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Extreme return-volume relationship in 
cryptocurrencies: Tail dependence analysis
Muhammad Naeem1*, Kashif Saleem2, Sheraz Ahmed 3, Naeem Muhammad2 and 
Faisal Mustafa1

Abstract:  We explore extreme return-volumes dependence among different cryp-
tocurrencies such as Bitcoin, Ethereum, Ripple, and Litecoin by using the Copula 
approach. We use Student-t, Frank, Clayton, Survival Clayton, Gumbel, and SJC 
copulas. We filter out margins by using the EGARCH model for return series and 
GARCH model for volume series. Evidence of significant symmetric dependence 
between return-volume is not found due to insignificance of student-t and Frank 
copula parameters. In a return-volume relationship, coefficients of lower tail 
dependence are significant for Bitcoin, Ripple, and Litecoin which means that low 
returns are followed by low volumes. Lower tail dependence for the return-volume 
relationship is stronger than the upper tail dependence for Bitcoin, Ripple, and 
Litecoin. Moreover, for negative return-volume, left tail dependence coefficients are 
significant for Ripple and Litecoin, which means that high returns are followed by 
low volumes for Ripple and Litecoin. Our investigation shows that investors (buyer or 
seller) are very careful in extreme market conditions for both Ripple and Litecoin. 
Extreme upper tail and lower tail dependence coefficients are insignificant for 
Ethereum.

Subjects: Economics; Finance; Business, Management and Accounting  

Keywords: cryptocurrencies; EGARCH-copula model; return-volume; upper tail dependence; 
negative returns
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1. Introduction
One of the most significant innovations in finance has been the creation and development of 
cryptocurrencies. These digital means of exchange have been the focus of extensive news coverage, 
especially the bitcoin, with a primary focus on the tremendous potential return and the high level of 
risk. This paper aims to study the extreme negative and positive return-volume relationship in the four 
most representative cryptocurrencies: Bitcoin, Ethereum, Litecoin, and Ripple. Because understanding 
the return–volume nexus can provide many useful signals for market participants to determine 
investment strategies or to rebalance their portfolios, a great number of theoretical and empirical 
studies have attempted to explain and explore this nexus from several different directions.

The return-volume relationship has been analyzed from many different points of view in the 
literature (e.g., Clark, 1973; Crouch, 1970; Granger & Morgenstern, 1963; Rogalski, 1978; Tauchen & 
Pitts, 1983; Westerfield, 1977). As investors revise their reservation prices based on the arrival of 
new information to the market, trading volume had been used to measure disagreement among 
market participants by using mixture models in Epps and Epps (1976). The level of trading volume 
increases as the degree of disagreement among traders’ spreads. Their model exhibits a positive 
causal relation running from trading volume to absolute stock returns. Jain and Joh (1988) found 
a strong contemporaneous relation between trading volume and returns by using hourly common 
stock trading volume and return on NYSE. Further, they have also found the lead-lag relationship 
between trading volume and returns lagged up to 4 hours. Moreover, trading volume-returns 
relation is higher for positive returns than for negative returns.

Chen et al. (2001) studied the dynamic relation between trading volume, returns, and volatility 
of stock indices of nine national markets. They found a positive dependence between trading 
volume and absolute returns. They have also shown that trading volume provides some informa-
tion about the returns process. Gunduz and Hatemi-J (2005) explored the causal relationship 
between stock prices and volume of Hungary, the Czech Republic, Russia, Poland, and Turkey 
stock markets. Floros and Vougas (2007) had examined the relationship between trading volume 
and returns in the Greek Stock Index Futures Market and found a significant positive contempora-
neous relationship between trading volume and returns in the case of FTSE/ASE-20. Further, the 
results for FTSE/ASE Mid 40 do not provide any evidence of the relationship between trading 
volume and returns. Furthermore, the literature on return-volume dependence can be found in 
the papers of Attari et al. (2012) and Naeem et al. (2014).

There is a vivid debate in the literature about the correlation between volatility and return 
volume. It is nowadays accepted that they tend to show relatively strong upper tail depen-
dence (see, e.g.,, Rossi et al., 2013). Ning and Wirjanto (2009) found upper tail dependence in 
return and volume series of East Asian stock markets. However, Chen et al. (2001) explain that 
negative return in period t raises volatility in period t +1. Further, an explanation can be seen 
from Bae et al. (2007), that when volatility increases, risk increases and returns decrease. If we 
combine the work of Rossi et al. (2013) and the fact mentioned in the paper by Chen et al. 
(2001) and Wagner (2012), then one should expect positive dependence between low returns 
and volumes.

The extensive literature on the economics and finance aspects of cryptocurrencies have recently 
intensified. For instance, Akbulaev and Salihova (2020) examined the relationship between cryp-
tocurrencies prices and volume using the VAR modeling approach and found the transaction 
volume change is negatively affected by the past thirteen-day values and the price change is 
affected by 1% of the significance level.

Zhang et al. (2018) explored the Return-Volume Relationship for Bitcoin Market. They found anti- 
persistent behavior for the return-volume in the Bitcoin markets. Balcilar et al. (2017) employ 
a non-parametric causality-inquantiles test to analyze the causal relationship between trading 
volume and Bitcoin returns and volatility. Their results reveal that volume can predict returns— 
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except in Bitcoin bear and bull market regimes. They suggested that this result highlights the 
importance of modeling nonlinearity and accounting for the tail behavior when analyzing causal 
relationships between Bitcoin returns and trading volume.

However, there are few studies explain extreme return-volume dependence in the major cryp-
tocurrencies that have been gaining ground and attracted the attention of individual and institu-
tional investors (Corbet et al., 2019; Hashemi Joo et al., 2020). Interestingly, many cryptocurrencies 
offer outstanding price growth in relatively short periods, exceeding a hundred percent levels 
(Kristoufek, 2013), but with extreme volatility (Chu et al., 2017; Katsiampa et al., 2018; Koutmos, 
2018; Takaishi, 2020; Urquhart, 2017). Cryptocurrencies are categorized by large price fluctuations, 
and these price movements are often associated with surges in transaction volumes, suggesting 
a dependence between transaction volume and price (Balcilar et al., 2017).

