimensional time-dependent con
vection–diffusion equation with a known analytical solution. It is demonstrated that 
the American put can be exercised early by computing the hedging parameter 
“delta”, which specifies the condition for early exercise of the put option. Although 
the methods can be used to price all vanilla options, we elect to focus on the put 
due to its optimality.

Subjects: Computer Mathematics; Mathematical Modeling; Financial Mathematics; 
Mathematical Finance; Finance  
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1. Introduction
To make informed decisions, financial analysts use models together with certain parameters to 
determine the theoretical fair values of assets. The computed values are then compared to the 
market prices of the assets in question. Both computational procedures and mathematical models 
abound in the financial economics literature for all kinds of assets including derivative securities. 
One such celebrated financial model in recent memory is the Black–Scholes (Merton, 1973) option 
pricing model. A closed form solution of Black–Scholes model does not exist for American style put 
options due to the possibility of an early exercise. Consequently, several analytical approximations 
and numerical procedures are employed for the valuation of American put options.

In addition to the procedures described in (Hull, 2015), a great deal of research exists on 
numerical methods for solving the Black–Scholes differential equation. For example, Khaliq et al. 
(2006) considered the pricing of an American put option as a free boundary problem and noted 
that the early exercise feature of the American put option transforms the Black–Scholes linear 
differential equation into a non-linear type. In another study, Huang et al. (1996) presented 
a method for valuing and hedging American style options. The study asserted that 
a “complicated path integral” implicitly defines the early exercise boundary of an American option. 
It employed a ’unified framework’ that made use of an analytic formula and approximation 
method (Geske & Johnson, 1984). This combined framework was then used to price options on 
dividend paying stocks by estimating the early exercise boundary for a few points and used the 
Richardson extrapolation to approximate the entire boundary.

In this paper, we present EFBBDFs, motivated by the fact that the methods have good stability 
properties, such as A-stability and L-stability. They performed excellently when applied to the so 
called stiff differential equations. The traditional backward differentiation formulas are implicit and 
are generally applied in predictor-corrector mode in a forward in time manner, which is called 
a matching technique. The implementation is generally facilitated by the Newton’s method or variable 
step techniques (Cash, 1980, 1984; Gear, 1971). It is known that the reduction of parabolic PDEs into 
a system of first order differential equations triggers a stiff system which can be efficiently solved by 
L-stable methods. Therefore, we are motivated to solve the Black–Scholes equation (a parabolic PDE) 
to derive methods that can efficiently solve the Black–Scholes equation via the method of lines 
(MOLs). In particular, the idea is to convert the Black–Scholes equation into a system of ODEs after 
which the system is solved using L-stable EFBBDFs that do not exhibit oscillations. It is well known that 
discontinuities in the payoff function of financial contracts lead to oscillations in the Crank–Nicolson 
scheme for both the option price and hedging parameters such as delta (Giles & Carter, 2006). This is 
not the case with the EFBBDFs presented in this paper and according to (Tangman et al., 2008) the 
commonly used Crank–Nicolson scheme does not exhibit L0-stability. Since the methods are L-stable 
and do not exhibit oscillations, the methods have the advantage of using larger time steps which can 
be very advantageous when the problem is solved on a wide time interval (Liao & Khaliq, 2009).

Specifically, we derive a family of EFBBDFs based on mixed basis and apply them in a block-by- 
block manner to solve the Black–Scholes equation. Methods involving mixed basis have also been 
discussed in the literature (Coleman & Duxbury, 2000; Ndukum et al., 2016; Nguyen et al., 2007). 
Akinfenwa et al. (2013) discussed extended Block Backward Differentiation formula which was 
extended to solve a system resulting from a semi-discretization of the Black–Scholes equation 
(Jator & Nyonna, 2014). We note that the methods are initially applied in a block-by-block fashion 
to a prototype example based on a forward in time one-dimensional time-dependent convection– 
diffusion equation with a known analytical solution. In order to replicate the implementation of the 
EFBBDFs on the Black–Scholes equation which backward in time, we transform the equation into 
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a forward in time equation. In what follows, we reduce the Black–Scholes equation into a system 
of ordinary differential equations via the method of lines.

1.1. Black–Scholes model and stock variable discretization
Consider the Black–Scholes model for the American put option 

@V
@t
þ LðVÞ ¼ 0; (1) 

subject to the initial/boundary conditions

Vð0; tÞ ¼ X, Vðs; tÞ ¼ 0 if s>0, Vðs; TÞ ¼ maxðX � s;0Þ,

where L ¼ 1
2 σ2s2 @2

@s2 þ rs @
@s � r is the differential operator, Vðs; tÞ denotes the value of the put 

option, σ, X, T, r denote the volatility of the underlying asset, exercise price, option expiration date, 
and interest rate, respectively.

The methods considered in this paper are facilitated by the method of lines approach (Cash, 
1984; Lambert, 1991; Ramos & Vigo-Aguiar, 2007) which involves seeking a solution in the strip 
½a; b� � ½c;d�, where a; b; c;d are real constants, by first discretizing the variable s with mesh 
spacings Δs ¼ 1=M, sm ¼ mΔS, m ¼ 0;1; . . . ;M.

We then define 

VmðtÞ � Vðsm; tÞ; VðtÞ ¼ ½V0ðtÞ;V1ðtÞ;V2ðtÞ; . . . ;VMðtÞ�T; and 

replace the partial derivatives @
2Vðs;tÞ
@s2 and @Vðs;tÞ

@s occurring in (1) by central difference approxima
tions of order 2 or 4. Thus, the central differences of order 2 are given by 

@VmðtÞ
@s ¼

Vmþ1ðtÞ� Vm� 1ðtÞ
2Δs ;

@2VmðtÞ
@s2 ¼

Vmþ1ðtÞ� 2VmðtÞþVm� 1ðtÞ
ðΔsÞ2

;m ¼ 1; . . . ;M � 1:

(

(2) 

and in the spirit of (Oosterlee et al., 2005) the central differences of order 4 are given by 

@VmðtÞ
@s ¼

� Vmþ2ðtÞþ8Vmþ1ðtÞ� 8Vm� 1ðtÞþVm� 2ðtÞ
12ðΔsÞ ;

@2VmðtÞ
@s2 ¼

� Vmþ2ðtÞþ16Vmþ1ðtÞ� 30Vm ;tÞþ16Vm� 1ðtÞ� Vm� 2ðtÞ
12ðΔsÞ2

:

8
<

:
(3) 

The following backward differences are required to find the derivative points for V1ðtÞ and VM� 1ðtÞ. 

@V1ðtÞ
@s ¼

� 3V0ðtÞ� 10V1ðtÞþ18V2ðtÞ� 6V3ðtÞþV4ðtÞ
12ðΔsÞ ;

@VM� 1ðtÞ
@s ¼

� 3VMðtÞ� 10VM� 1ðtÞþ18VM� 2ðtÞ� 6VM� 3ðtÞþVM� 4ðtÞ
12ðΔsÞ ;

@2V1ðtÞ
@s2 ¼

10V0ðtÞ� 15V1ðtÞ� 4V2ðtÞþ14V3ðtÞ� 6V4ðtÞþV5ðtÞ
12ðΔsÞ2

;

@2VM� 1ðtÞ
@s2 ¼

10VMðtÞ� 15VM� 1ðtÞ� 4VM� 2ðtÞþ14VM� 3ðtÞ� 6VM� 4ðtÞþVM� 5ðtÞ
12ðΔsÞ2

:

8
>>>>><

>>>>>:

(4) 

We note that (2) or (3) and (4) can be written in the vector form as 

dVðtÞ
dt
¼ fðt;VÞ; (5) 
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where f(t, V) = AV+ G, A is an M�M matrix arising from the semi-discretized system (2) or (3) and 
(4), and G is a vector of constants. The problem (5) is now a system of ordinary differential 
equations which is solved by EFBBDFs which are L-stable and hence can effectively solve stiff 
problems. The rest of the paper proceeds as follows. In Section 2, we construct the EFBBDFs and 
discuss the block formulation and its implementation. In Section 3, the analysis of the methods is 
given. Section 4 is devoted to numerical examples and the conclusion is given in Section 5.