Moreover, Koo et al. (2020) investigate the tail behavior of four major Cryptocurrencies by using the 
Autoregressive Frechet model for conditional maxima. Using five-minute-high frequency data, they 
report time-evolving tails as well as provide a straightforward measure of tails asymmetry for positive 
and negative intra-day returns. Tiwari et al. (2020) examine the dependence and contagion risk 
between Bitcoin (BTC), Litecoin (LTC), and Ripple (XRP) using non-parametric mixture copulas. Their 
results provide evidence of significant risk contagion among price returns of major cryptocurrencies, 
both in bull and bear markets. Garcia-Jorcano and Muela (2020) study the properties of Bitcoin as 
a diversifier asset and hedge asset against the movement of international market stock indices by 
employing copula methodology. They found that under normal market conditions, Bitcoin might act 
as a hedge asset against the stock price movements, however, under extreme market conditions, the 
role of Bitcoin might change from hedge to diversifier. In a time-varying copula analysis, they found 
that the role of Bitcoin as a hedge asset might fail on a high number of days. Naeem et al. (2020) 
analyze the average and extreme dependence between returns and trading volumes of three main 
cryptocurrencies (Bitcoin, Ethereum, and Litecoin) by time-varying copula methodology. They found 
asymmetric tail behavior and show that extreme returns are associated with extreme trading 
volumes, and tail dependence is stronger when returns and volumes are high than when returns 
and volume are low. Maghyereh and Abdoh (2020) they study the tail dependence between returns 
for Bitcoin and other financial assets using the novel “quantile cross-spectral dependence” approach. 
Their findings support the notion that Bitcoin can provide financial diversification due to the presence 
of right tail dependence between Bitcoin and other Markets. Poyser (2019) explores the association 
between Bitcoin’s market price and a set of internal and external factors by employing the Bayesian 
structural time series approach (BSTS). Their results show that Bitcoin’s price is negatively associated 
with the price of gold as well as the exchange rate between Yuan and US Dollar, while positively 
correlated to the stock market index, USD to Euro exchange rate, and diverse signs among the 
different countries’ search trends. Xu et al. (2020) analyze the tail-risk interdependence among 23 
cryptocurrencies and identifies the systemically important cryptocurrencies using the TENET. They 
found significant risk spillover effect exists and the degree of the total connectedness of all the 
sampled cryptocurrencies increases steadily over time. Further, Bitcoin is the largest systemic risk 
receiver while Ethereum is the largest systemic risk emitter. The literature mainly discusses crypto-
currencies dependence with each other or with other markets. Literature for return-volume depen-
dence is limited for cryptocurrencies. Further, we have not found any evidence of negative return- 
volume dependence in cryptocurrencies.

This paper aims to investigate extreme negative and positive return–volume dependence in four 
major cryptocurrencies, Bitcoin, Ethereum, Ripple, and Litecoin, using copula methodology. Firstly, 
we select the usual GARCH model based on the log-likelihood to filter out margins. Secondly, we 
check both negative and positive return-volume dependence by employing Clayton, Gumbel, and 
symmetrized Joe Clayton (SJC) copulas. This represents an extension to previous studies such as 
Bouri et al. (2019), Naeem et al. (2014), and Bouri et al. (2019) limit their analyses to the use of 
static copulas to make inferences about the presence of Granger-causality within a quantile-based 
approach. While Naeem et al. (2014) use dynamic copula methodology to exploit extreme 
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dependence between return and volume but they did not consider extreme dependence in the 
negative return-volume relationship.

If cryptocurrencies returns are well described by the multivariate normal distribution, then the 
linear correlation is an appropriate dependence measure. However, in our case, a simple explora-
tory and graphical analysis of both returns and volumes distributions suggest fat tails, hetero-
scedasticity, clustering, and other non-Gaussian features. Thus, the linear correlation might be 
deceptive in our analysis. Alternative measures of dependence based on copula methods com-
bined with the EGARCH model are considered here. The copula approach is widely used in 
quantitative finance literature. Here we combine copula modeling with a univariate EGARCH 
model for returns of cryptocurrencies to properly calibrate a joint model for returns and volumes.

Our results show strong evidence of extreme dependence, but find lower tail dependence to be 
much stronger than upper tail dependence. Such evidence of asymmetric behavior at extreme 
levels of dependence in all four cryptocurrencies does not conform to the related evidence from 
equity markets, which highlights some differences in return-volume between cryptocurrency and 
stock markets. The remainder of this paper is organized as follows: section two introduces the 
EGARCH model. Section three describes the copula methodology. Section four reports empirical 
results and section five concludes with implications, limitations, and future work 
recommendations.

2. EGARCH model

2.1. ARCH model
ARCH models based on the variance of the error term at time t depends on the realized values of 
the squared error terms in previous time-periods. The model is specified as: 

yt ¼ ut (2:1)  

ut~N 0;htð Þ

ht ¼ α0 þ∑q
t¼1αju2

t� i (2:2) 

This model is referred to as ARCH(q), where q refers to the order of the lagged squared returns 
included in the model. If we use the ARCH (1) model it becomes 

ht ¼ α0 þ α1u2
t� 1 (2:3) 

Since htis a conditional variance, its value must always be strictly positive; a negative variance at 
any point in time would be meaningless. To have positive conditional variance estimates, all of the 
coefficients in the conditional variance are usually required to be non-negative. Thus, coefficients 
must be satisfying α0 >0and α1 >0.