2. Derivation of the methods
For notational simplification, we derive the continuous form of the EFBBDF for the scalar form of (5) 
since the vector form can be solved using the same methods with obvious notational modifica
tions. Motivated by the use of mixed basis functions for the derivation of a collocation method 
considered by Coleman and Duxbury (2000) and Nguyen et al. (2007), we construct the continuous 
method using mixed basis functions that belong to the linear space h1; t; . . . ; tk� 1; eωti. In order to 
solve (5) for a chosen step size h and step number k, we define the EFBBDFs on the partition ftn ¼

t0 þ nh;h ¼ tN � t0
N ;n ¼ 0;1; . . . ;Ng in which the step ½tn;Vn�7!½tnþk;Vnþk� is defined by combining the 

following main and additional methods. 

∑k
j¼0Qjvnþj ¼ hΥkfnþk;

∑k� 1
j¼0 Qi;jvnþj ¼ hΥi;kfnþk þ hΥi;ifnþi; i ¼ 1; . . . ; k � 1;

(

(6) 

where Qj, Qi;j, Υj, Υi;k, Υi;i are coefficients. We note that Vnþj is the numerical approximation to the 
analytical solution VðtnþjÞ, fnþj ¼ fðtnþj;VnþjÞ; j ¼ 0; . . . ; k. We note that the EFBBDFs are provided by 
the continuous form and in order to obtain the continuous form, we assume that the solution is 
given by the function ΦðtÞ on the interval ½tn; tn þ kh� as 

ΦðtÞ ¼ 1 t . . . tk� 1 eωt
� �

ρ0
ρ1

..

.

ρk� 1
ρk

2

6
6
6
6
6
4

3

7
7
7
7
7
5

; (7) 

where ω is an appropriate parameter and ρ0; ρ1; . . . ; ρk are coefficients to be uniquely determined 
by solving the system of equations obtain by imposing the following conditions: 

ΦðtnþjÞ ¼ Vnþj; j ¼ 0; . . . ; k � 1; (8)  

Φ0ðtnþkÞ ¼ fnþk: (9) 

The continuous approximation ΦðtÞ is then constructed by substituting the values of ρj into 
Equation (7), which is then evaluated at t ¼ tnþj; j ¼ 0;1;2; . . . ; k to obtain the method (6). In 
what follows, we give two particular methods.

2.1. Particular methods
Case k = 2: When k = 2, the EFBBDF is given by 

Q2Vnþ2 þ Q1Vnþ1 þ Q0Vn ¼ hΥ2fnþ2;

Q1;1Vnþ1 þ Q1;0Vn ¼ hðΥ1;1fnþ1 þ Υ1;2fnþ2Þ;

�

(10) 

where q ¼ ωh, Q2 ¼ 1 � eq þ e2qq, Q1 ¼ � 1þ e2q � 2e2qq, Q0 ¼ eq � e2q þ e2qq,Υ2 ¼ 1 � 2eq þ e2q,
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Q1;1 ¼ eqq � e2qq, Q1;0 ¼ � eqqþ e2qq, Υ1;1 ¼ 1 � eq þ e2qq, Υ1;2 ¼ � 1þ eq � eqq.

Case k = 4: When k = 4, the EFBBDF is given by 

Q4Vnþ4 þ Q3Vnþ3 þ Q2Vnþ2 þ Q1Vnþ1 þ Q0Vn ¼ hΥ4fnþ4;

Q1;3Vnþ3 þ Q1;2Vnþ2 þ Q1;1Vnþ1 þ Q1;0Vn ¼ hðΥ1;1fnþ1 þ Υ1;4fnþ4Þ;

Q2;3Vnþ3 þ Q2;2Vnþ2 þ Q2;1Vnþ1 þ Q2;0Vn ¼ hðΥ2;2fnþ2 þ Υ2;4fnþ4Þ;

Q3;3Vnþ3 þ Q3;2Vnþ2 þ Q3;1Vnþ1 þ Q3;0Vn ¼ hðΥ3;3fnþ3 þ Υ3;4fnþ4Þ;

8
>><

>>:

(11) 

where q ¼ ωh,

Q4 ¼ 11 � 42eq þ 57e2q � 26e3q þ 6e4qq, Q3 ¼ � 18þ 64eq � 72e2q þ 26e4q þ 24e4qq, 
Q2 ¼ 9 � 24eq þ 72e3q � 57e4q � 24e4qq, Q1 ¼ � 2þ 24e2q � 64e3q þ 42e4qq,

Q0 ¼ eqð2 � 9eq þ 18e2q þ e3qð� 11þ 6qÞ, Υ4 ¼ 6ð� 1þ eqÞ
4,

Q1;3 ¼ 21þ 12eq � 33e2q þ 52eqqþ 2e4qq, Q1;2 ¼ � 60þ 27eq þ 33e3q � 114eqq � 12e4qq, 
Q1;1 ¼ 39 � 27e2q � 12e3q þ 84eqqþ 6e4qq, Q1;0 ¼ � 39eq þ 60e2q � 21e3q � 22eqqþ 4e4qq, 
Υ1;1 ¼ � 22þ 84eq � 114e2q þ 52e3q � 12e4qq, Υ1;4 ¼ 4 � 12e2q þ 2e3q þ 6eq þ 12eqq,

Q2;3 ¼ 8 � 40eq þ 32e2q � 26e2qqþ 2e4qq, Q2;2 ¼ � 4þ 36eq � 32e3q þ 57e2q þ 3e4qq,

Q2;1 ¼ � 4 � 36e2q þ 40e3q � 42e2qq � 6e4q, Q2;0 ¼ 4eq � 8e3q þ e4qqþ 4e2q þ 11e2qq,

Υ2;2 ¼ 11 � 42eq þ 57e2q � 26e3q þ 6e4qq, Υ2;4 ¼ 1 � 6eq þ 2e3q þ 3e2q � 6e2qq,

Q3;3 ¼ 23 � 76eq þ 53e2q � 52e3qqþ 22e4qq, Q3;2 ¼ � 28þ 81eq � 53e3q þ 114e3q � 36e4qq,

Q3;1 ¼ 5 � 81e2q þ 76e3q � 84e3qqþ 18e4qq, Q3;0 ¼ � 5eq þ 28e2q � 23e3q þ 44e3qq � 4e4qq,

Υ3;3 ¼ 22 � 84eq þ 114e2q � 52e3q þ 12e4qq, Υ3;4 ¼ � 4þ 18eq � 36e2q þ 22e3q � 12e3qq.

2.2. Block formulation and Implementation
The methods given in (6) can be expressed in block form as 

Ψ1Yκþ1 ¼ Ψ0Yκ þ hðφ0Fκ þ φ1Fκþ1Þ; (12) 

where 

Yκþ1 ¼ ðVnþ1; . . . ;VnþkÞ
T
;

Yκ ¼ ðVn� kþ1; . . . ;Vn� 1;VnÞ
T
;

Fκþ1 ¼ ðfnþ1; . . . ; fnþkÞ
T
;

Fκ ¼ ðfn� kþ1; . . . ; fn� 1; fnÞ
T
;
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κ ¼ 0; . . . ; ς; n ¼ 0; k;2k; . . . ;N ¼ ςk, ς is the number of blocks in the interval ½t0; T�, Ψ0;Ψ1;φ0; and 
φ1 square matrices of dimension k whose elements are the corresponding coefficients of the 
methods in (6).

2.3. Implementation
Using Mathematica 11, the EFBBDF is implemented in a block-by-block fashion to solve (5) using 
NSolve[] for linear problems and FindRoot[] for non-linear problems. We recall that the system (5) 
is solved on the partition 

πM ¼ fc ¼ s0<s1< . . . <sM ¼ d; sm ¼ mΔsg;

Δs ¼ d� c
M is a constant step-size of the partition of πM, m ¼ 1;2; . . . ;M, M is a positive integer and m 

the grid index. Let the partition 

πN : fa ¼ t0<t1< . . . <tN ¼ b; tn ¼ nΔtg;

h ¼ Δt ¼ b� a
N is a constant step-size of the partition of πN, n ¼ 1;2; . . . ;N, N is a positive integer and 

n the grid index.