2.2. GARCH model
Bollerslev (1986) developed the GARCH (p, q) model. The model allows the conditional variance of 
the variable to be dependent upon previous lags; first lag of the squared residual from the mean 
equation and present news about the volatility from the previous period which is as follows: 

ht ¼ α0 þ∑q
i¼1αiu2

t� i þ∑p
i¼1βiht� i (2:4) 

Naeem et al., Cogent Economics & Finance (2020), 8: 1834175                                                                                                                                        
https://doi.org/10.1080/23322039.2020.1834175

Page 4 of 21



In the literature most used and simple model is the GARCH (1,1) process, for which the conditional 
variance can be written as follows: 

ht ¼ α0 þ α1u2
t� 1 þ β1ht� 1 (2:5) 

Under the hypothesis of covariance stationarity, the unconditional variance htcan be found by 
taking the unconditional expectation of equation 5.

We find that 

h ¼ α0 þ α1hþ β1h (2:6) 

Solving the equation (2.5), we have 

h ¼
α0

1 � α1 � β1
(2:7) 

For this unconditional variance to exist, it must be the case thatα1 þ β1<1 and for it to be positive, 
we require thatα0>0.

2.3. Exponential GARCH
Exponential GARCH (EGARCH) was proposed by Nelson (2006) which has a form of leverage effects 
in its equation. In the EGARCH model the specification for the conditional covariance is given by 
the following form: 

log htð Þ ¼ α0 þ∑q
j¼1βj log ht� j

� �
þ∑p

i¼1αi
ut¼i
ffiffiffiffiffiffiffiffi
ht¼i

p

�
�
�
�
�

�
�
�
�
�
þ∑r

k¼1γk
ut� k
ffiffiffiffiffiffiffiffiffi
ht� k

p (2:9) 

Two advantages stated in Brooks (2008) for the pure GARCH specification; by using log htð Þeven if the 
parameters are negative, will be positive and asymmetries are allowed for under the EGARCH 
formulation.

The equation γkrepresents leverage effects which account for the asymmetry of the model. 
While the basic GARCH model requires the restrictions the EGARCH model allows unrestricted 
estimation of the variance.

If γk<0it indicates leverage effect exists and if γk�0impact is asymmetric. The meaning of 
leverage effect bad news increase volatility.

Applying the process of GARCH models to return series, it is often found that GARCH residuals 
still tend to be heavy-tailed. To accommodate this, rather than to use normal distribution the 
Student’s t and GED distribution used to employ ARCH/GARCH type models.

2.4. Statistical inference
Parameter estimation of GARCH and EGARCH model is commonly carried out by using the max-
imum likelihood method with the normality assumption for εt. However, as mentioned by Kang 
et al. (2010) and Tang and Shieh (2006), the residuals estimated from the GARCH type model 
frequently exhibits lepto-kurtosis and asymmetry. To overcome these problems the Student-t 
distribution has been considered for the innovations process. Given the random variable εt~tv 

(0,1,v) the log-likelihood function is defined as follows: 
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log L; Θð Þ ¼ T logΓ
νþ 1

2

� �

� log Γ ν=2
� �

�
1
2

log π ν � 2ð Þ½ �

� �

� ∑
T

t¼1
log σ2

t þ 1þ νð Þ log 1þ
ε2

t

σ2t ν � 2ð Þ

� �� � (2:10) 

Matlab garchfit function has been used to estimate the parameters of the GARCH and EGARCH 
models. then the standardized residuals are calculated as follows. 

εt ¼ rt= ffiffiffiffiσt
p (2:11) 

3. The copula methodology
Copula-based models provide a great deal of flexibility in modeling multivariate distributions. This 
allows the researcher to specify the models for the marginal distributions separately from the 
dependence structure (copula) that links them to form a joint distribution. From an inferential 
perspective, the copula representation facilitates the estimation of the model in stages, reducing 
the computational burden.

Several surveys of copula theory and applications have appeared in the literature to date: Nelson 
(2006) and Joe (1997) are the most important textbooks on copula theory, providing detailed 
introductions to copulas and dependence modeling, with an emphasis on statistical foundations. 
Kurowicka and Joe (2011) represent an up-to-date survey on copula and vine-copula applications 
Cherubini et al. (2004) present an introduction to copulas using methods from mathematical 
finance, MecNeil et al. (2005) present an overview of copula methods for risk management. 
Patton (2009) presents a summary of applications of copulas to financial time series. Jondeau 
and Rockinger (2006) proposed a GARCH-Copula approach to measure the dependence structure of 
stock markets. It is well known that the analysis of dependence analysis, especially of extreme 
events, plays a crucial role in financial applications such as portfolio selection, Value-at-Risk, and 
international asset allocation.

A copula model is a way of constructing the joint distribution of a random vectorX ¼ X1; � � � ;Xmð Þ. 
It is possible to show that there always exists an m-variate function C: [0, 1] m → [0, 1], such that 

x1; � � � ; xmð Þ ¼ C F1 x1ð Þ; � � � ; Fm xmð Þð Þ (3:1) 

The copula function C is a cumulative distribution function (CDF) with uniform margins on [0, 1]: it 
binds together the univariate cumulative distribution functions F1, F2, and Fm to produce 
the m-variate CDF F. The three main properties are

(-
i)Cðx1; x2; � � � xmÞis increasing in component xi

ii:ÞC 1; � � � ;1; xi;1; � � � ;1ð Þ ¼ xiforalli ¼ 1; � � � ;m; xi 2 0;1½ �(i)
For all a1; � � � ; amð Þ; b1; � � � ;bmð Þ 2 0;1½ �

mwithai � bi one has

∑
2

i1¼1
� � �∑

2

im
� 1ð Þ

i1þ���þBm C x1i1 ; � � � ; xmim
� �

� 0 

where xj1 ¼ ajandxj2 ¼ bj"j 2 1; � � � ;mf g

For any continuous multivariate distribution, the copula representation is unique. If the marginal 
F1; � � � ; Fm is not all continuous it can be shown that the joint CDF still has a copula representation 

Naeem et al., Cogent Economics & Finance (2020), 8: 1834175                                                                                                                                        
https://doi.org/10.1080/23322039.2020.1834175