We summarize the process in following algorithm:

Algorithm 1 Block-by-Block Algorithm

1: procedure Enter πN, πM, t0; s0;h;N;M;Δs

2: On πM, discretize (1) using (2) or (3) to obtain (5)

3: Then, on πN, discretize (5) using (6) and generate the members of the first block and the 
variables to be determined for n ¼ 0, say System

4: Solve½System; variables� to obtain the discrete solutions in the first block

5: For n ¼ k;2k; . . . ;N � k, obtain all solutions on πN

6: end procedure

3. Analysis of methods

3.1. Order and local truncation error
The local truncation error (LTE) of (12) is defined as 

L½Zκþ1; h� ¼ Ψ1Zκþ1 � ðΨ0Zκ þ hðφ0Fκ þ φ1Fκþ1ÞÞ; (13) 

where 

Zκþ1 ¼ ðzðtnþ1Þ; . . . ; zðtnþkÞÞ
T
;

Zκ ¼ ðzðtn� kþ1Þ; . . . ; zðtnÞÞ
T
;
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Fκþ1 ¼ ðf ðtnþ1; zðtnþ1ÞÞ; . . . ; fðtnþk; zðtnþkÞÞÞ
T
;

Fκ ¼ ðf ðtn� kþ1; zðtn� kþ1ÞÞ; . . . ; fðtn; zðtnÞÞÞ
T
:

Assuming that zðtÞ is a sufficiently differentiable function, the terms in (13) can expanded by Taylor 
series about the point tn and obtain the expression of the LTE as 

L½Zκþ1; h� ¼ K0zðtnÞ þ K1hz0ðtnÞ þ . . .þ KqhqzðqÞðtnÞ þ . . . ; (14) 

where the constant coefficients Kq, q ¼ 0;1; . . . are column vectors of size k since the entries of 
the matrices Ψ0;Ψ1;φ0; and φ1 are given by the coefficients of the methods in (6). 

Definition 3.1. Let K0 ¼ K1 ¼ . . . ¼ Kp ¼ 0, Kpþ1�0, then the method (12) has order p � 1 provided 
there exists a constant Kpþ1 such that the LTE satisfies 

L½Zκþ1; h� ¼ Kpþ1hpþ1 þ Oðhpþ2Þ:

Remark 3.2. In Table 1Table 2, the order and error truncation terms are displayed.

3.2. Stability
The Linear stability regions is obtained by applying (12) to the test equation V0 ¼ λV to give 

Yκþ1 ¼ MðW; qÞYμ;W ¼ λh; q ¼ wh; (15) 

where the stability matrix MðW; qÞÞ is given by 

MðW; qÞ ¼ ðΨ1 � Wφ1Þ
� 1
ðΨ0 þWφ0Þ:

Definition 3.3. For a fixed q, the method (12) is A-stable if for all W 2 C
� , MðW; qÞ has a dominant 

eigenvalue Wmax such that 

jWmaxj � 1:

In particular, its region of absolute stability contains the left half-plane fW 2 CjRðW Þ<0g.

Table 1. Orders and principal local truncation error terms for (10) and (11) generated by evaluating 
(7) at t ¼ tnþj

j p Kpþ1

1 2 � 5
12 ðwV

0 0ðtnÞ � V 0 0 0ðtnÞÞ

2 2 2
9 ðwV

0 0ðtnÞ � V 0 0 0ðtnÞÞ

1 4 29
390 ðwV

ðivÞðtnÞ � VðvÞðtnÞÞ

2 4 31
90 ðwV

ðivÞðtnÞ � VðvÞðtnÞÞ

3 4 � 111
1970 ðwV

ðivÞðtnÞ � VðvÞðtnÞÞ

4 4 12
125 ðwV

ðivÞðtnÞ � VðvÞðtnÞÞ
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Definition 3.4. For a fixed q, the method (12) is L-stable if it is A-stability and in addition, Wmax ! 0 
as ReðWÞ ! � 1:

Specifically, for k = 2, the spectral radius Wmax of the matrix MðW; qÞ is a rational function of W 
given by 

Wmax ¼ j
eqðμ � eqμþ qð� 1þ eqð1þ μÞÞÞ

e2qðq � μÞð� 1þ μÞ � μ2 � eqðq � μÞð� 1þ 2μÞ
j;

and for k = 4, 

Wmax ¼ j
Γ1

Γ2
j;

where 

Γ1 ¼ eqð� ð� 1þ eqÞμð2ð3þ 3μþ μ2Þ � eqð12þ 18μþ 7μ2Þ þ e2qð6þ 12μþ 11μ2ÞÞ þ qð� 2ð3þ
3μþ μ2Þ � 6e2qð3þ 5μþ 3μ2Þ þ 3eqð6þ 8μþ 3μ2Þ þ e3qð6þ 12μþ 11μ2 þ 6μ3ÞÞÞ;

and 

Γ2 ¼ � 6μ4 � 6e3qðq � μÞð� 3þ 7μ � 7μ2 þ 4μ3Þ þ e4qðq � μÞð� 6þ 12μ � 11μ2 þ 6μ3Þþ

3e2qðq � μÞð� 6þ 16μ � 19μ2 þ 12μ3Þ � 2eqðq � μÞð� 3þ 9μ � 13μ2 þ 12μ3Þ:

Remark 3.5. In Figure 1, the stability regions are displayed.

4. Numerical examples
The following acronyms are used in the Figures:

● EFBBDF2 is the Exponentially Fitted Block Backward Differentiation Formula of order 2
● EFBBDF4 is the Exponentially Fitted Block Backward Differentiation Formula of order 4
● EFBBDF2P is the Exponentially Fitted Block Backward Differentiation Formula of order 2 for the 

put option
● EFBBDF4P is the Exponentially Fitted Block Backward Differentiation Formula of order 4 for the 

put option

We begin this section by initially apply the EFBBDFs to a prototype example based on the one- 
dimensional time-dependent convection–diffusion equation with a known analytical solution. 

Example 4.1. We consider the following one dimensional convection diffusion equation. 

Table 2. Optimal exercise price for Examples 4.2, 4.3, and 4.4

Example M N t sP P

4.2 20 4 0:25 $6 $14:83

4.3 200 12 0:9167 $8 $101:45

4.4 40 12 0:9167 $0:12 $0:68
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Figure 1. The stability regions for 
the EFBBDF2 (10) and EFBBDF4 
(11) plotted in the (μ, q)-plane.
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@u
@t
¼

1
2
@2u
@x2 þ

1
2
@u
@x
; x 2 ð0;1Þ; t 2 ð0;1�;

uðx;0Þ ¼ ex; x 2 ½0;1�;

uð0; tÞ ¼ et; t 2 ð0;1�;

uð1; tÞ ¼ e1þt; t 2 ð0;1�:

The exact solution uðx; tÞ ¼ etþx.

This prototype convection–diffusion equation resembles the Black–Scholes equation and is 
solved using the Crank–Nicolson method and EFBBDFs (k ¼ 2;4) for a space step size of 0:01 and 
time step size of 0:25. The results for the errors between the calculated and exact solutions for 
parameters (ω ¼ 0), (ω ¼ 1), and the optimal parameter for (ω ¼ wn) are displayed in Figures 2 and 
3. It is obvious from Figure 2 that the results obtained using the EFBBDF2 are better than those 
from the Crank–Nicholson method.

In order to solve the rest of the numerical examples, we note that since (1) is backward in time, 
we transform (1) into a forward in time equation in the spirit of (Chawla et al., 2003) by letting 
t ¼ T � τ, τ is a dimensionless variable and Vðs; tÞ ¼ Vðs; T � τÞ ¼ Pðs; τÞ to yield the following 
corresponding equation. 