Page 6 of 21



although this representation is not unique. In the continuous case, one can take derivatives of both 
side of Equation (3.1), we get the density representation of F: 

f x1; x2; � � � ; xmð Þ ¼
@mF x1; � � � ; xmð Þ

@x1; � � � ; @xm
¼
@mC F1 x1ð Þ; � � � ; Fm xmð Þð Þ

@F1 x1ð Þ � � � @Fm xmð Þ
� f1 x1ð Þ � � � � � fm xmð Þ

¼ c F1 x1ð Þ; � � � ; Fm xmð Þð Þ �
Ym

i¼1
fi xið Þ

(3:2) 

where c u1; � � � ;umð Þ is the density of copula C, and fi xið Þ is the density of i-th margin. The joint use 
of GARCH and Copula models separates the temporal dependence, absorbed by the univariate 
GARCH structure, and the co-dependence among different variables, which is captured by the 
copula model.

3.1. Tail dependence and some bivariate copulas
In this paper, we use the copula approach to measure the tail dependence between the return and 
volume among four cryptocurrencies, so we keep focus on the two-dimensional case only. We can 
use the tail dependence coefficient to measure the concordance between the extreme events of 
different random variables. It is expressed in terms of a conditional probability that the asset X will 
incur a large loss (or gain), given that the asset Y also experiences a large loss (or gain). We 
consider two random variables X and Y, with joint continuous CDF F, copula C, and margins FX; FY; 
the lower tail dependence and the upper tail dependence are defined as follows: 

λL ¼ lim
u!0þ

Pr FX xð Þ<uð ÞjFY yð Þ<uÞ ¼ lim
u!0þ

C u;uð Þ

u
(3:3)  

λU ¼ lim
u!1�

Pr FX xð Þ>uð ÞjFY yð Þ>uÞ ¼ lim
u!1�

1 � 2uþ C u;uð Þ

1 � u
(3:4) 

Intuitively, if λL and λUexist and fall in (0, 1], X and Y show lower or upper tail dependence. On the 
other hand, if λLand λU are equal to 0, one can say that the two variables are independent in the 
tails, so extreme events seem to occur independently. We can describe different tail dependence 
behavior by choosing the appropriate copula model

3.1.1. Gaussian copula and student t-copula
These are symmetric and elliptical copulas. In the bivariate case the Gaussian copula is defined by 
the following expression: 

CG
ρ u; vð Þ ¼ Φρ Φ� 1 uð Þ;Φ� 1 vð Þ

� �

ðΦ� 1 uð Þ

� 1

ðΦ� 1 vð Þ

� 1

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ρ2

p exp �
s2 � 2ρstþ t2

2 1 � ρ2ð Þ

� �

dsdt
(3:5) 

where Φρthe bivariate normal cumulative distribution function with linear correlation coefficient is 
ρ 2 0;1½ �;Φ is the standard normal cumulative distribution function and Φ� 1 is its inverse function. 
We can see that the bivariate Gaussian copula density is symmetrical, so it has a weak capability 
to capture asymmetrical dependence. It implies that if we go far into the tail, the extreme events 
tend to be independent, even though we choose a very high correlation. The t-copula is corre-
sponding to a Student t distribution. It is defined by: 
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Ct
ν;ρ ¼ tν;ρ t� 1

ν uð Þ; t� 1
ν vð Þ

� �

¼
Γ ν

2þ 1
� �

Γ ν
2
� �

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ρ2

p ò

t� 1
ν uð Þ

� 1
ò

t� 1
ν vð Þ

� 1
1þ
� s2 þ 2ρstþ t2� �

2 1 � ρ2ð Þ
dsdt

(3:6) 

where tν;ρ is the CDF of a two-dimensional t distribution with ν degree of freedom and correlation ρ. 
The t-copula also has symmetric shape, upper and lower tail dependence is identical, and it is 
determined by ν andρ When ν gets large, then t-copula decays to a Gaussian copula. The expres-
sion of λL and λU follows: 

λL ¼ λU ¼ 2Tνþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νþ 1ð Þ 1 � ρð Þ

p

ffiffiffiffiffiffiffiffiffiffiffi
ρþ 1

p

 !

(3:7) 

where Tνþ1 is the CDF of the scalar Student t distribution with νþ 1 degrees of freedom (Demarta & 
McNeil, 2005).

3.1.2. Archimedean copulas
Archimedean copulas are defined through their generator functions. Generally, if a function 
φ : 0;1½ � ! 0;1½ �with the continuous derivative is decreasing and convex, it can be considered 
as a generator function of the Archimedean copula. By definition an-dimensional Archimedean 
copula has the following expression: C u1;u2; � � � ;unð Þ ¼ φ� 1 φ u1ð Þ þ φ u2ð Þ þ � � � þ φ unð Þð Þ; different 
generator function creates different Archimedean copula. More details about the generator func-
tion can be found in Joe (1997) and Nelson (2006). In our case, the copula function is defined by: 

C u; vð Þ ¼ φ� 1 φ uð Þ þ φ vð Þð Þifφ uð Þ þ φ vð Þ � φ 0ð Þ (3:8) 

where φ uð Þ is a C2 function with φ 1ð Þ ¼ 0;φ0 0;φ00h i0.

Examples of Archimedean copulas include the following

3.1.3. Clayton copula
The Clayton copula has the following form: 

C u; v; ρð Þ ¼ max u� ρ � v� ρ � 1;0ð Þ½ �
� 1=ρρ 2 � 1;þ1ð Þ n 0f g (3:9) 

Where is the dependence parameterλL ¼ 2
� 1=ρ; λU ¼ 0:Whenρ! 0, the margins tend to be inde-

pendent, oppositely whenρ!1, the margins tend to be strongly dependent. Clayton copula is 
asymmetric and it shows stronger low tail dependence. It can be proved that the components of 
a Gaussian copula are asymptotically independent.

3.1.4. Frank copula
The Frank copula is defined by: 

C u; v; ρð Þ ¼ �
1
ρ

log
ðe� ρu � 1Þ e� ρv � 1ð Þ

e� ρ � 1
� 1

� �

ρ 2 � 1;0ð Þ [ 0;þ1ð Þ

(3:10) 

Just like Gaussian copula, Frank copula is symmetric in both tails and it is not sensitive to the relation-
ship between the extreme negative values or between the extreme positive values. There is strong 
dependence in the center of the distribution. This means that Frank copula fails to capture tail 
dependence behavior and it suggests that it is suited to use when the tail dependence is relatively weak.
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3.1.5. Gumbel copula
The Gumbel copula is an asymmetric extreme value copula, which takes the following expression: 

C u; v; ρð Þ ¼ exp ð� lnuÞρ þ � lnv� ρð Þ½ �
� 1=ρρ 2 1;1½ � (3:11) 

where ρ is a dependence parameter that describes different dependence behavior, 

λL ¼ 0; λU ¼ 2 � 2
1=ρ:When ρ!1 the margins show totally dependence, while ρ = 1 corresponds 

to independence case. Unlike the Clayton copula, Gumbel copula deals with upper tail dependence. 
If two margins perform simultaneous extreme upper tail values, the Gumbel copula should be an 
appropriate considerable choice.

3.1.6. The symmetrized Joe–Clayton copula
Joe (1997) constructs the copula by taking a particular Laplace transformation of Clayton’s copula. 
The Joe–Clayton copula is: 

CJC u; vjτU; τL� �
¼ 1 � 1 � 1 � 1 � uð Þ

k
h i� γ

þ 1 � 1 � vð Þ
k

h i� γ
� 1

n o� 1=γ
� �1=k

(3:12) 

wherek ¼ 1
log2ð2� τUÞ

, γ ¼ � 1
log2ðτLÞ

and τi 2 0;1ð Þ

are the measures of the upper- and lower-tail dependencies, respectively. Patton’s (2006) 
modified Joe–Clayton (JC) copula for which the density is as follows. 

CSJC u; vjτU; τL� �
¼

1
2

CJC u; vjτU; τL� �
þ CJC 1 � u;1 � vjτU; τL� �

þ uþ v � 1
� �

(3:13) 

The SJC copula is symmetric when τU ¼ τL and asymmetric otherwise.

3.2. Copula parameters estimation
Most of the methods for copula parameter estimation are related to Maximum Likelihood procedures. 
The standard ML method which estimates both marginal parameters and copula parameters simul-
taneously is also named the one-step method. Mashal and Naldi (2002) noted that this method is 
computationally costly, and when the data sets are not sufficiently large, the ML estimators seem to 
be ineffective. The inference function for the margins method (IMF) is based on the work of Joe and 
Xu (1996). The estimation procedure is split into two steps; the first one estimates the parameters of 
the marginal distributions. In the second step one tries to estimates the copula parameters, con-
ditionally on the values of estimates obtained at the first step. This approach offers computational 
convenience, although it may be sensitive to the choice of marginal distributions form. A poor 
estimator of the copula parameter might be a consequence of an inappropriate marginal distribution. 
There is also an alternative, two steps method, named Canonical Maximum Likelihood (CML). Unlike 
IMF method, in the ’CML’ approach the transformation is done by using empirical CDF function to 
obtain uniform margins, which are used in copula parameter estimation.

Given two-time series Xf gT
t¼1and Yf gT

t¼1, let Ω be the parameter space, ax 2 Ω;ay 2 Ωdenote 
marginal parameters for X and Y, while θ 2 Ωdenotes copula parameters. From Equation 3.2, the 
log maximum likelihood function can be obtained as: 

ðαx;αy; θ; X; YÞ ¼ ∑
T

t¼1
lnc FX xt; αxð Þ; FY yt; αy

� �
; θ

� �

þ ∑
T

t¼1
lnfX xt; αxð Þ þ lnfy yt; αy

� �� �
(3:14) 
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Here we sketch the necessary inferential steps.

Step 1

Estimating parameters of the marginal distributions, αx, andαy . 

α̂x ¼ arg max
αx

∑
T

t¼1
lnfX xt;αxð Þ (3:15)  

α̂y ¼ arg max
αy

∑
T

t¼1
lnfY yt; αy

� �
(3:16) 

Step 2

Estimating the copula parameters by using the estimator α̂xand α̂yobtained in step 1. 

θ̂ ¼ argmax
θ

∑
T

t¼1
lnc FX xt; α̂xð Þ; FY yt; α̂y

� �
; θ

� �
(3:17) 

The copula parameters were estimated by employing the maximum likelihood method described in 
Equation 3.17. For the IMF estimation, a MATLAB copula toolbox written by Patton (2008) has been used.

4. Empirical studies and analysis

4.1. Primary data analysis
In empirical studies, we choose daily prices and corresponding trading volume series of four 
cryptocurrencies, Bitcoin, Ethereum, Ripple, and Litecoin. Figure 1 illustrates the relative price 
movements of each cryptocurrency. These cryptocurrencies with enough liquidity, are traded on 
multiple exchanges with substantial trading volume and have a global market.

Figure 1. Daily Closing Prices of 
Each cryptocurrency.
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As of February 2020, Bitcoin has a market cap of 175 USD billion representing about 64% of the 
total cryptocurrency market, followed by Ethereum with a market cap of 29 USD billion repre-
senting about 11% of the total market, Ripple with a market cap of 12 USD billion representing 
approximately 4% of the total market and Litecoin with a market cap of 3.9 USD billion. These 
four currencies represent approximately 80% of the market capitalization of the total crypto-
currency market, which has a market value of 278.9 USD billion. Historical daily pricing data on 
Bitcoin, Ethereum, Litecoin, and Ripple are obtained from the website investing.com, which 
provides long histories of various cryptocurrency exchange rates against the U.S. Dollar (USD). 
These data range from 8 August 2015 to 25 February 2018. During this period important events 
have occurred which have been explained in detail in the following paper of Hashemi Joo et al. 
(2020). We take the daily log returns defined as Rt ¼ 100� log pt=pt� 1

� �
which can be seen in 

Figure 2.