Figure 2. Errors for the EFBBDF2 
and Crank–Nicolson method.
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@P
@τ
¼

1
2

σ2s2 @
2P
@s2 þ rs

@P
@s
� rP;

subject to the final condition: Pðs;0Þ ¼ maxðX � s;0Þ,

and boundary conditions 

Pð0; τÞ ¼ X;

lims!1 Pðs; τÞ ¼ 0:

Example 4.2. Consider an American put option on a non-dividend-paying stock that has four months 
to maturity. The exercise price is 21, USD the stock price is 20, USD the risk-free rate of interest is 10 
% per annum, and the volatility is 30 % per annum. This example is taken from Hull (2015).

In order to compute the put option for this example, we use the standard notations to denote 
X ¼ 21, s=20, r ¼ 0:10, σ ¼ 0:30, Δs ¼ 2, Δt ¼ 0:0833, and T ¼ 0:3333. 

Example 4.3. Consider an American put option on a non-dividend-paying stock that has one year to 
maturity. The exercise price is 110, USD the stock price is 100, USD the risk-free rate of interest is 6 % 
per annum, and the volatility is 40 % per annum. This example is taken from Carr and Hirsa (2003). 

Figure 3. Errors for the 
EFBBDF4.
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In order to compute the put option, we use the standard notations to denote X ¼ 110, s ¼ 100, 
r ¼ 0:06, σ ¼ 0:40, Δs ¼ 2, Δt ¼ 0:0833, and T ¼ 1:0.

Example 4.4. Consider an American put option to sell a Swiss franc for dollars has a strike price of 
0.80 USD and a time to maturity of one year. The Swiss franc’s volatility is 10%, the dollar interest 
rate is 6%, the Swiss franc interest rate is 3%, and the current exchange rate is 0.81. USD This 
example is taken from Hull (2015). In order to compute the put option, we use the standard 
notations to denote X ¼ 0:80, s ¼ 0:81, r ¼ 0:03, σ ¼ 0:10, Δs ¼ 0:0405, Δt ¼ 0:0833, and 
T ¼ 1:0, 0 � s � 1:62.

Figure 4. The values of the put 
option as a function of stock 
price and time computed using 
the EFBBDF2 and EFBBDF4 for 
M ¼ 20 and N ¼ 4. The Exact 
Solution is included for compar
ison. The value of the put at the 
stock price of s ¼ 20 is $1:55.

Figure 5. The value of the put 
option as a function of the 
underlying asset, s, at t ¼ 0 
computed (a) for Δs ¼ 1=8 with 
two time step of Δt ¼ 0:1667 
using the Crank–Nicolson 
Method and the EFBBDFP2 and 
(b) computed with four time step 
for Δt ¼ 0:0833 using the Crank– 
Nicolson Method and the 
EFBBDFP4.
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In Figures 4, Figures 7 and Figures 10, we present the results obtained using EFBBDF2 and 
EFBBDF4 as well as the analytical solution. It is observed in all cases that the two methods 
accurately approximate the analytical solution.

In Figures 5, Figures 8, and Figures 11, we present a comparison of EFBBDFP2, EFBBDFP4, and the 
Crank–Nicolson Method. It is well documented in the literature that discontinuity in the payoff function 
can pose challenges for numerical schemes when they are used to price financial contracts (Le Floch, 
2014). The Crank–Nicolson method is very popular for pricing options, but oscillates near the corner on 
expiry at the exercise price, since it is not L-stable as stated in (Chawla et al., 2003; Tangman et al., 
2008). Our methods are L-stable and provide consistently superior approximations to the option than 
the Crank–Nicolson method, especially, near the corner at the exercise price.

Figure 6. The comparison of Δ 
computed using (a) EFBBDF2 
showing no oscillations and (b) 
Crank Nicolson showing oscilla
tions for Δs ¼ 0:125, Δt ¼ 0:1667.

Figure 7. The values of the put 
option as a function of stock 
price and time computed using 
the EFBBDF2 and EFBBDF4 for 
M ¼ 200 and N ¼ 12. Exact 
Solution is included for compar
ison. The value of the put at the 
stock price of s ¼ 100 is $17:98.
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Figure 8. The value of the put 
option as a function of the 
underlying asset, s, at t ¼ 0 
computed (a) for Δs ¼ 2 with two 
time step of Δt ¼ 0:5 using the 
Crank–Nicolson Method and the 
EFBBDFP2 and (b) computed 
with four time step for Δt ¼ 0:25 
using the Crank–Nicolson 
Method and the EFBBDFP4.