The preliminary descriptive statistics of the data are presented in Table 1. Hodrick and 
Prescott (1997) filter has been used to remove the trend from the log-volume series. As 
shown in Table 1, the kurtosis of each index is greater than 3 and the skewness is not zero, 
which both suggest that the presence of fat tails and leptokurtosis. The order for the ARMA 
part has been chosen, after careful inspection of ACF and PACF of both return and de-trended 
volume series.

Parameter estimation for return and volume are reported in Table 2. One motivation for using 
the ARMA-GARCH type model is the inspection of ACF of return and volume and ACF of squared 
return in Figure 3. After performing the ARCH test over the series of residuals we proceed with the 
selection of the order of the GARCH model. Here we have applied EGARCH and GARCH type models 
for return and de-trended volume series, respectively. Further, residuals and squared residuals 
series do not possess significant autocorrelation for both return and volume series as can be seen 
in Figure 4 and 5.

The test shows that residuals are approximately i.i.d series, therefore copula approach can be 
applied to the residuals after getting student-t CDF from the residuals. We use the EGARCH and 
GARCH model to fit the marginal distribution of each return and each volume series. Estimated 
parameters for each type of model are given in Table 2.

Figure 2. Logarithm Return of 
each cryptocurrency series.
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4.2. Marginal distribution models
AR (1)-EGARCH (1,1) models were estimated for all return series by selecting lag order for mean 
equation by the inspection of ACF and PACF, maintaining the conditional variance equation as 
EGARCH (1,1) model.

Further, AR (1)-GARCH (1, 1)-t models have been applied to volume series. MATLAB function 
’garchfit’ has been used to estimate the parameters of the GARCH and EGARCH models. 
Parameters estimates can be seen in Table 2. In Table 2, most of the coefficients in the conditional 
variance equation are significant. Engle’s ARCH test has been applied to the square of the standar-
dized residuals. The test fails to reject the null hypothesis of no ARCH effect.1

4.3. Copula parameter estimation
We are interested in the dependence structure between the cryptocurrencies’ returns and trading 
volumes. Our main goal is to explore the extreme dependence between return-volumes and negative 
return-volume. We employed 6 copulas in our analysis, the first two, namely, Student-t, and Frank 
copula, are symmetric and they have been used to analyze the dependence structure between each 
pair of return and volume. The others have been used to analyze the asymmetric dependence between 
return and volume, as reported in the literature (Karpoff, 1987; Gervais et al., 2001). The asymmetric 
copulas are able to capture the potential difference between the lower and upper tail. The parameter 
estimates for each copula have been reported in Table 3 which is based on the Log-Likelihood function.

Table 3 exhibits there is no significant symmetric relationship between return and trading 
volume as evident from the parameter estimates of Student-t and Frank copula for all four 
currencies. Now we focus on the potential asymmetry in the return-volume dependence by 

Table 1. Descriptive statistics of the sample data
Descriptive 
Statistics

Bitcoin Ethereum Ripple Litecoin

observation 933 933 933 933

mean 0.003875 0.0075347 0.005056163 0.00434

std 0.041071 0.07313 0.08096 0.06013

max 0.225119 0.412337 1.02736 0.51035

min −0.207529 −0.315469 −0.616273 −0.3952

skewness −0.275847 0.522313 3.1192936 1.45066

kurtosis 8.294972 7.317244 41.5123 16.5257

Jarque-Bera _ 
5.9226

1.1006e+003 766.1754 5.9109e+004 7.4e+003

Q(20)_ cv_31.4104 25.4970 36.7330 56.1689 40.2091

ARCH-LM _ 3.8415 50.3921 32.4973 77.4362 20.9612

Adjusted Volume
mean −0.0000 −0.0000 −0.0000 −0.0000

std 0.469081 0.760698 0.9111 0.73611

skewness 0.521130 0.0732621 0.2169564 0.36286

kurtosis 3.1198463 2.88268776 3.2311953 3.10091

Jarque-Bera 42.7885 1.3696 9.3973 20.8705

Q(20) 2.6395e+003 3.1373e+003 2.5809e+003 3.2e+003

ARCH-LM 282.7823 323.5122 339.7724 332.9092

Notes: Table 1 shows Jarque-Bera is test statistics for the test of normality. Q (20) is the Ljung-Box statistic for serial 
correlation in the return and adjusted volumes computed with 20 lags. ARCH-LM is the Engel’s LM test for hetero-
scedasticity, conducted using 20 lags. 
*A rejection of the null hypothesis at 5% level 
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Figure 3. Autocorrelation of 
Squared Returns.

Figure 4. ACF of squared stan-
dardized residuals of Returns.

Figure 5. ACF of squared stan-
dardized residuals of Volumes.
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adopting Clayton, Survival Clayton, Gumbel, and SJC copulas. We can see from Table 3 that the 
parameters of the Clayton and SJC copulas are significant for Bitcoin, Ripple, and Litecoin, which 
suggest the presence of lower tail dependence. It implies that extremely low returns are asso-
ciated with low volumes in the case of Bitcoin, Ripple, and Litecoin. Which means during the 
market stress of cryptocurrencies most of the investor still wanted to keep the cryptocurrencies 
especially Ripple and Litecoin as compared to Bitcoin.

A possible reason might be that Ripple and Litecoin are cheaper and Bitcoin is expensive. 
Therefore, during the market stress if the loss is not that much then it is better to wait rather 
than selling. For someone, Bitcoin proves to be a lottery and someday if it could be true for Ripple 
and Litecoin to reach the level of Bitcoin might be the reason for low trading volume during market 
stress.

Further, the new investor always careful in investing during market stress. At the same time, the 
parameters of the Survival Clayton are significant for all pairs except Ethereum and Litecoin. 
Further, if we check the parameters of the Gumbel copula, then all the parameters are found to 
be significant for all pairs of return and volume. The upper tail dependence coefficients for Gumbel 

Table 3. Copula estimates of return-volume dependence
Bitcoin Ethereum Ripple Litecoin

Student-t copula

ρ 0.0537 
(0.0706)

0.0575 
(1.453)

−0.0047 (0.1148) −0.0620 (0.0913)

ν 5.3843*** 
(1.6130)

100*** 
(0.0007)

3.9212*** 
(0.8293)

2.5179*** 
(0.3609)

AIC −7.0693 −0.5882 −12.1199 −25.9357

Frank Copula

ρ 0.4000 
(.3728)

0.3242 (0.2527) 1.0961 (0.7426) 1.0000e-004 
(10.09)

AIC −0.5661 −0.8215 −0.3595 0.0001

Clayton Copula

ρ 0.2721*** 
(0.0802)

0.0525 
(0.0740)

0.4463 
(0.0956)

0.6565 (0.0961)

AIC −5.3834 −0.2534 −7.7870 −17.4117

Survival Clayton

ρ 0.0980*** 
(0.0601)

0.0377 
(0.0460)

0.1323** 
(0.0820)

0.0857 
(0.0742)

AIC −1.4990 −0.3547 −1.3008 −0.7124

Gumbel Copula

ρ 1.1000*** 
(0.0505)

1.1000*** 
(0.0456)

1.1076*** 
(0.0536)

1.1000*** 
(0.0564)

AIC −0.9150 4.9870 −2.0905 −1.8793

SJC Copula

Upper tail 0.0002 
(0.0023)

0.0000 
(0.0000)

0.0445 
(0.0572)

0.0046 
(0.0259)

Lower tail 0.1565*** 
(0.0605)

0.004 
(0.051)

0.2606*** 
(0.0574)

0.3787*** 
(0.0461)

AIC −6.8436 −0.4756 −10.5677 −20.4498

Notes: Table 3 reports the estimates of parameters of six copulas for each pair of return and volume, together with 
standard errors (in parentheses) and the values of Akaike Information Criteria(AIC). 
*** indicates significance at 1% level. 
** indicates significance at 5% level 
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and Survival Clayton copula are reported in Table 4, which have been extracted from the EGARCH- 
Copula model.

We can see from Table 4 that relatively weak upper tail dependence exists in return and volume of 
the Bitcoin, Ripple, and Litecoin but there is no upper tail dependence existed in Ethereum.

This means that when during the time of market boom there is evidence of trading, but it is not 
strong evidence according to log-likelihood function. On the other hand, for Ethereum extremely 
high return and extremely high volume are independent.

Considering no significant relationship between return and volume, which is captured by 
Student-t and Frank copulas (see Table 3) for all pairs of cryptocurrencies, we also investigated 
each pair of negative returns and volume to explore whether the extremely high volumes are 
associated with extremely low returns. The procedure is exactly the same as the one we employed 
for the return-volume series, the results are reported in Tables 5 and 6. Since the first two copulas 
have symmetric structure and we just change the sign of returns, the absolute value of the 
estimated parameters of the elliptic copulas does not change.

Our estimates for Clayton copula and SJC copula in case of negative return-volume are significant 
except for Bitcoin and Ethereum. This means that extremely low trading volume and extremely high 
returns show independent behavior for both Bitcoin and Ethereum. However, for Ripple and Litecoin, 
significant dependence existed between extremely high returns and extremely low volumes, which can 
be seen from Clayton and SJC copulas estimates from Tables 5 and 6. Which means that even if the 
market in a boom but running investor still wait for extraordinary profit and the new investor might be 
scared of consequence. Further Survival Clayton and Gumbel copulas estimated parameters are sig-
nificant for Ripple and Litecoin. Upper tail dependence coefficients extracted from these two copulas are 
reported in Table 6, which is, 13% and 16% for Ripple and Litecoin, respectively. This provides evidence 
that in these two currencies extremely high volumes are likely to be associated with extremely low 
returns.

In other words, market stress or in crisis is accompanied by high trading volumes. Nevertheless, 
this is not strong dependence as compared with lower tail dependence parameters of Clayton 
copula and SJC copula for return-volume series. This says that during crisis volume decreases and 
the lower tail dependence parameters for Bitcoin, Ripple, and Litecoin are found in Table 6.

This work shows that in the extreme return-volume relationship, extremely higher return and 
extremely low return are followed by low volume, which evident from the Clayton and SJC copulas 
tail dependence parameter from Tables 4 and 6 based on log-likelihood function. The leverage effect is 
referred to as an asymmetric negative correlation between return and volatility. In our study, we found 
no leverage effect not only from the EGARCH model but also from the return volume dependence. As 
we have already explained that the volumes are positively associated with volatility, and further 

Table 4. Extreme dependence Coefficients for returns-volume
Gumbel SC Clayton SJC

λG
U

LL λG
U

LL λc
L LL λSJc

L
LL

Bitcoin 0.1221 −0.9150 0.0009 −1.4990 0.0783 −5.3834 0.1565 −6.8436

Ethereum 0.1221 4.9870 0.0000 −0.3547 0.0000 −0.2534 0.0040 −0.4756

Ripple 0.1302 −2.0905 0.0053 −1.3008 0.2116 −7.7870 0.2606 −10.5677

Litecoin 0.1221 −1.8793 0.0003 −0.7124 0.3479 −17.4117 0.3787 −20.4498

Notes: Table 4 reports the upper tail dependence coefficients, calculated from the Gumbel copula λG
U ¼ 2 � 21=ρG and 

Survival Clayton Copula λSC
U ¼ 2� 1=ρSC by taking parameters from Table 3. 
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extreme low returns are also positively associated with volatility. However, in the case of cryptocur-
rencies results are contradictory from most of the paper in the literature. Some paper says that if 
volatility increase then the volume increase and some paper says if the return increase then the 
volume also increase but both of these are not true in case of cryptocurrencies. We found that in case 