Figure 9. The comparison of 
methods: (a) Showing no oscil
lations in Δ generating using 
EFBBDF2 for Δs ¼ 0:125, 
Δt ¼ 0:1667. (b) Showing oscilla
tions in Δ generating using the 
Crank–Nicolson method.

Figure 10. The values of the put 
option as a function of stock 
price and time computed using 
EFBBDF2 and EFBBDF4 for M ¼ 40 
and N ¼ 12. The Exact Solution is 
included for comparison. The 
value of the put at the stock 
price of s ¼ 0:81 is $0:0176.
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In Figures 6, Figures 9, and Figures 12, we show the variations of delta with stock price for 
a put option on a non-dividend-paying stock at t ¼ 0. In the spirit of Hull (2015), Greeks are 
used by traders to measure the risk in an option position so that the risks are acceptable. 
Several traders use more hedging procedures that involve calculating measures such as delta. 
The delta of a put option is the first derivative of the put price P with respect to the stock 
price, s. That is, Δ � @P

@s , where � 1<Δ<0. When a put option is deep in-the-money, the strike 
price, X is far greater than the stock price s, Δ! � 1. Similarly, when a put option is far out-of- 
the-money, the strike price, X is far less than the stock price, s, Δ! 0. It is well-known that 
the application of the Crank—Nicolson method to generate Greeks such as delta can distort 
the Greeks due to oscillations in the scheme (Le Floch, 2014). Therefore, we examine the 
performances of our methods when applied to compute delta facilitated by the central 
difference method order 2 given in (1). In Figures 6, Figures 9, and Figures 12 the results 
obtained using the EFBBDF2 are superior to those obtained from the Crank–Nicolson method, 
since the EFBBDF2 does not exhibit spurious oscillations in delta.

In Figure 13, early exercise for the American put is discussed in which the EFBBDF2 was 
used to generate Δ. We compute the option value at each time and stock as well as 
determine the s value which is used to decide whether early exercise is optimal. In the spirit 
of Wilmott, Howison, and Dewynne (2009) at each time t there is a particular value of s which 
indicates the boundary between the “hold” and “exercise” the option regions. Since s depends 
on time, there could be several values of s for which Δ ¼ @P

@s ¼ � 1. We note that the optimal 
exercise price corresponds to the s ¼ sP value for which the time is minimum and Δ ¼ � 1. In 
Figure 13 we also show the variation of delta with stock price for the put option on a non- 
dividend-paying stock on the entire grid for Examples 4.2, 4.3, and 4.4.

Figure 11. The value of the put 
option as a function of the 
underlying asset, s, at t ¼ 0 
computed (a) for Δs ¼ 0:0125 
with two time step of Δt ¼ 0:5 
using the Crank–Nicolson 
Method and the EFBBDFP2 and 
(b) computed with four time step 
for Δt ¼ 0:25 using the Crank– 
Nicolson Method and the 
EFBBDFP4.

Figure 12. The comparison of 
methods: (a) Showing no oscil
lations in Δ generating using 
EFBBDF2 for Δs ¼ 0:125, 
Δt ¼ 0:1667. (b) Showing oscilla
tions in Δ generating using the 
Crank–Nicolson method.
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5. Conclusion
We have derived and implemented L-stable EFBBDFs that do not produce spurious oscillations in both the 
option price and hedging parameters such as delta when applied to solve the Black–Scholes PDE for the 
valuation of options on a non-dividend-paying stock. The characteristics of the methods are discussed and 
their accuracy confirmed by initially applying them to a prototype example based on the one-dimensional 
time-dependent convection–diffusion equation with a known analytical solution. It is demonstrated that 
the American put can be exercised early by computing delta facilitated by incorporating an additional 
equation based on the central difference method which specifies the condition for early exercise leading to 
the optimality of the American put. Our future research will be based on extending the methods to solve 
problems involving multi-assets as well as nonlinear Black–Scholes models.
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