Table 5. Copula estimates for negative return-volume dependence
Bitcoin Ethereum Ripple Litecoin

Student-t copula

ρ −0.0537 
(0.0706)

−0.0575 
(1.453)

0.0047 (0.1148) 0.0620 (0.0913)

ν 5.3843*** 
(1.6130)

100*** 
(0.0007)

3.9212*** 
(0.8293)

2.5179*** 
(0.3609)

AIC −7.0693 −0.5882 −12.1199 −25.9357

Frank Copula

ρ 0.0001 
(0.3661)

0.0001 
(0.2501)

0.6920 
(1.7225)

1.5283 
(0.5600)

AIC 0.0003 0.0005 0.0408 −1.4783

Clayton Copula

ρ 0.0001 
(0.0889)

0.0001 
(0.0658)

0.3838*** 
(0.0984)

0.5738*** 
(0.0974)

AIC 0.0005 0.0020 −4.8962 −11.9307

Survival Clayton 
Copula

ρ 0.0001 
(0.0709)

0.0001 
(0.0606)

0.0975 
(0.0926)

0.1163 
(0.0878)

AIC 0.0017 0.0021 −0.5199 −0.8609

Gumbel Copula

ρ 1.1000*** 
(0.0518)

1.1000*** 
(0.0470)

1.1058*** 
(0.0556)

1.1413*** 
(0.0547)

AIC 5.1033 11.3945 −1.8298 −3.5921

Symmetrised Joe- 
Clayton copula

Tu 0.0000 
(0.0000)

0.0000 
(0.9121)

0.0471 
(0.0607)

0.0406 
(0.0613)

T_L 0.0557 
(166.25)

0.0000 
(0.5021)

0.2272*** 
(0.0583)

0.3362*** 
(0.0510)

AIC 0.0564 1.4290 −7.4721 −15.7087

Notes: Table 5 reports the estimates of parameters of six copulas for each pair of negative return and volume, 
together with standard errors (in parentheses) and the values of Akaike Information Criteria (AIC). 
***indicates significance at 1% level. 

Table 6. Extreme tail dependence coefficients for negative returns-volume
Gumbel SC Clayton SJC

λG
U

LL λSC
U

LL λc
L LL λsjc

L
LL

Bitcoin 0.1221 5.1033 0.0000 0.0017 0.0000 0.0005 0.0557 0.0564

Ethereum 0.1221 11.3945 0.0000 0.0021 0.0000 0.0020 0.0000 1.4290

Ripple 0.1284 −0.18298 0.0008 −0.5199 0.1643 −4.8962 0.2272 −7.4721

Litecoin 0.1645 −3.5921 0.0026 −0.8609 0.2988 −11.9307 0.3362 −15.7087

Notes: Table 6 reports the upper tail dependence coefficients, calculated from the Gumbel copula λG
U ¼ 2 � 21=ρG and 

Survival Clayton Copula λSC
U ¼ 2� 1=ρSC by taking parameters from Table 5. 
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Ripple and Litecoin higher return and low return are followed by low volume that is new information in 
case of cryptocurrencies until now. As we Identified that Bitcoin and Ripple are the riskiest cryptocur-
rencies due to significant lower tail dependence between negative return and volume, which is 
consistent with the finding of Koo et al. (2020). Further, Naeem et al. (2020) found weaker lower tail 
dependence for most cryptocurrencies, which is contradictory to our findings.

5. Conclusion and implications
We investigate extreme return-volumes dependence among different cryptocurrencies by 
employing Copula methodology. We filter out margins by using the EGARCH model for return 
series and GARCH model for volume series and utilizes them in different copulas in order to 
measure dependence. Evidence of significant symmetric dependence between return-volume is 
not found due to insignificance of student-t and Frank copula parameters. In a return-volume 
relationship, coefficients of lower tail dependence are significant for Bitcoin, Ripple, and Litecoin 
which means that low returns are followed by low volumes. Lower tail dependence for the 
return-volume relationship is stronger than the upper tail dependence for Bitcoin, Ripple, and 
Litecoin. Moreover, for negative return-volume, left tail dependence coefficients are significant 
for Ripple and Litecoin, which means that high returns are followed by low volumes for Ripple 
and Litecoin.

In fact, extreme high returns are associated with extreme high trading volumes, but much 
weakly than for the lower tail. This might be related to heterogeneous crypto-investors, and 
imply that the arrival of very negative information leads to a fall in returns and trading 
volumes, whereas the effect of the arrival of very positive information is limited. This finding 
is unique to the cryptocurrency market, which might be due to the highly volatile nature of 
cryptocurrencies, with most existing investors holding long positions and not closing them to 
avoid potential losses, while new investors do not engage in long positions, which leads to 
lower trading volumes. Our findings are very informative for crypto-traders as they provide 
insightful information about the dependence between cryptocurrency positive and negative 
return-volume, especially in the extreme market conditions of cryptocurrencies. Accordingly, 
crypto-traders can now have a better understanding of the return-volume dependence of 
high volatility cryptocurrencies, which might make them more able to create trading strate-
gies that exploit the knowledge of trading volumes when trying to predict returns in various 
market states. The findings are also important for risk management purposes, given that 
returns and volumes have to be jointly determined while allowing for an asymmetry in the 
tail dependence.

While we present significant results in this article, data limitation has been a concern in our 
study. For example, we limited our analysis only to the four largest cryptocurrencies. Also, the 
cryptocurrency market experienced extreme volatility, potentially classified as a market bubble, 
from the end of 2017 to the beginning of 2018, and it has been perceived to be a more volatile 
market than many other markets. Regime switching models could be applied to further study the 
nature of cryptocurrency returns. Future research could also consider portfolio and hedging 
analysis within the cryptocurrency markets.
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